
2024/03/28 20:10 1/23 Week 8 - Sorting Algorithms Part 1

HDip Data Analytics - http://hdip-data-analytics.com/

DATA ANALYTICS REFERENCE DOCUMENT

Document Title: Document Title

Document No.: 1552735583

Author(s): Gerhard van der Linde, Rita Raher

Contributor(s):

REVISION HISTORY

Revision Details of
Modification(s)

Reason for
modification Date By

0 Draft release Document description here 2019/03/16
11:26

Gerhard van der
Linde, Rita

Raher

Week 8 - Sorting Algorithms Part 1

07_sorting_algorithms_part_1.pdf

Overview

Introduction to sorting
Conditions for sorting
Comparator functions and comparison-based sorts
Sort keys and satellite data
Desirable properties for sorting algorithms

Stability
Efficiency
In-place sorting

Overview of some well-known sorting algorithms
Criteria for choosing a sorting algorithm

Sorting

Sorting – arrange a collection of items according to some pre-defined ordering rules
There are many interesting applications of sorting, and many different sorting algorithms, each with their own
strengths and weaknesses.
It has been claimed that as many as 25% of all CPU cycles are spent sorting, which provides a great incentive for
further study and optimization
The search for efficient sorting algorithms dominated the early days of computing.
Numerous computations and tasks are simplified by properly sorting information in advance, e.g. searching for a
particular item in a list, finding whether any duplicate items exist, finding the frequency of each distinct item, finding
order statistics of a collection of data such as the maximum, minimum, median and quartiles.

http://hdip-data-analytics.com/doku.php?id=modules:46887_sorting&do=revisions
http://hdip-data-analytics.com/_media/modules/46887/pdf/07_sorting_algorithms_part_1.pdf

Last update: 2020/06/20 14:39 modules:46887_sorting http://hdip-data-analytics.com/modules/46887_sorting

http://hdip-data-analytics.com/ Printed on 2024/03/28 20:10

Timeline of sorting algorithms

1945 – Merge Sort developed by John von Neumann
1954 – Radix Sort developed by Harold H. Seward
1954 – Counting Sort developed by Harold H. Seward
1959 – Shell Sort developed by Donald L. Shell
1962 – Quicksort developed by C. A. R. Hoare
1964 – Heapsort developed by J. W. J. Williams
1981 – Smoothsort published by Edsger Dijkstra
1997 – Introsort developed by David Musser
2002 – Timsort implemented by Tim Peters

Sorting

Sorting is often an important step as part of other computer algorithms, e.g. in computer graphics (CG) objects are
often layered on top of each other; a CG program may have to sort objects according to an “above” relation so that
objects may be drawn from bottom to top
Sorting is an important problem in its own right, not just as a preprocessing step for searching or some other task
Real-world examples:

Entries in a phone book, sorted by area, then name
Transactions in a bank account statement, sorted by transaction number or date
Results from a web search engine, sorted by relevance to a query string

Conditions for sorting

A collection of items is deemed to be “sorted” if each item in the collection is less than or equal to its successor
To sort a collection A, the elements of A must be reorganised such that if A[i] < A[j], then i < j
If there are duplicate elements, these elements must be contiguous in the resulting ordered collection – i.e. if A[i] =
A[j] in a sorted collection, then there can be no k such that i < k < j and A[i] ≠ A[k].
The sorted collection A must be a permutation of the elements that originally formed A (i.e. the contents of the
collection must be the same before and after sorting)

Comparing items in a collection

What is the definition of “less than”? Depends on the items in the collection and the application in question
When the items are numbers, the definition of “less than” is obvious (numerical ordering)
If the items are characters or strings, we could use lexicographical ordering (i.e. apple < arrow < banana)
Some other custom ordering scheme – e.g. Dutch National Flag Problem (Dijkstra), red < white < blue

Comparator functions

Sorting collections of custom objects may require a custom ordering scheme
In general: we could have some function compare(a,b) which returns:

-1 if a < b
0 if a = b
1 if a > b

Sorting algorithms are independent of the definition of “less than” which is to be used
Therefore we need not concern ourselves with the specific details of the comparator function used when designing
sorting algorithms

2024/03/28 20:10 3/23 Week 8 - Sorting Algorithms Part 1

HDip Data Analytics - http://hdip-data-analytics.com/

Inversions

The running time of some sorting algorithms (e.g. Insertion Sort) is strongly related to the number of inversions in the
input instance.
The number of inversions in a collection is one measure of how far it is from being sorted.
An inversion in a list A is an ordered pair of positions (i, j) such that:

i < j but A[i] > A[j].
i.e. the elements at positions i and j are out of order

E.g. the list [3,2,5] has only one inversion corresponding to the pair (3,2), the list [5,2,3] has two inversions, namely,
(5,2) and (5,3), the list [3,2,5,1] has four inversions (3,2), (3,1), (2,1), and (5,1), etc.

Comparison sorts

A comparison sort is a type of sorting algorithm which uses comparison operations only to determine which of two
elements should appear first in a sorted list.
A sorting algorithm is called comparison-based if the only way to gain information about the total order is by
comparing a pair of elements at a time via the order ≤.
Many well-known sorting algorithms (e.g. Bubble Sort, Insertion Sort, Selection Sort, Merge Sort, Quicksort, Heapsort)
fall into this category.
Comparison-based sorts are the most widely applicable to diverse types of input data, therefore we will focus mainly
on this class of sorting algorithms
A fundamental result in algorithm analysis is that no algorithm that sorts by comparing elements can do better than
<m>n</m> log <m>n</m> performance in the average or worst cases.
Under some special conditions relating to the values to be sorted, it is possible to design other kinds of non-
comparison sorting algorithms that have better worst-case times (e.g. Bucket Sort, Counting Sort, Radix Sort)

Sort keys and satellite data

In addition to the sort key (the information which we use to make comparisons when sorting), the elements which
we sort also normally have some satellite data
Satellite data is all the information which is associated with the sort key, and should travel with it when the element
is moved to a new position in the collection
E.g. when organising books on a bookshelf by author, the author’s name is the sort key, and the book itself is the
satellite data
E.g. in a search engine, the sort key would be the relevance (score) of the web page to the query, and the satellite
data would be the URL of the web page along with whatever other data is stored by the search engine
For simplicity we will sort arrays of integers (sort keys only) in the examples, but note that the same principles apply
when sorting any other type of data

Desirable properties for sorting algorithms

Stability – preserve order of already sorted input
Good run time efficiency (in the best, average or worst case)
In-place sorting – if memory is a concern
Suitability – the properties of the sorting algorithm are well-matched to the class of input instances which are
expected i.e. consider specific strengths and weaknesses when choosing a sorting algorithm

Stability

If a comparator function determines that two elements �� and �� in the original unordered collection are equal, it
may be important to maintain their relative ordering in the sorted set

Last update: 2020/06/20 14:39 modules:46887_sorting http://hdip-data-analytics.com/modules/46887_sorting

http://hdip-data-analytics.com/ Printed on 2024/03/28 20:10

i.e. if i < j, then the final location for A[i] must be to the left of the final location for A[j]
Sorting algorithms that guarantee this property are stable
Unstable sorting algorithms do not preserve this property
Using an unstable sorting algorithm means that if you sort an already sorted array, the ordering of elements which
are considered equal may be altered!

Stable sort of flight information

All flights which have the same destination city are also sorted by their scheduled departure time; thus, the sort
algorithm exhibited stability on this collection.
An unstable algorithm pays no attention to the relationships between element locations in the original collection (it
might maintain relative ordering, but it also might not).

Reference: 1)

Analysing sorting algorithms

When analysing a sorting algorithm, we must explain its best-case, worstcase, and average-case time complexity.
The average case is typically hardest to accurately quantify and relies on advanced mathematical techniques and
estimation. It also assumes a reasonable understanding of the likelihood that the input may be partially sorted.
Even when an algorithm has been shown to have a desirable best-case, average-case or worst-case time complexity,
its implementation may simply be impractical (e.g. Insertion Sort with large input instances).
No one algorithm is the best for all possible situations, and so it is important to understand the strengths and
weaknesses of several algorithms.

2024/03/28 20:10 5/23 Week 8 - Sorting Algorithms Part 1

HDip Data Analytics - http://hdip-data-analytics.com/

Recap: orders of growth

Factors which influence running time

As well as the complexity of the particular sorting algorithm which is used, there are many other factors to consider
which may have an effect on running time, e.g.
How many items need to be sorted
Are the items only related by the order relation, or do they have other restrictions (for example, are they all integers
in the range 1 to 1000)
To what extent are the items pre-sorted
Can the items be placed into an internal (fast) computer memory or must they be sorted in external (slow) memory,
such as on disk (so-called external sorting).

In-place sorting

Sorting algorithms have different memory requirements, which depend on how the specific algorithm works.
A sorting algorithm is called in-place if it uses only a fixed additional amount of working space, independent of the
input size.
Other sorting algorithms may require additional working memory, the amount of which is often related to the size of
the input n
In-place sorting is a desirable property if the availability of memory is a concern

Overview of sorting algorithms

Algorithm Best
case

Worst
case

Average
case

Space
Complexity Stable?

Bubble Sort <m>n</m> <m>n 2</m> <m>n 2</m> 1 Yes

Last update: 2020/06/20 14:39 modules:46887_sorting http://hdip-data-analytics.com/modules/46887_sorting

http://hdip-data-analytics.com/ Printed on 2024/03/28 20:10

Algorithm Best
case

Worst
case

Average
case

Space
Complexity Stable?

Selection
Sort <m>n 2</m> <m>n 2</m> <m>n 2</m> 1 No

Insertion Sort <m>n</m> <m>n 2</m> <m>n 2</m> 1 Yes

Merge Sort <m>n log
n</m>

<m>n
log

n</m>
<m>n log

n</m> <m>O(n)</m> Yes

Quicksort <m>n log
n</m> <m>n 2</m> <m>n log

n</m>
<m>n</m>
(worst case) No*

Heapsort <m>n log
n</m>

<m>n
log

n</m>
<m>n log

n</m> 1 No

Counting
Sort

<m>n +
k</m>

<m>n +
k</m>

<m>n +
k</m>

<m>n +
k</m> Yes

Bucket Sort <m>n +
k</m> <m>n 2</m> <m>n +

k</m>
<m>n *
k</m> Yes

Timsort <m>n</m>
<m>n

log
n</m>

<m>n log
n</m> <m>n</m> Yes

Introsort <m>n log
n</m>

<m>n
log

n</m>
<m>n log

n</m>
<m>log
n</m> No

*the standard Quicksort algorithm is unstable, although stable variations do exist

Criteria for choosing a sorting algorithm

Criteria Sorting algorithm
Small number of items to be sorted Insertion Sort

Items are mostly sorted already Insertion Sort

Concerned about worst-case scenarios Heap Sort

Interested in a good average-case behaviour Quicksort

Items are drawn from a uniform dense universe Bucket Sort

Desire to write as little code as possible Insertion Sort

Stable sorting required Merge Sort

Week 9: Sorting Algorithms Part 2

Overview

Review of sorting & desirable properties for sorting algorithms
Introduction to simple sorting algorithms

Bubble Sort
Selection sort

2024/03/28 20:10 7/23 Week 8 - Sorting Algorithms Part 1

HDip Data Analytics - http://hdip-data-analytics.com/

Insertion sort

Review of sorting

Sorting - Arrange a collection of items according to pre-defined ordering rule

Desirable properties for sorting algorithms
Stability - preserve order of already sorted input
Good run time efficiency(in the best, average or worst case)
In-place sorting - if memory is a concern
Suitability - the properties of the sorting algorithm are well-matched to the class of input instances which are
expected i.e. consider specific strengths and weaknesses when choosing a sorting algorithm.

Overview of sorting algorithms

Algorithm Best
case

Worst
case

Average
case

Space
Complexity Stable?

Bubble Sort <m>n</m> <m>n 2</m> <m>n 2</m> 1 Yes

Selection
Sort <m>n 2</m> <m>n 2</m> <m>n 2</m> 1 No

Insertion Sort <m>n</m> <m>n 2</m> <m>n 2</m> 1 Yes

Merge Sort <m>n log
n</m>

<m>n
log

n</m>
<m>n log

n</m> <m>O(n)</m> Yes

Quicksort <m>n log
n</m> <m>n 2</m> <m>n log

n</m>
<m>n</m>
(worst case) No*

Heapsort <m>n log
n</m>

<m>n
log

n</m>
<m>n log

n</m> 1 No

Counting
Sort

<m>n +
k</m>

<m>n +
k</m>

<m>n +
k</m>

<m>n +
k</m> Yes

Bucket Sort <m>n +
k</m> <m>n 2</m> <m>n +

k</m>
<m>n *
k</m> Yes

Timsort <m>n</m>
<m>n

log
n</m>

<m>n log
n</m> <m>n</m> Yes

Introsort <m>n log
n</m>

<m>n
log

n</m>
<m>n log

n</m>
<m>log
n</m> No

*the standard Quicksort algorithm is unstable, although stable variations do exist

Comparison sorts

A comparison sort is a type of sorting algorithm which uses comparison operations only to determine which of two
elements should appear in a sorted list.
A sorting algorithm is called comparison-based if the only way to gain information about the total order is by
comparing a pair of elements at a time via the order ≤
The simple sorting algorithms which we will discuss in this lecture (Bubble sort, insertion sort, and selection sort) all
fall into this category.

Last update: 2020/06/20 14:39 modules:46887_sorting http://hdip-data-analytics.com/modules/46887_sorting

http://hdip-data-analytics.com/ Printed on 2024/03/28 20:10

A fundamental result in algorithm analysis is that no algorithm that sorts by comparing elements can do better than
<m>n</m> log <m>n</m> performance in the average or worst cases.
Non-comparison sorting algorithms(e.g Bucket Sort, Counting Sort, Radix Sort) can have better worst-case times.

Bubble Sort

Named for the way larger values in a list “Bubble up” to the end as sorting takes place
Bubble sort was first analysed as early as 1956 (time complexity is <m>n</m> in best case, and <m>n^2</m> in
worst and average cases)
Comparison-based
In-place sorting algorithm(i.e uses a constant amount of additional working space in addition to the memory required
for the input)
Simple to understand and implement, but it is slow and impractical for most problems even when compared to
Insertion sort.
Can be practical in some cases on data which is nearly sorted

Bubble Sort procedure

Compare each element(except the last one) with its neighbour to the right
if they are out of order, swap them
this puts the largest element at the very end
the last element is now in the correct and final place

Compare each element(except the last two) with its neighbour to the right
If they are out of order, swap them
This puts the second largest element next to last
The last two elements are now in their correct and final places.

Compare each element (except the last three) with its neighbour to the right
…

Continue as above until there are no unsorted elements on the left

Bubble Sort example

Bubble Sort in Code

public static void bubblesort(int[]a){
 int outer, inner;

http://hdip-data-analytics.com/_detail/modules/screenshot_2019-03-21_at_20.38.43.png?id=modules%3A46887_sorting

2024/03/28 20:10 9/23 Week 8 - Sorting Algorithms Part 1

HDip Data Analytics - http://hdip-data-analytics.com/

 for(outer = a.length - 1; outer > 0;outer--){ //counting down
 for(inner=0;inner < outer;inner++){ //bubbling up
 if(a[inner] > a[inner+1]; { //if out of order....
 int temp = a[inner]; //...then swap
 a[inner] =a[inner+1];
 a[inner +1] = temp;
 }
 }
 }
 }

bubblesort.py

Bubble Sort in python
def printArray(arr):
 print (' '.join(str(i) for i in arr))

def bubblesort(arr):
 for i in range(len(arr)):
 for j in range(len(arr) - i - 1):
 if arr[j] > arr[j + 1]:
 temp = arr[j]
 arr[j] = arr[j + 1]
 arr[j + 1] = temp
 # Print array after every pass
 print ("After pass " + str(i) + " :", printArray(arr))

if __name__ == '__main__':
 arr = [10, 7, 3, 1, 9, 7, 4, 3]
 print ("Initial Array :", printArray(arr))
 bubblesort(arr)

Bubble Sort Example

Analysing Bubble Sort (worst case)

for(outer =a.length-1; outer >0; outer--){
 for(inner=0; inner < outer; inner++){
 if(a[inner]>a[inner+1]){
 //swap code omitted
 }

http://hdip-data-analytics.com/_export/code/modules/46887_sorting?codeblock=1
http://hdip-data-analytics.com/_detail/modules/screenshot_2019-03-21_at_20.54.35.png?id=modules%3A46887_sorting

Last update: 2020/06/20 14:39 modules:46887_sorting http://hdip-data-analytics.com/modules/46887_sorting

http://hdip-data-analytics.com/ Printed on 2024/03/28 20:10

 }
}

In the worst case, the outer loop executes n-1 times (say n times)
On average, inner loop executes about n/2 times for each outer loop
In the inner loop, comparison and swap operations take constant time k
Result is:

Selection Sort

Comparison-based
In-place
Unstable
Simple to implement
Time complexity is <m>n^2</m> in best, worst and average cases.
Generally gives better performance than Bubble Sort, but still impractical for real world tasks with a significant input
size
In every iteration of selection sort, the minimum element (when ascending order) from the unsorted subarray on the
right is picked and moved to the sorted subarray on the left.

Selection Sort procedure

Search elements 0 through n-1 and select the smallest
swap it with the element in location 0

Search elements 1 through n-1 and select the smallest
swap it with the element in location 1

Search elements 2 through n-1 and select the smallest
swap it with the element in location 2

Search elements 3 through n-1 and select the smallest
swap it with the element in location 3

Continue in this fashion until there's nothing left to search

Selection Sort example

http://hdip-data-analytics.com/_detail/modules/screenshot_2019-03-21_at_21.00.45.png?id=modules%3A46887_sorting

2024/03/28 20:10 11/23 Week 8 - Sorting Algorithms Part 1

HDip Data Analytics - http://hdip-data-analytics.com/

The element at index 4 is the smallest, so swap with index 0
The element at index 2 is the smallest, so swap with index 1
The element at index 3 is the smallest, so swap with index 2
The element at index 3 is the smallest, so swap with index 3

Selection sort might swap an array element with itself; this is harmless, and not worth checking for

Selection Sort in Code

public static void selectionsort(int[]a){
 int outer=0, inner=0, min=0;
 for(outer = 0; outer <a.length-1;outer++){ //outer counts up
 min = outer;
 for(inner = outer +1; inner <a.length; inner++){
 if(a[inner]<a[min]){ //find index of smallest value
 min = inner;
 }
 }
 //swap a [min] with a [outer]
 int temp = a[outer];
 a[outer] = a[min];
 a[min] = temp;
 }
}

selection_sort.py

selection sort in python
def printArray(arr):
 return (' '.join(str(i) for i in arr))

def selectionsort(arr):
 N = len(arr)
 for i in range(0, N):
 small = arr[i]
 pos = i
 for j in range(i + 1, N):
 if arr[j] < small:

http://hdip-data-analytics.com/_detail/modules/screenshot_2019-03-21_at_21.10.52.png?id=modules%3A46887_sorting
http://hdip-data-analytics.com/_export/code/modules/46887_sorting?codeblock=4

Last update: 2020/06/20 14:39 modules:46887_sorting http://hdip-data-analytics.com/modules/46887_sorting

http://hdip-data-analytics.com/ Printed on 2024/03/28 20:10

 small = arr[j]
 pos = j
 temp = arr[pos]
 arr[pos] = arr[i]
 arr[i] = temp
 print ("After pass " + str(i) + " :", printArray(arr))

if __name__ == '__main__':
 arr = [10, 7, 3, 1, 9, 7, 4, 3]
 print ("Initial Array :", printArray(arr))
 selectionsort(arr)

Analysing Selection Sort

The outer loop runs <m>n</m> - 1 times
The inner loop executes about <m>n</m>/2 times on average(from <m>n</m> to 2 times)
Results is:

 in best, worst and average cases

Insertion Sort

Similar to the method usually used by card players to sort cards in their hand.
Insertion sort is easy to implement, stable, in-place, and works well on small lists and lists that are close to sorted.
On data sets which are already substantially sorted it runs in n +d time, where d is the number of inversions.
However, it is very inefficient for large random lists.
Insertion Sort is iterative and works by splitting a list of size n into a head(“sorted”) and tail(“unsorted”) sublist.

Insertion Sort procedure

Start from the left of the array, and set the “key” as the element at index 1.Move any elements to the left which are
> the “key” right by one position, and insert the “key”.
Set the “Key” as the element at index 2. Move any elements to the left which are > the key right by one position and
insert the key.
Set the “key” as the element at the index 3. Move any elements to the left which are > the key right by one position
and index the key.

http://hdip-data-analytics.com/_detail/modules/screenshot_2019-03-21_at_21.21.22.png?id=modules%3A46887_sorting
http://hdip-data-analytics.com/_detail/modules/screenshot_2019-03-21_at_21.23.01.png?id=modules%3A46887_sorting

2024/03/28 20:10 13/23 Week 8 - Sorting Algorithms Part 1

HDip Data Analytics - http://hdip-data-analytics.com/

…
Set the “key” as the elements at index <m>n</m>-1. Move any elements to the left which are > the key right by
one position and insert the key.
The array is now sorted.

Insertion Sort example

a[1]=5 is the key; 7>5 so move 7 right by one position, and insert 5 at index 0
a[2]=2 is the key; 7>2 so move both 7 and 5 right by one position, and insert 2 at index 0
a[3]=3 is the key; 7>3 and 5>3 so move both 7 and 5 right by one position, and insert 3 at index 1
a[4]=1 is the key; 7>1, 5>1, 3>1 and 2>1 so move both 7, 5, 3 and 2 right by one position, and insert 1 at index 1

(done)

Insertion Sort in code

public static void insertionsort(int a[]){
 for(int i=1; i<a.length; i++){
 int key =a[i]; //value to be inseted
 int j = i-1;
 //move all elements > key right one position
 while(j>=0 && a[j]>key){
 a[j+1]= a[j];
 j=j-1;
 }
 a[j+1]=key; //insert key in its new position
 }

}

insertion_sort.py

insertion sort
def printArray(arr):
 return(' '.join(str(i) for i in arr))

http://hdip-data-analytics.com/_detail/modules/screenshot_2019-03-21_at_21.35.13.png?id=modules%3A46887_sorting
http://hdip-data-analytics.com/_export/code/modules/46887_sorting?codeblock=6

Last update: 2020/06/20 14:39 modules:46887_sorting http://hdip-data-analytics.com/modules/46887_sorting

http://hdip-data-analytics.com/ Printed on 2024/03/28 20:10

def insertionsort(arr):
 N = len(arr)
 for i in range(1, N):
 j = i - 1
 temp = arr[i]
 while j >= 0 and temp < arr[j]:
 arr[j + 1] = arr[j]
 j -= 1
 arr[j + 1] = temp
 print ("After pass " + str(i) + " :", printArray(arr))

if __name__ == '__main__':
 arr = [10, 7, 3, 1, 9, 7, 4, 3]
 print ("Initial Array :", printArray(arr))
 insertionsort(arr)

Analysing Insertion Sort

The total number of data comparisons made by insertion sort is the number of inversions d plus at most <m>n</m>
-1
A sorted list has no inversions - therefore insertion sort runs in linear Ω(n) time in the best case(when the input is
already sorted)

On average, a list of size <m>n</m> has inversions, and the number of comparisons is

In the worst case, alist of size n has inversions(reserve sorted input), and the number of

comparisons is

Comparison of Simple sorting algorithms

The main advantage that Insertion sort has over Selection Sort is that the inner loop only iterates as long as is
necessary to find the insertion point.
In the worst case, it will iterate over the entire sorted part. In the case, the number of iterations is the same as for
selection sort and bubble sort.
At the other extreme, however, if the array is already sorted, the inner loop won't need to iterate at all. In this case,
the running time is Ω(n), which is the same as the running time of Bubble sort on an array which is already sorted.
Bubble Sort, Selection sort and insertion sort are all in-place sorting algorithms.
Bubble sort and insertion sort are stable, whereas selection sort

Criteria for choosing a sorting algorithm

Criteria Sorting algorithm
Small number of items to be sorted Insertion Sort

Items are mostly sorted already Insertion Sort

http://hdip-data-analytics.com/_detail/modules/screenshot_2019-03-21_at_21.49.14.png?id=modules%3A46887_sorting
http://hdip-data-analytics.com/_detail/modules/screenshot_2019-03-21_at_21.50.40.png?id=modules%3A46887_sorting
http://hdip-data-analytics.com/_detail/modules/screenshot_2019-03-21_at_21.51.18.png?id=modules%3A46887_sorting
http://hdip-data-analytics.com/_detail/modules/screenshot_2019-03-21_at_21.52.03.png?id=modules%3A46887_sorting

2024/03/28 20:10 15/23 Week 8 - Sorting Algorithms Part 1

HDip Data Analytics - http://hdip-data-analytics.com/

Criteria Sorting algorithm
Concerned about worst-case scenarios Heap Sort

Interested in a good average-case behaviour Quicksort

Items are drawn from a uniform dense universe Bucket Sort

Desire to write as little code as possible Insertion Sort

Stable sorting required Merge Sort

Recap

Bubble sort, selection sort and insertion sort are all O(<m>n^2</m>) in the worst case
It is possible to do much better than this even with comparison-based sorts, as we will see in the next lecture
from this lectuure on simple O(<m>n^2</m>)sorting algorithms:

Bubble sort is extremely slow, and is of little practical use
Selection sort is generally better than Bubble sort
Selection sort and insertion sort are “good enough” for small input instances
Insertion sort is usually the fastest of the three. In fact, for small <m>n</m> (say 5 or 10 elements), insertion
sort is usually fasters than more complex algorithms.

Week 10: Sorting Algorithms Part 3

Overview

Efficient comparison sort
Merge sort
Quick sort

Non-comparison sorts
Counting sort
Bucket sort

Hybrid Sorting algorithms
Introsort
Timsort

Overview of sorting algorithms

Algorithm Best
case

Worst
case

Average
case

Space
Complexity Stable?

Bubble Sort <m>n</m> <m>n 2</m> <m>n 2</m> 1 Yes

Selection
Sort <m>n 2</m> <m>n 2</m> <m>n 2</m> 1 No

Insertion Sort <m>n</m> <m>n 2</m> <m>n 2</m> 1 Yes

Merge Sort <m>n log
n</m>

<m>n
log

n</m>
<m>n log

n</m> <m>O(n)</m> Yes

Quicksort <m>n log
n</m> <m>n 2</m> <m>n log

n</m>
<m>n</m>
(worst case) No*

Last update: 2020/06/20 14:39 modules:46887_sorting http://hdip-data-analytics.com/modules/46887_sorting

http://hdip-data-analytics.com/ Printed on 2024/03/28 20:10

Algorithm Best
case

Worst
case

Average
case

Space
Complexity Stable?

Heapsort <m>n log
n</m>

<m>n
log

n</m>
<m>n log

n</m> 1 No

Counting
Sort

<m>n +
k</m>

<m>n +
k</m>

<m>n +
k</m>

<m>n +
k</m> Yes

Bucket Sort <m>n +
k</m> <m>n 2</m> <m>n +

k</m>
<m>n *
k</m> Yes

Timsort <m>n</m>
<m>n

log
n</m>

<m>n log
n</m> <m>n</m> Yes

Introsort <m>n log
n</m>

<m>n
log

n</m>
<m>n log

n</m>
<m>log
n</m> No

*the standard Quicksort algorithm is unstable, although stable variations do exist

Merge sort

Proposed by john von Neumann in 1945
This algorithm exploits a recursive divide-and conquer approach resulting in a worst-case running time of �(<m>n
log n</m>), the best asymptotic behaviour which we have seen so far.
It's best, worst, and average cases are very similar, making it a very good choice if predictable runtime is important -
Merge Sort gives good all-round performance.
Stable sort
Versions of merge Sort are particularly good for sorting data with slow access times, such as data that cannot be held
in internal memory(RAM) or are stored in linked lists.

Merge Sort Example

Mergesort is based on the following basic idea:
if the size of the list is 0 or 1, return.
Otherwise, separate the list into two lists of equal or nearly equal size
and recursively sort the first and second halves separately.
finally, merge the two sorted halves into one sorted list.

Clearly, almost all the work is in the merge step, which should be as efficient as
possible.
Any merge must take at least time that is linear in the total size of the two lists
in the worst case, since every element must be looked at in order to determine
the correct ordering.

Merge Sort in code

merge_sort.py

http://hdip-data-analytics.com/_export/code/modules/46887_sorting?codeblock=7

2024/03/28 20:10 17/23 Week 8 - Sorting Algorithms Part 1

HDip Data Analytics - http://hdip-data-analytics.com/

Merge sort1.
def mergesort(arr, i, j):2.
 mid = 03.
 if i < j:4.
 mid = int((i + j) / 2)5.
 mergesort(arr, i, mid)6.
 mergesort(arr, mid + 1, j)7.
 merge(arr, i, mid, j)8.
 9.
 10.
def merge(arr, i, mid, j):11.
 print ("Left: " + str(arr[i:mid + 1]))12.
 print ("Right: " + str(arr[mid + 1:j + 1]))13.
 N = len(arr)14.
 temp = [0] * N15.
 l = i16.
 r = j17.
 m = mid + 118.
 k = l19.
 while l <= mid and m <= r:20.
 if arr[l] <= arr[m]:21.
 temp[k] = arr[l]22.
 l += 123.
 else:24.
 temp[k] = arr[m]25.
 m += 126.
 k += 127.
 28.
 while l <= mid:29.
 temp[k] = arr[l]30.
 k += 131.
 l += 132.
 while m <= r:33.
 temp[k] = arr[m]34.
 k += 135.
 m += 136.
 for i1 in range(i, j + 1):37.
 arr[i1] = temp[i1]38.
 print ("After Merge: " + str(arr[i:j + 1]))39.
 40.
if __name__ == '__main__':41.
 arr = [9, 4, 8, 3, 1, 2, 5]42.
 print ("Initial Array: " + str(arr))43.
 mergesort(arr, 0, len(arr) - 1)44.

Terminal Output:

Initial Array: [9, 4, 8, 3, 1, 2, 5]
Left: [9]
Right: [4]
After Merge: [4, 9]
Left: [8]
Right: [3]
After Merge: [3, 8]
Left: [4, 9]
Right: [3, 8]
After Merge: [3, 4, 8, 9]
Left: [1]
Right: [2]
After Merge: [1, 2]

Last update: 2020/06/20 14:39 modules:46887_sorting http://hdip-data-analytics.com/modules/46887_sorting

http://hdip-data-analytics.com/ Printed on 2024/03/28 20:10

Left: [1, 2]
Right: [5]
After Merge: [1, 2, 5]
Left: [3, 4, 8, 9]
Right: [1, 2, 5]
After Merge: [1, 2, 3, 4, 5, 8, 9]

Quicksort

Developed by C.A.R Hoare in 1959
Like Merge SORT, Quicksort is a recursive Divide and Conquer algorithm
Standard version is not stable although stable versions do exist
Performance: worst case <m>n^2</m> (rare), average case <m>n log n</m>, best case <m>n log n</m>
Memory usage: O(<m>n</m>) (variants exist with O (n log n))
In practice it is one of the fastest known sorting algorithms, on average

Quicksort procedure

The main steps in Quick sort are:

Pivot selection: Pick an element, called a “pivot” from the array1.
Partioning: reorder the array elements with values < the pivot come beofre it, which all elements the values ≥ than2.
the pivot come after it. After this partioining, the pivot is in its final position.
Recursion: apply steps 1 and 2 above recursively to each of the two subarrays3.

The base case for the recursion is a subarray of length 1 or 0; by definition these cases do not need to be sorted.

Quicksort example

On overage quicksort runs in <m>n</m> log <m>n</m> but if it
consistently chooses bad pivots, its performance degrades to
<m>n^2</m>.
This happens if the pivot is consistently chosen so that all(or too many of)
the elements in the array are < the pivot or > than the pivot. (A classic
case is when the first or last element is chosen as a pivot and the data is
already sorted, or nearly sorted).
Some options for choosing the pivot:
Always pick the first elements as the pivot.
Always pick the last elements as the pivot.
Pick a random element as the pivot.
Pick the median element as the pivot.

Quick Sort Code

quick_sort.py

Quick Sort1.

http://hdip-data-analytics.com/_export/code/modules/46887_sorting?codeblock=9

2024/03/28 20:10 19/23 Week 8 - Sorting Algorithms Part 1

HDip Data Analytics - http://hdip-data-analytics.com/

def printArray(arr):2.
 return (' '.join(str(i) for i in arr))3.
 4.
def quicksort(arr, i, j):5.
 if i < j:6.
 pos = partition(arr, i, j)7.
 quicksort(arr, i, pos - 1)8.
 quicksort(arr, pos + 1, j)9.
 10.
def partition(arr, i, j):11.
 #pivot = arr[j] # pivot on the last item12.
 pivot = arr[int(j/2)] # pivot on the median13.
 small = i - 114.
 for k in range(i, j):15.
 if arr[k] <= pivot:16.
 small += 117.
 swap(arr, k, small)18.
 19.
 swap(arr, j, small + 1)20.
 print ("Pivot = " + str(arr[small + 1]), " Arr = " + printArray(arr))21.
 return small + 122.
 23.
def swap(arr, i, j):24.
 arr[i], arr[j] = arr[j], arr[i]25.
 26.
if __name__ == '__main__':27.
 arr = [9, 4, 8, 3, 1, 2, 5]28.
 print (" Initial Array :",printArray(arr))29.
 quicksort(arr, 0, len(arr) - 1)30.

 Initial Array : 9 4 8 3 1 2 5
Pivot = 5 Arr = 4 3 1 2 5 9 8
Pivot = 2 Arr = 1 2 4 3 5 9 8
Pivot = 3 Arr = 1 2 3 4 5 9 8
Pivot = 8 Arr = 1 2 3 4 5 8 9

Non-comparison Sorts

“Comparison sorts” make no assumptions about the data and compare all elements against each other (majority of
sorting algortihms work in this way, including all sorting algorithms which we have discussed so far).
�(<m>n</m> log <m>n</m>) time is the ideal “worst-case” scenario for a comparison-based sort (i.e
�(<m>n</m> log <m>n</m>)) is the smallest penalty you can hope for in the worst case). Heapsort has this
behaviour.
<m>O(n)</m> time is possible if we make assumptions about the data and don't need to compare elements against
each other (i.e., we know that data falls into a certain range or has some distribution).
Example of non-comparison sorts including Counting sort, Bucket and Radix Sort.
<m>O(n)</m> clearly is the minimum sorting time possible, since we must examine every element at least once
(how can you sort an item you do not even examine?).

Counting Sort

Proposed by Harold H.Seward in 1954.
Counting Sort allows us to do something whihch seems impossible - sort a collection of items in (close to) linear time.
How is this possible? Several assumptions must be made about the types of input instances which the algorithms will
have to handle.

Last update: 2020/06/20 14:39 modules:46887_sorting http://hdip-data-analytics.com/modules/46887_sorting

http://hdip-data-analytics.com/ Printed on 2024/03/28 20:10

i.e assume an input of size <m>n</m>, where each item has a non-negative integer key, with a range of k(if using
zero-indexing, the keys are in the range [0,…,k-1])
Best-, worst- and average-case time complexity of n +k, space complexity is also n+k
The potential running time advantage comes at the cost of having an algorithm which is not a widely applicable as
comparison sorts.
Counting sort is stable(if implemented in the correct way!)

Counting Sort procedure

Determine key range k in the input array(if not already known)
Initialise an array count size k, which will be used to count the number of times that each key value appears in the
input instance.
Initialise an array result of size n, which will be used to store the sorted output.
Iterate through the input array, and record the number of times each distinct key values occurs in the input instance.
Construct the sorted result array, based on the histogram of key frequencies stored in count. Refer to the ordering of
keys in input to ensure that stability is preserved.

Counting Sort example

Counting Sort Code

counting_sort.py

Counting sort1.
def printArray(arr):2.
 return(' '.join(str(i) for i in arr))3.
 4.
 5.
def countingsort(arr):6.
 count = [0] * 11 # can store the count of positive numbers <= 107.
 N = len(arr)8.
 for i in range(0, N):9.
 count[arr[i]] += 110.
 for i in range(1, len(count)):11.
 count[i] += count[i - 1]12.
 print ("Counting Array :",13.
 printArray(count))14.
 output = [0] * N15.

http://hdip-data-analytics.com/_export/code/modules/46887_sorting?codeblock=11

2024/03/28 20:10 21/23 Week 8 - Sorting Algorithms Part 1

HDip Data Analytics - http://hdip-data-analytics.com/

 for i in range(len(arr)):16.
 output[count[arr[i]] - 1] = arr[i]17.
 count[arr[i]] -= 118.
 print ("After Sorting :",19.
 printArray(output))20.
 21.
if __name__ == '__main__':22.
 arr = [10, 7, 3, 1, 9, 7, 4, 3]23.
 print ("Initial Array :",24.
 printArray(arr))25.
 countingsort(arr)26.

Initial Array : 10 7 3 1 9 7 4 3
Counting Array : 0 1 1 3 4 4 4 6 6 7 8
After Sorting : 1 3 3 4 7 7 9 10

Bucket Sort

Bucket sort is stable sort which works by distributing the elements of an array into a series of buckets. Each bucket is
then sorted individually, either using a different sorting algorithm, or by recursively applying the bucket sort
algorithm.
Bucket sort can be seen as generalization of counting osrt; in fact, if each bucket has size 1 then bucket sort
degenerates to counting sort.
Time complexity is <m>n^2</m> in the worst case, and <m>n</m>+k in the best and average cases(where k is
the number of buckets)
Worst case space complexity is �(<m>n</m> + k)
Bucket sort is useful when input values are uniformly distributed over a range e.g when sorting a large set of floating
point numbers which values are uniformly distributed between 0.0 and 1.0
Bucket Sort's performance degrades with clustering; if many values occur close together, they will all fall into a single
buckets and be sorted slowly.

Bucket Sort procedure

Set up an array of “Buckets”, which are initially empty
Iterate through the input array, placing each element into its correct buckets
Sort each non-empty bucket (using either a recursive call to bucket sort, or a different sorting algorithm e.g Insertion
Sort)
Visit the buckets in order, and place each elements back into its correct position.

Bucket Sort example

Last update: 2020/06/20 14:39 modules:46887_sorting http://hdip-data-analytics.com/modules/46887_sorting

http://hdip-data-analytics.com/ Printed on 2024/03/28 20:10

 2)

Hybrid Sorting Algorithms

A hybrid algorithm is one which combines two or more algorithms which are designed to solve the same
problem.
Either chooses one specific algorithms depending on the data and execution conditions, or switches between
different algorithms according to some rule set.
Hybrid algorithms aim to combine the desired features of each constituent algorithms, to achieve a better algorithm
in aggregate.
E.g The best versions of Quicksort perform better than either Heap Sort or Merge Sort on the vast majority of inputs.
However, Quicksort has poor worst-case running time (�(<m>n^2</m>)) and <m>O(n)</m> stack usage. By
comparison, both Heap sort and Merge Sort have �(<m>n log n</m>) worst-case running time, together with a stack
usage of �(1) for Heap Sort or <m>O(n)</m> for Merge Sort. Furthermore, Insertion Sort performs better than any of
these algorithms on small data sets.

Introsort

Hybrid sorting algorithms proposed by David Musser in 1997.
Variation of Quicksort which monitors the recursive depth of the standard Quicksort algorithm to ensure efficient
processing.
If the depth of the quicksort recursion exceeds <m>log n</m> levels, then Introsort switches to Heap sort instead.
Since both algorithms which it uses are comparison-based, IntroSort is also comparison-based.
Fast average- and worst-case performance i.e. <m>n log n</m>

Timsort

Hybrid sorting algorithm Implemented by Tim Peters in 2002 for use in the python language.
Derived from a combination of merge Sort and insertion sort, along with additional logic (including binary search)
Finds subsequences (runs) of the data that are already ordered, and uses that knowledge to sort the reminder more
efficiently, by merging an identified run with existing runs until certain criteria are fulfilled.
Used on the android platform, python(since 2.3) for arrays of primitive type in Java SE 7, and in the GNU Octave
software.

Criteria for choosing a sorting algorithm

Criteria Sorting algorithm
Small number of items to be sorted Insertion Sort

Items are mostly sorted already Insertion Sort

http://hdip-data-analytics.com/_detail/modules/screenshot_2019-03-29_at_12.25.17.png?id=modules%3A46887_sorting

2024/03/28 20:10 23/23 Week 8 - Sorting Algorithms Part 1

HDip Data Analytics - http://hdip-data-analytics.com/

Criteria Sorting algorithm
Concerned about worst-case scenarios Heap Sort

Interested in a good average-case behaviour Quicksort

Items are drawn from a uniform dense universe Bucket Sort

Desire to write as little code as possible Insertion Sort

Stable sorting required Merge Sort

Conclusion

As we have seen, there are many different sorting algorithms, each of which has it own specific strengths and
weaknesses.
Comparison-based sorts are the most widely applicable; but are limited to <m>n log n</m> running time in the best
case
Non-Comparison sorts can achieve linear <m>n</m> running time in the best case, but are less flexible
Hybrid sorting algorithms allow us to leverage the strengths of two or more algorithms (e.g. Timsort = Merge sort +
insertion sort)
There is no single algorithm which is best for all input instances; therefore it is important to use what you know about
the expected input when choosing an algorithm.

1)

Pollice G., Selkow S. and Heineman G. (2016). Algorithms in a Nutshell, 2nd Edition. O' Reilly.
2)

https://www.bing.com/search?q=python+bucket+sort&qs=n&form=QBRE&sp=-1&pq=python+bucke
t+sort&sc=2-18&sk=&cvid=0A314B2F0FB84419AB4418C4DC2CDA01

From:
http://hdip-data-analytics.com/ - HDip Data Analytics

Permanent link:
http://hdip-data-analytics.com/modules/46887_sorting

Last update: 2020/06/20 14:39

https://www.bing.com/search?q=python+bucket+sort&qs=n&form=QBRE&sp=-1&pq=python+bucket+sort&sc=2-18&sk=&cvid=0A314B2F0FB84419AB4418C4DC2CDA01
https://www.bing.com/search?q=python+bucket+sort&qs=n&form=QBRE&sp=-1&pq=python+bucket+sort&sc=2-18&sk=&cvid=0A314B2F0FB84419AB4418C4DC2CDA01
http://hdip-data-analytics.com/
http://hdip-data-analytics.com/modules/46887_sorting

	Week 8 - Sorting Algorithms Part 1
	Overview
	Sorting
	Timeline of sorting algorithms
	Sorting
	Conditions for sorting
	Comparing items in a collection
	Comparator functions
	Inversions
	Comparison sorts
	Sort keys and satellite data
	Desirable properties for sorting algorithms
	Stability
	Stable sort of flight information
	Analysing sorting algorithms
	Recap: orders of growth
	Factors which influence running time
	In-place sorting
	Overview of sorting algorithms
	Criteria for choosing a sorting algorithm

	Week 9: Sorting Algorithms Part 2
	Overview
	Review of sorting
	Overview of sorting algorithms
	Comparison sorts
	Bubble Sort
	Bubble Sort procedure
	Bubble Sort example
	Bubble Sort in Code
	Bubble Sort Example
	Analysing Bubble Sort (worst case)
	Selection Sort
	Selection Sort procedure
	Selection Sort example
	Selection Sort in Code
	Analysing Selection Sort
	Insertion Sort
	Insertion Sort procedure
	Insertion Sort example
	Insertion Sort in code
	Analysing Insertion Sort
	Comparison of Simple sorting algorithms
	Criteria for choosing a sorting algorithm
	Recap

	Week 10: Sorting Algorithms Part 3
	Overview
	Overview of sorting algorithms
	Merge sort
	Merge Sort Example
	Merge Sort in code
	Quicksort
	Quicksort procedure
	Quicksort example
	Quick Sort Code
	Non-comparison Sorts
	Counting Sort
	Counting Sort procedure
	Counting Sort example
	Counting Sort Code
	Bucket Sort
	Bucket Sort procedure
	Bucket Sort example
	Hybrid Sorting Algorithms
	Introsort
	Timsort
	Criteria for choosing a sorting algorithm
	Conclusion

