
2024/04/18 04:15 1/7 Cygwin debugger in VS Code

HDip Data Analytics - http://hdip-data-analytics.com/

DATA ANALYTICS REFERENCE DOCUMENT

Document Title: Setting up Cygwin

Document No.: 1570875139

Author(s): Gerhard van der Linde, Rita Raher

Contributor(s):

REVISION HISTORY

Revision Details of
Modification(s)

Reason for
modification Date By

0 Draft release Document the setup of cygwin 2019/10/12
10:12

Gerhard van
der Linde

Cygwin debugger in VS Code
Download and run the Cygwin installer from here https://cygwin.com/install.html
Follow the installation instructions from here
https://preshing.com/20141108/how-to-install-the-latest-gcc-on-windows/
After installation building is required, note that this is done in a newly installed Cygwin terminal.
The module in the course uses gcc instead of g++.

Adding the gcc debugger gdb

Install gdb

Rerun the cygwin installer(setup-x86_64.exe), located in downloads or moved to cywin folder in c:\cygwin64

Click through the installer and select gdb, you might have to use search to locate it.

http://hdip-data-analytics.com/doku.php?id=help:developer_tools:cygwin&do=revisions
https://cygwin.com/install.html
http://hdip-data-analytics.com/help/developer_tools/cygwin_full_install
https://preshing.com/20141108/how-to-install-the-latest-gcc-on-windows/

Last update: 2020/06/20
14:39 help:developer_tools:cygwin http://hdip-data-analytics.com/help/developer_tools/cygwin

http://hdip-data-analytics.com/ Printed on 2024/04/18 04:15

Click skip to select gdb and click net to complete the installation.

The gdb.exe file will now appear in c:\cygwin64\bin folder.

No set up the debugger extension in VS Code if not already installed.

The debugger can now be configured in VS Code.

Step by step instructions to set up the debugger in VS Code

Open C file in VS Code1.
Set breakpoint in code2.
Press F5 or select Start debugging from Debug menu3.

2024/04/18 04:15 3/7 Cygwin debugger in VS Code

HDip Data Analytics - http://hdip-data-analytics.com/

Select C++(GDB/LLDB) from popup4.

Then select gcc.exe build and debug active file5.

The Launch.json window should now pop up, see that this has the right path to your gdb.exe file, save and close.6.

Last update: 2020/06/20
14:39 help:developer_tools:cygwin http://hdip-data-analytics.com/help/developer_tools/cygwin

http://hdip-data-analytics.com/ Printed on 2024/04/18 04:15

G back to the C file and F5 again, ow it should pop up a message about not being able to build the active file, click7.
“Configure Task”.

Select C/C++:gcc.exe build active file8.
Now the task,json file should pop up and confirm that “command” points to the right location where the gcc.exe file9.
is located. Save and close

Go back to the C file again and press F5.10.
Now everything should start up and the code should stop at the debugger breakpoint.11.

2024/04/18 04:15 5/7 Cygwin debugger in VS Code

HDip Data Analytics - http://hdip-data-analytics.com/

Sample configuration files for Cygwin gdb to work in VS Code

launch.json

{
 // Use IntelliSense to learn about possible attributes.
 // Hover to view descriptions of existing attributes.
 // For more information, visit: https://go.microsoft.com/fwlink/?linkid=830387
 "version": "0.2.0",
 "configurations": [

 {
 "name": "gcc.exe build and debug active file",
 "type": "cppdbg",
 "request": "launch",
 "program": "${fileDirname}\\${fileBasenameNoExtension}.exe",
 "args": [],
 "stopAtEntry": false,
 "cwd": "${workspaceFolder}",
 "environment": [],
 "externalConsole": false,
 "MIMode": "gdb",
 "miDebuggerPath": "C:\\cygwin64\\bin\\gdb.exe",
 "setupCommands": [
 {
 "description": "Enable pretty-printing for gdb",
 "text": "-enable-pretty-printing",
 "ignoreFailures": true
 }
],
 "preLaunchTask": "gcc.exe build active file"
 }
]
}

tasks.json

{
 // See https://go.microsoft.com/fwlink/?LinkId=733558
 // for the documentation about the tasks.json format
 "version": "2.0.0",
 "tasks": [
 {
 "type": "shell",
 "label": "gcc.exe build active file",
 "command": "C:\\cygwin64\\bin\\gcc.exe",
 "args": [
 "-g",
 "${file}",
 "-o",
 "${fileDirname}\\${fileBasenameNoExtension}.exe"
],
 "options": {
 "cwd": "C:\\cygwin64\\bin"
 },
 "problemMatcher": [
 "$gcc"

http://hdip-data-analytics.com/_export/code/help/developer_tools/cygwin?codeblock=0
http://hdip-data-analytics.com/_export/code/help/developer_tools/cygwin?codeblock=1

Last update: 2020/06/20
14:39 help:developer_tools:cygwin http://hdip-data-analytics.com/help/developer_tools/cygwin

http://hdip-data-analytics.com/ Printed on 2024/04/18 04:15

],
 "group": "build"
 }
]
}

Right click and save the two json configuration files above into a subfolder
named .vscode. This folder should be in the same folder where your c
files that you want to debug resides.

Troubleshooting

https://github.com/microsoft/vscode-cpptools/issues/2778

"logging": { "engineLogging": true }

http://cs.baylor.edu/~donahoo/tools/gdb/tutorial.html

UTF-8 Workaround

* https://github.com/microsoft/vscode-cpptools/issues/1527

So the issue is caused in gb and the extra escaped character returned on line three in the VS Code debugger window as
shown below.

1: (2308) ->(gdb)
1: (2317) <-1001-gdb-set target-async on
1: (2318) ->&"\357\273\2771001-gdb-set target-async on\n"
1: (2319) ->&"Undefined command: \"\". Try \"help\".\n"
1: (2320) ->^error,msg="Undefined command: \"\". Try \"help\"."
1: (2320) ->(gdb)

As a workaround to fix this add a “gdb-with-chcp.cmd” within to your project (eg, “c:\cywin64\bin\gdp-with-chcp.cmd”):

@:: gdb-with-chcp.cmd
@chcp 1257 >NUL 2>&1 && @"gdb.exe" %*

This sets the codepage for GDB and fixes the problem cause above when running the PC set to UTF-8 codepage.

Amend the current json code launching the debugger to point to the cmd file just created.

launch.josn

 // use "PATHTO/gdb-with-chcp.cmd" as "miDebuggerPath" within "launch.json"
 // eg
 // ...
 "miDebuggerPath": "${workspaceFolder}/dbin/gdb-with-chcp.cmd",
 // ...

This resolved my gcc debugger issues.

https://github.com/microsoft/vscode-cpptools/issues/2778
http://cs.baylor.edu/~donahoo/tools/gdb/tutorial.html
https://github.com/microsoft/vscode-cpptools/issues/1527
http://hdip-data-analytics.com/_export/code/help/developer_tools/cygwin?codeblock=5

2024/04/18 04:15 7/7 Cygwin debugger in VS Code

HDip Data Analytics - http://hdip-data-analytics.com/

From:
http://hdip-data-analytics.com/ - HDip Data Analytics

Permanent link:
http://hdip-data-analytics.com/help/developer_tools/cygwin

Last update: 2020/06/20 14:39

http://hdip-data-analytics.com/
http://hdip-data-analytics.com/help/developer_tools/cygwin

	Cygwin debugger in VS Code
	Adding the gcc debugger gdb
	Install gdb

	Step by step instructions to set up the debugger in VS Code
	Sample configuration files for Cygwin gdb to work in VS Code

	Troubleshooting
	UTF-8 Workaround

