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Foreword

It is my great pleasure to recommend this excellent book written by my friend and
colleague, Professor Peter Fenwick. During the eleven years I have known him, we
have had many a discussion, often touching on topics covered here. Though this
is the closest we have come to a collaboration I have little doubt that had we met
earlier in our careers we would have collaborated extensively.

A major contribution of this book is to bring a historical perspective to many
topics that are so widely accepted that it might not be obvious there were choices to
be made. The binary representation of numbers was so obvious even in the 1940s that
Burks, Goldstine and von Neumann are said to have “adopted it seemingly without
discussion”. But Burks et al considered floating point representation, then argued
against supporting it. Long ago I heard it claimed that von Neumann believed any
mathematician ”worth his salt” should be able to specify floating point computations
using only integers. In any case, floating point only came into its own in the 1980s,
with the broad acceptance of the IEEE standards. Professor Fenwick shows great
insight into why it took decades to get right something as basic as the representation
of numbers.

A second important contribution is discussion of the introduction of redundancy
to increase reliability in the presence of errors: check sums and variable-length
(universal) codes. While simple check sums are frequently discussed, I know of no
comparable source for a general discussion of Universal codes, an important but
somewhat obscure subject.

I agree with Professor Fenwick’s quote, that “everybody thinks they know” about
these topics, but there are big holes, even today. Surely most of us have superficial
knowledge that fails us when we really need to work through the details. This book
covers a huge range of material, thoroughly and concisely. I have taught a good
bit of the material, but I learned much, even in areas where I claim some expertise.
The book displays a deep understanding of the many and varied requirements for
digital representation of information, from the obvious integers and floating point,
to Zeckendorf representations and Gray codes; from 2’s complement to logarithmic
arithmetic; from Elias and Levenstein codes to Rice and Golomb codes and on to
Ternary Comma and Fibonacci codes.
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In addition to the plethora of ways to represent numbers, it also covers represen-
tation of characters and strings. While the book will serve very well as a reference,
it is also fascinating reading. Many pages are devoted to obscure topics, interesting
largely because of their place in history, but outside the domain of a classic textbook
on computer organization or architecture. These are perhaps the most important
sections, precisely because they had to be understood and discarded to get us where
we are now.

This book definitely does not qualify for the subtitle, “Data Representation for
Dummies”. While it quickly surveys common forms of representation, the pace and
breadth will bewilder the true novice. On occasions, it uses terms unfamiliar (at
least to an American), requiring another source. Appropriately, Professor Fenwick
acknowledges the role of Wikipedia, which covers rather more topics than his book,
but certainly not as coherently.

The author has a wry, if somewhat subtle, sense of humour which often surfaces
unexpectedly: it’s a bit of a stretch, but of course the description and figure regarding
Gray codes include a “grey area”!

Discussion of the roles and interaction of precision, accuracy and range is superb.
Floating point representation is highly precise, so why is it dangerous for use in
financial calculations? Professor Fenwick points out something that had not occurred
to me: a “quite ordinary calculator” is capable of more precise arithmetic than a
32-bit [IEEE single-precision] floating point computation. That explains why the
calculator “app” on my iPad has both less range, and less precision, than the HP
calculator I bought 35 years ago!

A topic rarely covered so clearly is “unwarranted precision”, the process of using
a precise mathematical operation to apparently increase accuracy (significant digits)
of a number. Professor Fenwick points out confusion over precision created by the
fact that the speed of light is so close to 300,000,000 metres per second—and the
fact that scientific notation provides information about the accuracy of a value
(pp. 106-107). I especially liked his discussion of the sins of the popular press,
for example, by apparently increasing precision in the process of converting units:
an altitude “10,000 feet”—accurate to, say, ±100 metres—becomes the apparently
more precise, but inaccurate, “3 048 metres”. It is unfortunate that the general level
of this book is beyond comprehension for most journalists!

In short, this is a fascinating book that will appeal to many because of its au-
thoritative exploration of how we represent information. But it will also serve as
a reference for those requiring—or simply enjoying—the ability to choose efficient
representations that lead to accurate results. It’s a good read, and a great book to
keep handy.

James R. Goodman, United States of America
Fellow IEEE, Fellow ACM, 2013 Eckert-Mauchly Award
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PREFACE

This book arose from lectures on data representation given to first year Com-
puter Science students at the University of Auckland. But then it grew as I
realised that ever-more material seemed relevant, useful, or just interesting.
To a large extent it reflects my own journey through computing from about
1964–2004, starting from logic design, through computer hardware, computer
arithmetic and data communications into, finally, data compression. Thus the
computers that I reference are largely those with which I have at least passing
experience. (There are of course many others that I have not encountered,
but few of these are mentioned.) And the footnotes and asides often come
from personal experience; many are distant recollections which I cannot now
attribute.

A comment made by one person who read this book was “This is an area
that everybody thinks they know, but really nobody really knows very well”.
While most elementary Computer Science books certainly describe some data
representation (usually restricted to current “best practice”), and other books
give great detail of specialised topics such as floating point, there seems to be
a great gap in the middle. It is this gap, giving reasonable coverage of most
data types from first principles, that I hope this book supplies.

It deals mostly with data at the architectural level, with no mention of
the trees, lists etc as normally covered in Data Structures courses. The main
exception here is the description of text strings – characters are of little inter-
est in isolation; strings are the usual entity to be manipulated and are often
regarded as a data primitive. It also includes a comprehensive coverage of
variable-length integer representations and of checksums, both topics which
seem to have little overall coverage in the general literature.

Peter Fenwick
The University of Auckland, New Zealand (retired) email : pmbjfw@gmail.com
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Introduction and Overview

The Background

“My first computer”, in 1964, was an IBM 1620 with all of 20 000 decimal digits
(10k characters) of 20µs memory and a Floating Multiply time of 10ms (yes, 10
milliseconds. A division took 50ms and you could see it on the panel lights.).
By contrast, a modest current desktop computer might be larger/faster by
perhaps 1 million times. (The 1620 had no external storage, but a computer
which replaced it in 1967 had a 1 Mbyte disk cartridge, which has perhaps a
similar relation to modern storage capacities.) While in those early computers
time was important (after all you could, usually, just wait longer), a very real
problem was memory. All too often the algorithm or data structure was decided
more by memory efficiency than by computational speed. (And memory was
expensive, say 10s of cents per byte in 1960s currency, or several dollars in
2013, so you seldom had much available.)

Thus it was often essential to know just how data was actually held, es-
pecially if there was a lot of it1. “Good” programmers were keenly aware of
the detailed structure of records and other data structures. These matters re-
ally “hit home” to me in the late 1990s, when I was teaching an introductory
Computer Science course and had to change from Pascal to Java. The details
of data storage and representation just vanished into the mysteries of Classes
and such, buried under layers of abstraction; I suddenly realised that much of
my years (decades?) of hard-won knowledge and skills were largely obsolete.

At about the same time, I also realised that too many books presented
data representation as “This the way it is, and nothing else is important”.
Clearly this is wrong and much can be learnt from why things once-popular

1The word “data”, while strictly the plural of “datum” will be treated here as a singular
“noun of multitude”, following a widely-accepted usage. The plural form “data are” may
be used where the individual components are identifiable and important.
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became unwanted and ignored. This book therefore looks at some of these
topics, comparing them with current practice. So, mingled among the technical
material is assorted history, partly because I find it interesting, partly because
I think it should be better known, and partly because much seems to be getting
lost. Many chapters start with a brief history in the introduction, followed by
a more detailed history at the end or in Chapter 11 (where it is less intrusive).

But a word of warning here. The history as given is really no more than
a “best effort”. What appears to be a definitive statement by one authority
is all too easily contradicted by another, equally reputable, authority. So this
text is, I hope, correct in general outline, if not in detail. If you are spurred to
further investigation and find conflicts, well, that just seems to be the nature
of the subject. The history of science and technology has many examples
of inventions or discoveries made before their time and then forgotten, made
simultaneously when the time is ripe, or finally attributed to a more influential
person. Examples of all of these will be found here.

A complication since this book was started has been the development of
Wikipedia. Much of the material here will be found in Wikipedia, often to
much greater depth but spread across separate entries. Thus the two are, I
hope, complementary rather than competitive; where they differ I can only
(against my fond hopes) defer to its collective wisdom. But the material of
Wikipedia is so pervasive that I have seldom given explicit reference to it—just
assume that it is always there, in the background.

Finally, long decimal numbers and fractions are written “European style”
(123 456) rather than “English style” (123,456), but with a point or period
(.), rather than a comma(,) to separate integer and fraction. Dates and other
4-digit numbers are written without the separator, as 2013.

And, post-finally, my background makes the language of this book more
akin to “British English” than “American English”. I have tried my best to
remove confusions, but please remember the variously-attributed statement
that “Americans and British are two peoples divided by a common language”.

The Chapter Contents

I conclude this introduction with a brief description of each of the other chap-
ters.

Chapter 1 gives a general history of numbers and computers.

2   Introduction to Computer Data Representation Peter Fenwick 

  



Chapter 2 introduces binary representations including conversion between
number bases, especially binary and decimal. It then proceeds to a very
brief introduction to decimal coding, a topic which is expanded upon
in Section 11.7. (Parts of this chapter, in particular, reflect the origin
of the text as an introductory course. Advanced readers may find the
descriptions somewhat laboured.)

Chapter 3 introduces signed representations, mixed base number represen-
tations, and some other representations.

Chapter 4 deals with basic arithmetic (addition and subtraction), bits and
their manipulation (logical operations, shifts and field operations). Gen-
eral arithmetic is deferred until Chapter 5.

Chapter 5 gives an overview of computer arithmetic, describing methods of
performing and accelerating addition, multiplication and division.

Chapter 6 describes floating-point representations, covering the basic require-
ments and emphasising the IEEE 754 standard, but with discussion also
of other important representations. Examples illustrate requirements for
range, precision and rounding.

Chapter 7 is a brief description of logarithmic number representations, a
representation which is different and sometimes useful as in signal pro-
cessing.

Chapter 8 describes characters, briefly giving their historical development
(EBCDIC and ASCII) and text strings. It continues to MIME encod-
ings and Unicode (with UTF-8 and UTF-7). There is brief mention
of character coding as required for Internet Internationalized Domain
Names. A more complete coverage of character history is given later in
Section 11.6.

Chapter 9 reflects my own interest in variable-length codes for the integers.
In general these representations allow frequent values to be held in few
bits, and are “self-delimiting” needing no auxiliary information to show
their boundaries in a bit stream. There are few comprehensive accounts
of these representations.

(This chapter is a revision of an earlier publication [87, Chap 3], and is
reproduced here by permission of Elsevier.)

Chapter 10 is a discussion of checksums and simpler error-control codes.
As with Chapter 9, the original material is scattered far and wide and

Introdution Introduction to Computer Data Representation   3 

  



I think it deserves to be collected. While perhaps removed from the
general emphasis of the book, it is an important topic.

Chapter 11 This is essentially a collection of miscellaneous topics which ex-
pand on material given in the preceding chapters. Some are history (see
the above comments), others are important points which seem to be sel-
dom discussed, while others are, well, interesting. The following is a list
of the section numbers within the chapter.

11.1 A history of numbers.

11.2 Why use bits, 0 or 1?

11.3 What makes a “good” number representation?

11.4 The origin of “bit”, “byte” and “word”.

11.5 What do we really mean by “kilobyte”, “Megabyte”, etc?

11.6 A history of character codes

11.7 More on codes for decimal numbers

11.8 Variations on Roman numbers.

11.9 Scaling invariance.

Chapter 12 An overview of what has been said and its possible relationship
to future computing.

4   Introduction to Computer Data Representation Peter Fenwick 

 



Chapter 1

Numbers and Computers

Abstract: We start with the basic ideas of “numbers” and “counting”
and how the concepts and requirements differ with different levels of
technical and administrative sophistication. This is followed by a brief
summary of the development of calculating devices, to the structure of
the “von Neumann” computer. Finally, we introduce the requirements
of a computer, the importance of memory and an overview of data
storage within that memory.

Keywords: Concept of “number”, development of calculation, Bab-
bage analytical engine, Babbage Difference Engine, Colossus, ENIAC,
von Neumann, underlying technology, data in memory.

1.1 Numbers

The concept of number, or of counting, appears to be inherent in human
nature, and is arguably present even in some animals. Most societies were
able to specify and count up to a few hundred objects, with number systems
that were often descriptive rather than computational. While there was often a
clear concept of quantities such as “ten”, “hundred” and “thousand”, (and few
people needed much beyond that) the representation of values in most literate
societies was ill-suited to calculation1. An excellent example is found in Roman

1It is said that in one “primitive” society an early European visitor reported “they even
have words for thousands and millions!” A later, more numerate, visitor reported that these
“large numbers” were actually increasingly rude words, as the original respondent grew
ever-more annoyed with the pointless questions.
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numbers, with quite different symbols for “five tens”, “five hundreds” and “five
thousands”. Computation with representations such as these is decidedly non-
trivial. More information on the history of number representation is given in
Section 11.1.

A very few societies developed number systems which allowed precise de-
scription of very large values. Such number systems arose mainly for religious
reasons, such as among the Hindus and Maya, or where societies such as the
Chinese or Egyptians administered large populations. The ability to combine
or manipulate numbers to give precise results (what we would now call “arith-
metic”) is much rarer than counting or enumeration. Arithmetic, beyond the
simple addition of small numbers, developed only in high civilisations which
needed good land measurements, prediction of astronomical events such as
solstices or eclipses, accounting for commerce, or for taxation.

With most numbering systems, computation of any complexity was a con-
siderable skill, the preserve of an elite. To illustrate the difficulty of “classical”
arithmetic even in the 15th and 16th centuries, Ifrah [61] gives the following
anecdote.

A wealthy German merchant, seeking to provide his son with a
good business education, consulted a learned man as to which Eu-
ropean institution offered the best training. “If you want him to
be able to cope with addition and subtraction,” the expert replied,
“then any French or German university will do. But if you are in-
tent on your son going on to multiplication and division—assuming
that he has sufficient gifts—then you will have to send him to Italy.”

Even though decimal numbers were introduced into Europe in the 13th century,
it took 200–300 years for them to be accepted. Much of this delay has been
ascribed to the numerate clerks seeking to retain their skilled and privileged
positions (with arcane secrets), much as occurred with the craft guilds.

Aids to computation were therefore important, one of the best being the
abacus, or its variants such as the soroban. The abacus has the great ad-
vantage that its pictorial view of the number is largely independent of local
representational idiosyncrasies. It demands only a decimal representation (but
it is not difficult to use an abacus for octal arithmetic). The abacus is still
an important calculating device; where data entry times predominate (as in
sequences of additions and subtractions) it is competitive in speed with elec-
tronic calculators.

6   Introduction to Computer Data Representation Peter Fenwick 

  



1.2 Calculating Machines

Machines for performing simple arithmetic appeared in the 17th century; the
first was designed by Wilhelm Schickard about 1623, but its details have only
recently been rediscovered [88, p182]. Pascal in 1642 described a calcula-
tor which could add and subtract, while Leibnitz in 1683 had one (based on
Schickard’s design) which could also multiply and divide. But the ideas were
far beyond the available technology and commercial calculators did not appear
until late in the 19th century. Many of the principles had been developed by
Babbage in the 1820s with, first his Difference Engine, and later the Ana-
lytical Engine2. A calculator based on Babbage’s ideas was produced in 1855
by Scheutz, in Stockholm. If the Difference Engine anticipated the practical
mechanical calculator, the Analytical Engine anticipated the stored-program
computer.

The late 19th century saw the development of cash registers and similar de-
vices, leading ultimately to the accounting machines of 50 years later. Another
important development at this time was the use of punched cards by Hermann
Hollerith in processing the 1886 United States census. Punched cards had then
been in use for a century in controlling Jacquard looms; Hollerith used them
instead as data storage3.

During the first quarter of the 20th century then the possibility of using ma-
chines for computation and other data processing was becoming established.
Adding machines and cash registers were accepted and ever-more complex
accounting and tabulating machines were being developed. The idea of auto-
matic control of computation had been around for a century, even if it had
been largely forgotten. Within the period of about 1920–1945 several other
developments occurred, many apparently unrelated but all leading in some
way to successful electronic computers. The list here is not exhaustive, but is
intended rather as a brief outline of developments relating to electronic com-
putation. An excellent collection of early papers relating to computers has
been assembled by Randell [82].

2It has been observed that when Babbage started work on his calculating machines the
most complex machinery on most British Royal Navy ships (apart from the chronometer)
was the anchor windlass. His workshop had accordingly to develop precision tools and metal
working machines just to build his designs. The resulting workshop machinery and practice
was the real immediate benefit of his work.

3The use of programmed/programmable devices may be far, far older. There are reports
that in the 1st century BC, automata in Alexandria used a drum with pegs. The drum was
wound with a cord which alternated its direction by wrapping around suitable pegs so that
a constant pull on the cord translated into alternating rotations of the drum. Combining
several such devices could give quite complex movements.

Numbers and Computers Introduction to Computer Data Representation   7 

  



• As referred to above, commercial card processing equipment developed
complex computation facilities and associated card reading, writing and
printing equipment. Comrie for example was able to take commercial
equipment and build with it a “computing laboratory” in which each
machine performed simple predetermined operations. Information was
transferred (by people) between machines according to predetermined
rules to achieve quite complex operations.

• Automatic telephone exchanges provided reliable logical operations, which
were often very complex. For example, in an Ericsson telephone exchange
of 1929 an incoming call was passed to one of a pool of “registers”. The
chosen register accepted the dialled digits and stored them while con-
trolling a complex electromechanical switch and searching for a suitable
path towards the called number; this switch worked in a base-500 num-
ber system. When the call was established, the register unit disconnected
and became available for another call, leaving the call maintenance and
disconnection to a relatively simple relay set. There are clear parallels
to many modern computer-controlled switching systems with centralised
control and distributed switching.

• In 1936 Turing produced his theoretical paper on the principles of com-
putability and postulated a universal computing machine [104].

• In 1936 Konrad Zuse patented his Z-1 computer [113] which, while me-
chanical, was nevertheless capable of automatic computation.

• In 1938 Atanasoff and Berry at the University of Iowa started work on
an electronic calculator for the solution of linear equations. It was not,
in modern terms, a computer as it had no conditional execution, but has
a firm (though debatable) place in the history of computing. There are
reports that this computer was used for code-breaking from 1942.

• Also in 1938, Shannon took the mathematics of logic developed by Boole
a hundred years earlier and applied it to the design of telephone ex-
changes and similar large logical devices [89].

• The early 1940s saw the development of some significant relay computers
such as those at the Bell System Laboratories and at Harvard Univer-
sity. These machines introduced techniques such as remote access by
teleprinter, error-detecting circuitry, floating-point arithmetic and con-
ditional execution.

• From the 1920s electronic devices had been used as high speed counters
to 10s of thousands of counts per second in nuclear physics laboratories.
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• The development of electronic high definition television in the 1930s
spurred the further development of pulse techniques and of the wide
bandwidth amplifiers which were later needed for radar and computers.

• The maturity of radar in the 1940s combined pulse and wideband elec-
tronics in devices of unprecedented complexity. By the end of the Sec-
ond World War the ideas of “microsecond pulses” and even “megaHertz
clocks” (then actually “megacycle clocks”) were familiar to many people
outside research laboratories.

• The ability of radar to detect ever faster aircraft led to a need for anti-
aircraft guns to have predictors which could aim a shell at where the
aircraft, travelling at hundreds of feet per second, might be 10 to 20
seconds after the shell was fired. The combination of the three dimen-
sional aircraft track and shell ballistics quickly outgrew the simple but
ingenious electromechanical predictors, and workers such as Rajchman
saw the need for electronic computation.

• Simple theory relates the range of a cannon to its muzzle velocity and
angle of elevation. More complete theory requires allowance for air resis-
tance, shell spin, latitude and bearing (for Coriolis forces) and even barrel
wear. The computation of artillery firing tables was an enormous task
and one that led directly to the ENIAC computer, completed in 1945.
ENIAC used plug-boards for instructions, and stored data in 20 “accu-
mulators” each holding 10 decimal digits with 10 flip-flops per digit. The
accumulators were also arithmetic elements. It was not programmable
in the “von Neumann” sense.

• Cryptanalysis of German and Japanese codes was a major factor in de-
ciding the outcome of the Second World War. Cryptanalytical machinery
was initially electromechanical, but the British series of “Colossus” [42]
machines (to break the German Lorenz cipher, and not the Enigma ci-
phers, and operating from 1943) were electronic and clearly presaged
computers. The later versions of Colossus used pipelining and similar
techniques decades before they appeared in general computers.

• The Manchester Mark I computer ran the first computer program, calcu-
lating Mersenne primes on the night of 16/17 June 1949, running without
error for 9 hours.

Numbers and Computers Introduction to Computer Data Representation   9 

  



1.3 Computers

By 1945 many developments had converged and the development of electronic
computers was almost inevitable. If those people normally associated with
the “invention” of the computer had not done so, others surely would have
succeeded and not long afterwards. In many respects ENIAC (Electronic Nu-
merical Integrator and Calculator, often recognised as the first electronic com-
puter, though not really programmable, but see “Colossus” above) was as much
a psychological triumph as an engineering masterpiece. At a time when very
few devices had even 18 vacuum tubes (or valves), ENIAC had nearly 18 000!
It took enormous faith to even consider that that many devices might work
reliably together4. Many of the thoughts from the early ENIAC design were
collected in a report by Burks, Goldstine and von Neumann [17] which laid
out the principles which have been followed by most subsequent computers and
were at the time intended as proposals towards the EDVAC computer. The
“von Neumann” computer from this report is characterised by several separate
functional units, as shown in Figure 1.1.

1. An arithmetic or computation unit, which accepts numbers, manipulates
them according to the accepted rules of arithmetic and delivers the result
for later use.

2. A control unit which interprets “instructions” for data manipulation and
transfer. Most instructions combine an “operation” (what should be
done) with one or more operands (what the operation should be applied
to).

3. A “memory” (or “store”) which holds both data and instructions as
patterns of bits for use by both the arithmetic unit and the control unit.

4. Devices for reading external data into the computer (“input”) and pre-
senting data from the computer (“output”). Suggested devices included
keyboards, devices for punched cards and paper tape, magnetic tape and
cathode-ray tube displays.

Except for the store, holding both instructions and data, this reflects the
internal structure of ENIAC.

4As several tubes failed every time ENIAC was turned on, the whole machine was turned
off as little as possible. ENIAC providentially provided excellent case studies in vacuum
tube failure modes.
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Figure 1.1: The Units of the von Neumann Computer.
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To a large extent though the von Neumann computer was shaped by the
development of “random access storage” of a reasonable size and cost. ENIAC
stored data in twin-triode flip-flops; at 100 bits per number, 5–10 Watts per bit
and probably $10 per bit (in 1940s currency) storage was a rare and expensive
resource. The Burks report proposed a data storage or “memory” based on
“Selectron” cathode ray storage devices, with 40 tubes each able to store 4096
bits of information, to a total of about 160 000 bits.

It was realised that with each of the 4096 40-bit words in memory being
either data or instructions there was really no distinction between data and
instructions. A “word” in memory was data if interpreted by the arithmetic
unit and instructions if interpreted by the control unit. The important result
was that a word could be first manipulated as data and then executed as an
instruction. With appropriate programming discipline, the computer could use
present data conditions to modify its future actions, as described in the next
section.

Many lessons were learnt from ENIAC, so many that it established a firm
computing precedent of being obsolete long before it was completed. The
Burks, Goldstine, von Neumann report is fascinating reading. In between nu-
merous diversions into engineering and implementation details, it looks ahead
to much modern computing, including magnetic storage and graphical displays,
anticipating many (even most) aspects of modern computers.
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Unfortunately, although there is no doubt as to the putative authors of
this report, there is considerable doubt concerning the provenance of its ideas.
These problems are described by McCartney [72] and Stern [92]. They arose
largely because the report was written as an internal working document and
lacked the references and attribution of ideas which are assumed in the scien-
tific literature. While the concepts may be accurate, the lack of attribution
implies that the authors developed them, singly or in concert. However, many
of the ideas were apparently beyond the expertise of the authors. In partic-
ular, Eckert claimed that he himself developed the idea of a stored program
computer in 1944 while developing a delay line memory for radar applications;
this claim is supported by eyewitnesses but not acknowledged by Burks et
al. Although the term “von Neumann computer” is apparently an egregious
misnomer, its use is sanctified by custom and is accepted here.

1.4 What Makes a Computer?

Although a computer has been often regarded as a glorified calculator, it can
clearly do much more than a calculator. What really distinguishes the two?
Here it is asserted that a device is computer if it has both of the following
attributes, and is a calculator if it lacks either or both.

Data-dependent instruction sequence. This is the traditional mark of a
computer – “If it has an if statement it must be a computer”. Recog-
nition of the need for conditional execution is usually attributed to Ada
Augusta, Countess Lovelace, in connection with Babbage’s Analytical
Engine. She is also credited with the invention of the programmed loop
(which must include a conditional branch)5. Note that although most
programmed calculators are computers by this criterion, they fail by the
second one.

Data-dependent data selection. While in a formal sense, data dependent
instruction sequencing is all that is needed, its deficiencies become all
too apparent even in a simple example such as summing the positive
members of a sequence of values or taking the product of two matrices.
Data-dependent data selection allows existing values to determine, not

5The designers of one of the first very fast computers had designed very efficient arith-
metic hardware which assumed no conditional branching. When the design was almost
complete the engineers were aghast to discover that most loops are closed by a conditional
branch . . .
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the choice of subsequent operations as above, but the actual data to be
used in those calculations. It is most obviously seen in array subscripts,
as in array[subsc] and similar constructs on which so much of modern
computing depends. It is less obviously seen in subroutine mechanisms
and pointers, which are equally at the heart of modern computing.

In the simplest and most obvious method instructions are genuinely
treated as data, with addresses and even operations subject to manipu-
lation. Although such use is at least deprecated in modern computers if
not actually forbidden, instruction modification was widely used in some
early computers. The same effect is now achieved by techniques such
as index registers and indirect addressing which leave the instructions
inviolate in memory.

1.5 Development of Memory

The importance of storage or memory capacity to computers has been men-
tioned above, in connection with the development of EDVAC and later com-
puters from ENIAC; the availability of much larger and much less expensive
data storage meant that completely new concepts (such as the stored program)
could be introduced. This trend has continued with main storage capacities
increasing from a few kilobytes (delay and CRT memories until mid 1950s), to
megabytes (magnetic core memories (1955–1980) and now to gigabytes (semi-
conductor memories, from about 1970). The trend in main storage capacities
has been paralleled by increases in the sizes of disk and similar “backing” or
“mass” storage devices, with disk capacity often being 100–1000 times the
capacity of the main store.

Data storage was once a very rare and expensive resource which had to
be husbanded very carefully. Algorithms and programming techniques often
emphasised economy of space rather than execution speed. This situation has
now changed completely; memory is often regarded as a resource of negligible
cost and limitless capacity, with programming techniques changing accordingly.

This trend is indeed one of the incentives behind the writing of this book;
it used to be that programmers were of necessity very much aware of how
and where data is held in the computer. With current trends such as Object-
Oriented programming, the hardware data may be several levels of abstraction
removed from what the programmer manipulates. While this might be not an
altogether bad thing, there are times when programmers should be aware of
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how information is really held to recognise limitations of data representations
and perhaps avoid especially inefficient techniques.

1.6 Data in Memory

Data in most computers is organised, or considered, in a hierarchy of different-
sized aggregates—bits, bytes and words and sometimes other units such as
“short words” or “long words”. While any one of these units may be used as
the addressable entity, most modern computers address to an 8-bit byte. A
short history of these terms is given in Section 11.4.

bit A bit, short for “binary digit” is the fundamental unit of data storage
in all modern computers, and leads naturally to using a binary number
system. Section 11.2 discusses reasons for using bits.

A single bit can represent the numerical values 0 and 1. It can also
represent the logical values FALSE and TRUE, conventionally written
also as 0 and 1. These aspects are also discussed in Section 11.2.

byte While the term “byte” now always means a unit of 8 bits, it originally
meant any contiguous group of bits within a word, equivalent to a “field”
of bits.

IBM adopted a uniform 8-bit byte for their 7030 (Stretch) computer
and retained that usage for the System/360 in 1964. The widespread
adoption of the S/360 computers led to the general acceptance of an
8-bit byte.

word A “word” is conventionally some larger unit of data storage and in many
older computers is the unit of addressing. Other than that a word is an
aggregate of bits (and more recently of bytes), there is no agreement on
the size of a word. Sizes from representative computers known to the
author are given in Table 1.1. (There are certainly other word lengths,
but the list is limited to computers with which the author has at least a
passing acquaintance.)

There is a wide variation of “word” sizes; a word is precisely what the
machine designer says it is (shades of Humpty-Dumpty in Alice in Won-
derland!).

In current usage a “word” often means the unit of internal data transfer
between memory and CPU; it therefore becomes a reflection of the hard-
ware implementation rather than the programmer-visible architecture.
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Table 1.1: Word Lengths of Some Computers

word size computers
(bits)

12 PDP-8
16 most mini computers
18 PDP-7, PDP-9
24 ICL 1900
32 IBM S/360, most RISC computers
36 Univac 1108, IBM 7090, DEC-10
39 Elliot 503, 803
48 Burroughs B6700, ICL Atlas, CDC 3600
60 CDC 6600
64 Cray

nibble A collection of 4 bits is sometimes called a “nibble”. Data General
apparently introduced the term for their Nova computer in 1968, where
16-bit words were processed in units of 4 bits.

The “Memory” of a computer is now usually a numbered set of “bytes”.
(Older computers were usually addressed by words or very occasionally by bits,
as in the IBM Stretch or Burroughs B1700.) For a “1 Gigabyte” memory
the numbers, or “addresses”, range from 0 to about 1 000 000 000 (actually
1 073 741 823). Each address identifies one unique byte out of the 1 billion (or
whatever is the memory size).

A very important point (it is difficult to over-emphasise it) is that a pat-
tern of bits in memory is just a pattern of bits—no more and no less—with
no intrinsic meaning at all. Its meaning depends entirely on how we (the
programmer) or the computer interprets it. Thus a group of 32 bits may be

• four 8-bit characters
• one 32-bit integer
• one 32-bit instruction
• one 32-bit address
• two 16-bit integers
• one 16 bit integer, one 8-bit integer, and one 8-bit character,

etc . . .

The meaning depends entirely on its use by the computer, a concept which
is at the heart of the von Neumann computer model.
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Chapter 2

Binary and Other
Representations

Abstract: The initial idea of “number” leads quickly to the need to
represent numbers and then manipulate numbers. We emphasise the
representation as the terms of polynomial in some base and especially
“binary numbers” (to base 2) and “decimal numbers” (to base 10). This
leads into conversion between bases and the representation of fractions
in binary.

Keywords: Polynomial Representation, Binary, octal and hexadeci-
mal representations, base conversion by arithmetic, base conversion by
table lookup.

2.1 Introduction

As computers are obviously meant to “compute” or, in popular terms, to work
with numbers, there equally obviously must be some way of representing num-
bers within the computer. This chapter deals with the representation of num-
bers, in some sense paralleling the development of European mathematics. It
starts with the positive integers (the “natural” numbers) and then proceeds to
the “less natural” negative numbers and fractions.1 The computer equivalents
of the “irrational” real numbers will be deferred until Chapter 6.

1Strictly the fractions are always of the form N/2i, with a value between 0 and 1.
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Chapter 11 has several sections related to this chapter including the history
of numbers (Section 11.1), reasons for using binary (Section 11.2), and various
other topics.

In dealing with numbers it is important to distinguish between the value or
the measure of its quantity and the representation of the value. In customary
usage the value and its representation are often confused, especially as we nor-
mally use decimal numbers for both, but the difference will become apparent
when we give both the value (usually in decimal, for us) and its representation
(often binary, for the computer)2. The distinction between the value and the
representation is especially marked with Roman numbers.

A “useful” representation usually consists of a string of digits, with an
associated base, written as ddd . . . ddb; the base b is usually omitted if it is
10. As almost all representations are equivalent to regarding these visible
digits as coefficients of some (implicit) polynomial, it is appropriate to start
by considering general polynomial representations.

2.2 Polynomial Number Representation

With a base b, we will usually represent values as a sequence of digits, for
example (dn−1, dn−2, . . . , d1, d0). The number is then written as ddd . . . ddb,
with b usually omitted if b = 10. A value N with base b and n digits is given
by

N = dn−1b
n−1 + dn−2b

n−2 + . . .+ d1b+ d0

The value is represented by a polynomial in the base, with the digits of the
visible representation being the coefficients of the polynomial. Each coefficient
di is in the range 0 ≤ di < b, but note that the powers increase from right to
left for integers, the opposite from the normal left to right increase for a power
series.

The two simplest, and basic, cases of decimal and binary are conveniently
treated together to emphasise their essential similarity. Extensions to any
other base should be obvious, but are seldom needed.

2The term “binary number” will often be used as a technical equivalent to the more
correct “binary representation of the number”, following accepted, though careless, practise.
Likewise for “decimal numbers” and some other representations that will be introduced.
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2.2.1 Decimal and Binary Representations

This section initially assumes arithmetic in base 10 because we are familiar
with it; it will be seen later as the current example of an arithmetic base.

Decimal representations If the number base is 10, things aren’t very inter-
esting. A decimal number such as 56 432 just means, working in decimal

5× 104 + 6× 103 + 4× 102 + 3× 10 + 2.

Binary number representations In base 2 though, and doing the arith-
metic in our familiar base 10, the value 101012 is

1× 24 + 0× 23 + 1× 22 + 0× 21 + 1× 20 = 16 + 4 + 1 = 21

Table 2.1: Small Powers of 2

Binary (to 13 bits) Decimal Decimal
20 . . . 0 0000 0000 0001 1 212 4096
21 . . . 0 0000 0000 0010 2 213 8192
22 . . . 0 0000 0000 0100 4 214 16 384
23 . . . 0 0000 0000 1000 8 215 32 768
24 . . . 0 0000 0001 0000 16 216 65 536
25 . . . 0 0000 0010 0000 32 217 131 072
26 . . . 0 0000 0100 0000 64 218 262 144
27 . . . 0 0000 1000 0000 128 219 524 288
28 . . . 0 0001 0000 0000 256 220 1 048 576
29 . . . 0 0010 0000 0000 512 221 2 097 152
210 . . . 0 0100 0000 0000 1024 222 4 194 304
211 . . . 0 1000 0000 0000 2048 223 8 388 608

So to convert a binary number to decimal we can write, in decimal, the
values of the powers of 2 corresponding to 1s in the binary representation
and add these powers together—the obvious evaluation of the polynomial. To
do that, we need the powers of 2, as in Table 2.1. These should be learnt,
certainly up to 28 = 256 and preferably up to 216 = 65 536.
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2.2.2 Octal and Hexadecimal Integers

While values can be written and used in any convenient base, bases of 8 and
16 have a very special relationship with binary3. Because 8 = 23, bits can be
collected in threes and each group regarded as a single base-8 or octal digit.
Similarly, because 16 = 24, groups of 4 bits can be combined to form base-16
or hexadecimal digits (not “hexidecimal”).

Octal values lie in the range 0−7 and may be represented by the conventional
decimal digits. Hexadecimal values have the range 0 − 15; while values up
to 9 can be represented by the corresponding decimal digits, we need other
“digits” for the values from 10 to 15. By general convention these values or bit
combinations are represented by the six letters ‘A’ . . . ‘F’. Many systems allow
the lower-case letters ‘a’ . . . ‘f’ as alternative digits.4 Equivalences between
binary, octal and hexadecimal are shown in Table 2.2.

Table 2.2: Binary to Octal and Hexadecimal.

octal hexadecimal hexadecimal
bits digit bits digit bits digit
000 0 0000 0 1000 8
001 1 0001 1 1001 9
010 2 0010 2 1010 A
011 3 0011 3 1011 B
100 4 0100 4 1100 C
101 5 0101 5 1101 D
110 6 0110 6 1110 E
111 7 0111 7 1111 F

Octal and hexadecimal are often thought of as just ways of rewriting binary,
and the conversion is normally done by inspection. When octal digits are
being converted to binary, they must be always written out as 3 bits, with
leading zeros added to complete a group of three if necessary. Similarly a
hexadecimal digit always yields 4 bits, with binary values “padded out” to a
multiple of 4 bits if necessary. The binary value 10 1101 0011 01002 expands
to 0010 1101 0011 01002 and is written in hexadecimal as 2D3416.

3The Merriam-Webster dictionary c©2013 states that the term “octal” was first used in
1948 and “hexadecimal” in 1954. But the ideas of base 8 numbers, and even the term octal
may be far, far, older. (See Wikipedia entries for Octal and Hexadecimal).

4The author has seen other systems, such as U. . . Z instead of A. . . F.
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Using hexadecimal (or octal) eases the problem that pure binary numbers
have so many digits that they are often difficult to handle. For example

123 456 789 = 01110101101111001101000101012 = 75bcd1516

The hexadecimal representation is much easier to think about than the equiv-
alent binary. (Sequences of more than 7 or 8 digits or other unrelated objects
are usually very difficult for people to remember.)

Octal, and especially hexadecimal, representations are almost always used
for values where the bit configuration is more important than the numerical
value.

When converting binary integers to hexadecimal, start at the right and
count off groups of 4 bits, filling out with high-order zeros as needed. (For
octal, count in groups of 3 bits from the right.)

For example, with the “fill” bits shown as leading subscripts –
hex 1010111010110 → 0001 0101 1101 0110 = 1 5 D 6, and
oct 1010111010110 → 001 010 111 010 110 = 1 2 7 2 6

If converting between octal and hexadecimal (or vice versa) it is usually best
to expand out to binary as an intermediate value, with 4 octal digits always
corresponding to 3 hexadecimal digits and then re-group these intermediate
bits. Here is an example of an octal to hexadecimal conversion –

Octal 5 6 4 5
Convert to binary 1 0 1 1 1 0 1 0 0 1 0 1
regroup bits 1 0 1 1 1 0 1 0 0 1 0 1
Hexadecimal B A 5

All of the algorithms given here for base conversion may use octal or hex-
adecimal to reduce the amount of arithmetic, with the result then converted
to binary if needed. (Octal conversion is often more convenient for manual
calculation, simply because people are more familiar with the 8-times table
than with the 16-times table.)

To convert 237 to binary, using octal arithmetic

8)237 + 5 rem

8)29 + 5 rem

8)3 + 3 rem

0
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The octal representation is 3558 which in binary gives 11 101 101

To convert 237 to binary, using hexadecimal arithmetic

16)237 + 13 rem = D16

16)14 + 14 rem = E16

0

The hexadecimal representation is ED16 which in binary gives 1110 1101
(the same bits as before, but divided differently).

In Java and C hexadecimal constants are denoted by a leading “0x”, so
that 0xcafe (or 0xCAFE) corresponds to the bits 1100 1010 1111 1110. The
hexadecimal digits themselves may use either upper-case or lower-case letters.

2.3 Converting Integers Between Bases

In converting between bases we must perform arithmetic in some base, which
it is convenient to call the arithmetic base. When doing manual or personal
calculation the arithmetic base is usually 10. With computers, working close to
the hardware, the arithmetic base is usually 2 but, when working on computers
in a high-level language which does not really support binary arithmetic, it may
be more convenient to retain 10 as the arithmetic base—it is after all the way
we usually think. The material to follow essentially expands and formalises
the methods given earlier in section 2.2.

2.3.1 Conversion Into the Arithmetic Base

There are two ways of converting into the arithmetic base, based on the two
different ways of evaluating the polynomial. The first assumes that we know
the powers of the base. We multiply each of the powers by its appropriate
digit and add the values, as was done earlier –

1× 24 + 0× 23 + 1× 22 + 0× 21 + 1 = 16 + 4 + 1 = 21

But if a polynomial is to be evaluated on a computer the recommended tech-
nique is to factorise it in a way which minimises the total amount of arithmetic
and eliminates the need to raise the variable (here the base) to many different
powers.

. . .+ ax4 + bx3 + cx2 + dx+ e = ((((. . . a)x+ b)x+ c)x+ d)x+ e
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The usual conversion algorithm implements this polynomial evaluation. The
number here would appear as the digit string abcde. Assume a “value so far”
(V ), which is initially set to 0. Working from the left-most (most significant)
digit, multiply V by the base and add in the next digit, repeating until all the
digits have been processed; V is then the converted value.

Figure 2.1: Conversions with Decimal Arithmetic

Binary digits = 17 16 15 04 13 12 01 10

2× 0 + 17 = 1 2 )237 + 1 rem

2× 1 + 16 = 3 2 )118 + 0 rem

2× 3 + 15 = 7 2 )59 + 1 rem

2× 7 + 04 = 14 2 )29 + 1 rem

2× 14 + 13 = 29 2 )14 + 0 rem

2× 29 + 12 = 59 2 )7 + 1 rem

2× 59 + 01 = 118 2 )3 + 1 rem

2× 118 + 10 = 237 2 )1 + 1 rem

Binary to decimal Decimal to binary

To convert 1110 1101 to decimal, using the first method, we have 1× 128 +
1× 64 + 1× 32 + 1× 8 + 1× 4 + 1 = 237. Figure 2.1 shows conversions of 237
between binary and decimal, using decimal arithmetic. The digits are written
with subscripts to identify the individual bits as they enter the calculation.

2.3.2 To Convert From the Arithmetic Base.

This conversion simply reverses the operations of the second method. At each
stage of that conversion we can write Vn+1 = Vnb+ dn, where b is the base and
dn is the corresponding digit. Dividing Vn+1 by b yields as quotient (Vn) and
as remainder (dn).

The conversion algorithm from the arithmetic base is then –

• Set the working value V to the value to convert.
• Calculate d = V mod base and then V = V ÷ base (integer division)
• Repeat above steps until V = 0.

The successive values of d are the digits in order, from least-significant (right
most) to most-significant (left most)5.

5If converting between two bases, neither of which is the arithmetic base, it is simplest
to use the arithmetic base as an intermediate stage.
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Table 2.3: Hexadecimal to Decimal Conversion Table.

X X0 X00 X000 X 0000 X0 0000
0 0 0 0 0 0 0
1 1 16 256 4 096 65 536 1 048 576
2 2 32 512 8 192 131 072 2 097 152
3 3 48 768 12 288 196 608 3 145 728
4 4 64 1024 16 384 262 144 4 194 304
5 5 80 1280 20 480 327 680 5 242 880
6 6 96 1536 24 576 393 216 6 291 456
7 7 112 1792 28 672 458 752 7 340 032
8 8 128 2048 32 768 524 288 8 388 608
9 9 144 2304 36 864 589 824 9 437 184
A 10 160 2560 40 960 655 360 10 485 760
B 11 176 2816 45 056 720 896 11 534 336
C 12 192 3072 49 152 786 432 12 582 912
D 13 208 3328 53 248 851 968 13 631 488
E 14 224 3584 57 344 917 504 14 680 064
F 15 240 3840 61 440 983 040 15 728 640

The right-hand side of Figure 2.1 shows the conversion of 237 to binary
using decimal arithmetic. Collecting the remainders gives 1110 1101 as the
result, with first-to-last remainders becoming the bits in succession, right-to-
left.

2.3.3 Conversion by Table Lookup

For this method we have a table of the decimal equivalents of selected hex-
adecimal numbers (or octal, but we will use hexadecimal.). Each table entry,
as shown in Table 2.3, has the decimal value if its “row digit” is substituted
for X in its column header.

Thus 40016 (row 4, column X00) is 1 024, and B00016 is 45 056.

To convert from hexadecimal to decimal, we use the table to get the decimal
equivalent of each hexadecimal digit and add up those values. For example
ABCD16 is 40 960 + 2816 + 192 + 13 = 43 981.

To convert from decimal to hexadecimal, look for the largest table value
which does not exceed the value. Write down its hexadecimal digit and sub-
tract the decimal value. Repeat until the value has been reduced to zero. For
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Table 2.4: Decimal to Hexadecimal Conversion Table.

1 10 100 1000 10 000 100 000

0 00 00 000 0000 0 0000 0 0000

1 01 0A 064 03E8 0 2710 1 86A0

2 02 14 0C8 07D0 0 4E20 3 0D40

3 03 1E 12C 0BB8 0 7530 4 93E0

4 04 28 190 0FA0 0 9C40 6 1A80

5 05 32 1F4 1388 0 C350 7 A120

6 06 3C 258 1770 0 EA60 9 27C0

7 07 46 2BC 1B58 1 1170 A AE60

8 08 50 320 1F40 1 3880 C 3500

9 09 5A 384 2328 1 5F90 D BBA0

example, to convert 45 678 to hexadecimal, we see that the first digit must be
B (B000 = 45 056); subtracting this value gives a new value of 622. Repeating
the operation gives successive digits of 2 (200=512), 6 and E. Thus 45 678 =
B26E16.

Table 2.3 uses decimal arithmetic to convert hexadecimal to decimal. A
similar table (Table 2.4) is interrogated with decimal values and gives the
corresponding hexadecimal values. The table has columns giving the hexadec-
imal equivalents of tens, hundreds, thousands, etc. (The hexadecimal digits in
the table body are grouped in fours for improved readability.) Arithmetic is
now done in hexadecimal (or binary). To convert 45 678 to hexadecimal (with
hexadecimal arithmetic) with Table 2.4 –

40 000 = 09C40
5 000 = 01388

600 = 00258
70 = 00046
8 = 00008

value = 0B26E (= 45 678)

2.4 Representing Fractions in Binary

The polynomial representation used for integers can be extended to handle
negative powers of the base and therefore values less than 1. (For more discus-
sion on the development and philosophy of fractions, refer to Section 11.1.1.)
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The rules are very similar—each bit corresponds to a power of 2, but now
a negative power, and we get the decimal value by adding up the decimal
values of these powers. A fractional value F is represented in base b by the
polynomial –

F = d1b
−1 + d2b

−2 + d3b
−3 + d4b

−4 + . . .

and is written as

F = 0.d1d2d3d4 . . .

(In this section the “point”, decimal or binary, will be shown as “.”.) While
integers can be always represented exactly in binary, few decimal fractions have
an exact binary representation. The binary representations of three decimal
values, two simple in decimal, and one complex are –

0.101010 = 0.0001 1001 1001 1001 1001 1001 . . .
0.011010 = 0.0000 0010 1000 1111 0101 1100 . . .

1/
√

210 = 0.1011 0101 0000 0100 1111 0011 . . .

There is little obvious difference between 0.0110 and 1/
√

2 even though one
is a rational decimal and one an irrational number; both are seemingly random
collections of bits.

While it may be useful to remember the first few negative powers of 2, they
are generally less important than the positive powers.

n 2n n 2n

0 1 -7 0.007 812 5
-1 0.5 -8 0.003 906 25
-2 0.25 -9 0.001 953 125
-3 0.125 -10 0.000 976 562 5
-4 0.0625 -11 0.000 488 281 25
-5 0.0312 5 -12 0.000 244 140 625
-6 0.0156 25 -13 0.000 122 070 312 5

2.4.1 Converting Fractions Between Bases

When converting fractions between bases we clearly have the two combinations
binary→decimal and decimal→binary. Furthermore, each conversion may be
done with either decimal or binary arithmetic. Because few computers now use
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decimal arithmetic we omit the decimal option. But should that be necessary
the extensions should be obvious.

Underlying the conversions is of course the polynomial representation paral-
lelling that for integers. A fractional value F is represented by the polynomial –

F = d1b
−1 + d2b

−2 + d3b
−3 + d4b

−4 + . . .

If the fraction is multiplied by the base, we get

F = d1b
0 . d2b

−1 + d3b
−2 + d4b

−3 + . . .

= d1.d2d3d4 . . . in conventional form

which has the most-significant digit now in the units position and, more impor-
tantly, in its “natural” representation. The integral part of the product can be
removed as the digit and then set to zero. Repeating these steps (multiplying
by b and removing the integral part) obtains successive digits of the base b
representation, from the more significant to the less significant digits.

Thus, to convert a binary fraction to decimal, on a binary computer, re-
peatedly multiply by 10102, collecting the integral parts each time as the suc-
cessive decimal digits. To convert a decimal fraction to binary with decimal
arithmetic, successively multiply by 2, removing integral parts as the binary
digits. Alternatively, multiply by 8 or 16 to generate 3 or 4 bits at each step.

Take 0.00101(= 2−3 + 2−5 = 0.125 + 0.03125 = 0.156 25). (To multiply x
by 1010, add x shifted left 1 and x shifted left 3.)

0.00101× 1010 = 0001.10010 int = 1
0.10010× 1010 = 0101.10100 int = 5
0.10100× 1010 = 0110.01000 int = 6
0.01000× 1010 = 0010.10000 int = 2
0.10000× 1010 = 0101.00000 int = 5

Stop when the fraction becomes zero.

Collecting digits, we get 0.156 25 as the decimal fraction equivalent to
0.00101.

2.4.2 Extending Binary Fractions

Irrespective of the sign, binary fractions always extend to longer precision by
adding zeros to the right. When converting binary fractions to hexadecimal or
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octal they should be extended on the right with as many zeros as are needed
to complete the octal or hexadecimal digit.

2.5 Decimal Coding

There are times when it is desirable to keep all values in decimal, such as where
values are read and written extensively with little intervening calculation, or
where precise decimal arithmetic is essential without the possibility of decimal
rounding errors. Thus most calculators, cash registers and so on use deci-
mal coding and arithmetic. Almost all decimal applications now use a simple
“BCD” coding in which four bits represent the digits 0 . . . 9 with the binary
codes { 0000, 0001, . . . , 1000, 1001 }. The six unused codes may be used for
signs or special delimiters. Some other representations have been important
and these (and others) are described in Section 11.7.

28   Introduction to Computer Data Representation Peter Fenwick 

 



Chapter 3

Signed, and Other,
Representations

Abstract: Although the “natural” integers 1,2,3,. . . ) are adequate
for many, everyday, purposes they do not handle concepts such as debts;
the representation must extended to handle negative values. This chap-
ter therefore introduces the three conventional forms of signed binary
representation (sign and magnitude, ones complement and two com-
plement). Finally, it describes some other important number represen-
tations, especially mixed base (for non-metric measures), but also the
more-specialised redundant codings, Gray codes and Zeckendorf repre-
sentations.

Keywords: Signed Binary, Ones Complement, Twos Complement,
Sign and Magnitude, Biased, Sign extension, Fibonacci Numbers, Zeck-
endorf representation, Gray codes, redundant codes.

3.1 Negative Integers

Although positive integers (the “natural” numbers) are important, they are
inadequate for practical arithmetic (in modern usage). To allow negative values
as well we require a signed number representation.

The three important representations for signed binary numbers all represent
positive integers as for unsigned integers and most reserve the most-significant
bit as the sign bit (0 ⇒ +ve, and 1 ⇒ -ve).
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An important operation is that of complementing a value, or changing its
sign. In normal notation, the complement of +3 is −3, and of −46 is +46; we
can complement a positive value (to get a negative value) or a negative value
(getting a positive value).

We often say “twos (or ones) complement a value”. This means “change
the sign of the value’s representation according to twos (or ones) complement
rules” (given later). If the original value was positive it will end up negative;
if it was negative the result will be positive (usually).

As a closing comment to this introduction, note that signed number rep-
resentations are closely connected with the operations of binary arithmetic
described in Chapter 4. In particular, signed numbers and subtraction are
intimately linked; each is really a precursor to the other. Here we choose to
defer the operations until after signed numbers have been described.

3.1.1 Sign and Magnitude

This form corresponds to the conventional way of representing signed decimal
numbers (with the prefixes ‘+’ and ‘–’). Only the sign bit changes when com-
plementing the number. In 8 bits, +5 is 00000101, and –5 is 10000101, with ‘0’
indicating positive and ‘1’ negative values. Sign and magnitude representation
is now used only in the significands of floating-point numbers and is otherwise
unimportant.

3.1.2 Ones Complement

To complement a value of either sign, change all the bits, 0→1 and 1→0.
So 00000101 (+5) becomes 11111010; recomplementing obviously recovers the
original 00000101.

From the description of the complementing method it is obvious that if any
number and its ones complement are added, each and every digit position will
be adding one 0 and one 1, with no carries at any stage. Any number and its
complement then add to the number 111. . . 111, which acts as the arithmetic
zero.

With numbers of N bits, x+ (−x) ≡ 2N − 1.

Ones complement has two representations for zero; +0=000 . . . 000 (the
numeric zero and –0=111 . . . 111 (the arithmetic zero, from above), but every
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value can be complemented. It was once an important number representation,
but is now seldom used.

3.1.3 Twos Complement

In many early computers numbers were regarded as fractions rather than inte-
gers. With fractions x+ (−x)→ 2.000 . . . (and hence the name twos comple-
ment). Note that the 2.0 . . . overflows the fraction, extending beyond the sign
bit.

With numbers now usually regarded as integers, the complementation is
reinterpreted so that if x is any number represented in twos complement to N
bits, then with unsigned addition x + (−x) → 2N , again overflowing past the
sign bit. With fixed-length precision to N bits, the result is always truncated
to N bits, or reduced modulo 2N , forcing 2N → 0. For example, to 8 bits, +5
is 00000101 and –5 is 11111011; adding the two gives

00000101 + 11111011→ 100000000 = 256 = 28.

More importantly, as a number and its ones complement always sum to
2N − 1 and if the same number and its twos complement sum to 2N then
clearly we get the twos complement by adding 1 to the ones complement.
Thus, if +5 is 00000101both, then −5 is 11111010ones, and complementing −5
gives 00000101twos.

Values represented in twos complement are added just as if they were simple
unsigned quantities. There is only one representation for zero, but the most
negative number has no complement. With 16 bits the range is −65 536 ≤
V ≤ 65 535 and with 32 bits −4 294 967 296 ≤ V ≤ 4 294 967 295.

There are two rules for complementing twos complement numbers –

Parallel complementing Take the ones complement and add 1, as stated
above.

Serial complementing Working from the right, copy all trailing 0s and the
least-significant 1, and then ones complement all more-significant bits.
Consider a binary number which ends in some 0s, with a preceding 1, as
. . . x1000. Ones complementing turns this value into . . . y0111. Adding
a 1 recomplements all trailing 1s turning them back to 0s; the 0 (which
was the least significant 1) absorbs the carry and reverts to a 1. Bits to
the left of that are not affected by the addition.
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3.1.4 Biased, or Excess

In this representation a “bias” is added to the value so that all legitimate
values appear, after adjustment, as positive, unsigned, integers. This unsigned
integer is used as the representation of the value. The bias is usually about half
of the number range; for 8-bit representations it is either 127 or 128. Excess
representations are used mainly for the exponents of floating-point numbers as
in Section 6.3.

In the special case that an N -bit number has a bias of 2N−1, the sign bit
has the meanings 1⇒+ve and 0⇒-ve.

3.2 Sign Extension

A positive or unsigned integer is always extended by prefixing it with zeros.
(As in decimal, 1234 is identical to 00 001 234, but we usually suppress leading
zeros.)

Just as positive numbers extend to the left with 0 bits, so do negative
numbers extend to the left with 1 bits (except for sign and magnitude). The
operation of sign extension is important if we have say a signed 8-bit or 16-bit
value and must extend it to a 32-bit signed value. The sign bit of the old value
is “propagated through” the unused bits of the new value.

For example, 8-bit to 16-bit extensions are

0011 0101 → 0000 0000 0011 0101
and 1101 1001 → 1111 1111 1101 1001

A longer value can be converted to a shorter value by discarding the high-
order or left-hand bits, provided that the discarded bits are all equal to the sign
bit of the new, shorter, value.

Fractions extend in all cases by just appending 0s to the right.

Sign and magnitude numbers are extended by inserting 0s between the sign
bit and the following digit. They are contracted by deleting bits after the sign
bit, checking that the deleted bits are all zero.
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3.3 Summary of Signed Binary Numbers

• To extend a number (ones or twos complement) to a greater precision fill
the extra bits with the sign bit; for a sign and magnitude number insert
the necessary number of zeros just after the sign bit.

• To complement (change the sign of) a sign & magnitude number, change
the sign bit to 0 (+ve result) or 1 (–ve result)

• To complement a ones complement number, change all the bits, 0 → 1
and 1 → 0 (the logical NOT operation).

• To complement a twos complement number, take the ones complement
and then add 1, OR starting from the rightmost bit, copy all 0 bits and
the rightmost 1; then complement all the more significant bits.

3.4 Use of Signed Representations, etc

Although all of the signed binary representations have been important at some
time in the history of computing some are now restricted to quite specialised
uses.

Sign and Magnitude is now used only in the significands (or fractions or
mantissæ) of floating-point numbers. Floating-point arithmetic empha-
sises fast arithmetic; multiplication and division are somewhat easier
with unsigned operands.

Ones Complement was once a very important internal representation for
integers and fractions, but now survives only in some computers which
must perpetuate aspects of old designs. Another area where ones com-
plement addition is important is in checksumming transmitted data and
verifying correct transmission. Ones complement checksums are used
in the TCP/IP protocol suite (Section 10.5.1); this may well be now
the only area where many people will ever meet ones complement, but
probably without realising it.

Twos Complement This is used for virtually all integers in modern com-
puters and will not be discussed further. (Or at least tacitly assumed
everywhere!)

Biased This is used in the exponents of most floating-point number represen-
tations.
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3.5 Other Number Representations

Until now we have dealt only with “standard” binary or decimal representa-
tions. But others, which are useful in specialised situations (or are merely
interesting) include

Redundant codings These are important mainly in computer arithmetic.

Mixed base These include times and angles (minutes, seconds, etc) non-
metric weights and measures, and pounds Sterling (old style English
currency).

Zeckendorf These are an interesting example of numbers where the base is
not an integer. They find practical application in variable-length codes.

Gray Codes These codes are important in analogue–digital conversion to
guard against the situation where physical reading cannot ensure that
all the bits of a binary value actually change at the same time. In the
Gray codes, successive values always differ in only one bit.

3.5.1 Redundant Codings

The representations used so far have all required 0 ≤ d < base for each digit
d. If this requirement is relaxed, or we allow a digit to be held in two or more
components, we obtain various “redundant” codings, in which a value can be
represented in more than one way. These codings are seldom if ever used in
data storage, but can be very useful when performing arithmetic; they are then
buried in the middle of arithmetic units. They will be discussed in more detail
in Chapter 5 on arithmetic but it is appropriate to mention them here.

-1, 0 +1 As the cost of a multiplication often increases with the number of
1s in the multiplier, a ternary coding with digit weights of {-1, 0, +1 }
is often used in multipliers to reduce the number of non-zero digits in
the representation. The recoding relies on the fact that a string or run
of 1s can be written in the form 2n − 2m, where the most significant bit
of the run corresponds to 2n−1 and the least significant bit to 2m. The
basic rule is modified for an isolated 1 and for a single 0 within a run of
1s. The following example reduces the number of non-0s from 7 to 4

original bits 0 0 1 1 1 0 0 1 1 1 1 0
recoded bits 0 +1 0 0 -1 0 +1 0 0 0 -1 0
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Carry-save Again in multiplication, the cost of multiplication depends on the
time to complete an addition, and that depends on the time to propagate
the carry through the adder. In the “carry-save” adder, carries-out do
not connect directly to the next carry-in (as described in section 4.3) but
are instead saved with a left shift of 1 place. Each digit is then held as
two bits, whose sum will be correct after incoming carries are included.

Augend 0 0 1 0 1 1
Addend 0 1 1 1 0 1

carry
sum

(
0
0

) (
1
1

) (
0
1

) (
0
1

) (
1
1

) (
0
0

)

(The carry-save adder actually adds three bits at each stage, one being
the saved carry from the previous cycle.) The principles of carry-save
addition will be explained in section 4.3; for now it is enough to recognise
that this redundant number representation exists.

3.5.2 Mixed Base Numbers

Until now we have used only numbers based on a polynomial representation.
But there are many other representations, as described by Fraenkel [39], some
of them quite unusual and probably impractical.

The more familiar representations, and the only ones that will be used here,
represent an integer N as the scalar product1 N = d.w, where N is the digit
vector (the visible digits of the representation) and w is a weight vector. To
conform with normal conventions for displaying number representations these
vectors are written in the order

. . . wi, wi−1, . . . , w2, w1, w0

The weight vector is in turn derived from a base vector b by

wk =
k−1∏
i=0

bi

1For readers less familiar with mathematics, the scalar product is obtained by multiplying
corresponding elements of two vectors and adding those products. For example, given the
two vectors {2, 3, 4} and {9, 8, 7}, their scalar product is 2× 9 + 3× 8 + 4× 7 = 70.
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Table 3.1: Examples of Mixed-Base Number Systems.

Time days hours minutes seconds
24 60 60

Angles revolutions degrees minutes seconds
360 60 60

Distance miles yards feet inches
1760 3 12

Weight tons cwt pounds ounces
20 112 16

Sterling pounds shillings pence
currency 20 12

with the k-th weight being the product of all less-significant base terms. In
the conventional uniform base number systems such as binary or decimal the
weights are powers of the base (. . . , 16, 8, 4, 2, 1 in binary, and . . . 1 000, 100,
10, 1 in decimal). Thus bi = b for all i and wk = bk, where the constant b is
the base of the number system. So a number such as 40 = 1× 25 + 1× 23 has
the binary (base 2) representation 101000.

Sometimes numbers use a mixture of bases. There used to be many more
before the adoption of decimal money and metric measurements, because tra-
ditional weights and measures are full of strange relations between units. Now
only time and angles are important (except that some countries do still per-
versely use non-decimal distances and weights).

Some examples are shown in the Table 3.1. In all cases the unit has its base
below. The base vector is b = {24, 60, 60} for time, or b = {360, 60, 60} for
angles. The “digits” are usually written as decimal integers, so that hours are
in the range 0 . . . 23, and minutes 0 . . . 59. The corresponding weight vectors
are, respectively, w = {86 400, 3600, 60, 1} (for time; 86 400 seconds in a day)
and w = {1296000, 3600, 60, 1} (for angles; 1 296 000 seconds in a revolution).

Addition is done from right to left, at each stage reducing the result by
the corresponding component of the base vector, shown immediately below
the unit name. The “reduction” is actually a division by the base element,
producing a quotient (as the carry into the next digit) and a remainder (as
the current digit). Thus the pence total is divided by 12 to give the shillings
carry, and the remainder is the pence result.

For example, if an angle of 24 degrees, 35 minutes and 25 seconds is written
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as 24◦ 35′ 25′′, and we want to add

83◦ 42′ 54′′

+ 75◦ 23′ 58′′

+ 66◦ 45′ 32′′

+ 84◦ 23′ 12′′

+ 75◦ 56′ 11′′

386◦ 11′ 47′′

• First add the seconds, for a total of 167′′. Divide 167 by 60, for a remain-
der of 47 (which is the seconds result) and quotient of 2 (which carries
into the minutes).

• Adding the minutes, with carry-in of 2′, gives 191 minutes = 3◦ 11′. Save
the 11′ as the minutes sum and carry the 3◦ to the next (degrees).

• Now add the degrees to give a total of 386◦, or 360◦ (1 revolution) + 26◦.

• The sum is then either 386◦ 11′ 47′′, or (reducing to whole revolutions)
26◦ 11′ 47′′.

While some early British computers did provide hardware for Pounds Ster-
ling addition, the general recommendation is to convert mixed-base values into
multiples of the smallest unit for all arithmetic.

3.5.3 Zeckendorf (Fibonacci) Representations

An interesting number representation which is useful in variable-length coding
(Section 9.12) is based on Fibonacci numbers. These numbers were proposed
by Fibonacci (Leonardo of Pisa, c1170–1250) in response to the following prob-
lem —

A pair of newly born rabbits is placed in a cage (a large cage!).
This pair, and all later pairs, produce one further pair every month
starting at their second month. How many pairs will there be after
each month, assuming no deaths?

If there are Fn pairs at the start of the nth month and Fn+1 at the start of
the next (n+ 1)th month, then at the start of the following month (n+ 2), the
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Fn rabbits will breed, adding to those present at the start of month (n + 1),
to give a total of Fn+2 = Fn + Fn+1 pairs. Each number is therefore the sum
of its two predecessors, as shown in Table 3.2.

Table 3.2: The First Fibonacci Numbers

n 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Fn 1 1 2 3 5 8 13 21 34 55 89 144 233 377 610

A standard result of Fibonacci number theory is that

lim
n→∞

Fn+1

Fn

=

√
5 + 1

2
= φ ≈ 1.618 033 988 749 895 . . . (the “Golden Section”)

In 1972 Zeckendorf [112] showed that the Fibonacci numbers can be used
as the basis of an integer number representation. In the above notation, the
weight vector w is the Fibonacci numbers {. . . , F4, F3, F2}, writing in reverse
order and omitting F1.

To form this Zeckendorf representation Z(N), take the integer N , subtract
from it the largest Fi ≤ N , set di = 1 in the representation, and repeat until
N is zero.

The Zeckendorf representation has no two adjacent 1s. If any number
did have two adjacent 1s, they are immediately equivalent to the next most-
significant bit by the rules for generating Fibonacci numbers. (. . . 00110 . . .→
. . . 01000 . . .). This property is important for addition and subtraction, and
later when we consider variable length codes of the integers. For example
45 = 34 + 8 + 3, with its representation Z(45) = 10010100. Again 10 = 8 + 2
and Z(10) = 10010. Some representative Zeckendorf representations, with the
weights heading the columns of digits, are given in Table 3.3.

Table 3.3: Some Zeckendorf Representations.

N Summed Weights and digits
values 89 55 34 21 13 8 5 3 2 1

1 1 0 0 0 0 0 0 0 0 0 1
10 8+2 0 0 0 0 0 1 0 0 1 0

100 89+8+2+1 1 0 0 0 0 1 0 0 1 1
123 89+34 1 0 1 0 0 0 0 0 0 0
140 89+34+13+3+1 1 0 1 0 1 0 0 1 0 1
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All of the normal arithmetic operations are possible on Zeckendorf repre-
sentations, as discussed by Fenwick [35]. Some unusual features are –

1. Addition and subtraction have two carries, one going one place to the
left as in normal binary arithmetic, and one two places to the right.

2. It is sometimes necessary to extend the sum to the right by 1 or 2 places,
both with a weight of 1 and then “sweep” these added 1s to the left into
the normal F2 position.

3. If we assume that a 1 in the most-significant bit denotes a negative num-
ber, there are are about 1.62 times as many positive values as negative
values. If FN is the sign bit, a negative number must start with the bits
10. . . and have FN−2 possible values. A positive number must start with
0. . . and has FN−1 values.

4. With a negative number having a sign fill of 101010. . . , the sign pattern
can interact with the numeric bits in two different ways. There are then
two representations for each negative value. Some examples are shown
in the following table.

N Z(N) F (8) comp F (9) comp F (10) comp F (11) comp
6 1001 100010 1001010 10100010 101001010
7 1010 100001 1001001 10100001 101001001
8 10000 100000 1001000 10100000 101001000

With an almost constant ratio between successive Fibonacci numbers, the
Fibonacci number system and the Zeckendorf representation form a polynomial
number system with base b = φ ≈ 1.618 033 989 . . .. (As the digits of the
visible digit vector must be integers less than the base the Zeckendorf digits
are necessarily 0 and 1.)

3.5.4 Some Metric Curiosities

Alert readers may have noticed that the Zeckendorf base (1.618. . . ) is very
close to the number of kilometres in 1 mile (1.609. . . )2. Therefore, if we write
a distance in miles as a Zeckendorf integer and shift the bit-pattern one to
the left, we get the distance in kilometres! (And vice-versa.) Except for small
values the result is correct to with ±1 for distances to 100 miles.

2This observation is apparently due to Richard Hamming.
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And . . . a left shift of 2 places multiplies by 2.618 (3% different from 2.54
cm/inch) and 3 places by 4.236 (11% less than 3.785 litres per U.S. gallon, and
7% less than 4.546 litres per imperial gallon). . . .

3.5.5 Gray Codes

What is now known as “the Gray Code” was devised to solve a particular
problem in analogue-digital conversion; there are many other codes with similar
properties, but this one has a special construction method and is associated
with the name of its inventor. Frank Gray was an engineer at Bell System
Laboratories in the 1930s and 1940s where he worked extensively on television,
producing few papers but many patents. He is reported to have developed,
in the 1930s, the techniques which were adopted for NTSC television in 1953.
Here we give only a very brief introduction to Gray codes, as they are peripheral
to most data within computers.

The problem which led to the Gray code was that of digitising an analogue
waveform; even at telephone speeds this needs 8 000 samples per second and
with modern methods requires component accuracies of 0.1% or better. In
the middle 1940s, any resistors more accurate than ±20% were probably in-
ductive and unsuitable for anything other than DC operation. Flip-flops were
limited to 100 kHz or less, occupied 10s of cubic centimetres and consumed
several Watts of power. Solutions which would be natural now were then quite
infeasible.

Gray’s solution was to deflect the beam vertically in a cathode ray tube
according to the analogue signal and then sweep it horizontally across a suitable
mask to give a sequence of pulses which encoded the vertical deflection. A
binary-code mask, with two scan lines, is shown in the left side of Figure 3.1,
along with a central graticule giving the nominal position of each coded value.
The black scan line is correctly registered and codes 10102 or 1010. But in
practice there is always some doubt about the transitions; one or more sensors
(switches, photocells, etc) may be misaligned, or they may switch at different
physical positions or levels. We can show this uncertainty as the grey ’line’ in
Figure 3.1, meaning that any of the bits can switch at any position as long
as the grey area includes the transition. Here the grey area is actually either
11 or 12, but decodes as a binary ‘1???’ (8–15); three bits are doubtful and
could be read either way. The problem is that several bits change around this
value and if some are read as the ‘upper’ value and some corresponding to the
‘lower’ value the actual value is indeterminate.
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The general problem is that of “bit skew”. If several bits are handled
in parallel it is usually necessary to sample them all at some known time
(for parallel transmission over wires) or at some known position (for position
encoding). A bit may be sampled just as it is changing; it may be either 0 or
1 and with a normal binary code the decoded value may be wildly in error.

Gray’s solution is ensure that at most one bit changes in any transition
between two adjacent values; the mask at the right of Figure 3.1 with copies
of the same scan lines follows this principle.

Here the grey line delivers either ‘1110’ (11) or ‘1010’ (12), which is an error
of no more than 1 unit and the best that can be done. Even though similar
problems arise from manufacturing problems or other poor alignment the Gray
code always guarantees a value within 1 unit of the correct value.

Figure 3.1: Gray Code
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Gray codes are useful in any situation where a condition is represented by
several bits and those bits must be sampled with minimum ambiguity. Thus
they are useful in communications systems where a given “state transition”
(amplitude, phase, or both together) conveys several bits. Encoding states
as a Gray code gives at most a single bit-error; single errors are much easier
to correct than multi-bit errors. In general any system where parallel data is
transferred between systems with asynchronous clocks may benefit by using a
Gray code.
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Extensive descriptions of Gray codes, their properties, their use in arith-
metic, and relation to other codes are in Wikipedia [47] and Doran [23]. Do-
ran gives a comprehensive description of the Gray Code, its mathematics and
applications. Some idea of the breadth of Gray Codes may be judged by his
nearly 80 citations. Gray’s description of a method for constructing his codes
is stated by Doran as one of the best explanations given. The description here
follows that outline.

The generation of the Gray Code is shown in Figure 3.2, starting from
an empty (“null”) code and developing first the obvious codes for 0 and 1.
Verbally –

1. Take the existing values (always 2n values) and write them in the reverse
order in the next 2n positions. This corresponds to a reflection of the
previous set of values; note the arrows connecting the extremes of each
table to its successor.

2. Prefix the first group of 2n codes with ‘0’ and the second, reflected, group
with ‘1’.

3. Repeat the first two steps until the code has expanded to the desired
size.

Figure 3.2: Construction of a Gray Code

0 0 0 
0 0 1 
0 1 1 
0 1 0 
1 1 0 
1 1 1 
1 0 1 
1 0 0 
 

0 0 0 0   0 
0 0 0 1   1
0 0 1 1   2
0 0 1 0   3
0 1 1 0   4
0 1 1 1   5
0 1 0 1   6
0 1 0 0   7
1 1 0 0   8
1 1 0 1   9
1 1 1 1  10
1 1 1 0  11
1 0 1 0  12
1 0 1 1  13
1 0 0 1  14
1 0 0 0  15

0 0 
0 1 
1 1 
1 0 

 

 0 
 1 

º
NULL 

(empty)

Taking the codewords in order, the bits have a consistent pattern, number-
ing the rightmost bit n
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bit n 001100110011001100110011. . . groups of 2 bits
bit n− 1 000011110000111100001111. . . groups of 4 bits
bit n− 2 000000001111111100000000. . . groups of 8 bits

The reflection of prior codewords into the upper half of the newer code leads
to the name “reflected binary” as a frequent synonym for the Gray code. It
follows from the construction that adjacent codewords differ in exactly one
place; the Gray Code is an example of a Hamming distance-1 code.

Figure 3.3: Gray Code—Direct Analogue to Decimal Conversion

int pow2[]={1, 2, 4, 8, 16, 32, 64, 128, 256, 512};

void GrayDtoD(int N, int V, int bit[]) // convert bin. integer

{

int Gray, i;

Gray = V ^ (V >> 1); // convert to Gray integer

for (i = N-1; i >= 0; i--) // extract bits

bit[i] = (Gray >> i) & 1;

} // end GrayDtoD

void grayAtoD(int N, int V, int bit[]) // convert value

{

int i, V1;

V1 = V; // copy the input value

for (i = N-1; i >= 0; i--) // scan MSB -> LSB

{

V1 = V1*2; // double the range

if (V1 >= pow2[N]) // test which half

{

bit[i] = 1; // upper -- bit = 1

V1 = pow2[N+1] - 1 - V1; // reflect upper to low

}

else // lower half

bit[i] = 0; // bit = 0

}

} // end grayAtoD

Signed, and Other, Representations Introduction to Computer Data Representation   43 

  



3.5.6 Converting to Gray Code

A fast method of converting binary to Gray is to invert each bit if the next
more-significant bit of the input value is 1. Thus if the bit vectors B and G
denote the binary and Gray representations of some value, then gi = bi ⊕ bi+1

Converting 1310,

B = {1, 1, 0, 1}
G = {1, 1, 0, 1} ⊕ {0, 1, 1, 0}

= {1, 0, 1, 1}

(The inverse conversion, Gray-to-binary, requires a serial scan because each
Gray-bit depends on its more-significant binary-bit. It is therefore necessary
to scan serially from more- to less-significant bits.

Figure 3.3 gives two algorithms for converting a value to Gray code. Both
accept a codeword length (N) and a value (V), delivering the bits in an array.

• The first “digital to digital” is a direct implementation of the Exclusive-
Or algorithm above, assuming a binary integer; most of the code just
unpacks the bits.

• The second “analogue to digital” algorithm mirrors the construction of
the full Gray code and assumes a “value”, which need not be in binary. It
is convenient to normalise the whole operation to a range {0 . . . 2n+1−1}.
At each step we double the value and test it against 2n. If in the lower-
value half we just develop a 0 bit; if in the upper we generate a 1 and
then reflect the value into the lower half3. Doubling before the test
is needed to handle a 1-bit code. This routine works with non-binary
representations; floating-point may need a rounding-up (add 0.5) to avoid
dithering around zero.

3This description uses “upper” and “lower” to refer to values; on diagrams the positions
may be reversed.
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Chapter 4

Basic Arithmetic and Logic

Abstract: Given that quantities may be represented as bit patterns
within the computer, how may these patterns be manipulated to achieve
useful results? We look first at the “basic” operations of addition and
subtraction in the various binary number representations, extending
to addition of multiple-precision values and decimal addition. Then
we examine the logical operations, where the bits are “bits”, with no
numerical significance. Operations here include AND, OR, NOT, XOR,
shifting of various types, bit-field operations and, finally, parity.

Keywords: Binary addition of signed values, subtraction by com-
plement addition, multiple precision addition, decimal addition, logical
operations, shift operations, bit-field operations, parity.

4.1 Introduction.

“What are the fundamental operations of computer arithmetic?”. The quick
answer is “addition and subtraction”, but that is clearly not true because

• Many early minicomputers such as the PDP-8 and HP-2116 worked quite
successfully with addition and complement as the only arithmetic opera-
tions. (In both computers the complement and increment—for 2‘s com-
plement operation—were combined in a single “micro-coded” instruc-
tion.) Subtraction was done by complementing and adding, as discussed
later in this chapter, and multiplication and division were realised by
programmed combinations of complementing and addition.
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• One very early computer had subtraction as its only arithmetic opera-
tion and addition relied on x+ y = x− (0− y). (Addition is unsuitable
as the sole operation because of its symmetry or, mathematically, com-
mutativity.)

• As an unrealistic extreme, we need no more than “add 1” and “subtract
1” as shown below (and with suitable comparisons).

while (y > 0) // simple addition x + y

{ x++; y-- }

while (y > 0) // simple subtraction x - y

{ x--; y-- }

• Some computers using ones complement arithmetic had subtraction as
the fundamental arithmetic operation, with addition performed as sub-
traction of the complement. (The user never realised it, but that was
how the hardware worked—Section 4.6.2.)

4.2 Addition

Even though it might not be one of the most fundamental operations, addition
is the most obvious of the simple operations and it is convenient to start with
it.

The rules for adding numbers are very similar in all number bases, provided
that we can add pairs of digits (or triples, to allow for carries). To introduce
addition, consider a simple decimal addition, as shown in Figure 4.1.

Figure 4.1: Example of Decimal Addition

augend 7 4 9 2 3 0
addend 8 7 9 3 8 8
carries 1 1 1 0 1 0 0

sum 1 6 2 8 6 1 8

The values to be added are known as the “augend” (that which is aug-
mented) and the “addend” (that which is added), producing a “sum” and
intermediate “carries” which link adjacent digits of the addition. (Because of
the essential symmetry of addition, we can use the term “addend” for both
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inputs. Where however the operation is one of repeatedly adding the next
value into a “running total”, the terms here are more appropriate.) The carry
digits are shown here as smaller (to emphasise their different nature, as in-
ternal values rather than inputs or results) and are displaced to the right (to
emphasise that they link between columns.)

Points to note from this example are –

• Addition proceeds from right (least-significant digit) to the left (more-
significant digits).

• For each digit position, add the corresponding input digits and the
“carry-in” which was produced as the “carry-out” from the digit imme-
diately to the right. This gives an intermediate sum, whose units digit
becomes the sum digit for this position and whose tens digit becomes
the “carry-out” to be used as the carry-in to the next digit.

• There is a carry-out from the most-significant position or digit. The
handling of this carry depends on the context of the addition.
◦ If the sum may expand beyond the precision of the inputs, the carry
can simply appear as another digit to the left of those in the inputs.
◦ If the maximum number of digits or precision is limited (as is usually
the case in computers) and the inputs already fill the permitted digits,
the sum cannot be represented accurately and we have an “overflow”,
discussed in Section 4.5.

In handling the intermediate sum, it is worth noting that the “splitting” op-
eration is really a division by the number base, with the remainder becoming
the current sum digit and the quotient the carry-out. When the base of the
arithmetic is the same as the base of the number representation the division
is equivalent to splitting the intermediate sum.

If we are adding two numbers x and y in base b, with the digits

add {xn xn−1 . . . x1 x0}
and {yn yn−1 . . . y1 y0}

for the sum {zn zn−1 . . . z1 z0}
we can hold each of the sets of digits in an integer array and add them with
the program of Figure 4.2. The operation follows exactly from the description
above, but with the division replaced by a test and optional correction, which
is appropriate in simple cases.

Addition is very seldom performed this way in real computers; the code is
meant to show the fundamental operations underlying general addition. Code
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Figure 4.2: Code to Add Two Numbers in Any Base

// The "numbers" are in integer arrays, one digit per integer

// The addend and augend are in x[ ] and y[ ], the sum in z[ ].

carry = 0;

for (i = 0; i < N; i++) // right to left scan

{

z[i] = x[i] + y[i] + carry; // the add

if (z[i] >= base) // digit overflow!!

{

carry = 1; // carry to next stage

z[i] -= base; // correct overflow

}

else

carry = 0; // no carry to next stage

}

like this may be appropriate though when performing arithmetic to very large
precisions. For example, the author has some programs which calculate the
value of π to 100 000 or more places and use base 10 000 arithmetic (with 32
bit integers, or 108 with 64 bit floating-point), with precisely the above code
for addition.

4.3 Binary Addition.

In principle, binary addition may be performed by the code of Figure 4.2 with
base = 2, or by procedures analogous to familiar decimal addition. In fact,
it is better to define binary addition by an addition table. (And of course
implemented in the fastest-possible hardware.) Figure 4.3 shows all possible
values of the three inputs to a binary addition and the corresponding Sum and
Carry-out. It also shows an alternative approach to the Sum and Carry-out,
based on the number of inputs which are 1.

Add (0110 1111 0101 1001 + 0010 0000 1011 0011)

Take augend 0110 1111 0101 1001
and the addend 0010 0000 1011 0011
with the carries 1101 1111 1110 0110

then add, to get answer 1001 0000 0000 1100
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Check that the answer is (28 505 + 8371) = 36 876

Figure 4.3: Binary Addition Table

Add- Aug- Carry Carry Sum Sum Sum Sum
end end In Out inputs inputs inputs

≥ 2 1 or 3
0 0 0 0 0 0 0 0
0 0 1 0 1 1 0 1
0 1 0 0 1 1 0 1
0 1 1 1 0 2 1 0

1 0 0 0 1 1 0 1
1 0 1 1 0 2 1 0
1 1 0 1 0 2 1 0
1 1 1 1 1 3 1 1

Each carry digit is shifted left by one place from where it is generated, to be
added in with the next-significant digits. See the “carry propagation” through
most of the middle 8 bits.

• For each position, proceeding right to left, we add the digits and the
incoming carry.

• If the sum is not less than the base, enter a 1 as the carry-in to the
next position to the left and subtract the base from the sum; enter the
difference as the sum digit.

4.4 Subtraction.

Subtraction is superficially similar to addition. We work in the same direction
(right to left), but now must borrow if the subtraction “cannot be done” rather
than carry if the addition overflows.

Before examining binary subtraction it is best to consider decimal subtrac-
tion in some detail, and especially the action of the “borrow”. (“Borrowing”
is an aspect which is seldom well-explained.) Remember always that any gen-
erated digit d of the difference must be such that 0 ≤ d < 10.

As an example, take 416− 263.
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• The first subtraction, of the units digits, is 6 − 3 = 3 with no problem.
The next, tens digit, subtraction yields 1− 6 = −5, which is outside the
valid range.

• To correct this “overdraw”, add 10 (the number base) to the tens digit of
the minuend and compensate by subtracting 1 from the hundreds digit
of the minuend. (Both correspond to an adjustment of 1 in the hundreds
digit and have no overall effect.) Alternatively, we may compensate by
adding 1 to the hundreds digit of the subtrahend; the difference is one
of pedagogical style or practical convenience rather than of substance.

• The tens digit subtraction is now 11− 6 = 5, which is a valid result.

• With the borrow of 1, the hundreds digit subtraction is no longer 4− 2
but (4− 1)− 2 = 3− 2 = 1.

The difference is then 153.

As for addition, the simple program of Figure 4.4 can describe the subtrac-
tion x− y. The subtraction is generalised to base b and the digits again held
in integer arrays, corresponding to the polynomials –

from {xn xn−1 . . . x1 x0}
subtract {yn yn−1 . . . y1 y0}

for the difference {zn zn−1 . . . z1 z0}

Figure 4.4: Code to Subtract Two Numbers in Any Base

// The "numbers" are in integer arrays, one digit per integer

// The minuend and subtrahend are in x[ ] and y[ ],

// and the difference in z[ ].

borrow = 0;

for (i = 0; i < n; i++)

{

z[i] = x[i] - y[i] - borrow;

if (z[i] < 0)

{

borrow = 1;

z[i] = z[i] + base;

}

else

borrow = 0;

}
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The values in subtraction have specific names, but note that they are no
longer symmetric. Using X, Y and Z as in Figure 4.4, the names are –

X is the minuend (that which is diminished)
Y is the subtrahend (that which is subtracted)
Z (the result) is the difference

The actions in binary subtraction are identical apart from the change of
base; if the subtraction “won’t go”, add the base (102) to the minuend digit
and decrement the next most-significant minuend digit by 1 (or increment the
next subtrahend digit).

Again we can use a subtraction table, or we can just use our familiar decimal
subtraction with appropriate changes. Starting from the right (least signifi-
cant) digit, subtract each pair of digits. If the result is less than zero, add on
the base to the result and generate a “borrow” to include in the next subtrac-
tion to the left.

The subtraction table in Figure 4.5 contains two additional columns relating
the results to some obvious arithmetic functions, in the spirit of the addition
table in Figure 4.3. The borrow is now a 1 if the intermediate D is negative
(as might be expected), while the final difference is 1 if D is odd (which is
exactly as for addition, if the borrow is equivalent to a carry). (A better way
of binary subtraction is given later!)

Figure 4.5: Binary Subtraction Table

Input Values Results Alternatives
Minu- Sub- Borrow Borrow Diff X-Y-Bin D D
end trahend In Out = D < 0 odd

Bin Bout

0 0 0 0 0 0 0 0
0 0 1 1 1 -1 1 1
0 1 0 1 1 -1 1 1
0 1 1 1 0 -2 1 0

1 0 0 0 1 1 0 1
1 0 1 0 0 0 0 0
1 1 0 0 0 0 0 0
1 1 1 1 1 -1 1 1

Subtract (0110 1111 0101 1001 - 0010 0000 1011 0011)
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Take minuend 0110 1111 0101 1001
and the subtrahend 0010 0000 1011 0011

with the borrows 0000 0001 0100 1100
subtract, to get answer 0100 1110 1010 0110

Check that the answer is (28 505 - 8371) = 20 134 Each borrow digit is shifted
left by one place from where it is generated, to be subtracted from the next-
significant minuend digit.

4.5 Overflow

An overflow strictly refers to a result which has no valid representation. As
computers always represent integers to some small number of bits, say 32 or
64, only a limited range of values can be represented. If two large positive
values are added the result may exceed the maximum value, leading to an
overflow. Overflows can also occur when adding two large negative values, but
never when adding numbers of opposite sign.

An overflow shows itself as a number of the wrong apparent sign. For
example, with 4 bits and twos complement, the range is −8 ≤ V ≤ 7.

Adding 6 + 7 gives 0110
+ 0111

1101

The result (13) is outside the valid range and appears as a negative sum of
two positive values.

Similarly, −6 +−7 gives an apparently positive result –

1010
+1001
10011 = 0011 after truncation to 4 bits

Both results would be correct with more digits available. In general an
overflow may be detected as a result of unexpected sign (+ve + +ve → –ve,
or –ve + –ve → +ve).

A better way to detect overflow is to look at the carries into and out of the
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sign bit. If these are not equal, there is an overflow. (This method works for
subtraction by addition of the complement, as described later.)

When adding N-bit twos complement numbers, always discard the carry out
of the sign bit (truncate the result at N bits).

4.6 Signed Addition and Subtraction

The earlier rules given for addition and subtraction really apply only to un-
signed (positive) numbers, although negative values have been mentioned at
times. When we have genuinely signed numbers, the rules depend on the
representation.

Assume N -bit numbers, where N is large enough to represent all the values
concerned without overflow. We will use X ,Y ,Z to denote the current signed
representation of the positive values X, Y, Z = X+Y and handle subtractions
as complement additions. Remember that positive values are represented in
“natural form” in all cases.

4.6.1 Sign and Magnitude

Sign and magnitude numbers are usually converted to one of the other rep-
resentations and the result converted back if necessary. This means that sign
and magnitude addition and subtraction is relatively complex and is one good
reason for avoiding this representation.

4.6.2 Ones Complement

If X < 0, then X = 2N − 1 − X and similarly for Y and Z. There are now
five cases to consider –

1. X > 0, Y > 0→ Z > 0. (+ve + +ve → +ve)
These values are all in “natural” unsigned binary with no adjustments
involved or need to consider any aspects of signed representations. It is
therefore a conventional unsigned addition.
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2. X < 0, Y < 0→ Z < 0. (-ve + -ve → -ve)
Expanding the sum as represented

X + Y = (2N − 1−X) + (2N − 1− Y ) = (2× 2N)− (X + Y )− 2

But as Z = 2N − 1 − Z = 2N − 1 − (X + Y ), the result is too large by
2N − 1. The 2N does not matter because it is a single bit beyond those
represented and can be dropped, but that still leaves a deficit of 1.

3. X < 0, Y > 0→ Z < 0. (-ve + +ve → -ve)
Expanding the sum gives

X + Y = (2N − 1−X) + Y = 2N + (Y −X)− 1 = Z + 2N − 1

which is the correct value for a negative Z.

4. X < 0, Y > 0→ Z > 0. (-ve + +ve → +ve)
Expanding the sum gives

X + Y = (2N − 1−X) + Y = 2N +X − Y − 1

But the correct representation for the positive Z is Z is 2N + (Y −X),
so there is again a deficit of 1 in the result after dropping the 2N .

5. X + Y = 0. (−X = Y )
This is in some ways the simplest case, because with Y = (−X) we have
X + Y = X + 2N − 1 − X = 2N − 1. This result is the 111 . . . 111,
the negative zero, sometimes called an arithmetic zero, because it is the
result of signed additions, in contrast to the 000 . . . 000 numeric zero.
The existence of two zeros is a nuisance because tests for zero should
recognise these two cases of all 1s and all 0s. (But should 111 . . . 111 test
as zero if it arises from a logical operation, rather than from arithmetic?)

Table 4.1: Signs and Corrections in Ones Complement

case correction sign bit carry out
+ve + +ve→ +ve 0 0 + 0→ 0 0
−ve + −ve→ −ve 1 1 + 1→ 1 1
−ve + +ve→ −ve 0 1 + 0→ 1 0
−ve + +ve→ +ve 1 1 + 0→ 0 1
−ve + +ve→ 0 0 1 + 0→ 1 0

There are then two cases with an error of 1 in the least significant bit. All
the cases, together with that for positive inputs, are shown in Table 4.1. A
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correction is needed if, and only if, there is a carry out of the sign bit. Ones
complement addition therefore requires a wrap-around carry, (or end-around
carry) feeding the carry from the sign bit back into the least-significant carry-
in.

An interesting solution to the “two zeros” problem with ones complement
was used in the Univac 1108, CDC 6600 and similar computers. There the
fundamental arithmetic operation was subtraction, rather than addition, with
X+Y implemented as X−(−Y), relying on the natural property of subtraction
to give a 000 . . . 000 result. (When adding X + −X , each bit position is either
0 + 1 → 1 or 1 + 0 → 1, whereas with X − X , each bit position is either
0− 0→ 0 or 1− 1→ 0.)

4.6.3 Twos Complement

In twos complement −X = 2N −X, without further adjustment as is needed
for ones complement. The lack of adjustment means that when two values are
added, whether positive or negative, the result is always correct as it stands.
In other words there is virtually no special treatment needed in addition or
subtraction, and that is one good reason using twos complement.

4.6.4 Subtraction by Complement Addition

Computers usually perform subtraction by adding the complement of the
subtrahend—use X–Y = X+(–Y). To calculate

0100 1011 0110− 0011 0111 1001 (120610 − 88910)

using twos complement arithmetic.

Take subtrahend 0011 0111 1001
ones complement it 1100 1000 0110

add minuend 0100 1011 0110
with a carry-in for the +1 1

then add, to get answer 1 0001 0011 1101 = 317

The answer has a carry out of the high order bit.

Inspection shows that there is also a carry into the high-order bit. A correct
twos complement addition requires that the carry into the sign bit must be
equal to the carry out of the sign bit.

Basic Arithmetic and Logic Introduction to Computer Data Representation   55 

  



4.6.5 A Geometric View of Signed Addition.

A useful alternative view comes from considering the integers as points along a
line, as in Figure 4.6(a). With addition to only N bits, only the portion of the
line in Figure 4.6(b) is relevant; all other points on the line fold or map into the
sections shown. The arrows of Figure 4.6(a) reflect these mappings, with all
of the “larger” sections folding back by, firstly 22N bits, or in general, any even
number of sections. In fact, even this figure is redundant, because it shows the
regions of the line used for unsigned numbers1 (approximately 0 . . . 2N), and
for unsigned numbers (approximately −2N−1 . . . 2N−1). The two end regions,
for large positive and for negative, coincide with the representation of any value
in these regions dependent on the assumption of signed or unsigned numbers.

Figure 4.6: Addition with Arithmetic Modulo 2N .

0 2N-1 2N 2N+1-2N-1

Arrows connect segments which map 
together under modulo 2N truncation

2N

Range of unsigned numbers

(a) The “line” of integers

0 0 0 02N-
1

2N/2-1

y

x

Z

X

(a) pos + pos= pos (b) neg + neg = neg

x y

X

Z

(c) neg + pos = neg

X

Z

xy

(d) neg + pos = pos

xy

X

Z

Signed addition X + Y → Z (values represented by rotations – -ve > 180°)

0 2N-1-2N-1

Range of signed numbers

These two regions coincide

(b) The “integer line”, modulo 2N

- + - + -

Of more importance, we can now change the line of Figure 4.6(b) into
the circle of Figure 4.6(c). In the unsigned interpretation the largest value
2N − 1 is followed by zero (the smallest value). In the signed interpretation,
the largest value 2N−1 is similarly followed by the smallest value −2N−1, but

1In much of this discussion (but not all) it is convenient to refer to the extreme values as
±2m, ignoring the fact that the correct value is often 2m − 1
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at the diametrically opposite point on the circle from the unsigned case. A
value may be represented by a radius vector in this circle. Addition always
corresponds to a clockwise movement of the radius vector; the addition of a
positive value always gives a movement of less than 180◦. A subtraction uses
a clockwise motion of more than 180◦; substituting for example a clockwise
rotation of 300◦ for an anticlockwise rotation of 60◦.

Figure 4.6(c) shows the addition of two positive values, where X is repre-
sented by a rotation angle of θ and Y by φ. X > 0 corresponds to θ < π, while
X < 0 corresponds to its angle θ > π. We continue with further cases, given
in the order used earlier in Section 4.6.2.

1. X < 0, Y < 0→ Z < 0 or θ > π, φ > π. Figure 4.6(d)
The value X corresponds to a rotation from 0◦ of θ or about 300◦ (or
an anticlockwise rotation of about 60◦ corresponding to the negative
X). The position is marked by the radial line X. The subtraction of Y
corresponds to a further positive rotation of about 300◦ , giving a final
position corresponding the radial line Z.

2. X < 0, Y > 0→ Z < 0 or θ > π, φ < π. Figure 4.6(e).
The total rotation angle is θ + φ < 360◦, for the negative sum.

3. X < 0, Y > 0→ Z > 0 or θ > π, φ < π. Figure 4.6(f).
The total rotation angle for the positive sum is now θ + φ > 360◦.

Before proceeding further, remember that the circle has a finite number of
steps around it and that each addition of 1 corresponds to a definite angular
motion of the radius vector corresponding to the current value. Furthermore,
an addition of n corresponds to a clockwise movement of n distinct steps; we
can if necessary consider each step individually.

There are two possible discontinuities around the circle of values, one at 0
and one diagonally opposite, and both where the sign bit changes. With twos
complement numbers the interval −2N−1 . . . 2N−1 − 1 maps continuously onto
the circle.

With twos complement numbers the region of the integer line around zero
maps smoothly to the circle around zero; steps on the one correspond precisely
to a like number of steps on the other. Addition is then as described above,
with no special actions or corrections apart from the transition between the
extreme positive and negative numbers.

The situation is different with ones complement, because of the discontinuity
around zero. Whenever the radius vector reaches 111 . . . 111, or −0 the next
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step should be to 000 . . . 001 or +1 rather than to 000 . . . 001. At the transition
from 111 . . . 111 and only at this step, an addition of 1 gives a carry-out in
changing the value to 000 . . . 000. Feeding the carry-out of the adder into the
carry-in provides the necessary correction, as was derived earlier by algebra.

Looking at Figure 4.6, we see that it is only in cases (d) and (f) that the
radius vector passes zero, and it is only in these cases that we actually need
the correction provided by the end-around carry. (In all other cases the output
carry is always zero and no adjustment occurs.)

4.7 Multiple Precision Addition

It often happens that the required number precision exceeds that provided by
the hardware operations, especially on computers with short word lengths. To
a first approximation, there is nothing special to do because addition is just
as already described, but with a number base of say 216 rather than 2.

At one extreme are those computers which make no provision whatsoever
for multiple precision addition. These are either old designs, or not quite so old
RISC designs such as the MIPS R2000 where multiple precision addition was
judged to be insufficiently important to warrant much assistance (probably
justified with a reasonable word length to start with). In these computers
a complicated series of tests on operands and results is necessary to decide
whether there is an emergent carry to propagate to the next stage of the
addition.

The emphasis here though is on computers with “Condition Codes”, or bits
which are set to indicate the nature of the last arithmetic result. Typically,
these are a set of bits, labelled Z, N, C, and V, being set to 1 for respectively
zero result, negative result, carry-out from last addition, and overflow. The
values to be added are usually a set of contiguous bytes or words, addressed
initially at the least-significant end.

• One of the simplest implementations is the IBM S/360, with a 2-bit
condition code which normally encodes the results ‘Zero’, ‘Negative’,
‘Positive’ and ‘Overflow’. For the “Add Logical” instruction the two bits
of the Condition Code are redefined to mean zero/not-zero and carry-
out/no-carry. A carry-out can be tested by a conditional branch and a
1 added to the next word if needed.

• Next in complexity is the PDP-11, with a full set of condition bits as
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above. The “Add Carry” instruction nominates a single 16-bit operand
and adds 1 to it if the “C” bit is set; the addition may continue to more-
significant words if the Add Carry itself sets C (the incremented operand
was all 1s). The improvement over the S/360 is that the C bit does not
have to be explicitly tested.

Both this and the previous method are awkward for precisions over two
words because the carry from the first addition may have to propagate
completely before the next two words can be added, giving an N2 com-
plexity in the number of component words or bytes.

• Finally, computers such as the Motorola 6800 and 68000 and Intel 80x86
have an Add with Carry instruction which adds two values, including the
carry-in and providing a carry-out for propagation to the next stage.

After a normal Add instruction for the least-significant digits, a suc-
cession of Adds with Carry will correctly combine the more significant
“digits” and handle carry propagation, proceeding to the more-significant
parts of the number. Some of these computers provide auto-adjustment
addressing modes which facilitate the scan over the number.

Given that addition is a fundamental and well-understood operation, one
might assume that correctly setting the condition code (Z, N and V bits) for
a multiple-precision would be a trivial exercise. It is trivial, but even so some
designers have got it wrong or laboured mightily to succeed2. The rules are
indeed simple –

The N bit is always set according to the sign bit of the last result, whether
from an Add or an Add with Carry.

The V bit is also set from the last result, as for the N bit, but according to
whether the carry propagates through the sign bit.

The Z bit is the one which seems to be difficult. The initial Add may set or
clear the Z bit; this allows a single-precision addition to work normally
and correctly and is also the correct preparation for succeeding Adds
with Carry. An Add with Carry may clear the Z bit, (for a non-zero
result) but may never set it. This should be obvious, because any non-
zero component causes the whole result to become non-zero. Once a

2One major manufacturer perhaps committed a “big blue” (Australian and New Zealand
idiom for a mistake) in discussing the design of a new 16-bit computer which provided
multiple-precision binary addition. They admitted that finding how to correctly set the
condition codes took several man-months of work!
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non-zero component has been detected, no sequence of more-significant
0s can ever over-ride it. The Z bit is often described as a “sticky bit”.

4.8 Decimal Addition

Decimal numbers in computers are usually held as variable length strings of
BCD digits in some form of sign and magnitude notation. Computers such
as the M6800, 68000 and 80x86 provide a decimal-adjust instruction which,
applied after a normal binary addition, converts the result to a BCD addition,
superficially by adding a 6 to those BCD digits which exceed 9 and propagating
carries. This converts a variable-length binary addition into a variable-length
decimal addition, with 2 BCD digits per 8-bit byte.

In the IBM System/360 BCD digit strings are addressed at the left-most
digit, with the right-most or least-significant digit the sign. The preferred
signs are – +ve 1100 (C16) and –ve 1101 (D16). The Burroughs B2500 and
B3500 were similar, but with the sign in the most-significant BCD digit.
Both computers have the operand length held in the instruction.

Decimal numbers are usually added serially, digit by digit from the least-
significant to the most-significant. While some implementations may introduce
a degree of internal parallelism by adding say 32 bits or 8 BCD digits in parallel,
the operation is still conceptually serial as in the algorithms of Figure 4.2.

An interesting exception this ‘rule’ is found in the Burroughs 3500 and re-
lated computers with a left-to-right addition, working from the most-significant
digit towards the least. As the addition proceeds, the adder notes the position
of the last ‘9’ produced as a sum digit and retains that position as long as
further 9s are produced. If a carry is generated, all of those pending 9s are
converted to 0s and the digit preceding the string incremented to absorb the
carry. The generation of a ‘non-9’ digit, and no carry, allows the string of 9s
to be accepted as the correct result. (Note that the 9s belong to the sum and
that the only possible action of a carry-in of 1 is to change all of the 9s to 0
and increment the preceding digit; the carry can never propagate beyond that
preceding digit.)

The method is acceptable for decimal addition because carry propagation is
relatively rare and occurs over relatively few digits. In practice, the adder can
‘look-ahead’ and defer writing the string of 9s until either some other digit is
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generated (in which case the whole pending string will be written), or a carry
is generated (in which case a string of 0s will be written and the preceding
digit adjusted), so any penalties are probably small.

There are some important advantages, which justify the method –

1. When reading or writing digit strings it is more natural to address them
at the left rather than the right, so the same addressing may be used for
arithmetic and input-output.

2. One of the more frequent “addition-type” operations is the comparison
of two numbers. Although this is normally thought of as a subtraction
followed by examination of the result, it need not be—there is no need to
produce the complete difference. If the comparands are examined from
left to right and are the same sign, the first position with different digits
can resolve the comparison. Any further examination is wasted effort. If
the signs differ the comparison resolves immediately.

3. As decimal numbers are usually held in sign-and-magnitude form any
“addition-type” operation which gives a negative result must be recom-
plemented. With a conventional right-to-left addition or subtraction the
sign is not known until the most-significant digit (the very last one) has
been processed. The result must be traversed twice, the first time to pro-
duce it and the second time to correct it. With left-to-right arithmetic,
the sign is usually apparent very early in the addition and the remaining
arithmetic can be adjusted to absorb the complementing. Only a single
traversal is needed, apart from minor backtracking to handle carries.

4.8.1 Decimal Arithmetic by Complementing

Decimal numbers can also be represented in a form equivalent to twos com-
plement, allowing subtraction by adding the complement. In the subtrahend,
retain any trailing zeros, tens complement the least-significant non-zero and
nines complement all digits to its left. (If the digit y is the 9s complement
of the digit x, then x + y ≡ 9, and if z is the 10s complement of x, then
x+ z ≡ 10.) A negative number now has leading 9s, or a leading digit of 5 or
greater.

For example to calculate 235− 164,
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• The subtrahend complement is 836 (1→ 8, 6→ 3 and tens complement-
ing 4 gives 6.)

• add the 836 to the minuend 235 to give 235 + 836 = 1071.

• Ignoring the carry out gives the correct answer of 71

With trailing zeros take 7435− 1250 (and extending with high-order zeros)

• The complement of 1250 is 998 750

• Add 7435 (007 435 + 998 750→ 1 006 185)

• Discard the carry-out to give the difference 6185.

To add two negative numbers by adding their decimal complements, con-
sider −4512 + (−1200), which gives 995 488 + 998 800 = 1 994 288. Discarding
the carry gives 994 288, which is the complement representation of −5712.

4.8.2 Complementing Revisited

For another look at decimal complementing, take the nines complement of
every digit, and add a 1 carry-in. Trailing 0s then revert to 0 and the carry
propagates through them. The first complement digit which is not a 9 absorbs
the carry; the addition of the 1 from the carry turns it into a tens complement.
More-significant digits stay as the nines complement. This is the precise ana-
logue of adding 1 to the binary ones complement.

The complementing of decimal digits helps explain “serial” twos comple-
menting which was described as working from the right, copy the trailing 0s
and the least significant 1, and then ones complement all digits to the left.

The corresponding decimal rule is—working from the right, copy the trail-
ing 0s, tens complement the least significant non-zero digit, and then nines
complement all digits to the left.

In binary, the twos complement of a digit is the original digit; the least-
significant non-zero digit is not really “copied” but is twos complemented,
leaving the original value unchanged.
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4.9 Using Bits as Bits.

Although a great deal of effort has gone into designing programming methods
which conceal the underlying binary nature and bits of a computer, there are
times when we must consider the bits of a word, not as binary digits, but as
a collection of logical units. This usually occurs when working close to the
hardware, with miscellaneous status or control bits collected into status or
control words. Programmers not working directly with hardware devices or
within the operating system may seldom if ever use “bit bashing” operations.

These operations also arise when a small data structure is being packed into
a word, as is needed in software floating-point (and sometimes in languages
such as C which provide bit-field structures). The operations of this section
are then needed to extract and insert the component fields of the word. A few
languages, such as C, provide direct support for manipulating fields within
words but most require the methods described in this section.

Although this section is nominally concerned with bit operations, the dis-
cussion of parity (a purely logical operation) develops easily into the much
wider area of check digits and checksums, which are covered in Chapter 10.

4.9.1 Bit Numbering

If we want to work with individual bits, it is necessary to identify those bits
within a word (or byte, etc). Even this apparently simple task has its compli-
cations.

It is usual to write binary numbers with the most significant bit (MSB) to
the left and the least-significant bit (LSB) to the right, as is usual for decimal
values. It is also usual to number the bits, but there the agreement stops.
Several systems have been used, which have been described [14, 62] as “current”
(left to right), and “contracurrent” (right to left), together with numbering,
usually from 0 or 1. The four combinations are shown in Figure 4.7 for an
8-bit byte. The extension to words and other long entities is obvious3.

Current, 0-origin is used in the IBM System 360 and its successors. It
comes from regarding the byte (or word) as a logical vector of bits. It

3The terms “current” and “contracurrent”, although wonderfully descriptive, have not
entered the general literature. They are closely related to the concepts of “big-endian” and
“little-endian” of Section 8.5 and discussed in [19].
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may also come from the convention in some of the first computers that
a word represented, not an integer, but a fraction where bit i represents
a weight of 2−i.

Contracurrent, 0-origin is the form used in most computers, and follows
from interpreting bits as polynomial coefficients, or as powers of two.

Contracurrent, 1-origin Numbering the bits from 1 is extremely rare; the
author has seen it only in the long-obsolete Prime computers.

Current, 1-origin Yet another convention is used in many data communi-
cations standards. Bits of an octet (byte) are written in the order of
transmission, with the least-significant bit on the left and with the bits
numbered from 1 to 8. This can be most confusing—and it is a moot
point whether is really contracurrent, 1-origin, but written backwards.

Figure 4.7: Systems for Numbering Bits

Description Bit Numbers

MSB LSB

1 Current, 0-origin 0 1 2 3 4 5 6 7
2 Contracurrent, 0-origin 7 6 5 4 3 2 1 0
3 Contracurrent, 1-origin 8 7 6 5 4 3 2 1

LSB MSB

4 Current, 1-origin 1 2 3 4 5 6 7 8

In most cases the numbering is purely a programming convention and has no
bearing on the operation of the computer. The one exception is in computers
which have hardware for manipulating bit fields or groups of bits, as described
in Section 4.9.8. These computers have instructions which refer explicitly to
bits by their number; the bit numbering is a part of the computer architecture,
or programming specification.

4.9.2 Logical Operations

So far we have dealt with “numbers” which for the end results are just con-
venient collections of bits. But sometimes we must go deeper, to bits which
compose the numbers. To handle individual bits we require logical operations,
essentially the same logical operations as used to implement the computer in
the first place. Most computers provide the basic set of operations – AND,
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OR, Exclusive OR and NOT as detailed in Table 4.2, but we will see some
variations. Because logical variables are limited to values of ‘0’ and ‘1’ (or
FALSE and TRUE), for functions of a few variables it is possible to define the
function by enumerating the result for all possible input values, as in Table
4.2.

Table 4.2: Basic Logic Operations

Inputs NOT AND OR EOR NAND
X Y ¬ X X ∧ Y X ∨ Y X ⊕ Y ¬(X ∧ Y)
0 0 1 0 0 0 1
0 1 1 0 1 1 1
1 0 0 0 1 1 1
1 1 0 1 1 0 0

Table 4.2 also shows the NAND operation, a combination of NOT and
AND. While this is not an important operation in computer programming, it
is included as an example of how the simpler operations can combine, in this
case to produce one of the most important hardware logic operations.

The operation “OR” is ambiguous in English. It can be a inclusive OR in
which (A OR B) is true if at least one input is true. It can also be an exclusive
OR in which (A OR B) is true only if exactly one of A and B is true; if both
are true the result is false. In computer logic the term “OR” is restricted to
the inclusive OR. The exclusive OR is a distinct operation, and is abbreviated
to EOR or XOR (the two forms seem to be used about equally).

The symbols for the logical operations are far from standard. There are
many conventions apart from that used here and shown in Table 4.3; some
alternative symbols are shown to the right of the table. This table also gives
brief textual descriptions of each operation, which may be more convenient
than the more formal definitions of Table 4.2.

Table 4.3: Symbols and Alternatives for Logical Operations

Name Description Alternatives
NOT ¬ Inverts its 1-bit argument x, ∼ x
AND ∧ Yields 1 (TRUE) if both inputs are 1 x&y, x · y
OR ∨ Yields 1 if either input is true (1) x | y, x+ y
EOR ⊕ 1 if either input = 1, but not both x 6= y, x 6≡ y, x∀y
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4.9.3 Shifting

Just as it is necessary to move words around in conjunction with the arith-
metic operations, so is it sometimes necessary to move bits within words. For
example, to work on the left-most byte of a 32-bit word it may be necessary to
move it to the right by 24 bit positions so that it appears as an 8-bit integer.
Having worked on these 8 bits as an integer, they may have to be moved back
to the correct position within the word.

Moving bits within a word is usually performed with the “shift” operations,
which occur with several variations (and are often combined). In most cases we
just assume that the word is a collection of bits with no numeric significance
(except perhaps for arithmetic shifts). It may be in a register or in memory,
depending on the computer. The shift functions occur with various options,
such as direction, quantity shifted, and handling the sign –

left/right The whole pattern of bits is shifted left or right by some distance
(or number of bit positions). For example

0000 1101 0110 0000 right 3 → 0000 0001 1010 1100
0000 1101 0110 0000 left 4 → 1101 0110 0000 0000

Simple right and left shifts

shift/rotate The above examples were carefully chosen so that only 0s were
“lost” or shifted out. (They also quietly and surreptitiously shifted in
0s, but that is dealt with later.) What should be done with any “lost”
1s? There are two alternatives –

1. allow the disappearing bits to be discarded and completely lost; this
is the basis of most shift operations.

2. allow the bits to re-enter at the opposite end. These rotate oper-
ations link the two ends of a word so that it behaves as a circular
structure, rather than as the linear structure of the shifts (compare,
end-around carry).

0000 1101 0110 1111 shift right 3 → 0000 0001 1010 1101
0000 1101 0110 1111 rotate right 3 → 1110 0001 1010 1101
1110 1101 0110 0000 shift left 4 → 1101 0110 0000 0000
1110 1101 0110 0000 rotate left 4 → 1101 0110 0000 1110

Shifts and rotates

66   Introduction to Computer Data Representation Peter Fenwick 

  



signed/unsigned If a word starting with 1101. . . is shifted right 2 places,
should the result be 001101. . . , regarding it as unsigned, or should the
result be 111101. . . , regarding the word as signed, and shifting with
sign fill? Both are valid interpretations—it just depends on which one
we want. The choice must be with the programmer. Most computers
provide both a signed or arithmetic right shift which fills the sign bit
into vacated bits and an unsigned or logical right shift which fills in with
0s on the left.

0000 1101 0110 1111 logical right 3 → 0000 0001 1010 1101
0000 1101 0110 1111 signed right 3 → 0000 0001 1010 1101
1110 1101 0110 0000 logical right 4 → 0000 1110 1101 0110
1110 1101 0110 0000 signed right 4 → 1111 1110 1101 0110

Logical (unsigned) and arithmetic (signed) shifts

There is seldom any distinction with left shifts; most just discard any bits
shifted out, without regard to “signed” or “unsigned”. Some computers
may set an Overflow indicator if the sign changes at any stage during the
shift. A few computers do provide an arithmetic left shift which retains
the sign bit, discarding bits from the place immediately after the sign
bit.

carry included/omitted A final option is to link the Carry bit or Carry
indicator into the shift. The simplest, for both left shifts and right shifts
of any style, is to just save the last of the lost bits in the Carry indicator.

A frequent option with Rotates is to regard the Carry as a 1-bit extension
of the basic operand, so that a 16-bit word expands to a 17-bit quantity
when rotated.

0000 1101 0110 1111 1 rotate right 3 → 1110 0001 1010 1101 1
0000 1101 0110 1111 0 rotate right 3 → 1100 0001 1010 1101 1
1110 1101 0110 0000 0 rotate left 4 → 1101 0110 0000 0111 0
1110 1101 0110 0000 1 rotate left 4 → 1101 0110 0000 0111 1

Rotates, including carry

If the Carry is used in this way with a rotation of 1 bit it allows a
multi-word or multi-byte operand to be shifted left or right by one place,
with the Carry linking between words. The first operation (a left shift
of the right-most word, or a right shift of the left-most word) may be a
normal shift (say logical or arithmetic right) to set the handling of the
extreme bit; the following rotates with Carry extend the shift over the
whole multi-word operand. (Compare with Add-with-Carry for multiple
precision operations.)
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4.9.4 Signed Shifts and Division

Extreme caution is required concerning signed or arithmetic shifts4. Superfi-
cially, the arithmetic shifts correspond to multiplication or division by a power
of 2. This interpretation is correct for positive values and for left shifts of
negative values, but does not agree with arithmetic conventions for right shifts
of negative values. In division we normally assume that 11÷ 4→ 2 (+3 rem)
and that −11÷ 4→ −2 (-3 rem).

For a positive number, 00001011 right 2→ 00000010 = 2, but for a negative
11110101 right 2→ 11111101 = −3, corresponding to−11÷4→ −3 (+1 rem).

While we normally assume that a division will truncate towards zero, the
arithmetic right shift truncates towards −∞, which is an equally correct but
less usual interpretation. Right shifts of negative quantities are seldom suitable
replacements for a division by a power of 2.

4.9.5 Programming Bit Operations

We can illustrate the bit operations by showing their implementations in C.
(Java is more complex, using Methods associated with the integer-type classes.)
The general rule is that logical operations may be applied to “integer type”
operands, in other words to byte, short, int and long values. The operations
are always applied between corresponding bits of the two operands (except for
~ which is unary). Shorter values are extended as necessary with 0s on the
left. When bit values are important, integer constants may be written in C
with a preceding 0x for hexadecimal (or 0 for octal).

Hexadecimal Decimal

0x100 ⇐⇒ 256

0xF4240 ⇐⇒ 1 000 000

0x0FFFF ⇐⇒ 65 535

0x2540BE400L ⇐⇒ 10 000 000 000L(= 1010)

With values shown in binary, the bit-wise operations are –

4Caution may be needed when “faking” shifts with arithmetic on a computer using 1s
complement representation. With 2s complement a multiplication by 256 may be optimised
to an arithmetic left shift of 8 bits. The corresponding 1s complement optimisation is a
rotate left by 8 bits, filling the sign into the lower significance bits. This is all very well,
except if the intention is to discard the more-significant bits of the word.
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name Java example
AND & 00111 & 01010 → 00010
OR | 00111 | 01010 → 01111
EOR ^ 00111 ^ 01010 → 01101
NOT ~ ~ 01010 → 10101

It is essential to re-emphasise that these bit operations apply to “integers”
acting as collections of 8 to 64 bits, whereas the Boolean operations apply to
single-bit Boolean variables or to results of comparisons. The difference (in C
and Java) is in the NOT or negation operators, with the Boolean ‘!’ applying
only to a Boolean value, whereas the bit-wise negation ~ applies to integer-type
values.

C provides three shift operators, for “integer type” operands; Java adds a
“logical right” (>>>) for zero-fill.

description symbol example result
left zero fill << 0000 1101 << 3 → 0110 1000
signed right sign fill >> 1100 1101 >> 3 → 1111 1001

Examples of using these logical operations and shifts are given in the next
Section.

4.9.6 Bit Operations—Masking and Shifting.

A computer word is often divided into several fields, or groups of bits, as
in floating-point representations. Sometimes we handle the word as a whole;
sometimes we must get inside it and work on its internal fields. The fields can
be extracted and inserted using the logical operations and suitable masks with
patterns of 0s and 1s corresponding to the fields or selected bit positions.

Fields may be moved left or right to bring them into the correct alignment.
For example, if the left-most byte (8 bits) of a 32-bit word is sometimes used
as an integer, it may have to be shifted right by 24 bits before it can be used.
Equally, an integer value must be shifted 24 bits to the left before it can be
inserted in the left-hand byte of the word.

For example, later we will meet floating-point numbers, where the 32 bits
of a single word are divided as –

sxxx xxxx xfff ffff ffff ffff ffff ffff
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where s is the sign bit, xx ...xx is the exponent, and ff ...ff is the signif-
icand, fraction, or mantissa.

With a floating-point value fp (more correctly the bits corresponding to
that value), we can use the combinations of shifts and hexadecimal masks in
Figure 4.8 to manipulate its fields –

Figure 4.8: Manipulating Floating-point Bit Fields

1 fp & 0x7F800000 extracts the exponent
2 (fp & 0x7F800000) >> 23 gets exponent as an integer
3 (fp & >> 23) & 0xFF gets exponent as an integer
4 fp & 0x80000000 obtains the sign bit
5 (fp & 0x80000000) >> 31 gets sign as 0 or 1
6 fp >> 31 gets sign as 0 or -1
7 (fp >> 31) & 0x1 gets sign as 0 or +1
8 fp >>> 31 gets sign as 0 or +1 (Java, not C)
9 fp & 0x007FFFFF obtains the significand

10 fp & 0x807FFFFF clears the exponent
11 fp & 0xFF800000 clears the significand
12 fp & 0x807FFFFF | (x << 23) places x into the exponent
13 fp & 0xFF800000 | sig places sig into significand

Lines 2 and 3 show two different ways of getting the 8 exponent bits as an
integer (in the range 0. . . 255). Line 2 does the mask first to select the bits and
then moves the selected bits into the correct alignment, whereas line 3 does
the shift first and then masks. The choice is often one of individual preference.
Either right shift can be used in lines 2 and 3 because the sign is removed
either before or after the shift.

Lines 5 to 8 show four ways of handling the sign bit, with various combina-
tions of masking and shifts, both signed (>>) and unsigned (>>>, Java only).
(Line 6, propagating the sign bit through the whole word, needs no masking.)

Line 12 clears the 8 exponent bits to 0 and then sets the exponent to the
value x, after shifting x into the correct position, and assuming that the ex-
ponent field has been cleared using the code of Line 10. This illustrates the
use of an OR to insert values into a field, once the field has been cleared with
an AND and a suitable mask. (This code assumes that x < 256 so that it
fits into the 8 bits of the exponent.) Line 13 similarly shows the insertion of
new significand bits, again assuming that they do not overflow the allocated
23 bits.
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4.9.7 Variant Logical Operations

The binary (two-operand) logical operations combine in sometimes unexpected
ways. Often they need to be reinterpreted in ways other than their fundamental
definitions to see their utility.

AND Although AND is in some respects the archetypical logic operation,
it is nevertheless capable of reinterpretation. Its most frequent use is
in extracting bits or bit fields from a word or, equivalently, setting the
undesired bits to zero. For this, the AND is used with a logical mask
or bit vector which is set to 1s where bits are to be retained and to 0s
where the bits are to be deleted, suppressed or set to zero. Thus in some
respects its fundamental operation is to force selected bits to be set to
zero.

Computers such as the DEC PDP-11 and DEC VAX provided instead of
the AND a bit-clear or BIC operation. The two operations are –

AND result ← input ∧ mask
BIC result ← input ∧¬mask

or BIC result ← input ∧ mask

Thus the 1s in the mask specified which bits were to be cleared. Note
that here, as for any operation with AND, the “bit field” does not have to
be contiguous bits. Some examples of non-contiguous bits are included
with the examples.

Inclusive OR While the AND is used to force bits to 0 (and often eliminate
an unwanted bit field, leaving a wanted one), the OR is used to force
bits to a 1 (and often insert a field).

This was one of the reasons why the PDP-11 and VAX computers re-
placed the AND with a Bit-Clear and renamed the OR as a “Bit-Set”
(BIS). If single bits are to be manipulated the same mask can be used
to both set or clear the bit.

Exclusive OR, XOR While the AND and OR operations have some fairly
obvious uses in bit manipulation, the Exclusive-OR is a much more subtle
operation, as illustrated by the following examples. Many Exclusive-OR
examples need some lateral thinking or less-obvious approaches to really
appreciate what is happening.

Basic Arithmetic and Logic Introduction to Computer Data Representation   71 

  



1. We have already seen how a bit-field can be extracted from a word
using an AND operation; how about obtaining the discarded bits?
An obvious technique is to use the statements

thebits← input ∧mask

and
otherbits← input ∧ ¬mask

using two masks, the original and its complement. A tidier method
which needs no extra masks is to Exclusive-OR the extracted field
with the original

otherbits← thebits⊕ input

Where bits were suppressed by 0s in the mask any input 1s will be
inserted into the result. Where bits were copied through the mask,
every 1 in the result is matched by a 1 in the input and the two will
cancel in the result.

2. Just as the Exclusive-OR can assist in separating a word into two
components as specified by a bit mask, it can also assist in combin-
ing the components into a single result.

This corresponds to Iverson’s APL mask operator [62].

result← /left,mask, right/

Wherever mask contains a 0 bit, that bit of result is copied from
left and wherever the mask bit is a 1, the corresponding bit of right
is copied5. An obvious method is to calculate

result← (left ∧mask) ∨ (right ∧mask)

using complementary masks to prepare the two halves before com-
bining them with a final OR.

A less obvious method, using the Exclusive-OR is

result← ((right⊕ left) ∧mask)⊕ left

Where a mask bit is 0 the whole outer parenthesised expression is
0 and the Exclusive-OR with left just copies that bit of left. Where
the mask bit is a 1, then that bit of right is Exclusive-ORed twice
with left ; the two EORs cancel and the right bit is copied.

5We assume here that left, mask and right are all bit vectors. In APL left and right may
be vectors of any type.
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In summary –

• An AND clears to 0 wherever the mask is 0

• An OR forces to 1 wherever the mask is 1

• An XOR (or EOR) complements a bit wherever the mask is 1

4.9.8 Bit-Field Operations

As an alternative to shifting and masking, some computers specify the actual
bits to be moved, using some variation on –

1 Move n bits, starting from bit i in word1, to bit j in word2.
2 Move the least-significant n bits from word1, to bit j in word2.
3 Move the n bits, starting from bit i in word1, to word2.

Computers such as the DEC VAX and Motorola MC68020 include several
bit field operations as described above, and also operations for testing, clearing
and setting bit fields. They are however accessible only through Assembler
code and are therefore difficult for ordinary programmers to appreciate. In
any case, they are alternatives to the more conventional logical and shifting
operations. A contrast is found in the Burroughs B6700 computer, which
has no shift operations at all, relying entirely on field manipulations. The
languages, especially B6700 Algol, provide full access to these operations. The
examples here are taken directly from a Burroughs Algol Reference Manual
[18] and use the syntax of that manual.

The B6700 has a 48-bit word, with bits numbered from 0 on the right (least-
significant) and using a unique number representation described in Section 6.1.

The simplest bit field is the “partial word part”, x.[left-bit:length] ,
where x is any word-type value, including an intermediate result from a calcula-
tion. This extracts a field as a right-aligned numeric operand. Thus W.[23:16]
extracts two bytes from the word as a 16-bit value, shifting the field right by
8 bits, and W.[38:39] retrieves the rightmost 39 bits of the word.

More complex are the “concatenation” operations, which take a base value
and follow it with any number of insertion operations to move bits into the
base. B6700 Algol uses “&” as the concatenation operator. The result of
a concatenation is an arithmetic primary, equivalent to a simple variable or
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parenthesised expression –

base & word1.[left-to:left-from:length]

& word2.[left-to:left-from:length] . . .

Any of the components can be arbitrarily complex arithmetic expressions. Bits
wrap round into the most-significant bits if length exceeds either of the “left-
bit” values. The B6700 Algol manual [18] gives the examples of Figure 4.9,
assuming the values X=32 767, Y=1024 and Z=1. (Some are understandable
only after reference to the B6700 number format—Section 6.1.)

Figure 4.9: B6700 Bit Manipulations

operation result
Y & (2*Z)[11:1:2] 2048
Y & Z[9:0:1] & X[3:13:4] 1551
Z & Y[40:10:2] & Z[45:0:1] floating-point 1/64
X & Z[47:0:1] 32 767
Y & (2*Z)[11:1:2]+5 2053
Y & (4*Z+1)[9:6:7] & X[14:14:15] 32 767

4.9.9 Combined Logic and Arithmetic

Sometimes it is appropriate to combine logic and numeric operations in the
one calculation. Very simple examples are the logical negation (¬x) to form
the ones complement, and 1 + ¬x to form the twos complement of an integer.
(Equally, −x− 1 gives the logical negation.)

• Another obvious example involves ANDing a number (2s complement)
with 2N−1 to reduce it modulo 2N . For example X & 0xFFF is equivalent
to x % 4096 (or x % 0x1000). (“&” now reverts to its more conventional
meaning as AND.)

• A well-known test is (x ∧ (x− 1)) is zero if, and only if, x is a power of
2 (explained below).

• More generally, x ∧ (x− 1) removes the least significant 1 bit of x; if
x = 2n its sole bit is removed and the result must be zero. If, for example,
x = 00101100 (in binary), then x − 1 = 00101011, complementing the
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least-significant 1 and following 0s. ANDing the two gives x ∧ (x− 1) =
00101100 ∧ 00101011 = 00101000.

This strange operation, with a general x, is needed in traversing a special
data structure [32] designed for the efficient management of cumulative
probability tables.6

• A related operation, needed by the same data structure, is x∧(−x), which
isolates the least-significant 1 bit, assuming twos complement numbers.
(Consider that after twos complementing, the least-significant 1 bit is
present in both x and −x and is the only 1 which will “survive” the
AND. All other bit positions contain 1 or 2 zeros.)

4.9.10 Parity

An important use of Exclusive OR is in “parity checking” to detect corrupted
data, whether in memory, disk storage, or in transmission. In the simplest
case, each word has one added “parity” bit, which is set to make the total
number of 1s in the word either even (even parity) or odd (odd parity). If a
word is found to have the wrong parity when read, then an error must have
occurred during reading or transmission. Simple parity is an example of a
“Single Error Detecting” (SED) code.

If the bits of the word are xn−1, xn−2, . . . , x1, x0,
for even parity Pbiteven = xn−1 ⊕ xn−2 ⊕ . . .⊕ x0
and for odd parity Pbitodd = xn−1 ⊕ xn−2 ⊕ . . .⊕ x0 ⊕ 1
or = ¬(xn−1 ⊕ xn−2 ⊕ . . .⊕ x0)

The “word” for parity checking may be any convenient unit. While it may
coincide with whatever the computer interprets as a “word”, many computers
use separate parity bits for each byte, or some other convenient unit.

More advanced forms of parity and related error control codes are described
in Chapter 10. Some of these techniques use multiple parities, with appropriate
inter-relationships, while others extend some of the fundamental ideas of parity
in quite different directions.

6It must be admitted that this structure is now known as a “Fenwick Tree”.
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Chapter 5

Computer Arithmetic

Abstract: This chapter firstly extends the earlier principles of addi-
tion to provide faster adders. It then describes the underlying principles
of binary multiplication and division, and especially techniques for fast
operations.

Keywords: Adders, carry-lookahead adder, carry-skip adder, asyn-
chronous adder, carry-save adder, fast carry-path adder, multipliers,
twos-complement multiplication, skipping over 0s and 1s, high radix
multiplier, combinational multiplier, restoring division, non-restoring
division, SRT division, approximate quotient digit division, additive re-
finement division.

5.1 Introduction

The fundamentals of signed numbers and addition and subtraction have been
given in Chapter 4. This chapter builds on those basic principles to give a
brief overview of the techniques and implementation of computer arithmetic.
It is not meant to be comprehensive, but covers the more important arithmetic
techniques, at least enough to prepare for further reading. As far as possible it
will present the general principles, without discussing the details of hardware
logic and implementation (although there are some places where this is not
possible and an elementary knowledge of digital logic is assumed).

Goldberg [43] gives a good summary of current arithmetic techniques, with
a much more comprehensive treatment given by Omondi [78]. Knuth [66]
analyses arithmetic in great detail, devoting the whole of the second volume
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of “The Art of Computer Programming” to the subject. Many early papers
on computer arithmetic are reprinted by Swartzlander [95], while MacSorley
[71] gives an excellent overview from a similar period.

Throughout this chapter we will use conventional “0-origin contra-current”
indexing (Section 4.9.1—numbering from 0 on the right) so that, with integers,
bit numbers indicate the corresponding power of 2.

5.2 Adders

Addition can be performed serially, bit-by-bit, which is slow and rare in modern
computers, or in parallel in which all bits are conceptually added at one time.
[A “serial adder” has just one of the “Full Adder” blocks of Figure 5.1, with
a 1-bit register accepting the “carry-out” and providing the “carry-in” for the
next cycle. The adder inputs and output are successive digits of the summands
and sum; the digits may be 1-bit binary, 4-bit ‘nibbles’ or 4-bit decimal.]

Figure 5.1: A Parallel Adder

X
Y

X

Sum
Carry
in

Carry
out

Summand (Addend and Augend) Inputs

Sum Outputs Least-significant bitMost-significant bit

Full 
Adder

Full 
Adder

Full 
Adder

Full 
Adder

Full 
Adder

A parallel adder is shown in Figure 5.1, with one stage annotated to show
details of its inputs and outputs. Although it is shown as just an “adder”,
most adders would also allow inputs to be complemented to facilitate subtrac-
tion. (The logic at each stage is often extended to provide the logic functions
such as AND, OR, NOT, Exclusive-OR, but that is irrelevant to the present
discussion.) The most important point to note in view of the following discus-
sion is the chaining of carries, with the Carry-out of each stage becoming the
Carry-in of the stage to its immediate left.
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Figure 5.2: Equations for a Binary Adder

S =

{
(X + Y + Cin) is odd
X ⊕ Y ⊕ Cin

Cout =


0 if (X = 0) & (Y = 0)
Cin if X 6= Y
1 if (X = 1) & (Y = 1)

Equations for each stage are shown in Figure 5.2, illustrating a “Full Adder”1

which produces the sum of three input bits. Both the Sum (S) and the Carry
(C) can be expressed in different ways from those shown, but the form here fa-
cilitates the discussion to come. Two versions of the Sum formula are provided,
the top one emphasising the numerical aspect and the bottom one the logical
operations. The Carry equations are chosen to emphasise that the carry may
be generated within this stage, independently of the Carry in (top and bottom
lines) or that the Carry in may propagate (middle line).

Carry propagation is probably the single most important feature of adder
design, and especially in “ripple carry” adders such as discussed here. In the
worst case, such as 1 + (−1) → 0, the most-significant bits of the sum are
not known until the carry has travelled right through the adder. With modern
computers having to add 64 or 80 bit values, it is quite impracticable to require
the worst-case carry to traverse 64 bits, with probably two logic “stages” for
each bit. As the adder is usually on a critical path and largely determines
the basic operating speed of a computer, addition needs to be made as fast as
possible2. And as worst-case carry propagation is a probably rare event, it is
clearly sensible to avoid its effects as far as possible.

Methods for accelerating addition include –

1. Detecting and bypassing long carry propagation

2. Detecting that the carry has propagated through the whole adder and
the result is stable

1An older element, the “half adder” takes two inputs X and Y , delivering a “half-sum”
X ⊕ Y and a “half-carry” X ∧ Y ; two are required to make a full-adder. It will not be used
here.

2One rule of thumb is that a computer can operate with a clock period of 10–15 logic
gate delays. If the adder, in the critical path, contributes an extra 130 – 160 gate delays,
the clock period might have to increase to say 10 times what would be reasonable otherwise.
The need for accelerating additions is obvious.
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3. Avoiding slow logic in the carry-path

4. Avoiding carry propagation altogether

In all of this discussion we say rather little about the generation of the sum.
The sum digits are all generated in parallel. At worst a sum digit may depend
on the Carry-in to that stage, but rather simple logic is then needed to generate
the correct sum once the incoming carry is known. Certainly sum-generation
delays do not accumulate in the way that carry-propagation delays accumulate
and can be ignored (assuming that the design is reasonable anyway).

5.2.1 Carry-skip and Carry-lookahead

Equation 5.1 shows that it is easy to generate a “carry propagate” function
for an adder stage (the middle of the three cases). (Cout = Cin if X 6= Y
or, equivalently X ⊕ Y is true.) The Carryout of a given stage is the OR of
a generated carry from this stage together with a propagated carry from the
previous stage. The generate function at stage i is Gi = Xi ∧ Yi and the
propagate function is Pi = Xi 6= Yi (or Pi = Xi ⊕ Yi).

Using the logical operations ∨ for the logical-OR and ∧ for the logical-AND
(and ∧ associates more strongly that ∨), and assuming that the carry-out from
stage i is Ci, we have that

Ci = Gi ∨ Pi ∧ Ci−1

But as

Ci−1 = Gi−1 ∨ Pi−1 ∧ Ci−2

we get the equations shown in Figure 5.3

Thus the output carry Ci arises from
1. a carry generated in the last stage i (Gi), OR
2. a carry from earlier stages propagating through intervening stages, OR
3. an incoming carry propagating through all stages.

These equations define a section of a “carry-Lookahead” adder which guar-
antees to generate its carry-out with a single AND-OR cascade. The expansion
of these equations to larger blocks is obvious, but leads to progressively larger
equations and correspondingly greater implementation cost. The logic delays
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Figure 5.3: Carry LookAhead Equations

Ci = Gi ∨ Pi ∧ (Gi−1 ∨ Pi−1 ∧ Ci−2)

= (Gi) ∨ (Pi ∧Gi−1) ∨ (Pi ∧ Pi−1 ∧ Ci−2)

= Gi

∨(Pi ∧Gi−1)

∨(Pi ∧ Pi−1 ∧Gi−2)

∨(Pi ∧ Pi−1 ∧ Pi−2 ∧ Ci−3)

= Gi

∨(Pi ∧Gi−1)

∨(Pi ∧ Pi−1 ∧Gi−2)

∨(Pi ∧ Pi−1 ∧ Pi−2 ∧Gi−3)

∨(Pi ∧ Pi−1 ∧ Pi−2 ∧ Pi−3 ∧ Ci−4)

also tend to increase as fan-in and fan-out3 increases—with large blocks the
fan-in of the OR which combines the lines of the equations grows, as does the
fan-out of the Pi signals.

Large carry-lookahead adders therefore use multiple levels of look-ahead.
If, say, an economic or electrical limit is a look-ahead block of 6 bits, then
that block can be regarded as a radix-64 adder which generates its own level-2
propagate and generate signals, say P 2

i and G2
i . These can be fed into look-

ahead logic exactly as used for the simple radix-2 adder. There is slightly
more delay in forming and using these higher-level look-ahead and generate
functions, but the economics is greatly improved. Lookahead can be applied
at three or more levels, using obvious extensions of these techniques.

A simplification of carry-lookahead is to ignore the internal terms in the
above equations, to obtain

Ci = Gi ∨ (Pi ∧ Pi−1 ∧ Pi−2 ∧ Pi−3 ∧ Ci−4)

leading to the “carry-skip” adder, so-called because it allows the carry to skip
over blocks while making no effort to accelerate propagation within blocks. It
is a useful compromise between the simplicity of the ripple-carry adder and the

3The “fan-in” of a logic circuit is the number of inputs which it receives, and the “fan-
out” is the number of circuits which one can drive. In general the delays increase with
increasing fan-in and fan-out, and there are physical limits to the fan-out, or driving ability.
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complexity of a full look-ahead adder. Analyses show that carry-skip blocks
should be of unequal size, with larger blocks in the middle of the adder and
smaller blocks near the end [68]. (Grading the block sizes tends to equalise
the carry-propagation distances.)

5.2.2 Carry Completion Detection

Although the maximum carry propagation distance is about N bits in an N bit
adder, the average distance is much less than this. Burks, Goldstine and von
Neumann [17] report an average carry propagation distance of about log2N
for an N -bit adder. Later authors differ in detail but report similar distances
of about 5–6 stages for an adder of 32 or 64 bits. In any adder stage, the
carry is either known (if it is locally generated) or is unknown (if it depends
on propagation and the carry-in is unknown). With carry-complete detection,
each stage reports when its Carry-in, and therefore its Sum are known; when
all stages report known values the addition as a whole is completed.

The “asynchronous adder”, using carry-completion detection, has two par-
allel carry-paths, one reporting Carry = 0 and the other Carry = 1. Neither
signal is true if the carry is propagating to the current stage and still unknown.
Each stage OR-s together its two carry-in signals to give a “result known” sig-
nal; these are ANDed over the whole adder and when all stages report a known
result the overall Sum is also known.

The asynchronous adder has several disadvantages –

1. The variable cycle time does not fit easily into much modern processor
design which relies on fixed timing and predictable activity.

2. The adder requires a resynchronisation from the asynchronous comple-
tion signal. Resynchronisation is not easy, and if not done properly can
lead to meta-stable states where flip-flops are in a temporarily undefined
condition. Reliable synchronisation methods are certainly known, but
often need extra decision time and clock cycles, partially destroying the
advantage of decreased addition time.

3. There is some doubt as to average carry propagation distance anyway.
Note that the maximum propagation occurs when integer values are
changing sign; such changes may be quite frequent in loop termination.
Thus the carry distance can be determined only from real-world mea-
surements rather than some empirical analyses and may well be skewed
to larger values than simple analyses might predict.
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4. A lesser problem is that of implementing the very wide AND to decide
that all stages have reported completion. The fan-in limitations will
probably require a cascade of logic gates, leading to a further (but slight)
increase in the addition time.

5.2.3 Fast Carry-Paths

The large potential carry delay of a ripple-carry adder arises because each bit
must include two stages or levels of logic in the carry path. The first is an
AND to allow or prevent propagation of the incoming carry, (the Pi terms,
and the second is an OR to combine that carry with one generated within
the current stage (the Gi term). An alternative to minimising the amount of
logic to be traversed by a carry redesigns the carry path to avoid conventional
logic altogether. Conceptually, the carry path uses on-off switches which allow
transmission with negligible delay; a practical design implements a three-way
switch as needed by the equations of 5.2.

This approach originated with Kilburn [64] in the adder designed for the
Manchester Atlas computer, the first computer to use virtual memory and one
of the first with instruction pipelining and an operating system as an essential
component. Atlas used a unique carry-path with saturated, symmetrical, tran-
sistors which, although slow to switch on or off, had negligible delay once ON.
Although such transistors are no longer available (and were indeed unusual
around 1960 when Atlas was designed), the adder is well-suited to modern
analogue “transmission gates” which also provide non-logic data transmission
and switching with negligible delay [29].

5.2.4 Carry-Save Adders

If the major delay in many adders lies in the carry propagation, an obvious
solution is to eliminate the carry propagation. This is done in the carry-
save adder, which is appropriate to multipliers or other applications which
accumulate a succession of many sums, but need to deliver only the final
result.

In its basic form, each stage of the carry-save adder takes its three input bits
(addend, augend and carry-in) and delivers two output bits (sum and carry-
out) with the carry-out shifted one place to the left into its proper significance.
A carry-save adder therefore reduces three inputs to two outputs, which rep-
resent the same numerical value as the sum of the original inputs. Although a
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carry-save adder can be used as a stand-alone entity, the two outputs are often
saved in registers for feeding back into the adder when the next summand of
the sequence is introduced, as in multiplication.

Carry-save addition usually requires a carry-propagate adder to assimi-
late carries at the end of the sequence of additions4. Examples of carry-save
adders are given in Figure 5.4. The first example shows sequential addition of
operands one at a time, while the second shows values being presented four at
a time. The extension to more than four inputs is obvious; the hardware just
becomes more bulky.

Figure 5.4: Carry Save Adders

4—6 input carry-save adder

NOTE: 
Carries 
always go 
left one 
stage

C S A C S A

C S A

C S A

C S A

C S A

C S A

R R

C P A

Summands (in 
sequence, 4 at a time)

Registers

Carry-save 
Adder

Carry 
propagate 
Adder

C S A

R R

C P A

Registers

Carry-save 
Adder

Carry-propagate 
Adder (for final 
stage)

Summands, 
in sequence

Basic carry-save adder 
for sequential additions

Carry-save adder for 
4-input additions

NOTE: 
All data 
paths 
represent 
parallel 
(multi-bit) 
transfers

C P A

Two points may be noted here –

4The IBM 1130 computer used an unusual adder which was equivalent to a carry-save
adder and simply cycled until the carry register was zero.
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1. The carries-out always shift left to the next most-significant position
between the CSA stages.

2. If all of the inputs are equivalent the adder can be rearranged as shown
in the small section at the bottom-left to give one less carry-save adder
delay. This leads to the “Wallace-tree” multiplier as discussed later.

5.3 Multiplication

Multiplication is, like addition, a symmetrical operation which yields a product
from two factors known as the multiplicand and the multiplier. In contrast
to addition, where the augend and addend are treated quite symmetrically
within the adder, a multiplier5 usually treats the two factors quite differently.

Multiplication is usually performed as in traditional long multiplication,
adding together appropriately shifted (or scaled) multiples of the multiplicand
under the control of successive digits of the multiplier. A binary multiplication
is shown in Figure 5.5. Each row in the multiplication is either all-0 if the
corresponding bit of the multiplier is 0, or an appropriately shifted copy of the
multiplicand if the multiplier is 1.

It is obvious from Figure 5.5 that the product is twice the length of either
factor (actually the sum of the lengths, but they are usually the same pre-
cision.) With integers the desired result is in the least-significant half; any
content in the more significant half implies an overflow. With fractions the
least-significant half is usually discarded. The double-length product matches
the double-length dividend in division (the inverse operation from multiplica-
tion), as seen in Section 5.4.

Although Figure 5.5 implies that a complete tableau of multiplicand multi-
ples is prepared and then added in a single multi-operand addition, this is not
how most multipliers work. The usual procedure is to shift the multiplicand
step by step along the product, adding it in at each stage if the corresponding
multiplier bit is a 1. (Adding or not adding corresponds to adding the ×1
and ×0 multiples, according to the multiplier bit.) Although multiplication
involves the parallel addition of the multiples into the product, these additions
are done in sequence as each bit of the multiplier is examined. The number

5The term “multiplier” is ambiguous, being both one of the factors and the device or
functional unit which performs the operation of multiplication. The precise meaning is
usually apparent from the context.
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of additions then increases with word length N , and the expected execution
time is proportional to N for fixed addition time, to N logN for most adders,
or even N2 for a simple ripple-carry adder.

Figure 5.5: Binary Multiplication (100101× 110110)

multiplicand → 1 0 0 1 0 1
↓ multiplier
0× 20 0 0 0 0 0 0
1× 21 1 0 0 1 0 1 .
1× 22 1 0 0 1 0 1 . .
0× 23 0 0 0 0 0 0 . . .
1× 24 1 0 0 1 0 1 . . . .
1× 25 1 0 0 1 0 1 . . . . .

1 1 1 1 1 0 0 1 1 1 0

Multiplication is a potentially expensive operation, especially with the long
factors which are needed in much numerical computation. A great deal of
effort has therefore been put into designing fast multipliers; the multiplier (or
multipliers) is a significant component of most processor chips. As the time for
a multiplication is dominated by the need to perform a sequence of additions,
a faster multiplier requires a faster adder, or fewer additions, or both.

The major techniques, to be examined in later sections, are –

1. Increasing the adder speed with extensive carry look-ahead or similar
techniques. Alternatively eliminate carry propagation altogether by us-
ing a carry-save adder with carry-assimilation only at the end.

2. Recoding the multiplier (factor) so that strings of 1s need additions only
at the ends. This technique is graphically described as “skipping over 0s
and 1s” and uses the redundant codings of Section 3.5.1.

3. Regarding the multiplier (factor) not as a binary number, but as one in
base-4, base-8, base-16, etc. In other words, examine the multiplier bits
in groups of 2, 3, 4, etc.

4. Providing a completely combinational multiplier, which accepts the two
factors and delivers their product.
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5.3.1 Twos Complement Multiplication

All of the discussion here will assume twos complement integers, with unsigned
numbers being a special case of twos complement. The N -bit twos complement
representation of a negative value X < 0 was shown earlier to be equivalent
to the unsigned value 2N− | X |. Alternatively, the bit pattern with unsigned
value X has the twos complement value X − 2N .

If we have a negative multiplierX and a multiplicand Y of arbitrary sign, the
unsigned product of the two is X×Y − 2N ×Y . (The sign of the multiplicand
is irrelevant because it is only added in as the product develops and twos
complement addition is independent of the sign.) The simple-minded product
is therefore in error by 2N × Y and 2N × Y should be added as a correction.
In fact, we will find that some multiplication methods are actually in error by
precisely this amount; ignoring the error yields the correct twos complement
product.

5.3.2 Improving Adder Speeds

All of the techniques of Section 5.2 are relevant here; indeed the need for
fast multiplication has been one of the main incentives for developing faster
adders. We may assume that some form of accelerated addition underlies all
fast multiplication methods.

5.3.3 Skipping Over 0s and 1s

Although this section uses the redundant codings already described in Section
3.5.1, it is appropriate to repeat that description here, where it is actually
used. It is obvious that a string of consecutive zeros 100 . . . 001 will produce
no additions and can be ignored as far as arithmetic is concerned. If the
hardware can detect a string of zeros in the multiplier (factor) and can perform
a variable-length shift, the multiplier and product may be just shifted by the
appropriate amount to skip over the consecutive zeros.

It is less obvious that a string of ones can be treated in a similar way, but
note that any string of j ones 011 . . . 110 can be written as 2i+j−2i; for example
011100 = 28 can be written as 25 − 22 = 32 − 4 = 28. Any binary number
is a sequence of 0-strings alternating with 1-strings; the multiplier (factor) is
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recoded with a +1 at the rightmost digit of a string of zeros and a −1 at the
rightmost of a string of ones, as shown in the “first recoding” of Figure 5.6.

But this change is hardly satisfactory; the original has 5 ones and needs
5 add/subtract operations, but the recoded version needs 6 operations! The
problem arises because an isolated 1 is converted to (2 − 1) (00100 becomes
8− 4). The solution is to recognise isolated or singleton ones in the multiplier
and encode each as a single addition. This, in the “second recoding” line, gives
4 operations. Similarly, an isolated zero in a string of ones recodes as −2 + 1
(adjacent addition and subtractions) and should be replaced a −1 or single
subtraction.

Figure 5.6: Recoding of a Binary Multiplier.

original bits 0 0 1 1 1 0 0 1 0 1
first recoding 0 + 0 0 - 0 + - + -

second recoding 0 + 0 0 - 0 0 + 0 +

A negative multiplier has a string of most-significant ones, which will re-
code to ‘−’ at the rightmost end in anticipation of a compensating ‘+’ just
beyond the leftmost digit of the string. But the multiplication stops before the
compensating addition can be performed, leaving the product with a deficit
of 2N times the multiplier. Fortunately this “error” is precisely the correction
needed to get the correct twos-complement product from an unsigned multi-
plication. We conclude that this algorithm works correctly for signed factors
in twos-complement representation.

The average shift length is found to be about three, allowing an approx-
imate tripling of the multiplication speed provided that all shift lengths are
possible. These improvements apply to floating-point factors; integers are pre-
dominantly small values with a long run of significant zeros and can expect a
greater increase in speed. Variable shift multiplication has the disadvantage
that its execution time is variable and this can cause problems when designing
pipelined and overlapped-execution computers.

This algorithm is an extension of the “Booth” algorithm [12] which first
showed that recoding could facilitate signed twos-complement multiplication.
In its original form it deals with one bit at a time, according to the rules
below. (The colon ‘:’ is used as a separator; the bit to its left is the one being
examined and the one to its right was the one examined on the previous cycle.
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multiplier = 0:0 no arithmetic
= 0:1 ADD multiplicand
= 1:0 SUBTRACT multiplicand
= 1:1 no arithmetic

5.3.4 High Radix Multiplication

Another technique for fast multiplication, and one which is generally preferred
over variable shifts because of its deterministic performance, considers several
multiplier bits at a time; with n bits we get a radix 2n multiplier.

As high-radix multipliers invariably combine several multiples at each step
they are excellent candidates for carry-save adders, as shown in Figure 5.4.

The simplest case is radix=4, from examining bit-pairs. An obvious im-
plementation requires multiplicand multiples of 0, 1, 2 and 3, corresponding
to the four possible values of the current multiplier bit-pair. Although the
triple can be pre-calculated and saved, this is not necessary as the triple can
be recoded as (4− 1). Noting that +2 can itself be recoded as (4− 2) we get
an initial table, where the “C” indicates that a 4× multiple must be added, or
an extra +1 on the next cycle –

multiplier = 00 no arithmetic
= 01 +1
= 10 -2, C
= 11 -1, C

But “C” is clearly set from the most-significant bit of the multiplier pair.
All that is needed is to examine the two current multiplier bits and the most
significant of the previous pair, giving the full table in Table 5.1. Note that
this improvement requires negligible extra logic over the basic 1-bit multiplier.

It is interesting to compare this table with the rules for variable-shift mul-
tiplication. This alternative interpretation is also given in Table 5.1. We also
see that the method works for signed twos-complement numbers, for exactly
the same reason as for variable-shifts. A negative number must have a most-
significant run of ones with the anticipated addition of 2N left pending; this
“error” is just what is needed to correct for multiplying signed values as though
unsigned.

Operation beyond bit-pairs is quite possible, but demands increasingly more
hardware and multiples of the multiplicand. For example bit-triples superfi-
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Table 5.1: Table for Bit-pair (radix-4) Multiplication

multiplier multiple variable-shift comparison
00:0 0 run of zeroes – no action
01:0 +1 isolated 1 – +1
10:0 -2 possible run of ones – −1, with shift
11:0 -1 possible run of ones – −1
00:1 +1 end of run of ones – +1 just past end
01:1 +2 end of run of ones – +1 just past end, with shift
10:1 -1 isolated zero – −1
11:1 0 run of ones – no action

cially demand the multiples {0, 1, 2, 3, 4, 5, 6, 7}. Even multiples can be
generated by shifting and others as the 8s-complement with a subsequent add.
The multiplicand triple (×3) cannot now be simulated and must be precalcu-
lated or otherwise obtained.

5.3.5 Combinational Multipliers

If we look at the times involved in a fast carry-save adder, we find that much of
the time is concerned, not with addition per se, but with saving the temporary
results in registers and reading from those registers at the next step. We have
already seen, in Figure 5.4 how several carry save adders may be combined to
add four multiples at once. A logical step is to extend this so that all of the
additions of the multiplication are performed in one large combinational step,
without any saving or storage of intermediate values. This leap (essentially
psychological rather than technological) was first presented by Wallace [109],
when he described what is now known as the “Wallace tree” multiplier. The
idea is certainly older than that, because Richards [84] in 1955 describes a “si-
multaneous multiplier” with 4 bit factors and clearly anticipates its extension
to a “useful size (say, 16 binary digits or larger)”. It was however Wallace
who clearly presented a multiplier for 39 bits and analysed its performance
and economics.

Figure 5.7 shows a Wallace tree for 8 bit factors. Several points must be
remembered in considering this diagram –

• The diagram is really an end-on view of a rather complex three dimen-
sional object. Each of the carry-save adders (CSA blocks) is at least 8
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Figure 5.7: Wallace Tree Multiplier (8× 8 bits)

C S A C S A

C S A C S A

C S A

C S A

C P A

Inputs – each line 1 to 8 bits

Data gating at input to CSA complex

Each circle represents an AND gate, output to bottom

1 2 3 4 5 6 7 8 7 6 5 4 3 2 1 bit

Input – multiplier

Input – multiplicand

Output bits to Carry-save adders (width in bits for each position

Final Carry-
propagating 
adder

bits deep. The final carry propagating adder (CPA) is probably twice
that.

• Various parts of the structure are skewed with respect to each other and
are therefore at different depths from the viewer because of the shifting
of the multiplicand according to the precision of the multiplier bits.

• The right-hand part of Figure 5.7 shows the input gating (multiple se-
lection) here done by a simple ANDing of the shifted multiplicand by
the multiplier bits.

• The displacement of the operands means that some have no low order
inputs while others have no high significance bits. Many of the carry-
save adders may be shorter, but the length generally increases towards
the carry propagate adder.

• It is often possible to bring multiples into lower positions of the adder
tree. Here it is done for two multiples, but Wallace shows multiples
coming in much closer to the final adder.

• Wallace suggests recoding the multiplier using a form of Booth recoding
so each pair of multiplier bits requests one of the multiplier multiples
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{+2, +1, 0, -1, -2}. This halves the number of inputs to the adder tree,
for a moderate complication to the input selection.

The Wallace tree multiplier is presented as an example of a family of parallel
multipliers. Several variations and improvements exist, but without greatly
modifying the basic idea. For example, some designs use, not a full adder,
but a counter ; a (7,3) counter takes 7 inputs and delivers a 3-bit value which
counts the number of them which are 1. (An adder is a (3,2) counter). The
regular structure of parallel multipliers makes then very suitable for VLSI
implementation and most modern high performance processors use them. The
fully-parallel multiplier (sometimes multipliers) may take a significant part of
the chip “real estate” in most modern computers.

5.4 Division

Division, the inverse of multiplication, is the most difficult of the basic arith-
metic operations. It is usually much slower than multiplication and some high
performance computers even omitted it completely, preferring to program one
of the “multiplicative” methods given later whenever division is needed.

In general, division takes two input operands, the dividend and the divisor
and produces two results, the quotient and the remainder, such that

dividend = divisor× quotient + remainder

with
| remainder |<| divisor |

Division is always performed by some repeated or iterated operation which
constructs successively better approximations to the quotient. The traditional
algorithms are based on additions and subtractions and are sometimes collected
under the general term of “subtractive division”. Most other algorithms as-
sume the availability of a fast multiplier and use a sequence of multiplications
to obtain the quotient; these may be described as “multiplicative division”
methods.

5.4.1 Restoring and non-Restoring Division

Subtractive division algorithms have a working value, which is initially ob-
tained from the dividend and from which successive divisor multiples are sub-
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tracted as the division proceeds. This “working value” has no single preferred
name and is often known as the “partial remainder” or “partial dividend”.
Here and following Atkins [6], the shorter term “residue” will be employed.

All of the “subtractive” division methods assume an initial double-length
dividend (corresponding to the double-length product in multiplication); a
single-precision divisor is extended to double precision in the normal way, by
sign-extending integers to the left, or zero filling fractions on the right. The
division operates only on the more-significant part, which is shifted left as
the division proceeds. This leaves vacated digits at the extreme right hand
(least significant) end. By convention these places are filled with the quo-
tient bits which conveniently fill the otherwise unused spaces; the whole div-
idend/quotient must be shifted left as a single entity. Thus the quotient is
generated in the extension while the remainder is the final residue.

The simplest division methods, and the basis of all of the subtractive meth-
ods, are the restoring and non-restoring algorithms shown in Figure 5.8. Both
examples show 67÷7→ 9 (4 remainder). Restoring division is an exact parallel
to standard pencil-and-paper long division, adapted to binary arithmetic.

Figure 5.8 is laid out in a conventional manner for division, with the added
convention that down-arrows (↓) show how successive dividend digits are in-
troduced to the calculation. The basic division cycle for restoring division with
positive operands is –

• Subtract the divisor from the residue

• If the result is negative, generate a quotient bit of 0 and restore the
residue (either by adding back the divisor or not accumulating the dif-
ference).

• If the residue is positive, leave it unchanged and develop a quotient bit
of 1

• In both cases, shift the residue left with respect to the divisor by one
digit (or shift the divisor right with respect to the residue) discarding the
most-significant bit of the residue and introducing a new least-significant
residue bit from the dividend.

At the very end, when the last dividend digit has been processed, the residue
becomes the remainder.

Each zero quotient bit corresponds to an “overdraw” in restoring division.
If the residue has been already updated an extra step is needed to add back
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Figure 5.8: Binary Restoring and non-Restoring Division

0 1 0 0 1 the quotient
0 0 1 1 1 ) 0 0 1 0 0 0 0 1 1 the dividend

– 0 0 1 1 1 ↓ ↓ ↓ ↓ subtract
1 1 1 0 1 overdraw; digit = 0
0 0 1 0 0 ↓ restore

0 1 0 0 0 shift; new digit
– 0 0 1 1 1 subtract

0 0 0 0 1 ↓ success; digit = 1
0 0 0 1 0 shift; new digit

– 0 0 1 1 1 subtract
1 1 0 1 1 overdraw; digit = 0
0 0 0 1 0 ↓ restore

0 0 1 0 1 shift; new digit
– 0 0 1 1 1 subtract

1 1 1 1 0 overdraw; digit = 0
0 0 1 0 1 ↓ restore

0 1 0 1 1 shift; new digit
– 0 0 1 1 1 subtract

0 0 1 0 0 remainder = 00100

(a) Restoring Division

0 1 0 0 1 the quotient
0 0 1 1 1 ) 0 0 1 0 0 0 0 1 1 the dividend

- 0 0 1 1 1 ↓ ↓ ↓ ↓ subtract
1 1 1 0 1 ↓ negative; digit = 0

1 1 0 1 0 shift; new digit
+ 0 0 1 1 1 add

0 0 0 0 1 ↓ positive; digit = 1
0 0 0 1 0 shift; new digit

- 0 0 1 1 1 subtract
1 1 0 1 1 ↓ negative; digit = 0

1 0 1 1 1 shift; new digit
+ 0 0 1 1 1 add

1 1 1 1 0 ↓ negative; digit = 0
1 1 1 0 1 shift; new digit

+ 0 0 1 1 1 subtract
0 0 1 0 0 positive; digit = 1

remainder = 00100

(b) non-Restoring Division
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the divisor and correct for the erroneous subtraction. One variation which
eliminates the correction is non performing division. Here the result of each
subtraction (divisor from residue) is monitored and the residue updated only
if no overdraw occurs. The speed is increased by eliminating the correction
step on perhaps 50% of the digits, but at the expense of more difficult control
logic; the load/not-load condition depends on the current result whereas it is
often more efficient to set it from previous data.

A more usual improvement is non-restoring division, in which an overdraw
is allowed to stand but is corrected on the next step by an addition. The above
rules are now modified.

• If the residue is negative add the divisor to the residue, otherwise subtract
the divisor from the residue; the residue is always updated.

• If the result is negative, generate a quotient bit of 0; if the result is
positive, develop a quotient bit of 1.

• Shift the residue left with respect to the divisor by one digit (or shift the
divisor right with respect to the residue) discarding the most-significant
bit of the residue and introducing a new least-significant residue bit from
the dividend.

The result is that we always try to drive the residue towards or past 0,
using divisor multiples of +1 or −1 as appropriate. The quotient bit is always
set to the complement of the residue sign. With a positive result from a
subtraction (residue + → +), the operation is just as with restoring division;
we have a “successful” subtraction and develop a corresponding 1. A negative
result from a subtraction (residue +→ −) is similarly an overdraw and gives
a 0 quotient bit. The initial subtraction which caused the overdraw and the
following additions which try to correct it are equivalent to an initial multiple
of 2i and following multiples of−2i−, −2i−2, . . . . The result is that for example,
we write 1 = 8− 7.

5.4.2 Fast Subtractive Division

The fast subtractive division algorithms are extensions of non-restoring divi-
sion and the inverse of standard digit-sequential multiplication. While restor-
ing and non-restoring division were described as early as the Burks et al report
[17], their extension to higher radix algorithms capable of developing several
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bits per step was performed in the late 1950s by Sweeney and Robertson [85]
and Tocher [101] giving methods which are now referred to as “SRT algo-
rithms”.

All fast division algorithms expect a “normalised” divisor, usually of the
form 0.1xx . . . (if positive, and assuming fractions). At each stage we subtract
from the residue the largest possible multiple of the divisor; that multiple
becomes the next digit of the quotient. Just as with multiplication, we can
use variants of shifting over 1s or 0s, or process a fixed number of bits per
step (which is the usual case). A divider which generates n bits per step is
a radix-2n divider. The problem is in estimating the correct multiple (and
quotient digit) and handling errors if the estimate is wrong.

All of the fast subtractive methods depend on the relation

pj+1 = r × pj − qj+1 × d
where

pj = the residue used in the j-th cycle,
p0 = the initial dividend,
pm = the remainder, and
qj = the j-th quotient digit

We also have that
r = the radix, eg 2, 4, 8, 16, . . .
d = the divisor, and
m = the radix-r digits in the quotient

Verbally, we can note that we subtract a multiple (qj) of the divisor from
the residue and enter the same qj as the corresponding quotient digit. Note
that any value of qj will then satisfy the relation. By convention 0 ≤| qj |< r,
this ensuring that a properly chosen value qj will eliminate a digit of pj and
ensure that | pj+1 |<| d | and pj+1 is in the range to allow the iteration to
proceed.

The general idea is to use the high-order bits of the divisor and residue to
estimate the divisor multiple which, subtracted from (or added to) the residue,
forces the residue as close as possible to zero. The biggest problem for most
division methods is in generating the correct value of qj so that the residue is
properly reduced and the generated digit is accurate. Most division algorithms
require an accurate quotient digit to be forced into the quotient step. While
it may be modified as it is entered, it cannot afterwards be changed. For high
radices the digit estimation may require considerable logic.

The difficulty of estimating quotient digits has been discussed by Knuth [66]
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and also Atkins [6], both analysing high radix SRT division. Atkins discusses
redundancy of the quotient representation (for example, 3 may be represented
as either 2 + 1 or 4− 1) and states that “With redundancy, the quotient digit
. . . need not be precise.” Then from a detailed analysis of digit-estimation
logic, he shows that the number of bits to be examined is at least that shown
in Table 5.2.

Table 5.2: Atkins’ Estimates of Bits to be Examined

Residue bits Np = 2k + 3 or 2k + 4, and
Divisor bits Nd = 2k + 5
where the radix r is r = 22k

[ht]

Radix Residue Divisor
bits bits

4 5 7
8 6 8

16 7 9
64 9 11

256 11 13

A full discussion of SRT division is very complex; interested readers should
consult Omondi [78] or some similar book. In any case, few authors recom-
mend operation beyond radices of 4 or 8 (2 or 3 bits per step) because of
the difficulties of estimating the quotient digits and preparing an appropriate
tableau of divisor multiples.

5.4.3 Approximate Quotient Estimation

Traditional SRT division is complicated by the need to generate precise digit
estimates at each cycle, leading to extensive estimation logic as discussed by
Atkins. Two modifications have appeared in recent literature, both eliminating
the need for precise estimation. Both rely on the property that, while it is easy
to generate most of the quotient bits most of the time, it can be much more
difficult to generate all of the bits all of the time. Perhaps 99%, or even 99.9%,
of cases are relatively easy to handle; it is only the remaining 1% or 0.1% which
are difficult and expensive.

Montuschi and Ciminiera [76] generate the best-estimate digit but reduce
its precision if necessary. For example, they may estimate a 5-bit quotient digit
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but find on doing the arithmetic that only 3 bits are satisfactory and that using
any more would give an unrecoverable overdraw. They then accept only those
three bits. Their divider runs most of the time at near to its designed quotient
bits per cycle, but every so often drops back to fewer quotient bits.

Fenwick [31] first of all places a small adder at the low-order end of the
quotient so that the new quotient is added into the existing quotient. This
allows previous estimates to be corrected if necessary. (Normal SRT methods
just “jam” the quotient digit and must have it correct.) In case of extreme
overdraw he allows the division to pause so that a correction step can be
applied (this is just a normal add/subtract with no accompanying shift).

As a measure of the improvement, Atkins estimates that a radix-16 divider
requires a 7× 9 table (216 entries)6. With a (6× 6) table Fenwick gets a speed
within 0.1% of 4 bits per cycle; even with a (4 × 4) table the speed is still
with 10% of the limit, generating 3.7 bits per cycle. Fenwick also considers
the effect of not having a tableau of divisor multiples (replacing multiples by
appropriate combinations of shifted adds and subtracts) and shows that with
his methods a radix-16 divider with a 5×5 bit estimation table can still deliver
3.78 bits per cycle, or 95% of the maximum.

5.4.4 Multiplicative Division

Multiplicative division uses iterative algorithms based on multiplications to get
an approximation to the reciprocal of the divisor. Multiplying this reciprocal
and the dividend yields the quotient (but not a remainder). This method has
a long history, dating back to some of the early computers where even bit-wise
restoring division was considered too complex for hardware. When division
became reasonably understood and as long as it was not too much slower than
multiplication, there seemed little need to deviate from the obvious subtractive
algorithms. The ability of multipliers and dividers to share most of their logic
was also an incentive to retain subtractive methods.

That situation changed when Wallace developed his fast multiplier [109],
Section 5.3.5, which was quite unsuited to division. This led to a resurgence
in multiplicative division. Assume that the divisor d is a normalised fraction,
an assumption which is usually true for floating-point arithmetic. The algo-
rithms calculate the divisor reciprocal a = 1/d and then get the quotient by
multiplying the dividend and the reciprocal.

6A “7× 9” table takes 7 bits and 9 bits as address bits for a conceptual 27 rows and 29

columns, or a total of 65 536 entries. A “4× 4” table has only 256 entries.
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Wallace proposes the following iteration, first setting p ≈ 1/x as an initial
estimate

set a1 = px get a1 ≈ 1
and b1 = p the estimate
iterate an+1 = an(2− an) (2− an) is error in estimate –

– adjust a towards 1
and bn+1 = bn+1(2− an) same adjustment for b and a

The process converges quadratically, doubling the significant digits at each
step, with an → 1 and bn → 1/x.

Knuth gives two other formulæ, both of which iterate to find the reciprocal
[66][p 244]. Given a positive normalised fraction d, set a0 = 1 and iterate.

ai+1 = ai(2− dai)
= 2ai − dxi

ai+1 = ai + an(1− dai) + ai(1− d(ai)))

= ai(1 + (1− dai)(1 + (1− dai)))

The first formula is derived from the Newton-Raphson method for finding
the root of a function and requires two multiplications per step. It is again
quadratically convergent and has been used in many computers. The third is
cubically convergent, each step tripling the number of significant digits. But
it demands more arithmetic at each step and is no faster overall.

Wallace also gives a quadratically convergent iterative square root. Given
0 < x < 1, set a1 = p2x, b1 = p. then iterate as below; bn converges to

√
(1/x)

an+1 = an(3/2− an)2; bn+1 = bn(3/2− an)

5.4.5 Additive Refinement

The final example is a division method which depends only on cunning data-
dependent subtractions and is unrelated to any of the standard methods. The
original description by Svoboda [94] is for decimal arithmetic and its rationale
is not easy to grasp. Its binary form is much easier to follow; again it assumes
a normalised divisor D = 1.0 . . . 01x . . .. It has the unusual property that the
divisor is constantly changing. It forms the basis of a method of calculating
binary logarithms, given in Section 7.4.
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The basic principle is that we transform the divisor, so that it converges to
1.00 . . . 00, applying identical transformations to the dividend, which converges
to the quotient. (It does not develop the remainder.) We illustrate it by
calculating N ÷D, where N is initially the dividend but is transformed into a
sort of “residue” and eventually becomes the quotient.

At any stage, the divisor D = 1 + 2−j + ε, where ε < 2−j. In other
words, the first fractional 1 is that for 2−j. The basic step is the subtraction
D = D−D×2−j or D = D(1−2−j), using the most significant bit of D (which
is known to be a 1) to eliminate the second significant 1 of the divisor. At
the same time we calculate N = N(1− 2−j), multiplying the dividend/residue
by the same amount (subtracting a similarly shifted copy); the ratio N/D
remains the same. The operation is repeated until all of the internal 1s of the
divisor are annihilated, leaving D = 1 and the dividend N transformed into
the quotient.

In words, shift the divisor right so that its most-significant 1 coincides with
second 1 and subtract the shifted divisor; this corresponds to a multiplication
of the divisor, driving it closer to 1.000 . . .. Shift the dividend right by the
same amount and subtract its shifted value from the dividend. Because the
divisor and dividend are both modified by equivalent shifts of themselves, both
are multiplied by the same factor and their ratio is unchanged.

This form differs from the original, decimal, method. There digits were
eliminated until the left-half of the divisor was all-zero (apart from the leading
1), allowing the approximation 1/(1+x) = 1−x to give the divisor reciprocal,
which was then multiplied by the dividend to give the quotient. Also, the dec-
imal elimination step used rather mysterious, and unexplained, factors which
rather concealed the underlying rationale. (They are related to the reciprocals
of the divisor digit.)

We illustrate the division with the example 3/5 = 0.6
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3/5 = .75/1.25 =
0.110000

1.010000

=
0.110000− 0.001100

1.010000− 0.010100
=

0.100100

0.111100
overdraw

=
0.110000− 0.000110

1.010000− 0.001010
=

0.101010

1.000110

=
0.101010− 0.000010

1.000110− 0.000100
=

0.101000

1.000010

=
0.101000− 0.000001

1.000010− 0.000010
=

0.100111

1.000000
= 0.609375

The second step suffers an overdraw with the significant bit of the divisor
(the bit used to eliminate the other bits!) becoming zero. It is necessary to
correct the overdraw and to repeat the operation with the operands shifted
one place further to the right. The situation is analogous to that in restor-
ing division, but not identical because the divisor here is constantly changing.
However we can certainly make the correction by adding an appropriately
shifted value to both numerator and denominator; as before doing the same
operation to both leaves the ratio unchanged. The correct position aligns the
most-significant 1 of the shifted denominator with the least significant 1 of
its leading block of 1s. If the denominator is 0.1111100 . . ., the subtraction
is 0.1111100− 0.0000111 . . .. With non-restoring corrections, the example be-
comes

3/5 = .75/1.25 =
0.110000

1.010000

=
0.110000− 0.001100

1.010000− 0.010100
=

0.100100

0.111100

=
0.100100 + 0.000100

0.111100 + 0.000111
=

0.101000

1.000011

=
0.101000− 0.000001

1.000011− 0.000010
=

0.100111

1.000001

=
0.100111− 0.000000

1.000001− 0.000001
=

0.100111

1.000000
= 0.609375
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As before, rounding has introduced an error into the last bit. The correct
binary answer is 0.100110011001 . . .

5.5 Division with Signed Numbers

Repeating the basic rules from Section 5.4, the fundamental relations in divi-
sion are –

dividend = divisor× quotient + remainder

with
| remainder | < | divisor |

There is little problem with positive operands, but the fish-hooks arise with
signed operands and the second relation which deals only with magnitudes.
Does −7÷ 2 give a quotient:remainder pair of {–4:1}, or is the result {–3:–1}?
Similar problems arise in each of the three cases where at least one operand
is negative. The dividend may of course change by 1 depending on the sign of
any non-zero remainder. These problems are essentially those of Floating-point
rounding, discussed in Section 6.6.

A conventional solution is that the remainder has the sign of the dividend.
But the author has seen problems with Algol 60 where the real → integer
function int = entier(real) is defined as yielding “the largest integer not
greater than”. For a positive result it truncates toward zero, as we might
expect, but for negative it rounds away from zero. (Remember that an integer
division in effect yields a non-integer result, equivalent to a real, which must be
converted back to integer using the entier operation, even if no non-integer
quantities are visible.) This alternate definition of the remainder sign means
that algorithms such as Binary Search may need careful examination7.

So the lesson is simple; be very careful of the result signs when dividing
signed operands.

7A literature survey, done about 1990, yielded over 20 published variants of the “simple,
fundamental” Binary Search algorithm, only one of which was actually correct in C. An
Algol 60 version, while correct in Algol, did not transliterate easily into C, just because of
this problem.
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Chapter 6

Floating-Point Representations

Abstract: This chapter extends the earlier representations of integers
to the equivalent of the real numbers of scientific calculation. It discusses
the basic ideas, especially with reference to the IEEE 754 standard, and
contrasting with descriptions of the IBM S/360 and Burroughs B6700
representations. There is extensive discussion of the requirements of
ideal floating-point representations and the failings of practical imple-
mentations. Special mention is made of the requirements of range, pre-
cision and rounding. It concludes with examples of straight-forward
calculations which can easily overwhelm many floating-point systems.

Keywords: Floating-point basics, IEEE 754 standard, Floating-point
precision, Floating-point range, Floating-point rounding, Not a Number
(NaNs), examples of range problems.

6.1 Introduction

Floating-point numbers extend the number system of a computer to include
the very wide range of values needed by scientific or engineering computation.
To some extent, the number system parallels the real numbers of mathematics
(hence their frequent description as real numbers), but there are major differ-
ences from mathematical reals, some of which will be discussed later in greater
depth.

The design (and use) of floating-point numbers is a very difficult and tricky
area. Historically, most computers had their floating-point representations
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designed in a fairly ad hoc manner, with little attention to many of the finer
points that will be raised later in this chapter. As a result, the floating-point
arithmetic on many computers was often suspect, with differing accuracies or
even results on different computers. (Sometimes a later computer even had to
perpetuate the idiosyncrasies of a predecessor!)

Following an extensive analysis of the problems of floating-point number sys-
tems and computation, in 1985 the IEEE announced the IEEE 754 standard
for floating-point numbers [58], a standard that addresses most of the previ-
ous problems with floating-point numbers. An initial broad outline will be
followed later in the chapter with discussion of its more subtle aspects. Excel-
lent discussions of floating-point numbers are found in the article by Goldberg
[44] and the book “Computer Architecture”, by Hennesey and Patterson [54].
Sterbenz [91] gives an earlier view of floating-point.

Floating-point numbers are at best an approximation to mathematical reals.
Their ranges are limited, both towards the indefinitely large and towards the
infinitesimally small and their precisions are also limited. Whereas there is
always an infinity of reals between any two mathematical real values (no matter
how close), this is far from true with floating-point numbers. With a standard
32-bit floating-point representation there are “only” about 16 million possible
values between 1.0 and 2.0. Or there are only 16 values between 1.000 001
and 1.000 002, while 1.000 000 01 ≡ 1.000 000 02 ≡ 1.00. Confusion with
true mathematical real numbers can cause major problems in programs that
perform significant computation with low-precision numbers1.

6.2 Basic Floating-Point Representation

It is appropriate to first review the conventional scientific representation, as
it is a close analogue of many aspects of computing floating-point numbers.
The representation, devised by Gauss about 1800, represents a value as two
components, the numerically significant digits and an exponent giving the
magnitude of the value.

The velocity of light, 299 792 458 ms−1, is 2.997 924 58× 108 ms−1 in more
conventional (scientific) terms. (For many practical purposes we can use the

1The proper understanding of infinities and infinitesimals was a major achievement of
19th century mathematics. But there are now suggestions that these very concepts may
be at the heart of some current problems in Physics (New Scientist, 17 Aug 2013, No 2930
“The End of Infinity”, pp 32–35. (Perhaps true infinities and infinitesimals just do not exist
in nature and the purity of mathematics is inappropriate to reality in these extremes.)
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approximate value 300 000 000 ms−1, or 3 × 108 ms−1.) The decimal point is
naturally to the right of the last digit (the 8). To convert to scientific form,
the point is first shifted so that it follows the first digit, a leftward shift of 8
places. A multiplier of 108 is included to correct for this shift.

For very large and very small numbers the scientific notation is very efficient.
The charge on the electron is 0.0000000000000000000160217653 Coulomb or,
even better, 1.602 176 53× 10−19 C. With the first form there is easily trouble
counting zeros. Similarly, the number of atoms in one mole of gas is about
602214150000000000000000 or 6.022 141 5 × 1023. The scientific form makes
things easier in several ways –

1. The exponent indicates generally how large the number is (positive ex-
ponent) or how small (negative exponent). It also reduces the problems
in counting many following or preceding zeros (I hope the counting was
correct in the two examples!).

2. The number of digits tells how accurately the value is known. Thus a
value of 98 270 known to an accuracy of±10 should be written 9.827×104

(the units digit is not certain), whereas if the last digit is certain, it should
be written as 9.8270 × 104. Writing the speed of light as 3 × 108ms−1

means that we worry about only that first digit, whereas writing it as
3.00 × 108ms−1 means that the first 3 digits are correct. (Writing to
another digit must be 2.998× 108ms−1 when the last digit is rounded.)2.

Computer real numbers are held in a similar way, except that values are
usually binary3. A real value is held as two parts –

1. The significand, fraction or mantissa is often about 24 or 50 bits and
usually gives a value 0.5 ≤ V < 1.0, with the binary point at or near the
left-most bit.

2The converse seems to apply in the press and other popular writings. For example the
statement that an aircraft was flying at an altitude of 30 000 feet may be translated into
an altitude of 9144 metres, whereas 9000m might be more appropriate given the probable
accuracy.

A more subtle example occurs with small probabilities; a failure probability of 6 parts per
million (meaning somewhere between 5 and 7) becomes converted to 1 part in 166 667 (note
that this is neither 166 666 nor 16 668), implying accuracy to the 6th digit. This leads to
the comment that the more digits quoted, the less the accuracy! A similar effect is often
seen in budgets and financial estimates. Something estimated to cost $1 000 000 per week,
with a probable daily overhead of $500, gives the wondrously precise daily cost as $143 357.

3Many old purely decimal computers such as the IBM 1620 with only decimal arithmetic
did naturally use decimal floating-point.
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2. The exponent or characteristic is a smaller 7 to 12 bit value giving a mul-
tiplier for the significand. For most numbers the value for a significand
S and an exponent E is S × 2E. The value could be written as a binary
value with integral and fractional parts; the exponent tells by how many
bits the binary point must be shifted to get the true external value from
the internal representation.

6.2.1 Some Important Concepts

Several important concepts arise in dealing with computer floating-point num-
bers. They will be dealt with in some detail later on, but for now it is important
to introduce them in general terms –

normalisation Equivalent forms for the velocity of light are –

2.997 924 58× 108

0.299 792 458× 109

0.002 997 92458× 1011

29.979 245 8× 107

By convention, scientific numbers are always written with one decimal
digit before the point, giving a normalised representation. The “engi-
neering” representation on many calculators forces the decimal exponent
to be a multiple of 3 to fit with the standard scale factors of most physi-
cal units (kilo, Mega, milli etc); the value before the point is then in the
range 1. . . 999.

Binary floating-point numbers are similarly normalised to the binary
value 0.1xx . . ., or 1.xx . . . by balancing a left shift of the digits with a
decrease in the exponent (or a right shift of the digits with an increase
in the exponent).

Some computers use a base of 8 or 16 for the floating-point representa-
tion. In these computers the binary values are shifted by 3 or 4 places
(corresponding to the base of 23 or 24) until the left-most octal or hex-
adecimal digit is non zero, in the range 1–7 or 1–15 respectively.

range The range is determined by the exponent and determines how close to
zero or far from zero a number may be. It is closely connected to the
exponent form of scientific notation. An 8-bit signed exponent can have
values from −128 to +127. The smallest representable number will be
about 2−128 and the largest 2+127. Remembering that log2 10 ≈ 1/0.3,
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the smallest number is about 10−38 and the largest 10+38. It is shown
later that this range is quite inadequate for some calculations.

precision The precision is controlled by the significand (or fraction or man-
tissa) and gives the accuracy with which a number may be represented.
Remember, again, that N bits equals about 0.3 × N decimal digits. A
standard 32-bit real has 23-bit precision, or not quite 7 decimal digits.
A 64-bit double has 52-bits or 15 decimal digits. Even a 32 bit real can
handle the accuracy of most physical measurements, but much of the
precision is lost in lengthy calculations; this is the real justification for
using 64-bit or 128-bit floating-point numbers.

rounding Floating-point arithmetic is subject to rounding and truncation er-
rors. The significand can represent only so many bits; any less-significant
bits must be discarded. Often, if the first discarded bit is a 1, we add
1 onto the significand to round the result. Thus 1.7 would round to 2,
which is probably a better result than 1 (from just forgetting the bits).

But there are other options, such as truncating the number by just dis-
carding the lost fractional digits4. But if +1.5 is rounded-up to 2, how
should −1.5 be treated? Rounded up by adding 0.5 gives a result of 1;
is it better to say that the positive round-up is matched by a negative
round-down, both being examples of round away from zero? It is matters
such as these that bedevilled earlier computer floating-point arithmetic
and that are addressed in the IEEE 754 standard.

Truncation and rounding always cause some loss of precision. This loss
is seldom important within even a few calculations, but is effectively a
noise or unreliability imposed on the calculation result and once there
it cannot be removed. In long sequences of calculations it leads to a
progressive erosion or loss of less-significant digits, to the extent that
calculations can all too easily lose all significance or meaning.

Care is needed when using real-number arithmetic. Some of the problems
seem to disappear with “long” numbers, but really stay there and are
never more than reduced.

6.2.2 Some Cautions

To conclude the general introduction to floating-point numbers it is important
to give some cautions on their use.

4This problem is closely related to the sign of the remainder discussed in Section 5.5.
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• The 32 bit floating-point real or float on many computers is quite limited
in comparison with many scientific calculators. Its range is about 10±38,
and its precision is not quite 7 decimal digits. Even short calculation
sequences can overwhelm it. (A quite ordinary calculator may have a
range of 10±99 and a precision of 10 decimal digits.)

• Arithmetic with floating-point numbers is seldom exact. Great care must
be taken as round-off errors accumulate in long calculation sequences.
For example, one of the author’s early experiences involved the solution
of a set of 39 simultaneous equations (as many as the computer could
handle). The 3–4 least significant decimal digits were quite meaningless
(although this may have due largely to the deficiencies in floating-point
implementation).

Indeed, it is important to remember that the fundamental laws of arith-
metic

(A+B) + C = A+ (B + C)

and

(A+B)× C = A× C +B × C

may be only approximately true with floating-point numbers in comput-
ing.

• Beware of computational techniques that involve differences of large
quantities. This is related to the previous point. Say we have two values
close to 1000, both with the last decimal digit uncertain, such as 1002+x
and 999 +x (both known to about 10 parts in 1000, or 1%). Subtracting
gives a value 3 + x, where the last digit is still uncertain, but the error
is now 10 parts in 30, or about 30%. Two moderately accurate values
have combined to give a value that is nearly meaningless. Some types of
statistical calculation are especially sensitive to this problem.

• Be very careful if using floating-point arithmetic for financial calcula-
tions. Rounding errors may make it almost impossible to achieve reli-
able balances, especially if the number precision is barely adequate to
represent the whole amount.

The author is particularly suspicious of spreadsheets in this regard, hav-
ing heard from other programmers of their attempts to balance accounts
with floating-point arithmetic. The saving feature is probably that mod-
ern floating-point systems have sufficient precision to provide plenty of
guard digits and probably use better rounding anyway.

108   Introduction to Computer Data Representation Peter Fenwick 

  



6.3 IEEE 754 Floating-Point Representation

Although there were some significant exceptions (two of which are mentioned
later), most floating-point number design had, by the 1970s, settled into a few
variations on the following basic theme.

• The total representation length was 32 bits, largely following from the
16-bit minicomputers and, later, the 8-bit microcomputers of the time.
Some computers provided an extended or long format of 48 or even 64
bits but these numbers used more memory (always an expensive resource)
and had much slower arithmetic, especially with programmed floating-
point. (Remember that some of these computers did not even have a
multiply or divide instruction.) But 32 bits seemed to be adequate for
most small computations, so why change?

The 32 bits were further divided into a fraction or mantissa (now called
the significand) of 24 bits including sign, and an 8-bit signed exponent.

• The significand was held in a sign and magnitude representation. On the
smaller machines this may have been habit, but was also probably con-
nected with the difficulties of implementing high-precision signed arith-
metic when only lower-precision operations were available. In any case,
many of the largest computers of the time also used sign and magnitude
to simplify their very fast arithmetic units.

• The exponent was held in an excess or biased form, often excess 128.
While the true reasons for this choice are doubtful, it has the significant
advantage that an unsigned comparison (as 32-bit integers) “compares
true” with more-positive values always comparing greater than more-
negative values. When the fields of the floating-point number have the
conventional order of {sign, exponent, significand} normalised floating-
point numbers can be compared with a simple and faster integer compare.
It also means that the smallest value is represented by all-zeros, giving
a “clean zero” representation for a floating-point zero.

• Some computers, especially the PDP-11 and then the VAX series by
Digital Equipment Corporation, used a hidden bit representation to get
a little more precision.

In conventional and traditional representations the significand is always
normalised to the form 0.1xxxx . . . . But this means that the most sig-
nificand bit is always 1, and therefore redundant (except where the sig-
nificand is zero). With a hidden bit the significand is normalised to

Floating-point Representations Introduction to Computer Data Representation   109 

  



1.xxxx . . . and the 1 removed before converting to external form. The
1 is automatically restored when the number is read from memory and
broken into its components to perform arithmetic.

A floating-point zero is represented by an all-zero word; both exponent
and significand are zero. An exact power of two, with only a single 1 in
its representation is also represented by an all-zero significand but with
a non-zero exponent.

But there were still some differences and incompatibilities, so that programs
all to often gave different results on different computers. Some of the problems
were to do with rounding, but others were concerned with error handling. For
example, it was not uncommon for a computer to evaluate

√
−4 = 2 and to set

an error flag, which the programmer could interrogate (or ignore). Overflows
and underflows were similarly handled in various and inconsistent ways. It
is against this background that the IEEE developed its standard for binary
floating-point arithmetic [58].

The IEEE 754 standard defines several number formats and precisions. The
32 bit format has a 1-bit sign, an 8-bit exponent with a bias of 127, and a 23-
bit significand. The significand is always stored in normalised form with its
most significant bit 1, but treating this 1 as a hidden bit. The bits are used
as sxxx xxxx xfff ffff ffff ffff ffff ffff where s is the sign bit, xx
...xx are the exponent bits and ff...ff the (fractional) significand bits. The
value of a number is then

(−1)sign × (1.0 + significand)× 2(exponent−127)

The IEEE 754 standard has quite complicated rules on the rounding of
numbers. It also has ways of representing underflowed and overflowed numbers
and special error values called Not a Number (NaN), from cases like 0/0 or√
−3. All of these aspects will be discussed later.

6.3.1 Higher Precision Numbers

As described earlier, the 32-bit representation is barely adequate for serious
computation; the precision is limited and rounding errors accumulate very
quickly so that some relatively short computations can become quite mean-
ingless. Also, the number range of 10±38 is too small to handle some physical
quantities, or formulæ involving them. The original standard had rather vague
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Table 6.1: Summary of IEEE 754 Binary Representations

Format
Parameter Half Single Double Quadruple

Precision Precision Precision Precision

p h+ 10 h+ 23 h+ 52 h+ 112
Emax +15 +127 +1023 +16 383
Emin −14 −126 −1022 −16 382
Exponent width in bits 4 8 11 15
Format width in bits 16 32 64 128

extensions to the “single” and “double” formats but these have now been clar-
ified and extended to include a 128-bit “quadruple precision”. There is also a
16-bit “half” precision.

The full format specifications are shown in Table 6.1. The “h” in this table
denotes the “hidden bit”, so that the Single Precision format has 23 visible
bits, plus the hidden bit, to give a total fractional precision of 24 bits.

IEEE 754 double precision uses a 53-bit significand (giving about 16 decimal
digits of precision) and an 11-bit exponent with a bias of 1023 (a range of
about 10±300). The underlying principles are as for the 32-bit representation.
The new quadruple precision representation has a 112-bit significand (over 30
decimal digits) and a range nearly 10±5000. The Standard also describes a
family of decimal floating-point representations, which are not discussed here.

6.3.2 Rounding in IEEE 754

The precise specification of rounding modes and operations is a major feature
of the IEEE 754 standard. The standard specifies that all results are first
produced as though to infinite precision and then rounded according to one of
the following modes. (Remember that rounding occurs only if non-zero bits are
to be discarded. No rounding or adjustment occurs if all of the discarded bits
are zero.) This section emphasises the IEEE 754 standard; a general overview
of rounding is given later in Section 6.6.

It is convenient in the descriptions to use intermediate result as meaning
the infinitely precise initial result referred to above. The standard uses repre-
sentable value as the maximum precision approximation to the intermediate
result; the intermediate result may coincide with the representable value if the
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Table 6.2: IEEE 754 Rounding Modes

Intermediate to towards towards towards
Value nearest +∞ 0 −∞
+1.4 +1.0 +2.0 +1.0 +1.0
+1.5 +2.0 +2.0 +1.0 +1.0
+1.6 +2.0 +2.0 +1.0 +1.0
−1.4 −1.0 −1.0 −1.0 −2.0
−1.5 −2.0 −1.0 −1.0 −2.0
−1.6 −2.0 −1.0 −1.0 −2.0
+2.5 +2.0 +3.0 +2.0 +2.0
−2.5 +2.0 +2.0 −2.0 −3.0
+3.5 +4.0 +4.0 +3.0 +3.0
−3.5 −4.0 −3.0 −3.0 −4.0

discarded bits are all 0, or may lie between two representable values.

Round to Nearest This is the default mode. The intermediate result will
usually lie between two representable values; the nearest of these two
values is chosen as the result. If the two are equally near, the one with
a zero least-significant bit is chosen.

Directed roundings There are three directed rounding modes –

• Round towards +∞. The result is the representable value closest
to and not less than the intermediate result.

• Round towards zero. The result is the representable value closest
to and no greater in magnitude than the intermediate result.

• Round towards −∞. The result is the representable value closest
to and not greater than the intermediate result5.

The rounding modes are illustrated in Table 6.2, assuming a low-precision
value in which the representable value is an integer. The standard also specifies
an ability to round a double precision result to single precision, while retaining
the double precision representation. This may be useful in a compiler, or to
combine a lower precision value and a wider exponent range.

5This corresponds to to the Algol 60 entier function mentioned in Section 5.5.
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6.3.3 Semi-Numerical Codes

The IEEE 754 standard has explicit representations for –

1. “infinite” values, such as arise from arithmetic overflows,

2. somewhat numerical Not-a-Numbers (NaNs) that may arise from invalid
arithmetic but then propagate as operands through arithmetic opera-
tions,

3. a special class of very small denormalized numbers.

Table 6.3 shows all of the codings for the 32-bit single-precision representa-
tion, including the numeric values. This table shows the exponent e (as held in
the representation), sign s and fraction or significand f (again as represented).

The conventions are similar in double precision, except that the maximum
exponent of 2047 replaces the 255 and the bias becomes 1023 rather than 127.

The various codings have the meanings –

Infinities Infinities may be result from overflow or division by zero (and are
signalled if the trap is enabled). Infinities behave much as normal signed
values, but propagate to produce infinite results, except that a division
of a number by infinity produces 0.0 as a result. (The division ∞/∞ is
undefined and gives a NaN.)

NaNs NaNs may be signaling, to detect uninitialised operands or to extend
operand types, or may be quiet to indicate some previous error. Gen-
erally a NaN will propagate through an arithmetic sequence; any arith-
metic operation with a NaN yields a NaN, and any comparison with
a NaN yields FALSE (a NaN comparison is always unordered). (Lan-
guages may include explicit tests for NaNs, such as the Java method
Double.isNaN().

Denormalized numbers These allow the representation of values closer to
zero than the usual minimum (say 2−127, albeit with reduced precision.
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Table 6.3: IEEE 754 Single Precision Codings

e f Meaning Comment
e = 255 f 6= 0 NaN Not a Number (coded by f)
e = 255 f = 0 v = (−1)s∞ signed infinity

0 < e < 255 v = (−1)e−127(1.f) normal number
e = 0 f 6= 0 v = (−1)e−126(0.f) denormalized number
e = 0 f = 0 v = (−1)s0 zero (signed)

6.3.4 Floating-Point Number Examples

1.25 • Written as a binary value with one bit to the left of the binary point,
1.25 is 1.0100000000 . . . . Omitting the first bit gives .010 000 000 0
. . . as the significand.

• Now 1.25 is already normalised, without any shifting or alignment
necessary and the number has an exponent of zero. Adding the bias
of 127 gives a field value of 127, or 01111111, in the representation
of the number.

• With a positive sign of 0, the representation becomes
0 01111111 0100000000000000000000.
Converting to hexadecimal gives 3FA00000.

14.0 • Written as a binary value, 14.0 is 1110.0000000000 . . . .

• To normalise, the binary point must be shifted three places to the
left, giving a true exponent of +3 and a fraction of 1.1100000000 . . . ,
which with the leading bit omitted is represented as .1100000000
. . . .

• Adding the bias of 127 to the exponent (+3) gives a represented
value of 130, or a bit pattern of 10000010.

• With a sign of 0, the whole bit pattern becomes
0 10000010 1100000000000000000000.
Converting to hexadecimal gives 41600000.

0.1 • In binary, 0.1 is 0.000110011001100110011001100 . . . .

• To normalise, the binary point must be shifted four places to the
right, for a true exponent of -4 and a fraction
1.10011001100110011001100 . . . , or 0.10011001100110011001100 . . .
with the leading bit omitted.

• Adding the bias of 127 to the exponent (-4) gives a represented
value of 123, or a bit pattern of 01111011.
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• With a sign of 0, the whole bit pattern becomes
0 01111011 100110011001100110011001.

• Converting to hexadecimal gives 3DCCCCCC. As the bits immedi-
ately following this pattern are 1100 . . . , the last digit is rounded up
to the next digit, or D, giving a final representation 3DCCCCCD.

6.4 Other Representations

6.4.1 IBM S/360 Format

This is an example of a design that is widespread and therefore important, but
has some unfortunate design errors. It was developed when most computers
had at least a 36 bit word length, but that had to be trimmed back to 32
bits for the IBM System/360, released in 1964. Some of the underlying design
rationale is given by Sweeney [97] and Amdahl et al [2].

IBM S/360 floating-point numbers have, in single precision, a 24-bit frac-
tion plus sign (sign & magnitude form) and a 7-bit exponent in excess-64
format. The fraction base is 16, so that a normalised fraction can start with
any of the bit patterns 1xxx . . . , 01xx . . . , 001x . . . or 0001. . . . The maximum
exponent is 63, but this is associated with a base of 16, giving a maximum
represented value of 1663, or 7.2 × 1075, or twice the range of most 32-bit
floating-point representations. The smallest represented value has a (binary)
minimum fraction 0.0001 . . . ≈ 1/16 and an exponent of −64; its value is
1/16× 16−64 = 16−65 = 5.4× 10−79.

Thus the base 16 gives twice the exponent range of most 32-bit representa-
tions. Against the wider range is a reduction in precision, which varies between
21 and 24 bits, or 6.3 (decimal) digits and 7.2 digits. A standard example of
the problem relates to the value of π and is discussed in Section 6.6 and shown
in Table 6.6. The accuracy of a general calculation may depend critically on
the exact arrangement of values within the calculation (which a compiler may
helpfully rearrange).

The choice of base-16 exponent was justified largely on the grounds of in-
creased range compared with many other 32-bit representations and because
it minimised the number of normalising shifts in addition.

The S/360 included a 64-bit floating-point, and later a 128-bit representa-
tion while retaining the same exponent and range.
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6.4.2 Burroughs B6700 Format

The Burroughs B6700 and its successors the Burroughs/Unisys A-series, are
computers with many interesting and novel features. For example, each 48-bit
word has a tag of 3 bits (later 4 bits) that identifies the type of word. Many
tags make their words unavailable to users, and accessible only under system
conditions, but a tag=0 identifies its word as a numeric operand. Furthermore,
a single format includes both integers and floating-point; the computer truly
works with numbers.

Figure 6.1: Layout of B6700 Number

47 43 39 35 31 27 23 19 15 11 7 3
— EX EX

0 MS EX
0 ES EX Mantissa
0 EX EX

44 40 36 32 28 24 20 16 12 8 4 0

left right field function
bit bit width
47 47 1 unused (historical reasons)
46 46 1 mantissa sign
45 45 1 exponent sign
44 39 6 exponent (sign & magnitude)
38 0 39 mantissa (sign & magnitude)

The layout is shown in Figure 6.1, including the 3-bit tag, with bits in
columns and showing the extreme bit numbers of each 4-bit column or hex-
adecimal digit. The presentation is as in the B6700 manuals. The bit fields
are labelled MS=Mantissa sign, ES=Exponent sign, EX=Exponent.

Both exponent and mantissa are held in sign and magnitude, but the man-
tissa is held as an integer, rather than the more conventional fraction. Any
number with a zero exponent is an integer; an Integerize instruction will at-
tempt to force a number into this form. Thus there is only one form of numeric
operand; the meaning of a tag-0 word is unequivocal, unless it is interpreted
bit-fields or characters.

The exponent has a base of 8 with the mantissa alignment in steps of
3 bits. The mantissa is 39 bits, giving a maximum integer (either sign) of
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549 755 813 887 and a working precision of about 11 decimal digits.

A double-precision value uses two words, both with tag=2. The exponent of
the second word (extended to use all 9 bits not used by the mantissa extension)
acts as a high-order extension of the base exponent, while the mantissa is a
fractional extension of the base mantissa. Extending a single precision value
just involves appending an all-zero word and adjusting the tags from 0 to 2.
Converting a double precision to single requires just dropping the extension
word provided that the exponent is positive and the extension exponent bits
are zero. Conversion with a non-zero exponent extension gives either 0.0 (-ve
exponent) or overflow (+ve exponent).

The limiting values for the B6700 number representation are –

Largest single-precision value 863 × (239 − 1) = 4.313 591 466 7× 1068

Least SP value (full precision) 8−63 × 237 = 1.751 623 080 4× 10−46

Least SP value (unnormalized) 8−63 = 1.274 473 528 9× 10−57

Largest double-precision value 1.948 829 382 0502 807 912 446 9× 1029 603

Smallest normalized DP value 1.938 545 857 137 585 833 556 4× 10−29 581

In contrast with the S/360, the B6700 format is saved by its greater word
length. The basic precision is sufficiently high that the loss and granularity
from the octal exponent is mimimal. While the single precision range is less
that of the S/360, the precision is such that it is seldom necessary to escape
into double precision. (Double precision may be needed to handle some in-
termediate values as shown in Section 6.5.3.) The double precision format
gives about 22 decimal digits of precision and a range ≈ 10±29 600 that is surely
adequate for any problem! Its unique feature though is its representation that
combines integer and floating-point into the one format.

6.4.3 A Final Curiosity

As a closing example of a representation, we give a number system that repre-
sents decimal numbers in binary [28]. The problem is that it is often necessary
to perform calculations that are decimally exact, especially in financial calcu-
lations. While floating-point can be used, it requires care and appropriate use
of guard digits6.

6The imprecision of floating-point was a major problem when this example was first
published, but has since been largely resolved by the adoption of the IEEE 754 standard.
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This representation holds a decimal value d as a binary integer i with a
scaling factor s, such that d = i× 10s with some typical values shown in Table
6.4.

Table 6.4: Examples of Decimal Binary Representation

value (d) mantissa (m) exponent (s)
27 27 0

3.82 382 -2
0.382 382 -3

6 6 0
6.000 6000 -3

3.141 59 314 159 -5
0.001 28 128 -5

The representation has several distinctive features –

1. The mantissa (significand) is an integer rather than the more usual frac-
tion.

2. The exponent, probably also held as a binary integer, has an associated
base of 10.

3. The mantissa is not normalised; all of its digits are significant and must
be preserved. Trailing zeros in its decimal value are significant digits.

4. The mantissa contains only as many digits as are significant. (See the
cases for 6 and 6.000 in the table.) Properly managed, this can reduce
problems of unwarranted precision. For example, should 1 000 000/6 be
treated as 166 667 (6 digits precision) or 1.67 (2 digits).

Alignment or normalisation of the mantissa requires multiplication or di-
vision by appropriate powers of 10. Multiplication by 10 is straightforward,
but division may require some efficient constant-divisor technique (discussed
in the original paper). The arithmetic techniques are derived from those of
floating-point arithmetic –

Addition and subtraction resemble normal floating-point; the value with
the larger exponent is first scaled left to align digits of like precision.
However an addition overflow may have to be treated as a genuine nu-
meric overflow; renormalisation would entail loss of significant low-order
digits that may not be permitted.
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Multiplication involves the multiplication of the mantissæ and addition of
the exponents, just as in normal floating-point. However the fractional
digits accumulate and it may be necessary to scale the product back to
an appropriate precision. It could be desirable to have an instruction or
hardware system status that specifies the precision from a multiplication.

Division definitely requires specification of the result precision, because divi-
sion itself is poorly defined and may be inexact. The quotient exponent
may be required to be zero (integer), either of the operand exponents, or
even some other value. All cases can be accommodated by appropriate
scaling of the inputs, but the choice comes from the application rather
than any general principle.

6.5 Requirements of Floating-Point Numbers

The requirements of floating-point numbers are usually discussed under the
categories of range and precision; many aspects have been already mentioned
in passing. A related topic of scaling invariance is discussed in Section 11.9.

6.5.1 Range

Scientific measurement, especially in physical sciences, involves quantities cov-
ering an enormous range of values. Examples here are given in line with normal
usage; much smaller quantities are found in particle physics and much larger
ones in cosmology.

length Two extreme named values are the Ångström (10−10m used for atomic
distances) and the megaparsec (3.085 6× 1022m used in astronomy).

mass Extremes here are the electron mass (9.109× 10−19kg), the mass of the
Earth (5.976× 1024 kg) and the mass of the Sun (1.99× 1030kg).

time A reasonable lower bound to everyday times might be the period of
visible light, about 10−15s. A corresponding reasonable upper limit might
be the period of the Earth in its orbit (1 year = 3.153 6× 107s), or even
the age of the Earth (about 1.4× 1017s).

Even these values are misleading, because far more extreme values can occur
in the course of calculations. Some examples that illustrate some problems of
floating-point number range are given in Section 6.5.3.
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6.5.2 Precision

Looking at the formula for gravitational attraction in Section 6.5.3 indicates
that 4 digits of precision might be adequate (no value is stated more accurately
than that), while the second example in that section indicates a necessary pre-
cision of about 6 digits. This argument is quite misleading because experience,
and analysis of arithmetic techniques, show that floating-point calculations can
suffer from serious round-off error or loss of precision. It is not at all difficult
to lose 4 or 5 digits of precision, or to get results that mean absolutely nothing!
Thus numbers should usually represent values to several decimal places more
than might be indicated by simple inspection of the input values.

To illustrate the effects of limited precision, assume that we are calculating
the third side of a right angle triangle whose hypotenuse has been measured
as 33.7cm and another side as 33.0cm; we must calculate the third side, using
arithmetic to 1 fractional digit and rounding any less-significant digits. (The
two values are actually in the ratio 101:99, which are two members of the
Pythagorean triple {20, 99, 101} giving a true result of 6.67cm.)

The third side is then√
(33.72 − 33.02) =

√
(1135.7− 1089) =

√
46.7 = 6.8

.

If the calculation is done with 4 digits precision in total√
(33.72 − 33.02) =

√
(1136− 1089) =

√
47 = 6.855

.

These examples show the effects of limited precision, especially when taking
the difference of two large similar values, as here. Thus we must ensure that
there is adequate precision for the problem, and for the method of calculation.

6.5.3 Examples of Floating-Point Range Problems

The examples of this section all come from physics, reflecting both the author’s
background and the fact that physics is a ready source of calculations to strain
many floating-point systems. Table 6.5 shows the constants as used in the
examples.

The physics here just supplies convenient formulæ and values; the main
purpose of this section is to show that underflows and overflows easily arise
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in the course of quite reasonable calculations, even where all visible values are
well within range.

Table 6.5: Some Physical Constants (numerical values, MKS units)

e = 1.602 189 2× 10−19 charge of an electron
G = 6.670× 10−11 the gravitational constant
h = 6.626 176× 10−34 Plank’s constant

me = 9.109 534× 10−31 mass of electron
Me = 5.976× 1024 the mass of the Earth
Ms = 1.99× 1030 the mass of the Sun
R = 1.496× 1011 the radius of the Earth’s orbit
ε0 = 8.854 19× 10−12 permittivity of space

Gravitational attraction The gravitational attraction between the Sun and
the Earth is

F = G
MeMs

R2

Although the final result is 3.54×1022, a value of about 1.2×1055 probably
occurs during evaluation, unless the order of calculation is deliberately
altered by using strategically placed parentheses to force a specific order
of evaluation. But even the best-laid plans can fail . . .

Although most programming languages allow parentheses to override
normal precedence rules so that the user can control the order of calcula-
tion, it is not unknown for “optimising” compilers to ignore parentheses
in favour of “mathematically equivalent” results, completely defeating
the programmer’s deliberate intentions and knowledge. A “good” opti-
miser can even override explicit assignments to intermediate variables,
completely deleting the variables!

Bohr model of hydrogen atom In the Bohr model of the hydrogen atom,
the energy En of the nth stationary state is given by

En =
mee

4

8ε20h
2
.

1

n2

The numerator (top line) of the fraction is 6 × 10−106, and the denomi-
nator (bottom line) is 2.75× 10−88; the final value is about 2.18× 10−18.
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Both numerator and denominator are outside the range of many repre-
sentations, even though the final value is representable.

Ratio of electrostatic and gravitational forces The electrical and gravi-
tational forces between two electrons both follow a similar inverse square
law, giving a constant ratio, independent of distance. A standard ex-
ample in physics is to calculate their ratio to demonstrate the relative
weakness of gravity. The two forces are –

Fe =
1

4πε0

e2

r2

and

Fg =
Gm2

e

r2

with the ratio

Fe/Fg = e2/m2
e × 1/(4πε0G)

= 3.10× 1022/7.423× 10−21

= 4.167× 1042

In this case a standard 32-bit IEEE 754 floating-point number cannot
even represent the result.

6.6 Rounding

It frequently happens, perhaps even usually happens, that a value has more
bits than are available in the chosen number representation. The represented
value is then an approximation to the correct value because some of the less-
significant bits must be discarded. The question then arises as to just how the
retained bits should be adjusted to reflect the effect of those discarded. This
is one of the most difficult aspects of floating-point design and is treated at
length by Goldberg [44].

Before discussing rounding as such, it is necessary to introduce the concept
of errors. In general an external value V is approximated by a representation
R; we hope that V ≈ R. If the floating-point number d.d · · · d× βe is used to
represent the value z to p digits with a floating-point base of β, the value is
in error by | d.d · · · d− (z/βe) | β(p−1) units in the last place, or “ulps”. While
this error should never exceed 1/2 ulp, the distribution of the error can be very
important.
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Another important measure is the relative error, defined as (V − R)/V ; it
should not exceed βp−1. The relative error corresponding to 1/2 ulp can vary
by a factor of β between numbers with a small significand and ones with a
large significand.

Table 6.6: IBM S/360 Representation of π (Single Precision)

true value true value truncated decimal rel.err.
decimal hexadecimal 6-digit hex. (from hex.) ×108

π 3.141592653 . . . 3.243F6A88 . . . 3.243F6 3.141592026 20
π/2 1.570796326 . . . 1.921FB544 . . . 1.921FB 3.141592026 20
π/4 0.785398163 . . . 0.C90FDAA2 . . . 0.C90FDA 3.141592503 5
π/8 0.392699081 . . . 0.6487ED51 . . . 0.6487ED 3.141592502 5

This effect is shown in Table 6.6, representing π in the IBM S/360 number
format. With the fraction held as 6 hexadecimal digits, small values (such as
0001 1001 . . . from π/2) have 3 leading and 21 significant bits, while other
values (such as 1100 1001 . . . ) with π/4) have the full 24 bits of precision.
The effect of the large base is to introduce a wobble in the precision of the
representation; a hexadecimal base as in the S/360 can easily lead to the loss
of a full decimal digit.

There are several versions of rounding, which will be illustrated by values
such as 3.73 rounded to one fractional digit.

Truncation. In this form, which is strictly not rounding at all, the fractional
digits are just forgotten, so that +3.73 and +3.78 both convert to +3.7.
However the operation is not well defined with negative numbers. With
sign-magnitude −3.73 → −3.7, but with a complement representation
−3.73 → −3.8. (Remember that in 1s or 2s complement a low-order
bit adds on to the value of the other bits.) It does not seem right that
positive and negative numbers should behave differently. In particular
(−A) + (−B) 6= −(A+B) and commutativity fails.

Round to nearest. Here we examine the most significant of the discarded
digits. In decimal arithmetic, if the discarded digit is 0 . . . 4, the retained
digits are left unchanged. If the discarded digits are 5 . . . 9, then one is
added to the retained digits, in the least-significant position. Equiva-
lently, we add 0.5 to the result, allowing carry propagation as needed. In
binary, one is added if the most significant discarded bit is a 1.
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Round toward even. This resolves the problem of, for example, rounding
1.5 to an integer. It is identical to round toward zero except that if
the discarded portion is precisely 0.5 of the least-significant digit, the
least-significant digit is set to zero.

Round toward +∞. In integer terms, if the value is an exact integer it is left
unchanged. Non-integral values are rounded towards +∞; +1.3 → +2
and −1.3→ −1.

Round toward −∞. This version is similar to round toward +∞ but with
rounding in the opposite direction; +1.3→ +1 and −1.3→ −2.

Round toward zero. This option is equivalent to truncation, for sign-and-
magnitude representations. +1.3→ +1 and −1.3→ −1.

Books on statistics give two allegedly equivalent formulæ for calculating
the sample variance s2 of a population. (In all cases the sum is over the whole
population.)

s2 =

∑
(xi − x)2

n− 1
=
n
∑
xi

2 − (
∑
xi)

2

n(n− 1)
, where x =

∑
x

n
(the mean)

Although these two forms are mathematically equivalent (indeed it is an
elementary exercise to prove the equivalence), they are decidedly not equivalent
in the approximate arithmetic of many floating-point systems. The right-hand
form is superficially desirable because it involves only one pass through the
data but it involves the difference of two large quantities and is therefore
suspect. The left hand form is slightly more complex with two passes over the
data, first to get the mean and then the variance, but avoids the difference of
large quantities.

A test involved a sample of 1000 numbers, uniformly distributed in the range
999–1001 (1000±1), evaluating the variance by both square of differences (the
left-hand form) and by difference of squares (the right-hand form), with the
results shown in Table 6.7. The mean and range are chosen to be representative
of reasonably accurate physical measurements, but with squared values barely
representable with the 32-bit floating-point format (24 bits of significance).

The square of differences column shows a consistent value. Both formulæ
in double precision agreed with this column in single precision, to 4 fractional
digits. The right-hand column (difference of squares) is completely unreliable,
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Table 6.7: Calculation of Variance of 1000 Values, with 32-bit Precision

mean square diff of
of diffs squares

1000.02 0.33 0.20
999.98 0.33 -0.43

1000.00 0.34 -0.42
1000.01 0.32 0.54
1000.00 0.35 0.35
999.99 0.34 -0.33
999.99 0.33 1.53
999.99 0.33 -0.20

1000.03 0.33 1.47
1000.03 0.32 0.95

although its average of 0.37 is more or less consistent with the other values.
Not only is this column unreliable from the spread of values, but some values
are obviously wrong because the variance, being the square of a real value must
be positive and some values are negative.

6.7 History of Floating-Point Computation

Although numerical values, both large and small, had of necessity been used in
science for at least the previous 100 years, it was only in the early 19th century
that the present systematic scientific number representation was introduced
by Gauss (at a time when some die-hard mathematicians were still denying
the existence, let alone the utility, of negative numbers!)7. The use of that
representation in calculating devices was proposed by Torres y Quevedo in
1914 [102] and a computer using binary floating-point was built by Konrad
Zuse (the Z-1 computer, 1936) [113]. Two relay calculators in 1944-45 also
used floating-point arithmetic, the Bell Laboratories Mark V [63] and Howard
Aiken’s Mark II [1].

By the time of the Burks, Goldstine and Neumann report in 1946 [17]
floating-point numbers were clearly accepted and were stated as being pro-
posed for several computers. However they argued strongly against floating-

7A known large value at this time was the velocity of light (estimated by Rømer in 1675).
From it came estimates of planetary distances, also large values. A small value came soon
afterwards from the wavelength of light, determined by Young in 1817.
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point, preferring the extra precision that resulted from integer representations.
With the enormous amount of effort needed to prepare programs using neither
assemblers nor compilers, the time spent analysing problems and arranging in-
teger scaling was probably justified. (And memory was itself a rare and expen-
sive resource; floating-point arithmetic usually needed software libraries using
memory that might be better used on more data or a better algorithm.) With
the introduction of high-level languages and compilers extensive pre-coding
analysis of problems was no longer appropriate and floating-point arithmetic
became accepted as a natural, and even essential, part of scientific computing.
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Chapter 7

Logarithmic Representations

Abstract: Some types of calculation emphasise multiplication and
division over addition and subtraction. Representing numbers as their
logarithms accelerates multiplication and division, but slightly compli-
cates addition and subtraction. This chapter gives a brief overview of
logarithmic representations and their arithmetic.

Keywords: Logarithmic representations, logarithmic arithmetic, im-
plementation of logarithmic arithmetic.

7.1 Introduction

Logarithmic numbers provide an interesting alternative number representa-
tion that is related to floating-point numbers and helps explain some aspects
of floating-point representation. They were introduced to assist computation
such as signal processing where only limited precision is needed and expensive
operations such as multiplication often dominated the computation. With
early processors using serial multiplication, or even programmed multiplica-
tion, the expense of multiplication was a very real problem. Although modern
processors with fast combinational multipliers largely remove this need, loga-
rithmic representations are still interesting.

An early paper by Mitchell [75] described multiplication and division with
logarithms, and a logarithmic number system was described by Swartzlander
and Alexopoulos [96]. Taylor [99] and then Yu and Lewis [111] describe actual
hardware implementations. An overview of logarithmic number systems is
included in a book by Koren [67].
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The fast calculation of 2x and log2 x, an essential adjunct to logarithmic rep-
resentations, is described for example by Majithia and Levan [73] and Kings-
bury and Rayner [65].

7.2 The Logarithmic Representation

Conventional scientific representation represents a real value R as a combina-
tion of fraction f and exponent x (both f and x may be signed), using a base
b, usually 10, as

R = bxf

Floating-point representations represent R by the number pair {x′,f ′}, where
the exponent x′ is the integral part of logbR and the fraction or significand is
f ′ = logb f , or f ′ = R/bx. Floating-point is thus a mixed representation, with
one part a logarithmic function of the original value and the other linearly
related to the value.

A logarithmic representation simply takes the logarithm of R as fixed-point
number, with a fixed division between integral and fractional parts. Working
in decimal, with 3 integral places and 7 fractional places gives the following
equivalences for some physical and other constants –

Value representation
299 792 458 8.476 820 7

6.626 176× 10−34 −33.178 873 7
6.022 045× 1023 23.779 774 0

16 384 4.214 419 9
0.0025 −2.602 060 0

There are two signs on each number, just as with floating-point. That
shown in the examples above corresponds to the exponent sign and is positive
for large values (|R| ≥ 1) and negative for small values (0 < |R| < 1.0). This
sign is often handled as a biased or offset representation for the whole number,
just as for the exponent of a floating-point number. Not shown in the examples
here is the normal value sign, corresponding to the significand sign.

Binary logarithmic numbers usually assume a fraction (significand) of 1 so
that it may be discarded (much like the “hidden 1” of DEC computers). The
value is then represented solely by the exponent, which is now a true “fixed-
point” number with defined integral and fractional parts.
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7.3 Logarithmic Arithmetic

The usual rationale for using a logarithmic representation is to facilitate mul-
tiplication and division, which are done just by adding or subtracting the
representations. The “value sign” is of course handled independently, accord-
ing to the usual rules for operations on signed quantities. (If the logarithmic
representations follow frequent practice for floating-point and use a biased rep-
resentation, the bias must be subtracted after “multiplication” and added after
“division”, exactly as for exponent arithmetic in multiplication and division.)

Addition and subtraction are more difficult and are, in general, only ap-
proximate. The fundamental formulæ for the sum S and difference D are now

S = A+B = A

(
1 +

B

A

)
and D = A−B = A

(
1− B

A

)
or, taking logarithms, using Kx to denote the finite-precision logarithm of x
(or approximation to log2 x) and writing X = B/A,

KS = KA + log (1 +X) and KD = KA + log (1−X)

Then, if KA ≥ KB

KS = KA + β(KB −KA)

KD = KA + γ(KB −KA)

where β(x) = log2(1 + 2x) and γ(x) = log2(1− 2x).
If KA < KB

KS = KA + β(KA −KB)

KD = KA + γ(KA −KB)

The evaluation of the awkward β(x) and γ(x) functions to adjust the larger
operand is usually done with a Read Only Memory. Operands of n bit precision
need 2n words of ROM for each function, or 2n2n bits of ROM.

Figure 7.1 shows the basic adder for logarithmic numbers. Little extra
logic is needed to handle the (now simpler) operations of multiplication and
division, as shown in Figure 7.2. (The “bias” input in this last figure is used
to compensate for the bias or offset when multiplying or dividing.)

The original paper quoted n = 8 for a precision of 8 bits; with modern
technology a precision of 16–20 bits is quite feasible. But the size of the ROM
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Figure 7.1: Logarithmic Arithmetic Adder/Subtractor
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can be reduced considerably at the expense of some extra complication, as
described by Taylor et al [99]. They partition the main ROM into a cascade
of a single initial ROM and several later ones in parallel, the whole providing
a piece-wise approximation to the function. The later ROMs are designed to
each cover a range of input values, such that some more-significant result bits
are constant over the argument range covered by each later ROM. The initial
ROM decodes the more-significant input bits to select the appropriate later
ROM and provide the more-significant result bits in each case.

Yu and Lewis [111] go further in developing a 30-bit logarithmic arithmetic
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unit. The principles are similar to those of Taylor et al, but they use a much
more complex ROM structure and value encoding, to achieve a speed com-
parable to that of conventional floating-point arithmetic units with similar
technology.

7.4 Calculating Binary Logarithms

This section describes a simple method of calculating the binary logarithm
of normalised binary numbers, based on the division method of Svoboda [94]
described in section 5.4.51.

Table 7.1: Table for Calculating Logarithms

Decimal Binary
n z = 2−n ln(1 + z) 1 + z ln(1 + z)
1 0.5 0.584 963 100 000 000 000 100 101 011 100
2 0.25 0.321 928 010 000 000 000 010 100 100 110
3 0.125 0.169 925 001 000 000 000 001 010 111 000
4 0.0625 0.087 463 000 100 000 000 000 101 100 110
5 0.031 25 0.044 394 000 010 000 000 000 010 110 101
6 0.015 625 0.022 368 000 001 000 000 000 001 011 011
7 0.007 812 5 0.011 227 000 000 100 000 000 000 101 101
8 0.003 906 25 0.005 625 000 000 010 000 000 000 010 111
9 0.001 953 125 0.002 815 000 000 001 000 000 000 001 011

10 0.000 976 562 5 0.001 408 000 000 000 100 000 000 000 101
11 0.000 488 281 25 0.000 704 000 000 000 010 000 000 000 010
12 0.000 244 140 62 0.000 352 000 000 000 001 000 000 000 L001

The operation is based on values of 2−n and log2(1+2−n), as shown in Table
7.1.

1. At each stage we have a number such as x = 1001 . . ., x = 100001 . . .,
etc, with n 0s between the leading 1 and the next 1 bit.

2. Form a new x = x − x × 2−(n+1), shifting x right n places so that its
leading 1 coincides with the second 1 of the original x, and using this
shifted value to eliminate that second 1.

1The origin of this algorithm is unknown, but a decimal version was used with the
PDQ Fortran compiler for the IBM 1620 computer in the early 1960s—an early example of
“shareware”.
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3. In parallel with the reduction of x, accumulate the stored values of log(1+
2−(n+1)).

4. The above operations continue until all of the internal 1s have been
eliminated.

The above algorithm generates binary (base 2) logarithms; for other bases it
is necessary only to have the table of logarithms to the appropriate base. But
a refinement is possible for natural logarithms, using the approximation

ln(1 + x) = x− x2 + x3 − x5 + . . . or ln(1 + x)→ x for small x

Eventually, for a number of N bits, n > N/2, and there are at least as many
“leading” 0s as there are bits following the second 1. We can then use the
identity and add the low-order half of x into the logarithm to complete the
calculation, approximately halving the amount of computation.
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Chapter 8

Characters and Text

Abstract: Characters are the most-visible aspect of computing.
This chapter outlines the development of the EBCDIC codes (from card
code), and ASCII (initially from paper tape), and the extension of these
codes to include a full range of alphabets, to give UNICODE. Other
topics include the collection of characters into text strings, and espe-
cially the problems of transmitting binary data over systems designed
for handling text. Thus it describes UTF-8 and UTF-7 coding, as well
as “punycode”, for encoding Internet domain names with arbitrary al-
phabets.

Keywords: EBCDIC, ASCII, text strings, EBCDIC-ASCII incom-
patibilities, ASCII extension to UNICODE, UCS-2, UCS-4. MIME en-
coding, UTF-7. UTF-8, Punycode.

8.1 Historical Background

Computers must not only compute, they must also communicate those com-
putations with people. They must accept information from people and deliver
information to people. That requires some way of representing within com-
puters the symbols of visual communication, or writing. As far as the human
user is concerned, essential operations include –

• accepting numerical input and converting it to the internal form of the
computer.
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• accepting text as either information (names, addresses, etc) or as com-
mands to control processing.

• manipulating text, including sorting collating and merging. This may
include working with names for example as entities in their own right,
or it may involve actually constructing sentences or other text.

• producing output in some appropriate form, hopefully in some aestheti-
cally pleasing layout with supporting text and commentary to aid human
understanding.

The English language requires a minimum of about 45 symbols—the digits
0 . . . 9, the letters A . . . Z ( initially upper case only) and assorted punctuation
such as . , ( ) / * + and -, where denotes the inter-word space. An
alphabet of 45 symbols (the term “alphabet” is extended to include all dis-
played symbols) can be represented as 6 bits, which can in turn be regarded
as small integers. That allows “characters” to be moved as integers within the
computer, compared as integers, and even converted from one character to an-
other using integer arithmetic. Later computers expanded the representation
to 7 or 8 bit integers and then 16 bit integers as the alphabet grew to include
an increasing number of symbols.

While there is no unique encoding for alphabetic (visible) symbols, they
may be divided into three groups of desirable characteristics.

1. The digits 0 . . . 9 have an inherent or natural order, following directly
from their meaning. It is sensible to assign the digits 0 . . . 9 to a set of
10 consecutive integers.

2. The letters (A, B, . . . , Y, Z) (or α, β, . . . , ψ, ω, etc) have a conventional
(but still arbitrary) order. While successive letters should be assigned to
increasing integers, these integers need not be consecutive or even form
a dense block. The EBCDIC code (Section 11.6.1) is a good example of
a non-dense code.

3. The punctuation symbols have no inherent order and may be assigned
in any suitable manner. It is usual to make the non-visible space code
(a normal space) the numerically smallest of all character codes, letters,
digits and punctuation.

The ordering of these classes is arbitrary—for example ASCII places digits
lower than letters, while EBCDIC places them highest (and mingles some
punctuation within letters).
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In this chapter we make a strong distinction between the internal code of
a character and its visible form, or “glyph”. Thus the visible representation
may be Roman, emphasised (or italic), bold, slanted, sans serif, Capitals, or
typewriter. Even though the letters ‘a’, ‘e’ or ‘i’ appear with different shapes,
the glyphs in the previous sentence are different visible representations of the
same internal codes in each case. Thus, in ASCII, ‘a’ is always represented
by 6116 and ‘e’ by 6516; the desired font and style are part of the display
mechanism rather than the internal encoding.

8.2 Development of Character Codes

Character encodings have come from two main sources, from punched cards
and “unit record” equipment, and from paper-tape teleprinter and similar com-
munication equipment. Only the paper-tape/teleprinter path is important for
now (although this will surely surprise many people). As a detailed comparison
of the two sources is largely irrelevant to the main discussion, this is deferred
until Section 11.6. An important aspect here, though, is codes for languages
other than English; these are introduced as appropriate.

Table 8.1: Table of ASCII-67 Character Codes (• may be 0 or 1)

binary hex •000 •001 •010 •011 •100 •101 •110 •111
0000 0 NUL DLE SP 0 @ P ‘ p
0001 1 SOH DC1 ! 1 A Q a q
0010 2 STX DC2 " 2 B R b r
0011 3 ETX DC3 # 3 C S c s
0100 4 EOT DC4 $ 4 D T d t
0101 5 ENQ NAK % 5 E U e u
0110 6 ACK SYN & 6 F V f v
0111 7 BEL ETB ’ 7 G W g w
1000 8 BS CAN ( 8 H X h x
1001 9 HT EM ) 9 I Y i y
1010 A LF SUB * : J Z j z
1011 B VT ESC + ; K [ k {
1100 C FF FS , < L \ l —
1101 D CR GS - = M ] m }
1110 E SO RS . > N ^ n ~

1111 F SI US / ? O o DEL
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8.3 ASCII Character Encodings

Most computing now uses either the ASCII code shown in Figure 8.1 or var-
ious codes which are derived from ASCII (strictly ANSCII-67)1. The ASCII
character encoding represents each character by a 7-bit value, giving a total of
128 possible characters, of which about 96 are used for written or visible sym-
bols and 32 for transmission control and simple text layout. The characters
are normally written in a table of 8 columns and 16 rows, so that the character
encoding corresponds to the 3-bit column number followed by the 4-bit row
number. Thus ‘B’ is represented by x100 0010, and ‘k’ x110 1011). The initial
x is usually 0 but may be 1, even parity or odd parity.

The ASCII codes divide into four main groups, each 32 codes, taking 2
columns in Table 8.1.

000x xxxx Transmission control codes. The only ones of these which are
important for now are

CR Carriage Return This code and the next are widely misunder-
stood and misused. The CR code is meant to return the print
mechanism (or the display cursor) to the start of the current line,
without advancing a line.

LF Line Feed The LF code is meant to advance one line, without chang-
ing the horizontal position. A “new line” is then properly coded as
the pair “CR LF”. Unfortunately some widely used systems have dif-
ferent conventions. Unix uses a single LF code as a “line separator”,
while the Macintosh uses a CR for the same function, and Windows
retains the CR-LF pair. (So much for standards! In fact there is an-
other control code, RS, intended as a record separator and, strictly,
a line separator. CR and LF are really meant as printing control.)

HT Horizontal Tab This code signals a horizontal movement to the
next “tabular stop”, a term inherited from typewriters. Much com-
puter software assumes preset “tab stops” at every 4 or 8 positions
and uses some tabs as a form of “blank suppression”.

There are some less-important formatting codes – VT (Vertical Tab)
skips to a predefined vertical position (line) and FF (Form Feed)
starts a new page. Other codes provide a hierarchy of separators –

1The earlier ASCII-63 had no lower case letters, had fewer punctuation symbols and
different names for some control and transmission codes.
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FS (Field Separator), GS (Group Separator), RS (Record Separator,
equivalent to a new line) and US (Unit Separator).

ESC (Escape) introduces device-dependent control sequences.

The other codes are mostly used in data communications to control
messages and to signal between stations.

On most computer keyboards these codes are generated by simultane-
ously pressing the CONTROL Key and some letter, changing the
letter’s 100 prefix to the 000 prefix for the control code. Thus
“CTRL-C”→ ETX, “CTRL-J”→ LF, and “CTRL-M”→ CR.

001x xxxx Numeric and “specials” or punctuation.

010x xxxx Upper case letters (and some punctuation)

011x xxxx Lower case letters (and more punctuation)

Figure 8.1: Two “Extended ASCII-67” Character Codes

Old Macintosh (obsolete) Windows 7 extensions
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8.4 Extended ASCII Encodings

ASCII is itself limited to an essentially “English” character set, with none of
the accents or other characters of other European languages and certainly no
provision for Asian languages. As a first step towards satisfying this need,
the “upper half” of the 8-bit code space can be used, extending ASCII to
224 printing characters (256 minus 32 communication control). Two such
extensions, an older one as used on the original Macintosh computers, and the
newer Windows 7 coding (essentially Unicode) are shown in Figure 8.1.

ASCII in principle allows extension beyond this with its SO and SI codes
(Shift-Out of standard set and Shift-In, back to standard set). A “non-ASCII”
character will be preceded by the SO code to force a movement into the alter-
native alphabet; at the end of the special characters an SI code forces a move
back to standard ASCII. (The action is very similar to what happens with the
Baudot code, described in Section 11.6.2.) A few simple alphabets can be
accommodated in this way, but again standards proliferate. The problem will
be addressed later in Section 8.7, when Unicode is introduced.

8.5 Text Strings

We can usually assume that successive characters of text will be placed in
adjacent bytes of memory and that later characters “extend” to higher memory
addresses. At this level the text string itself is held in an array of 8-bit bytes
or, for UCS-2, 16-bit byte-pairs.

Unfortunately this is where the confusion starts. Memory is addressed in
bytes—agreed; bytes are collected into say 4-byte units called “words”— again
agreed. But is a word addressed by its most significant byte (later bytes less
significant), or least-significant byte (later bytes more significant)? Either is
legitimate, provided that the interpretation is consistent within a computer,
but there remains considerable scope for disagreement. Cohen [19] discusses
these matters, illustrating many of the complexities that can arise and com-
paring them to the “big-endian”/“little-endian” wars in Gulliver’s Travels”
[98]. His use of “big-endian” and “little-endian” for the two addressing types
is now common currency. (A related topic is the direction of bit numbering
discussed in Section 4.9.1.)

In general there is little problem within a computer, but great confusion
can arise when sending bytes as binary data between computers, as the bytes
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of, say a 4-byte word, must be marked as being sent in order of increasing
or decreasing significance. One solution is found in the Unicode “Byte-order
Mark”, discussed in Section 8.7.1.

With 32-bit words (4 characters to a word), the ASCII-coded string “A text
sample.” would be stored as

characters big-endian little-endian
word 1 A te 41 20 74 65 65 74 20 41
word 2 xt s 78 74 20 73 73 20 74 78
word 3 ampl 61 6D 70 6C 6C 70 6D 61
word 4 e. 65 2E xx xx xx xx 2E 65

If we assume that successive bytes (more generally, codes) of a character
string (left to right) are placed in increasing memory addresses, there is still the
problem of knowing how many codes belong to the current string. (Remember
that bits are bits and bytes are bytes, with neither having any intrinsic meaning
apart from that given by the programming context.) There are four approaches
to defining the length of a string.

known length The length can be known to the program, either by being
defined by the data type, or coded into the program. This is the least
satisfactory solution, but is unavoidable in many languages without ex-
plicit string handling, and in standard Pascal.

delimiter code The string is terminated by a defined delimiter symbol. The
C language uses the ASCII NUL code (0x00), but other codes such as
ETX (0x03, End of Text) or RS (0x1E, Record Separator) are also rea-
sonable. (It is also possible to use some combination of CR and LF, but
the resulting confusion has been already mentioned.) A major problem
is that the delimiter can never appear as a deliberate character in the
text, which may be difficult to guarantee if the alleged “text” is received
from somewhere else and may contain non-printing characters2.

An older (and generally less-satisfactory) method was found in the old
IBM 1620, where a string of characters (or digits) could be terminated
at its high-address by a special “Record Mark” 0A16 (an invalid BCD
code, card code 0-8-2, printing as ‡). A “Transmit Record” instruction
copied the entire string, including the Record Mark, from its low-address.

2For this reason the Java language always encodes the UCS-2 symbol U+0000, corre-
sponding to an ASCII NUL, as the 2-byte UTF-8 sequence 0xC0 0x80. If UTF-8 is ever
processed as a C string, it cannot be terminated by an accidental embedded NUL.
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Alternatively a “Transmit Field” instruction could copy a digit string
(including Record Mark) from its high-address end back to its low address
until terminated by a “flag bit”.

count byte Many languages held strings in a byte array, with the first byte
containing the length of the valid part of the string. With this system
a string has a defined maximum length, corresponding to its allocated
space, and a current length defined by its first byte, byte[0]. Two
advantages are that any codes are legal within the string, and that if the
string is accessible as a byte array the first character is at byte[1] and
so on.

A disadvantage is that strings are limited to 255 characters, but this is
seldom a problem unless an entire screen load or disk record is treated
as a single string. Some systems, such IBM S/360 PL/I and Pascal, use
a 16-bit length to avoid this problem and Delphi uses a 32-bit length.

associated variable This is really a version of the “count byte” method,
but the length is much less tightly bound to the character storage. The
storage area and length may be components of a data structure or record
or may belong to the one object. In languages such as Java where the
String object and its internal array which holds the string characters are
separately allocated objects, the association in memory may be quite
loose and the length and data may be far removed from each other.
They are nevertheless connected by their membership of the same String
object.

8.6 MIME Encodings

Electronic mail as first specified for the Internet in RFC 822 [21] assumes that
all messages are “simple ASCII text”, whatever that means3. There is no
provision for transfer of data beyond 7 bits such as extended ASCII or binary;
even 7-bit ASCII is not guaranteed for all characters. Various ad hoc solutions
existed to allow such transfers, but they were not necessarily compatible with
each other or suited to other applications.

The MIME standard (Multipurpose Internet Mail Extensions) as described
in RFC 1521 [13] and RFC 1522 [77] extends the Internet electronic mail

3“RFCs” are the Internet standards. Originally just “Requests For Comments” on
proposals, they developed into a hierarchy ranging from preliminary proposals to established
standards defining the operation of the Internet.
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specification to allow the transfer of extended text, binary and other data.
It is a large and comprehensive standard which specifies complete message
formats and message headers. Here we describe only the character recodings,
but readers must be aware that these are only a small part of the standard
and should not be viewed in isolation. In particular, any attempt to generate
these encodings should recognise the wider context and implications as stated
in RFC 1521.

8.6.1 Problems Resolved by MIME

Some of these matters have been discussed earlier, but it is appropriate to
collect them together here as matters specifically addressed in the MIME spec-
ification.

8-bit data RFC 822 electronic mail is limited to handling 7-bit characters.
The “useful” set is even more restricted because many of the 128 possible
codes have special functions such as formatting control and transmission
control.

EBCDIC - ASCII incompatibility Although most email systems assume
ASCII or similar encoding, this assumption is not always true. Some
electronic mail systems used EBCDIC (section 11.6.1), either within
the computers or over the entire sub-network. Not all ASCII codes have
EBCDIC equivalents, and vice-versa.

End of Line encoding Although RFC 822 specifies that lines shall be ter-
minated by the pair CR LF (0x0D 0x0A) this requirement is not always
respected. Some systems may convert to their own internal conventions
and then back to the external standard form. This may raise problems
if “almost-text” binary data contains isolated CR LF codes; they may be
erroneously “converted”4.

TAB (HT) codes may be changed to variable numbers of spaces by “helpful”
software, or spaces may be converted to HTs. may be wrapped (converted
to 2 lines) or truncated.

Trailing white space characters (SPACE, HT) may be discarded as invisible
and therefore irrelevant, or lines may be helpfully padded to constant
length (for example to simulate an 80-column punched card!).

4This was once a known problem when sending Postscript files by e-mail between some
systems.
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ASCII variants The ASCII standard is not necessarily respected by all mail
implementations. The differences are small, but crucial if binary data
transfer is to be guaranteed. RFC 1521 states that the only characters
which are known to be preserved across all systems are –
• the letters A . . . Z and a . . . z
• the digits 0 . . . 9
• the eleven special characters ’ ( ) + , - . / : = and ?.
(Even a space is excluded because spaces may be stripped from the ends
of lines, or replaced by tabs.)

Data modification Some systems modify data such as a line containing a
single “.”, or a line starting with “From ”. Neither treatment conforms
to the standard, but it must be recognised that it occurs.

8.6.2 Quoted-Printable Content-Transfer-Encoding

This encoding is intended for data which is mostly printable ASCII characters,
leaving the text mostly readable to humans.

1. General 8-bit representation Any octet5 other than those signalling a
line break may be encoded as “=XY”, where XY is the hexadecimal
representation of the octet’s value. The hexadecimal digits for quoted-
printable encoding are “0123456789ABCDEF” (upper case, never lower
case). This is the required encoding, except where other rules permit.
(The standard suggests the lower-case hexadecimal digits might be ac-
cepted on reception, but only as a courtesy rather than as a requirement.)

When data is sent through EBCDIC gateways6, RFC 1521 suggests
“quoting” the characters ! " $ [ \ ] ^ ‘ { | } and ~ .

2. Literal Representation Octets whose decimal values are in the range
33 . . . 60 or 62 . . . 126 may be represented as the corresponding ASCII
characters (‘!’ . . . ‘<’, and ‘>’ . . . ‘~’). This allows most text to be repre-
sented in its natural form. (This set corresponds to the “visible” ASCII
characters, excluding “=” (code 61) which is used as the escape into
Quoted-Printable form.)

5 The convention in communications is to use the formally-defined term “octet” rather
than the informally-defined “byte”, to emphasise that it is indeed an 8-bit data unit.

6Gateways convert between various transmission protocols. Early networking required
the interconnection of DECNET, SNANet, CSnet and TCP/IP networks, etc. . . . Gateways
were then an essential, and fearsome, part of network communications, and often approached
with some trepidation as email addresses had to include the gateways in order of traversal.
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Table 8.2: The Base64 Coding Table

0 A 13 N 26 a 39 n 52 0
1 B 14 O 27 b 40 o 53 1
2 C 15 P 28 c 41 p 54 2
3 D 16 Q 29 d 42 q 55 3
4 E 17 R 30 e 43 r 56 4
5 F 18 S 31 f 44 s 57 5
6 G 19 T 32 g 45 t 58 6
7 H 20 U 33 h 46 u 59 7
8 I 21 V 34 i 47 v 60 8
9 J 22 W 35 j 48 w 61 9

10 K 23 X 36 k 49 x 62 +
11 L 24 Y 37 l 50 y 63 /
12 M 25 Z 38 m 51 z (pad) =

3. White Space Octets with decimal values 9 and 32 may be represented
as ASCII TAB and SPACE, except at the end of a line. (Trailing white
spaces must be encoded rather than left “in clear”.) Rule 5 allows an “=”
at the end of a line to signal a “soft” line break; this may follow directly
coded white space characters. When receiving a Quotable-Printed body,
any trailing white space on a line should be deleted as it can be assumed
to have been added in transit.

4. Line Breaks A line break in the text body must be represented by a
CR-LF in the Quoted-Printable encoding, irrespective of other internal
conventions used within the message

5. Soft Line Breaks A Quoted-Printable line may not exceed 76 characters,
not including the final CR-LF, but including all “=” codes. If longer lines
occur (and Printed-Quotable encoding expands the text), the line must
be broken with a “=” as the very last character on the broken line.

8.6.3 Base64 Content-Transfer-Encoding

The “Quoted-Printable” encoding is designed for documents with only a few
unusual characters, but can expand documents to 3 times their original length.
The Base64 encoding is designed for documents which are inherently binary
with little visible meaning to a casual reader. At the cost of a 33% expansion
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it allows binary data to be transferred reliably over communication systems
which are designed for purely textual transmission.

Encoding is performed by taking successive octet triples (24 bits) and then
dividing each triple into 4 groups of 6 bits. Each 6-bit group is then used to
fetch a character from the Base64 table, shown in Table 8.2, so converting 3
octets into 4 characters. The input is extended if necessary by adding 0s on
the right to complete an octet triple (8 or 16 bits added, 1 or 2 octets). The
number of “padding” units added is signaled by following the encoded text by
a like number of “=” characters.

These characters are chosen because they are believed to be preserved across
all character recodings and translations. A version of Base64 encoding is used
in the Unicode UTF-7 encoding as described in Section 8.7.4, which should be
consulted for encoding examples. The fundamental difference is that Base64
is meant for binary data of arbitrary length, whereas UTF-7 handles mixtures
of text and binary.

8.7 Unicode—16-bit Encodings

8-bit codes such as ASCII and EBCDIC are really designed only for English
text and hardly cater for even the simple accents of French and German.
Extension to other alphabets such as Arabic, Cyrillic and Hebrew is difficult
and expansion into the East Asian ideographics is even harder. Many extension
systems have been proposed and used (ASCII and EBCDIC indeed provide SI
and SO codes, Shift-In and Shift-Out just to handle alternative alphabets) but
most are ad hoc solutions with little overall coherence.

Unicode provides a coherent extension of ASCII to allow the handling of
many different alphabets, indeed most alphabets in current use. Instead of
using a basic 8-bit code and escaping into versions for different alphabets, a
single 16-bit unified code covers all written alphabets. ASCII codes, zero-
extended to 16 bits, are the first few values. Other 8-bit prefixes identify
Arabic, Hebrew, Thai, various Indian alphabets and the accented letters for
some central European languages. About half the total space (30 000 symbols)
is used is used for Chinese, Japanese and Korean ideographs, denoted as “CJK
symbols” in the table of Unicode alphabets, Figure 8.4.

The usual form of Unicode gives 16-bit codes, known as UCS-2. . Although
this is believed to encompass all active languages, the standard also provides
a 32-bit form, UCS-4. The higher “planes” of UCS-4 (UCS-2 is Plane 0)
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are generally allocated to less-usual symbols. For example, Plane 1 (from
U+1 0000) is the “Supplementary Multilingual Plane” (SMP), with entries
such as Cuneiform, hieroglyphs and archaic numbers. Full details are given in
the Unicode 6.2 Standard [106].

Unicode symbols are normally represented by the prefix ‘U+’ followed by
4 hexadecimal digits. Thus the letter ‘A’ is represented as U+0041, and ‘p’
as U+0070. The first 256 codes (apart from transmission codes) are shown
in Table 8.3; they have the codes U+0020 – U+00FF. Here “sp” represents
the normal space which may signal word breaks and line breaks; “nbsp” is
the “non-breaking” space, essentially a normal character, but invisible and not
allowing a new line.

Table 8.3: First Unicode Characters, with Latin-1 Supplement

2… 3… 4… 5… 6… 7… A… B… C… D… E… F…

…0 0 @ P ` p nbsp ° À Ð à ð

…1 ! 1 A Q a q ¡ ± Á Ñ á ñ

…2 " 2 B R b r ¢ ² Â Ò â ò

…3 # 3 C S c s £ ³ Ã Ó ã ó

…4 $ 4 D T d t ¤ ´ Ä Ô ä ô

…5 % 5 E U e u ¥ µ Å Õ å õ

…6 & 6 F V f v ¦ ¶ Æ Ö æ ö

…7 ' 7 G W g w § · Ç × ç ÷

…8 ( 8 H X h x ¨ ¸ È Ø è ø

…9 ) 9 I Y i y © ¹ É Ù é ù

…A * : J Z j z ª º Ê Ú ê ú

…B + ; K [ k { « » Ë Û ë û

…C , < L \ l | ¬ ¼ Ì Ü ì ü

…D - = M ] m } ½ Í Ý í ý

…E . > N ^ n ~ ® ¾ Î Þ î þ

…F / ? O _ o � ¯ ¿ Ï ß ï ÿ

 sp

-

The Unicode Standard [106] describes the full Unicode character set, to-
gether with extensive information on the treatment and behaviour of charac-
ters in different alphabets7. To people used only to the unaccented characters
of English, with perhaps some awareness of Western European accents, the
full requirements of other scripts are astounding. Even within English, the
standard discusses the use of characters and their relation to “similar” char-

7Most of the description here is based on the earlier Standard V2.0 [105].
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acters, revealing many subtleties of typography which users of most modern
word processors blithely ignore.

The following description refers to character “glyphs”, which are the visible
representation of each character, as distinct from its internal representation.
Thus we may have upper-case (A), italic (A), bold A, etc. together with lower-
case equivalents, and all repeated for each font. Note too that a glyph in one
size might not be a simple scaling of another size—some adjustment is often
needed for consistent or pleasing appearance. The design of typefaces is a
surprisingly complicated matter.

As an example we present the entries for the ASCII space, and the symbols
", ’, and /. Each symbol is actually one of a set of symbols of similar ap-
pearance but quite different meaning and usage. The text lists each of these
different symbols or usages, giving the 16-bit Unicode encoding where appro-
priate. Thus where we might in ignorance just use the “near enough” ASCII
quotation mark ("), Unicode has specific encodings for opening and closing
double quotes, double prime and double acute accent8.

Spaces white-space
• space U+0020
• no-break space U+00A0
• figure space U+2007
• narrow no-break space U+202F
• word joiner U+2060
• zero width no-break space U+FEFF

Quotation Mark " = APL quote
• neutral (vertical), used as opening or closing quotation mark
• preferred paired quotation mark characters are 201C “ and 201D ”
• 02BA Modifier letter double prime
• 030B combining double acute accent
• 030E combining double vertical line above
• 201C left double quotation mark
• 201D right double quotation mark
• 2033 double prime

Apostrophe ’ = Apostrophe Quote
• neutral (vertical) glyph having mixed usage

8The following list is taken directly from the Unicode Standard.
Some readers may prefer the less formal “single quote” and “double quote”, or “opening
and closing double quotes” over the more formal “paired quotation marks” or “left and right
double quotation marks” of the Standard (codes 201C and 201D).
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• preferred character for apostrophe is 02BC ’
• preferred character for opening single quotation mark is 2018 ‘
• preferred character for closing single quotation mark is 2019 ’
• 02B9 modifier letter prime
• 02BC modifier letter apostrophe
• 02C8 modifier letter vertical line
• 0301 combining acute accent
• 2018 left single quotation mark
• 2019 right single quotation mark
• 2032 prime

Solidus / = Slash, or virgule, or shilling (British)
• 01C0 latin letter dental click
• 2044 fraction slash
• 2215 division slash

Table 8.4 shows how the UCS-2 code space is allocated to the different
alphabets, in the older Version 2.0 Standard.

8.7.1 UCS-2 Byte Ordering

While UCS-2 is defined as a 16-bit code, it will be often transmitted as a byte
string, in order of increasing addresses. This immediately raises the question
of big-endian versus little-endian addressing, as bytes transmitted from one
machine may be interpreted as being in the opposite order on another, de-
stroying the UCS-2 structure. For this reason UCS-2 strings may start with
the code U+FEFF, a “byte order mark”; a computer receiving the sequence
U+FFFE should recognise that all following byte pairs should be transposed
to correct for the “endian” error.

The byte order mark has a rather curious position in the Unicode Standard,
as reflected in the following comments from the Standard –

• “The byte order mark is not a control character that selects the byte
order of the text; rather its function is to notify recipients which byte
ordering is used in a file.”

• “. . . employment as signature constitutes a particular use of a Unicode
character and there is nothing in this standard itself that requires or
endorses this usage.”
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Table 8.4: Some Unicode Layer-0 Page Allocations

Code Range  Name  Code Range  Name 

U+0000 — 007F 
U+0080 — 00FF 
U+0100 — 017F 
U+0180 — 024F 
U+0250 — 02AF 
U+02B0 — 02FF 
U+0300 — 036F 
U+0370 — 03FF 
U+0400 — 04FF 
U+0530 — 058F 
U+0590 — 05FF 
U+0600 — 06FF 
U+0900 — 097F 
U+0980 — 09FF 
U+0A00 — 0A7F 
U+0A80 — 0AFF 
U+0B00 — OB7F 
U+0B80 — 0BFF 
U+0C00 — 0C7F 
U+0C80 — 0CFF 
U+0D00 — 0D7F 
U+0E00 — 0E7F 
U+0E80 — 0EFF 
U+0F00 — 0FBF 
U+10A0 — 10FF 
U+1100 — 11FF 
U+1E00 — 1EFF 
U+1F00 — 1FFF 
U+2000 — 206F 
U+2070 — 209F 
U+20A0 — 20CF 
U+20D0 — 20FF 
U+2100 — 214F 
U+2150 — 218F 

 C0 Ctrls & Basic Latin 
 C1 Ctrls & Latin-1 Suppl 
 Latin Extended-A          
 Latin Extended-B          
 IPA Extensions            
 Spacing Modifier Letters  
 Combining Diacritical     
 Greek                     
 Cyrillic                  
 Armenian                  
 Hebrew                    
 Arabic                    
 Devanagari                
 Bengali                   
 Gurmukhi                  
 Gujarati                  
 Oriya                     
 Tamil                     
 Telugu                    
 Kannada                   
 Malayalam                 
 Thai                      
 Lao                       
 Tibetan                   
 Georgian                  
 Hangul Jamo               
 Latin Extended Additional 
 Greek Extended            
 General Punctuation       
 Superscripts & Subscripts
 Currency Symbols          
 Combining Diacriticals    
 Letterlike Symbols        
 Number Forms              

 U+2190 — 21FF 
 U+2200 — 22FF
 U+2300 — 23FF 
 U+2400 — 243F 
 U+2440 — 245F 
 U+2460 — 24FF 
 U+2500 — 257F 
 U+2580 — 259F 
 U+25A0 — 25FF 
 U+2600 — 26FF 
 U+2700 — 27BF 
 U+3000 — 303F 
 U+3040 — 309F 
 U+30A0 — 30FF 
 U+3100 — 312F 
 U+3130 — 318F 
 U+3190 — 319F 
 U+3200 — 32FF 
 U+3300 — 33FF 
 U+4E00 — 9FA5 
 U+AC00 — D7A3 
 U+D800 — DB7F 
 U+DB80 — DBFF 
 U+DC00 — DFFF 
 U+E000 — F8FF 
 U+F900 — FAFF 
 U+FB00 — FB4F 
 U+FB50 — FDFF 
 U+FE20 — FE2F 
 U+FE30 — FE4F 
 U+FE50 — FE6F 
 U+FE70 — FEFF 
 U+FF00 — FFEF 
 U+FFF0 — FFFF 

  Arrows
  Mathematical Operators
 Miscellaneous Technical 
 Control Pictures 
 Optical Char. Recog. 
 Enclosed Alphanumerics 
 Box Drawing 
 Block Elements 
 Geometric Shapes 
 Miscellaneous Symbols 
 Dingbats 
 CJK Symbols & Punct. 
 Hiragana 
 Katakana 
 Bopomofo 
 Hangul Compatibility Jamo 
 Kanbun 
 CJK Letters & Months 
 CJK Compatibility 
 CJK Ideographs 
 Hangul Syllables 
 High Surrogates 
 High Private Surrogates 
 Low Surrogates 
 Private Use Area 
 CJK Compatibility 'graphs 
 Alpha. Present-n Forms 
 Arabic Present-n Forms-A 
 Combining Half Marks 
 CJK Compatibility Forms 
 Small Form Variants 
 Arabic Present-n Forms-B 
 Half- & Fullwidth Forms 
 Specials

• Systems that employ the Unicode character encoding as their interchange
code should consider prepending the U+FEFF byte order mark to each
plain text file and removing initial byte order marks during processing.
The byte order mark has a legitimate use as a zero-width no-break space
in the middle of text streams; it should not be filtered there.”

8.7.2 Special Unicode Characters

Many of the Unicode codes are non-standard in that they supplement existing
characters, or have no defined character equivalences. Some are used to extend
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the existing characters, while others are reserved for private use.

Combining codes Many alphabets, indeed most alphabets, use a basic al-
phabet and supplement letters with “accent” or similar modifiers, to give
modified letters such as Å, ø, è, é, ö, ñ and ç. Unicode provides many
“combining” characters which modify or extend other “base” characters.

The simplest of these are the “diacritics” (diacritical marks in normal us-
age) which combine with any normal Unicode base character and include
the European accents and some other “non-spacing” characters. While
some of the modified characters are included in the basic Unicode pages,
such as U+0080 . . . 024F, the Unicode page U+0300 . . . 037F contains a
complete set of combining diacritics which may be applied to any base
character (including non-Latin). In use, the base character comes first
in the code stream and may be followed by one or more diacritics. If
two diacritics both specify marks above the base character, the second is
placed above the first; diacritics below the base similarly add downwards
in order of presentation.

The situation is more complex in some other alphabets. For example
some alphabets represent mostly consonants, with combining characters
added to represent vowels. Sometimes, a combining mark which logically
follows its base (and is so represented in Unicode) appears physically be-
fore the base. Again, in languages which are written from right to left,
the Unicode sequence, including combining marks, is in the logical order
of presentation. In all cases the base character is first in the Unicode
stream, with combining marks following. Unicode specifies rules appro-
priate to each language and the Standard should be consulted for the
handling of specific alphabets.

Surrogates Surrogate characters provide a way of extending Unicode to han-
dle rare characters. Each character encoding has both a “high-surrogate”
and a “low-surrogate”, which must be adjacent codes and in that order.
High surrogates extend from U+D800 . . . U+DBFF and low surrogates
from U+DC00 . . . U+DFFF, each providing 1024 codes and over 1 mil-
lion characters in combination. A portion of the high surrogate area
(U+DB80 . . . U+DBFF) is intended for private use, as described in the
next item.

No public surrogates had been defined when the Unicode Standard 2.0
was published (July 1996).

Private Use Codes The standard reserves the codes U+E000 . . . U+F8FF
for privately defined codes. Use of these is by agreement between cooper-
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ating users, for vendor’s logos and the like. By convention, an End User
subarea extends up from U+E000 and a Corporate Use subarea extends
down from U+F8FF. The standard allows the “promotion” of Private
codes to Unicode standard codes.

The “private use surrogate” area is an extension of the Private Use area.

Compatibility Area and Specials The codes U+F900 . . . U+FFFF pro-
vide miscellaneous glyphs and variants which can be mapped to other
characters in the Unicode standard, but which need specific Unicode
values for compatibility with pre-existing standards. It includes Latin
ligatures, such as for ‘ff’ and ‘fi’, pointed Hebrew, Arabic and some spe-
cial Chinese, Japanese and Korean characters.

This area includes U+FEFF (the byte order mark) and U+FFFE (the
strong suggestion that byte-swapping is appropriate – see Section 8.7.1).

8.7.3 UTF-8 Encoding

The standard or “canonical” 16-bit encoding is known as UCS-2. An alter-
native encoding, UTF-8, (UCS Transformation Format 8-bit) gives a way of
representing UCS-2 characters (16-bit) within an 8-bit code stream. ASCII
characters are unchanged, while others are packed into groups of bytes. A
standard ASCII character is emitted “as is” in UTF-8 with a high-order 0 bit.
Larger values are broken into 6-bit groups, from the least significant bit, as
shown in Figure 8.2. Each group except the most significant is prefixed by the
bits “10” and emitted as a byte. The first byte starts with as many 1s as there
are bytes in the code, followed by a 0 (a unary code). Only 2-byte and 3-byte
codes are used for UCS-2 characters. (UTF-8 can also handle 32-bit UCS-4
codes and some extended alphabets.)

Figure 8.2: UCS-2 to UTF-8 Conversion Rules.

bits Input bit pattern encoding into successive bytes
7 0 . . . 0 GFED CBA 0GFE DCBA

11 0 . . . 0 KJI HGFE DCBA 110K JIHG 10FE DCBA

16 0 . . . 0 PONM LKJI HGFE DCBA 1110 PONM 10LK JIHG 10FE DCBA

Some examples of UCS-2 to UTF-8 encoding are shown in Figure 8.3, en-
coding into 1, 2 and 3 bytes respectively.
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Figure 8.3: Examples of UCS-2 to UTF-8 Encoding

UCS-2 UTF-8
(16 bits) byte 1 byte 2 byte 3

0000 0000 0010 1101 0010 1101
0000 0011 0101 1110 1100 1101 1001 1110
0010 1011 0111 1010 1110 0010 1010 1101 1011 1010

For the reverse direction, changing UCS-2 to UTF-8, the details depend on
the number of leading 0s in the UCS-2 encoding.

• If there are 9 or more leading zeros (code ≤ 0x7F) the low-order 8 bits
or right-hand byte are taken as the UTF-8 code. This case, and this case
only, may be interpreted as an ASCII character.

• If there are 5 – 8 leading zeros, divide the 16 bits of the UCS-2 encoding
as 0000 0xxx xxyy yyyy and form the two bytes
110x xxxx and 10yy yyyy.
These two bytes are the UTF-8 code. (Here, as before, the x field and y
field may be any mixture of 0 and 1 bits.)

• If there are 4 or fewer leading zeros, divide the UCS-2 encoding as
wwww xxxx xxyy yyyy, and then encode into 3 bytes as
1110 wwww 10xx xxxx 10yy yyyy.

The initial bits of the UTF-8 encoding determine the interpretation of that
and following bytes –

0. . . The character is encoded in a single byte, equivalent to standard ASCII
(or International Alphabet No. 5 - IA5).

10. . . The following 6 bits are used to continue whatever has been previously
emitted for the partial UCS-2 encoding. (This byte must be the second
or third byte of a 2 or 3 byte group.)

110. . . Emit 5 leading zeros and then the remaining 5 bits of this byte, as
the first 10 bits of the UCS-2 code. One 10. . . byte must follow.

1110. . . Emit the remaining 4 bits of this byte and then, in order, 6 bits from
each of the two following bytes, both of which must start with 10. . .
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Example.

The UTF-8 bytes 20 E6 98 AF 20 43 61 6C 69 73 20 C7 9A 44 E5 BB B6
convert to UCS-2 according to Figure 8.4.

Figure 8.4: Conversion of a UTF-8 String.

UTF-8 UCS-2 ASCII
Bytes codes
20 0020
E6 98 AF 662F ♣
20 0020
43 0043 C
61 0061 a
6C 006C l
69 0069 i
73 0073 s
20 0020
C7 9A 01DA ♣
44 0044 D
E5 BB B6 5EF6 ♣

The symbol ♣ denotes a non-ASCII character and a space. The final
UCS2 encoded string is
0020 662F 0020 0043 0061 006C 0069 0073 0020 01DA 0044 5EF6.

8.7.4 UTF-7 Encoding

The Internet mail protocols [21] are based on 7-bit characters and do not easily
handle the 16-bit UCS-2 or even the 8-bit UTF-8 codes. Although general
encodings such as MIME (Section 8.6, [13] and [77]) allow extension beyond
8-bit codes, they are not designed for Unicode; some Unicode characters may
expand to as many as 9 octets in these representations9. Other problems arise
if traffic must traverse systems using EBCDIC representations, because not all
ASCII characters translate correctly to or from EBCDIC.

9A general UCS-2 character, encoded as U+PQRS and treated as individual bytes, may
expand to the 6 characters =PQ=RS, where P, Q, R and S are hexadecimal digits. If the
expansion makes the line exceed 76 characters an extra ‘=’ must be included as a soft line
break, giving an expansion to 7 characters. Finally, if the Unicode is encoded as 3 UTF-8
octets, and that UTF-8 is subject to MIME encoding, then each UTF-8 octet may expand
to 3 octets. The result is a MIME code such as =UV=WX=YZ.
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The UTF-7 standard [46] allows UCS-2 character codes to be transmitted
with reasonable efficiency over 7-bit systems, allowing for EBCDIC/ASCII
vagaries and even incompatible interpretations of the ASCII codes themselves.
The standard specifies that UTF-8 encoding should be used wherever 8-bit
transport is possible; UTF-7 is specifically for transmission over 7-bit “ASCII”
systems.

UTF-7 takes the Base64 encoding from the MIME standard and adapts it
to allow mixed or alternating sequences of ASCII and binary code. As far as
possible, ASCII text is transmitted as plain characters. Other characters are
translated according to the MIME Base64 conventions and the resultant codes
placed in the output stream with a leading ‘+’ as an introduction character and
a trailing ‘–’ Because not all ASCII codes are necessarily transmitted without
corruption the direct encoding is limited to characters which are believed to be
handled correctly by all systems and translations. Optionally, this set may be
extended by other characters which are probably handled correctly, but some
of which are illegal in RFC822 mail headers.

UTF-7 is based on several ASCII character subsets –

Set D The directly encoded characters include the upper case letters
A . . . Z, the lower case letters a . . . z, the digits 0 . . . 9 and the nine special
characters ’ ( ) , - . / : ? . (This set omits the characters “+” and “=”,
which have special meanings as UTF-8 and MIME escape codes.) These
characters should be transmitted with no recoding other than stripping
the high-order zeros.

Set O The Optional direct characters consist of the ASCII characters
! " # $ % * ; < = > @ [ ] ˆ ‘ { — }

The characters “ \ ” and “~” are omitted from this group because they are
sometimes redefined in ASCII variants. While these characters may be
transmitted without recoding, many of them are illegal in mail headers
and some might not pass correctly through translation. (This applies
especially to the characters “[” . . . “}” in the above list.)

Set B (Modified Base 64) The upper case letters A . . . Z, the lower case
letters a . . . z, the digits 0 . . . 9 and the special characters “+/”. This
group is much as defined for MIME Base64 in Table 8.2, with the addi-
tion of a “/”. These characters are used to encode 6-bit groups of binary
digits, using the bits as 6-bit, 0-origin indices into the Set B characters.
Thus the group 000000 will encode as A, and 001000 as H.
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space characters the characters SP, TAB, CR and LF (in hexadecimal 20,
09, 0D and 0A)

The rules for representing 16-bit Unicode characters in UTF-7 are –

Rule 1 (direct encoding) Unicode characters in set D may be encoded di-
rectly as their 7-bit ASCII equivalents. Unicode characters in Set O may
optionally be encoded directly.

Rule 2 (Unicode shifted encoding) The shift character “+” introduces any
Unicode character sequence encoded as a sequence of characters in Set B.
The bits from successive UCS-2 characters are regrouped into a sequence
of 6-bit binary values which are used to fetch characters from the Set B
array. Three UCS-2 characters translate into 8 bytes for transmission.

The sequence terminates on any character not in Set B, including the
carriage return and line feed characters. The terminator “−” is absorbed;
other terminators are processed normally. The special sequence “+ −”
may be used to encode a single “+”.

Rule 3 The characters space (3210), tab (0910), carriage return (1310) and line
feed (1010) may be represented directly by ASCII, provided that there is
no conflict with MIME encoding rules.

The following three UTF-7 examples are taken directly from RFC 1642.
Note that they use descriptive terms for characters which are difficult to repre-
sent in ordinary text, such as <NOT IDENTICAL TO> and <WHITE SMILING
FACE>.

• The sequence “A<NOT IDENTICAL TO><ALPHA>.”, or “A 6≡ α” (hex-
adecimal 0041, 2262, 0391, 002E) encodes to A+ImIDkQ. .

It is only the sequence ImIDkQ which needs to be examined; the initial
“A” and the final “.” translate directly to ASCII. The <NOT IDENTICAL
TO><ALPHA> has the code 2262 0391 or 0010 0010 0110 0010 0000
0011 1001 0001 in binary. Grouping this into 6 bit units gives 001000
100110 001000 000011 100100 010000, with decimal values 8, 38, 8, 3, 36
and 16, building out the final group to 6 bits. Now select characters 8,
38, 8, 3, 36 and 16 from Set B above (the modified Base 64 set), giving I,
m, I, D, k and Q respectively. Precede these by the “+” introduction code
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and note that the following “.” is not part of the Base 64 and therefore
terminates the encoded sequence. Adding the unconverted ASCII codes
gives the final sequence A+ImIDkQ.

• The Unicode sequence ”Hi Mom <WHITE SMILING FACE>!” (hexadec-
imal 0048, 0069, 0020, 004D, 006F, 004D, 0020, 263A, 0021) encodes to
Hi Mom +Jjo-! .

It is only the sequence Jjo which needs to be examined; the initial “Hi
Mom ” and the final “!” translate directly to ASCII. The <WHITE
SMILING FACE> has the code 263A or 0010 0110 0011 1010 in binary.
Grouping this into 6 bit units gives 001001 100011 101000, with decimal
values 9, 35 and 40, building out the final group to 6 bits. Now select
characters 9, 35 and 40 from Set B above (the modified Base 64 set),
giving J, j and o respectively. Surrounding these by the “brackets” +
and - and adding the unconverted ASCII codes gives the final sequence
Hi Mom +Jjo-! .

• The Unicode for the characters for the Japanese word “nihongo” (hex-
adecimal 65E5, 672C, 8A9E) encodes to the UTF-7 +ZeVnLIqe-.

Convert the hexadecimal to binary
0110 0101 1110 0101 0110 0111 0010 1100 1000 1010 1001 1110 and group
into 6 bits
011001 011110 010101 100111 001011 001000 101010 011110.
Select characters 25, 30, 21, 39, 11, 8, 42 and 30 from Set B, giving
ZeVnLIqe and enclose in the brackets giving +ZeVnLIqe-.

• The Unicode is “Item 3 is <POUND SIGN>1.”, or “Item 3 is £1.” (hex-
adecimal 0049, 0074, 0065, 006D, 0020, 0033, 0020, 0069, 0073, 0020,
00A3, 0031, 002E).

It is only the “£”, with code 00A3 which needs to be converted. Its
binary value is 0000 0000 1010 0011, converting to 000000 001010 001100,
or 0, 10 and 12. The corresponding characters from Base 64 are AKM.
Adding the introduction ‘+’ and terminator ‘-’ gives the final code “Item
3 is +AKM-1.”

8.8 The ISO/IEC 10646 Standard

At the same time as Unicode was under development, the International Stan-
dards Organisation (ISO) was developing its own universal alphabet, specified
by ISO/IEC 10646. This standard defines two alternative forms of encoding –
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• A four octet (31-bit) encoding with 231 code values, conceptually divided
into 128 groups of 256 planes, with each plane containing 256 rows of
256 cells. This encoding is known as UCS-4.

• The Basic Multilingual Plane or BMP which is just plane 0 of ISO/IEC
10646 and is encoded in 2 octets. This is the original UCS-2 encoding,
but is now extended to include Plane 1 (the Supplementary Multilingual
Plane) as described in Section 8.7.

Unicode is identical in character definitions to the Basic Multilingual Plane
of UCS-2; the two standards were deliberately aligned. In other ways though,
Unicode is a subset of ISO 10646. Although Unicode implementations conform
to ISO 10646, some additional constraints imposed by Unicode may allow
implementations to conform to ISO 10646, but not to Unicode.

The UTF-8 encoding can extend to cover all UCS-4 characters, by allowing
prefix bytes between 1110xxxx and 1111110x and up to 5 continuation bytes
(10xxxxxx). The initial 1s of the first byte are a unary length for the whole
code, just as for 16-bit UTF-8.

8.9 Internationalized Domain Names

This section summarises a particular Unicode recoding for Internet Domain
Names. The coding is complex, and not really for use within computers, but
rather between computers.

The Internet and its constituents were developed primarily in English-
speaking countries, with the symbol alphabet limited “standard ASCII” with
no accented letters. An important consequence was that many visible aspects
of the Internet were restricted to “plain” text, such as domain names being
restricted to { ‘a’ . . . ‘z’, ‘-’, and ‘ ’ }, with ‘.’ being reserved as a separator.
Domain names were furthermore case-insensitive with names being expected
to be lower-case; as a special concession upper-case letters are acceptable, but
equivalent to lower-case.

When the message content was expanded to Unicode, allowing symbols from
all extant alphabets, it was only natural to allow domain names to similarly
expand. Not only did this dignify national languages with extended or other al-
phabets, but it could also remove transliteration problems. For example, some
Russian transliterations are “Tchaikovsky”, “Chaikovsky”, “Tchaikowsi”, or
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“Chebyshev”, “Tchebyshev”, “Tchebysheff”. Allowing such words to be ren-
dered in the native language allows unique representations.

At first sight UTF-7 might be regarded as suitable for multilingual names,
but it encodes to both upper-case and lower-case letters, which can be legiti-
mately forced to lower-case. The UTF-7 may also include ‘.’ in the converted
text. While this should be absorbed in machine conversion, it is nevertheless
likely to impair human readability.

The Unicode names are instead converted to . . . Punycode. For example,
the German “Bücher” becomes “xn--bcher-kva”, the ‘xn--’ prefix identify-
ing this as a Punycode string. As of 2011 most browsers can correctly display
Punycode domain names and some country or domain names have been ap-
proved10.

A full discussion of Punycode is inappropriate here (it is complex and in
any case used between computers rather than within computers!). Punycode
is fully described in RFC 3490, including translation code.

8.9.1 Homographic Symbols

A possible problem in domain names arises from “homographic” symbols,
where two or more symbols use the same glyphs, or very similar glyphs. Some
examples were given in Section 8.7, but none of these apply to valid domain
names. Some possibilities, all legal in domain names, are

• Cyrillic small ‘a’ U+0430 and Latin small ‘a’ U+0061.

• Greek capital Alpha U+0391 and ASCII ‘A’ U+0041, and many other
Greek and Cyrillic capitals.

• Greek small omicron ‘o’ U+03BF and Latin small ‘o’ U+006F. (In fact
LATEX provides only the Latin symbol.)

(The minus U+002D has variants, but these can be filtered from domain names
as illegal symbols.) Look also at conflicts between Basic Latin and Cherokee
(block U+13A0 to U+13FF) even though Cherokee is unlikely to be accepted
into domain names.

10An Arabic-script International Domain Name was announced in early 2014.
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Chapter 9

Universal (Variable Length)
Codes

Abstract: Text compression requires numbers to represented as com-
pactly as possible, especially the more-frequent values. This chapter de-
scribes various compact representations, and especially the “Universal
Codes” to represent arbitrarily large values. Many of these codes are
seldom mentioned in general literature.

Keywords: Shannon-Fano codes, Huffman codes, Elias’ α, β, γ
and ω codes, Rice codes, Golomb codes, start-step-stop codes, ternary
comma codes, Fibonacci codes, Goldbach and Ibsen codes, Wheeler 1/2
code.

9.1 Compact Integer Representations

All of the number representations described earlier have used fixed or known
lengths, making them simple for memory management and for arithmetic. But
another class of number representations requires that an “average” number
must be represented as compactly as possible. These representations typi-
cally arise in data compression and some examples later will be taken from
this area1. There are two variants of the problem of “efficient” compact data
representation.

1Reprinted with minor revisions from “Lossless Compression Handbook” c©2003, K. Say-
ood (Ed), Chap 3, “Universal Codes” , Pages 55–78, with permission from Elsevier. The
early sections are completely revised, and Section 9.13.2 on Ibsen codes is new.
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A very important class of variable-length codes, and probably the best
known, are the Shannon-Fano and, especially, the Huffman codes. These are
associated with a finite alphabet of “source symbols”, usually with known a
priori probabilities. Each symbol is represented by a “codeword” that is de-
pendent on the entire ensemble of symbol probabilities. Changing just one
symbol probability may change several codewords. Although not important in
the present context of unbounded source alphabets they are briefly described
below in section 9.1.2.

A different problem is addressed in this chapter. We wish to represent an
arbitrary integer in as few bits as possible, preferably by an algorithm that
recognises only the magnitude and bit pattern of the integer, with no table
look-up or mapping. Equally, a simple algorithm should be able to recover an
integer from an input bit stream, even if that particular integer has never been
seen before, and generally irrespective of the surrounding bit patterns. The
binary representation of the integer is often visible within the representation
and other information is appended to indicate the length or precision. In
contrast to the Shannon-Fano and Huffman codes, the population of source
symbols is large and in principle unbounded.

These codes or representations are variously known as “universal codes”
or as “variable-length codes”. The two terms are generally interchangeable—
“universal codes” can represent any integer, without word-length or similar
restrictions, while “variable length” is simply descriptive.

9.1.1 Definitions

In all of this chapter we have a set of symbols that together constitute a source
alphabet that is to be encoded into some more suitable form, such as a binary
coding alphabet. A sequence of symbols constitutes a message; much of this
discussion is really meaningful only when symbols are considered within the
message of which they are a part. Although this restriction may be relaxed
in other circumstances, we will for now assume that each source symbol is
transformed into a single codeword ; the coding is unique so that each symbol
maps into one codeword and each codeword corresponds to a single source
symbol. The symbol alphabet may be finite, such as the letters A . . . Z, or
may be unbounded, such as the integers 0, 1, 2, 3, . . . . This chapter will
emphasise unbounded alphabets.

Each of the source symbols { S1, S2, S3, . . . } has an associated probability {
P1, P2, P3, . . . }. A fundamental result of Information Theory is that, to achieve
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the minimum average codeword length and overall shortest representation of
the entire message, the length Li of each codeword should be related to its
symbol probability by

Li = log2

1

Pi

= − log2 Pi

Before proceeding, there several terms must be introduced –

equivalent code Two codes are equivalent if, for any source symbol, the
codeword lengths for that symbol are the same, even though the bit
patterns may be quite different. For example, the Elias γ and γ′ code-
words are permutations of each other, giving codes that are naturally
equivalent.

instantaneous code If a succession of code words is examined as a serial bit
stream, it is possible with an instantaneous code to recognise the bound-
aries between codewords from only the past history and without any
look-ahead. Equivalently, no codeword is a prefix of another codeword.
Except for some of the Fibonacci codes, most of the codes given here are
instantaneous.

comma code A comma code uses a reserved bit pattern to terminate each
codeword. The Ternary and Fibonacci codes use commas to terminate
codewords.

9.1.2 Codes for Finite Alphabets

Both the Shannon-Fano and Huffman [56] algorithms exploit the known sym-
bol probabilities to construct reasonably efficient codes. (The finite alphabet
means that these are not “Universal” Codes.) Each source symbol (that may
or may not be an integer) has a representation that is dependent on the prob-
ability of its own symbol and usually many other symbols and may have little
relationship to the “natural” integer coding.

Shannon-Fano code The coding procedure starts with the source symbols
ranked in decreasing probability. The coding itself proceeds as a repeated
binary subdivision of a to-be-encoded portion of the source alphabet, al-
locating say a 0 to the “top” half and a 1 to the “bottom” half, ultimately
forming a binary tree with the source symbols as its leaves. The code-
word for each symbol is obtained by traversing the tree from root to leaf,
collecting the 0s and 1s of the path.
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Figure 9.1: Construction of Shannon-Fano and Huffman Codes.
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Huffman code The Huffman code similarly builds a tree with the source
symbols as its leaves and obtains each codeword by traversing the tree
from root to leaf. In contrast to the Shannon-Fano code, the Huffman
code successively combines the two least-probable symbols into an inter-
mediate symbol whose probability is the sum of its component probabil-
ities. As with the Shannon-Fano code, each codeword is generated by
traversing the tree from root to leaf, generating 0s and 1s according to
the direction of branch.

Examples are shown in Figure 9.1 for the alphabet with symbol probabilities
of {25%, 24%, 14%, 13%, 12%, 7% and 5%}. The average codeword length
is 2.630 bits/symbol, compared with 3 bits for simple binary coding and the
optimum 2.626. For this example the two codes are identical, but for larger
alphabets the Huffman is usually slightly better.

The Huffman code as described assumes known static symbol probabili-
ties, but realistic sources have differing probabilities, both overall and varying
within each source. Solutions to cope with this “real world” situation include –

• The coder can perform a test run over part or all of the input and evaluate
and transmit the Huffman tree (or the symbol probabilities).

• The coder can start with a known tree, possibly even equiprobable, and
encode blocks of say 5 000 symbols. Within each block both coder and
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decoder accumulate symbol counts and, at the end of each block, both
use those counts to recalculate the tree for the next block. No extra
information needs to be transmitted, but the coding may be slightly less
efficient than from the next method. It also has the cost of frequently
recalculating the tree.

• Several authors have described methods for dynamically updating the
Huffman tree, symbol by symbol. These are given in [87][p89ff], including
commentary. Generally, if symbols do not occur many times within the
source text it may be better to use a simple static Huffman code.

9.2 Polynomial Representations

Chapter 2 showed that integers can be represented as a polynomial in some
implied base b, with the coefficients being the visible representation of the
integer to base b. These representations for an integer N combine a visible
digit vector d with an implicit weight vector w, such that N = d · w, the
scalar product of the two vectors. If successive terms of the weight vector are
given by wi+1 ≈ bwi, we have a polynomial in some base b. Many, but not all,
of the codes to be described are of this form.

Table 9.1 shows the first terms of the weight vectors for some of the codes to
be described. The first line is the familiar binary representation, and the next
two lines the Fibonacci numbers of order 2 and 3. (Section 9.12.) The next
line is the prime numbers, used for a representation based on the Goldbach
conjecture. (Section 9.13.) While all of the these codes use binary digits (0
and 1 in the visible representation), the last line is for a ternary code (base
3) with digits 0, 1 and 2. In this table, the binary and ternary examples
are true polynomial representations, the two Fibonacci examples approximate
polynomials, while the Goldbach or prime in no way resemble polynomials.
All however provide valid weight vectors w for representations of the form
N = d ·w.

In this table, as in much of the discussion of variable length codes, the
weight vectors are shown with the least significant or smallest value to the left.
This follows the practice in many codes of transmitting the bits in increasing
numerical significance.

Usually each digit is bounded 0 ≤ di < b (but this restriction may be relaxed
for redundant representations). Many variable length codes may be described
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Table 9.1: Weight Vectors for some Variable Length Codes

Weights Representation

1 2 4 8 16 32 64 128 256 . . . Binary
1 2 4 7 13 24 44 81 149 . . . Fibonacci, order 3
1 2 3 5 8 13 21 34 55 . . . Fibonacci, order 2
1 3 5 7 11 13 17 23 29 . . . Goldbach (primes)
1 3 9 27 81 243 729 2187 6561 . . . Ternary

as polynomial representations with the base b non-integral and 1 ≤ b ≤ 2. The
digits di are always 0 or 1.

The base b representation of N has logbN digits di. As the binary represen-
tation has log2N digits and b < 2, the base b representation expands relative to
binary. The base b and expansion x are both descriptive of the representation
and are related by

x = log 2/ log b, or b = 21/x

To anticipate later developments, the bases and expansions of several codes
are given in Table 9.2. The simplest of these is the Elias γ code that, generating
two bits2 per binary digit, is equivalent to a number with a base of

√
2 = 1.414.

At the other extreme, the Fibonacci–3 (or “Tribonacci”) numbers have a ratio
between successive digit weights of

1 +
3
√

19− 3
√

33 +
3
√

19 + 3
√

33

3
≈ 1.839

giving an effective number base of about 1.84 and an expansion, relative to
binary, of log 2/ log 1.839 = 1.137.

Some of the codes add pairs of bits as the value grows; on average these
have a small additive constant when calculating the length. Although their
growth may be slower than codes that grow one bit at a time, this additive
term may make them less attractive for small values. Similarly, the codes with
smaller expansions often need a more complex length indication; the longer
length indication may cancel any benefit from the smaller expansion.

2The term “bit” will always mean binary digit and is never used as an information mea-
sure. A codeword (the encoded collection of bits) is usually longer the binary representation
of the value (also in bits).
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Table 9.2: Effective Bases of Some Codes

Code base (b) expansion (x)
unary (α) 1 1 –
binary (β) 2 2 1

Elias γ
√

2 1.414 2
Punctured γ 22/3 1.587 1.5

Fibonacci–2
√
5+1
2

1.618 1.440

Ternary
√

3 1.732 1.262
Fibonacci–3 see text 1.839 1.137

9.3 Length Indication

Every variable-length code must somehow specify the length of a codeword,
normally using one of the two following methods (or a combination of the two).

• If the codeword prohibits certain combinations of bits, an illegal bit com-
bination may act as a terminator or comma. For example an Elias α code
is a sequence of N zeros followed by a terminating 1. Again, as the sim-
ple Fibonacci codewords can never contain two successive ones, the bit
pattern 11 can act as a comma to terminate a codeword.

• The codeword may have two components, one giving the value and one
the number of bits in the value. (And the length of the number of bits . . . ,
recursively.) The Elias γ code combines a binary value with an α code
for its length. Ultimately of course every representation must somewhere
contain a length of the first type to terminate a possibly recursive length
definition.

9.4 Unary Codes

These are the simplest codes and are often at the foundation of more complex
codes. They exist in two forms, each the bit-complement of the other, with
rather different weight vectors and even interpretations according to the earlier
description.

• The first form represents the integer n as (n − 1) zeros, followed by a
terminating one. Here the weight vector is w = {1, 2, 3, 4, . . .}; most of
the digits are 0 and the representation terminates on the first 1.
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For example 6→ 000001 and 4→ 0001.

• The second form represents the integer n as (n− 1) ones, followed by a
terminating zero. The weight vector is now w = {1, 1, 1, 1, . . .}.
Now 6→ 111110 and 4→ 1110.

Both of these codes represent a minimum value of 1 and may be called “1–
origin” representations. An alternate interpretation with n being the number
of prefix digits ahead of the terminator allows 0 as a representable value (a
“0–origin” representation). With this interpretation 3 would be represented as
respectively 0001 and 1110. The two forms are equally valid, but sometimes
the origin must be inferred from the context.

If we encode n as n ones rather than (n − 1) ones the weight vector can
be interpreted as a polynomial with b = 1 (bi ≡ 1 for all i). The unary code
is therefore a polynomial code, with base b = 1 (which is good reason for its
name)!

9.5 Elias and Levenstein Codes

These codes are the oldest of the variable length codes. The Elias gamma
codes of this section are probably the most important variable length codes,
combining simplicity with reasonable efficiency. They were first described by
Levenstein [69], but the later description by Elias [25] is generally used in the
English language literature.

Elias describes a whole series of codes –

alpha code The α(n) code is the unary representation, as described above.

beta code The β(n) code is the natural binary representation of n, starting
after the most significant 1. This is the most efficient representation
of the value, but is usually combined with some other code or codes to
indicate the length. β(7) is 11, and β(17) is 0001. The β code is of little
use by itself because it has no length indication.

gamma code The γ code is an intermingling of the bits of the β code and
an α code describing its length. Each numeric bit (from the β code) is
preceded by a 0 flag bit (from the α code), with the whole terminating in
the final 1 from the α code. (The beta component is encoded in reverse
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order, least-significant bit first.) This terminating 1 also supplies the
most-significant 1 bit that was omitted from the β code. If the flag bits
are marked by an overline, we have that

γ(1) = 1 γ(2) = 001 γ(3) = 011
γ(4) = 00001 γ(5) = 00011 γ(6) = 01001
γ(13) = 0100011 γ(23) = 000101011 γ(44) = 00010100001

gamma′ code The γ ′ code is a permutation of the γ code, with the flag bits
(now an α code) preceding the data bits (a β code) and the terminating
1 of the α prefix doubling as the leading 1 of the β suffix. (The beta
component is now most-significant bit first.)

γ ′(1) = 1 γ ′(2) = 010 γ ′(3) = 011
γ ′(4) = 00100 γ ′(5) = 00101 γ ′(6) = 00110
γ ′(13) = 0001101 γ ′(23) = 000010111 γ ′(44) = 00000101100

For most of this document the term “Elias γ code” will be used interchange-
ably for the two variants; often it will actually mean the γ ′ code. Examples
of the four codes are shown in Table 9.3.

The Elias gamma code represents an integer of N significant bits with 2N−1
bits, or equivalently an integer n is represented by 2dlog2 ne − 1 bits. (It is
convenient to ignore the floor and ceiling operators in future discussions to
simplify the mathematics. As most of the discussion involves only order of
magnitude considerations or averages over many symbols, precise values are
relatively unimportant. We therefore say that an Elias code represents an
integer n in 2 log n− 1 bits.)

The γ code can be extended to higher number bases where such granularity
is appropriate. For example, numbers can be held in byte units, with each
8-bit byte containing one flag bit (last-byte/more-to-come) and 7 data bits, to
give a base-128 code.

A polynomial code with base b multiplies the range of represented values by
b for each added codeword digit. As doubling the range of a γ code requires two
extra bits, we can regard the γ code as a polynomial code with base b =

√
2.

The non-integral powers all have a coefficient or weight of 0, except for the
last one that terminates the codeword and implies the most significant bit.

Some variants of the γ codes are much older than the systematic descrip-
tions by Elias and Levenstein (1975 and 1968 respectively). For example, the
IBM 1620 computer (c 1960) used BCD coding with a “flag” bit on each dec-
imal digit (memory addressed by individual decimal digits). Numbers were
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Table 9.3: Examples of Elias codes.

n α(n) β(n) γ(n) γ ′(n)
1 01 1 1 1
2 001 10 001 010
3 0001 11 011 011
4 00001 100 00001 00100
5 000001 101 01001 00101
6 0000001 110 00011 00110
7 00000001 111 01011 00111
8 000000001 1000 0000001 0001000
9 0000000001 1001 0100001 0001001

10 00000000001 1010 0001001 0001010

100 . . . 1100100 0000010000011 0000001100100

addressed at the least-significant digit and proceeded to lower addresses until
terminated by a flagged digit—a precise implementation (or anticipation) of a
BCD variant of the γ code. (A flag on the addressed digit denoted a negative
number.)

9.6 The “Punctured Gamma” Code

This section describes a variant of the Elias γ code. The text is largely
copied verbatim from the author’s original Technical Report [33]; an
excellent commentary is given by Salomon et al [86, p112].

We start with the simplest of a family of new codes, called here P1. It is
derived from the Elias γ codes, but with some major differences. Like those
codes, it has two variants. In the γ code variant the data bits are written in
reverse order with each 1 bit followed by a 0 for an “internal” 1 and a 1 for
the most significant 1. Zeros are written “as is” with no following bit. The
γ′ variant has the data part written in reverse order (most-significant bit last)
preceded by an α code to indicate the number of 1 bits. It is not possible to
merge the last bit of the prefix with the numeric bit as is possible with the γ′
code.

Thus in both variants the“count” part of the code counts the number of
ones rather than the number of bits (as in the original γ codes).
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The name “punctured code” is chosen by analogy with error correcting
codes. A systematic ECC codeword resembles an Elias γ ′ code in having a
clearly identifiable natural representation of its data, with added check bits to
provide the error correction facility. A punctured ECC has some of the check
bits deleted to provide a shorter codeword, much as some of the unary length
bits of the Elias code are removed to provide the new, punctured, code.

Table 9.4: Comparison of Punctured and Elias Codes

Value P1 P2 Elias biased advantage (bits)
Code Code Elias P1 P2

0 0 01 1 0 -1
1 101 001 1 010 0 0
2 1001 1011 010 011 -1 -1
3 11011 0001 011 00100 0 1
4 10001 10101 00100 00101 0 0
5 110101 10011 00101 00110 -1 0
6 110011 110111 00110 00111 -1 -1
7 1110111 00001 00111 0001000 0 2
8 100001 101001 0001000 0001001 1 1
9 1101001 100101 0001001 0001010 0 1

10 1100101 110101 0001010 0001011 0 0
11 11101101 100011 0001011 0001100 -1 1
12 1100011 1101011 0001100 0001101 0 0
13 11101011 1100111 0001101 0001110 -1 0
14 11100111 11101111 0001110 0001111 -1 -1
15 111101111 00001 0001111 000010000 0 3
16 1000001 1010001 000010000 000010001 2 2

. . .
31 11111011111 0000001 000011111 00000100000 0 4
32 10000001 10100001 00000100000 00000100001 3 3
33 110100001 10010001 00000100001 00000100010 2 3

The code described (especially that corresponding to the γ′ code) will be
described as the P1 code. For all cases except for a value of 0, the P1 codes
start and stop with a 1 bit. If the represented value is biased by 1, encoding not
n but (n+1), and the doubled bit replaced by a single bit, we obtain a variant
of the punctured code, the “P2 code”. Table 9.6 shows the representations
for the first few integers, together with the Elias code for the same value. The
digit which marks the end of the prefix is shown in boldface; for the Elias code
it is also the most significant 1. As the Elias code has no representation for
0, it must often use a “biased” version as shown in the table. Finally, the last
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column shows the advantage in bits in using the new P2 code as compared
with the biased Elias code.

For small values the punctured codes are often 1 bit longer than the biased
Elias, but for large integers they average about 1.5 logN bits, in comparison
with the 2 logN bits of the Elias codes.

9.7 Elias ω and Even-Rodeh Codes

These codes have a length part and a value part. In the γ ′ code the length
is given as an α or unary code; a natural progression is to specify the length
itself in a form more compact than the α code. Elias does this with his δ code,
using a γ code for the length, but quickly proceeds to his ω codes. Some very
similar codes were described by Even and Rodeh [27] and it is convenient to
treat the two together.

Both of the codes start with the value as a β code, preceded by its length.
That length is then preceded by the length of the length, then the length of
the length of the length and so on. The recursion stops when the length is
sufficiently small, as shown in the examples below.

Table 9.5: Examples of Elias’ ω and Even-Rodeh Codes.

Value Elias ω code Even-Rodeh code
0 000
1 0 001
2 10 0 010
3 11 0 011
4 10 100 0 100 0
7 10 111 0 111 0
8 11 1000 0 100 1000 0

15 11 1111 0 100 1111 0
16 10 100 10000 0 101 10000 0
32 10 101 100000 0 110 100000 0

100 10 110 1100100 0 111 1100100 0
1000 11 1000 1111101000 0 1010 1111101000 0

Some representative Elias ω codes are shown in Table 9.5, with the groups
of bits separated by blanks. Each length is followed by the most-significant 1
of the next length or value; the final value is followed by a 0. To encode the
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Table 9.6: Lengths of Elias’ ω and Even-Rodeh Codes.

Values Elias Even-Rodeh
1 1 3

2 – 3 3 3
4 – 7 6 4

8 – 15 7 8
16 – 31 11 9
32 – 63 12 10

64 – 127 13 11
128 – 255 14 17
256 – 512 21 18

value 69 as an Elias ω code –
1. Write the value (69) as a β code, with following 0 1000101 0

2. This value has six digits after the initial 1; write
this bit count as a β code prefix 110 1000101 0

3. This length prefix has two following digits; write
this count as another prefix 10 110 1000101 0

4. As this final length has only two bits, the code is
complete. 10 110 1000101 0

The Elias ω code is decoded by reversing the encoding process. The initial
group is either the single bit 0 (representing the value 1), or the bit pairs 10
or 11, with values 2 and 3 respectively. If a group is followed by a 0, its value
is the value to be delivered. If a group is followed by a 1, its value is the β
code for the length of the next group. Thus 15 is read as the sequence 3, 15
and 16 as 2, 4, 16.

The Even-Rodeh code is best described by its decoding algorithm. It is
similar to the Elias ω code, but each group now gives the total number of bits
in the following group, including the most significant 1. A different starting
procedure is used, with values of 0–3 written as 3-bit integers. (Values of 4–7
are in “natural binary”, with a following 0 as terminator.)

Both codes are especially efficient just before a new length element is phased
in and inefficient just after it is introduced, as for 15 and 16 in the Elias ω code.
The codes alternate in relative efficiency as their extra length components
phase in at different values, as shown in Table 9.6, with the shorter code in
bold face.
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Bentley and Yao [9] develop a very similar code while developing an optimal
strategy for an unbounded search. They recognise a correspondence between
the tests of the search and the coding of index of the search target, but do not
develop the code to the detail of either Elias or Even and Rodeh.

Codes such as the Elias ω code are often described as logarithmic ramp codes
because each coding group is approximately the logarithm of its successor.

9.8 Rice Codes

Rice codes [83] have a parameter k. To encode the value n, first form m = 2k

and then calculate n÷m and n mod m. The representation is the concatena-
tion of (1+n÷m) as a unary code and (n mod m) in binary. (Using 1+n÷m
allows for n < m.) An integer n is represented by n/2k + k + 1 bits, (in
line with the earlier approximations). Representative Rice codes are shown in
Table 9.7.

Rice codes differ from most other variable length codes in that they are
very efficient over an intermediate range of values. But they are less efficient
for small values (dominated by the remainder, n mod m) and for large values
(dominated by the quotient, n÷m).

Table 9.7: Rice Codes for the First few Integers and Parameter k.

k 1 2 3 4 5 6
0 0 000 0000 00000 000000 0000000
1 10 001 0001 00001 000001 0000001
2 110 010 0010 00010 000010 0000010
3 1110 011 0011 00011 000011 0000011
4 11110 1000 0100 00100 000100 0000100
5 111110 1001 0101 00101 000101 0000101
6 1111110 1010 0110 00110 000110 0000110
7 11111110 1011 0111 00111 000111 0000111
8 111111110 11000 10000 01000 001000 0001000
9 1111111110 11001 10001 01001 001001 0001001
10 11111111110 11010 10010 01010 001010 0001010
11 111111111110 11011 10011 01011 001011 0001011

172   Introduction to Computer Data Representation Peter Fenwick 

  



9.9 Golomb Codes

The Golomb codes [45] are designed to encode a sequence of asymmetric binary
events, where a more-probable event with probability p is interspersed with
less-probable events of probability q (q = 1− p and p >> q).

The sequence is represented by the lengths of successive runs of the probable
event between occurrences of the improbable event. The Golomb codes have a
parameter m, related to the probability p by pm = 0.5, or p = m

√
0.5. A run of

length n+m is half as likely as a run of length n, indicating that the codeword
for a run of length n+m should be one bit longer than that for a run of length
n. Golomb codes may be regarded as a generalisation of the Rice Codes, with
a Rice(k) code identical to the Golomb(2k) code.

Figure 9.2: Some Golomb Codes for the First few Integers and Parameter m.

m→ 1 2 3 4 5
↓ n
0 0 00 00 000 000
1 10 01 010 001 001
2 110 100 011 010 010
3 1110 101 100 011 0110
4 11110 1100 1010 1000 0111
5 111110 1101 1011 1001 1000
6 1111110 11100 1100 1010 1001
7 11111110 11101 11010 1011 1010
8 111111110 111100 11011 11000 10110
9 1111111110 111101 11100 11001 10111
10 11111111110 1111100 111010 11010 11000
11 111111111110 1111101 111011 11011 11001
12 1111111111110 11111100 111100 111000 11010
13 11111111111110 11111101 1111010 111001 110110
14 111111111111110 111111100 1111011 111010 110111
15 1111111111111110 111111101 1111100 111011 111000
16 11111111111111110 1111111100 11111010 1111000 111001

• If m is a power of 2 (corresponding to a Rice code), the codeword for n is
a simple concatenation of α(1 +n/m) as a prefix, followed by the binary
representation of n mod m to logm bits (ie α(1 + n/m) : β(n mod m).
The representations of a few values are shown below for different values
of m. The α and β components are separated by a ‘:’.
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↓ n m→ 2 4 8
3 0:1 0:11 0:011
9 11110:1 110:01 10:001
14 1111110:0 110:10 10:110

This is a special case of that below, where 2k = 2m and j = 2k−1−m = 0.

• For other values of m, let k be the smallest positive integer such that
2k ≥ 2m. The dictionary starts with j = 2k−1 − m words of length
k − 1, represented in binary to k − 1 bits. This initial group is followed
by groups of m codewords for every word whose length ≥ k. Each
codeword is obtained by adding 1 to its predecessor, except that at the
start of a group of m codewords the incremented value is then doubled
to increase its length by appending a 0.

For all but the first group, the values of n are almost represented by a
prefix of (n − j)/m 1s (an α code without the terminating 0), followed
by β((n − j) mod m + 2j) to k bits. The difference is that the second
(β) component is allowed to overflow into the final 0 of the α prefix.
Without the overflow, the initial 0 of the β code acts as the terminator
of the initial α component. Thus for m = 6, k = 4 the code alphabet
starts with 23−6 = 2 words of length 3 (ie 000 and 001). To form the first
group of 6 codewords, start with the word following the last member of
the initial group and append a 0 (001+1→ 010→ 0100). The first group
is then (0100, 0101, 0110, 0111, 1000, 1001). For successive groups of
m = 6 codewords, add more leading 1s to the α code prefix. Construction
of the m = 6 code is shown in Table 9.8.

To decode the Golomb codes, it is clearly necessary to know the parameter m
and thence the values of k, where 2k ≥ 2m and j = 2k−1 −m. We also need
a, the number of leading 1s (that may be zero), and x the value of the next k
bits starting with the first zero.

There are 3 cases –

n =


a2k + x if 2m = 2k

am+ y/2 if x < j and 2m 6= 2k

am+ x− j if x ≥ j and 2m 6= 2k

• In the simplest case, 2m = 2k, there are a + k + 1 bits in the codeword
and each leading 1 contributes an extra 2k to the value.
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Table 9.8: Construction of Golomb Code for m = 6

n n n n
0 :000 8 10:100 16 110:110 24 1111:000
1 :001 9 10:101 17 110:111 25 1111:001
2 0:100 10 10:110 18 111:000 26 11110:100
3 0:101 11 10:111 19 111:001 27 11110:101
4 0:110 12 11:000 20 1110:100 28 11110:110
5 0:111 13 11:001 21 1110:101 29 11110:111
6 1:000 14 110:100 22 1110:110 30 11111:000
7 1:001 15 110:101 23 1110:111 31 11111:001

• In the next case, we are dealing with the “overflow” at the start of each
group and a+ k − 1 codeword bits. As the value part has one bit fewer
than the prefix indicates, we need to halve the value of y. The bit pattern
y/2 = 0 always corresponds to a multiple of m.

• For the final case, which is usually the most frequent, note the codeword
groups start with a value of 2j at an offset of j from a multiple of m.
Combining the two adjustments gives the represented value as am+x−j.
There are a+ k bits to the codeword.

Examples of Golomb codes are shown in Figure 9.2.

The Golomb and Rice codes tend to be very efficient for moderate values,
but large values are dominated by the long α code prefix, while small values
are represented less efficiently than in the Elias γ codes.

9.10 Start-Step-Stop Codes

These codes [37] are defined by three parameters i, j, k. The representation
may be less clearly related to the value than for Elias γ and Rice codes. If the
last parameter k is finite these codes handle only a finite alphabet; an infinite
alphabet requires that k =∞.

The codewords contain both a prefix and a suffix. The code defines a series
of blocks of codewords (β code) of increasing length, the first block with a
suffix of i bits, the second with i + j bits, then i + 2j bits and so on, up to
a final suffix length of k bits. A unary prefix gives the number of the suffix
group. Thus a 3, 2, 9 code has codewords with suffixes of 3, 5, 7 and 9 bits
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Table 9.9: Code Values for a 3, 2, 9 Start-Step-Stop Code.

Codeword Range
0xxx 0–7
10xxxxx 8–39
110xxxxxxx 40–167
111xxxxxxxxx 168–679

and prefixes of 0, 10, 110 and 111 (omitting the final 0 from the last prefix) as
shown in Table 9.9.

Table 9.10: Special Cases of Start-Step-Stop codes

Parameters generated code
i j k
n 1 n a simple binary coding of the integers to 2n − 1
0 1 ∞ the Elias γ ′ code.
n n ∞ the base 2n Elias γ ′ code
n 0 ∞ a code equivalent to the Rice(n) code

The start-step-stop codes can generate many of the other codes, or codes
equivalent to them, as shown in Table 9.10.

9.11 Ternary Comma Codes

All codes so far have used binary coding. If we consider bit-pairs we can
represent the values 0, 1, 2, comma [30]. Table 9.11 shows the ternary comma
code representation for the first few integers and some larger ones, with “c”
representing the comma (coded as 3).

It will be seen later that the ternary code is one of the better ones for large
values. It is also quite simple to encode and decode. The comma principle
can be extended to larger number bases, but becomes increasingly inefficient
for small values because the comma consumes a large amount of code space
but conveys little information. The higher radix Elias γ codes would seem
preferable.

176   Introduction to Computer Data Representation Peter Fenwick 

  



Table 9.11: Ternary Codes for Various Integers.

value code bits value code bits
0 c 2 11 101c 8
1 0c 4 12 102c 8
2 1c 4 13 110c 8
3 2c 4 14 111c 8
4 10c 6 15 112c 8
5 11c 6 16 120c 8
6 12c 6 17 121c 8
7 20c 6 18 122c 8
8 21c 6 19 200c 8
9 22c 6 20 201c 8

64 2100c 10 1000 1101000c 16
128 11201c 12 3000 11010002c 18
256 100110c 14 10000 111201100c 20
512 200221c 14 65536 10022220020c 24

9.12 Fibonacci Codes

These are codes based on the Fibonacci or Zeckendorf number representations
discussed in Chapter 2. To recapitulate, a value N can be represented as the
scalar product of two vectors, a visible digit vector d and an implicit weight
vector w, such that N = d.w (the scalar product of d and w). For a decimal
representation w = . . . , 1000, 100, 10, 1 and for binary w = . . . , 16, 8, 4, 2, 1.

The Fibonacci codes use as a weight vector the Fibonacci numbers {1, 2,
3, 5, 8, 13, 21, 34, 55, 87 . . . }, where each later number is the sum of its
two predecessors. This gives the “Zeckendorf” integer representation Z(N)
[112], with some examples given in Table 9.12. (All representations have the
least-significant bit to the left.)

The crucial property of the Zeckendorf representation is that it never has
two consecutive ones (by the definition of the Fibonacci numbers any two
adjacent ones are equivalent to a single more-significant 1.) We can therefore
produce a variable length code by just writing the Zeckendorf representation
least-significant bit first and following its most significant 1 by another 1; the
illegal combination of successive 1s acts as a terminator. These codes are also
shown in Table 9.12.

Codes based on the Fibonacci numbers were first described by Apostolico
and Fraenkel [3], and later by Fraenkel and Klein [40]. We start with the
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simpler, but later, codes of Fraenkel and Klein.

Table 9.12: Zeckendorf Representations and Fibonacci Codes

N Z(N) code N Z(N) code
1 1 11 10 01001 010011
2 01 011 20 010101 0101011
3 001 0011 30 1000101 10001011
4 101 1011 40 10010001 100100011
5 0001 00011 50 00100101 001001011
6 1001 10011 60 000100001 000100001
7 0101 01011 70 010001001 0100010011
8 00001 000011 80 101000101 1010001011
9 10001 100011 90 0010000001 00100000011

9.12.1 Fraenkel and Klein Codes

The Fraenkel and Klein C1 code is just the “Fibonacci” code described in
Table 3.5.3.

Their C2 code is obtained by omitting all of the F (N) representations that
start with a 0, so obtaining codewords of the form 1 . . . 1. An alternative
approach is to take the representations F (N − 1) and add a prefix 10. As a
special case, the value 1 is represented by a single 1 bit. In contrast to the C1

codes, the C2 codes do not use “self-contained” codewords as each codeword
overlaps its neighbours. However the C2 code does allow a more compact
representation for the smallest value.

The C3 code is obtained by taking all values of F (N) of some length, say
r bits, and writing down the block twice, first with a prefix of 10 and then
with a prefix of 11. Every codeword of C3 has an initial 1-bit, no codeword
has more than 3 consecutive ones (and any consecutive ones appear only as a
prefix), and every codeword except C3(2) terminates in 01.

Some examples of these codes are shown in Table 9.13, together with the
codeword lengths. There is relatively little difference between them; all are
better for some values and worse for others. Measurements by Fraenkel and
Klein on recoding simple English text show that C1 and C3 give very similar
performance, and are definitely superior to C2. But C2 has a shorter repre-
sentation for 1 and may be better for more highly skewed distributions. These
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Table 9.13: Fraenkel and Klein’s Codes

N C1 C2 C3 L(C1) L(C2) L(C3)

1 11 1 101 2 1 3
2 011 101 111 3 3 3
3 0011 1001 1001 4 4 4
4 1011 10001 1101 4 5 4
5 00011 10101 10001 5 5 5
6 10011 100001 10101 5 6 5
7 01011 101001 11001 5 6 5
8 000011 100101 11101 6 6 5
9 100011 1000001 100001 6 7 6

10 010011 1010001 101001 6 7 6

codes illustrate the general principle that a code that is better for very small
values is often poorer for large values and vice versa.

9.12.2 Higher-order Fibonacci Representations

Traditional Fibonacci numbers involve the sum of two predecessors. In an
“order-m” Fibonacci sequence each number is the sum of its m predecessors.
(The order-3 numbers are often known as the “Tribonacci numbers”.) The
first few Fibonacci numbers of orders 2 and 3 are shown in Table 9.14.

Table 9.14: Fibonacci Numbers of Orders 2 and 3

F
(2)
1 F

(2)
2 F

(2)
3 F

(2)
4 F

(2)
5 F

(2)
6 F

(2)
7 F

(2)
8

1 1 2 3 5 8 13 21

F
(3)
1 F

(3)
2 F

(3)
3 F

(3)
4 F

(3)
5 F

(3)
6 F

(3)
7 F

(3)
8

1 1 2 4 7 13 24 44

These higher-order Fibonacci numbers can be used to generate higher-order
analogues of the Zeckendorf representation, with the property that they have
no runs of k consecutive 1s if k ≥ m. Thus an order-3 representation has no
runs of 3 or more 1s. We assume throughout this section that the Fibonacci
numbers Fk are of order-3, unless otherwise stated.

A simple order m code for N is simply Z(N) (bits in either order), followed
by a 0 and then m 1s. This code is not that efficient, but is useful as an
introduction to the better codes of the following sections.
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9.12.3 Apostolico and Fraenkel Codes

Apostolico and Fraenkel [3] develop several codes using the higher-order Fi-
bonacci numbers. Their emphasis is not so much on variable length codes per
se but rather on codes that are robust under occasional data corruption 3. We
restrict our discussion to order-3 representations, whereas they consider the
general case of order-m codes.

They describe two codes, a “C1” code (our AF 1) and then a “C2” code (our
AF 2, which is simpler than the AF 1 code). The description here is different
from theirs; the original paper should be referred to for much of the underlying
theory and justification.

We number the Fibonacci numbers differently from Apostolico & Fraenkel.
They assume that F1 = 2 for all m ≥ 2. As the Fibonacci Association has
the convention4 that F1 = F2 = 1 and F3 = 2 for m = 2, we assume that all
Fibonacci sequences start with {F1 = 1, F2 = 1, F3 = 2, . . .}, preceded by an
appropriate number of 0s for m > 2.

Table 9.15 shows examples of the Apostolico & Fraenkel codes (their C2

and C1 codes, our AF2 and AF1 codes, for order 3) and some new Fibonacci
codes of Section 9.12.4.

The Apostolico-Fraenkel AF 2 Codes

These codes represent the value 1 with m − 1 consecutive 1s. Larger values
are encoded as the Zeckendorf representation Z(N − 1), most-significant bit
leading, followed by a suffix of 0 and then (m − 1) 1s. (The termination
comes from these 1s and the first 1 of the next codeword; the code is not
instantaneous.)

The Apostolico-Fraenkel AF 1 Codes

These codes involve a transformation or mapping to remove many “awkward”
codewords. For the order–3 codes we start with the order-3 Fibonacci numbers
Fk from Table 9.14 and calculate the cumulative sums S =

∑
F (k) of those

numbers, as shown in Table 9.16.

3Because these are “comma” codes, a one-bit error can at worst split one value into two,
or merge two into one; the error does not propagate.

4See any recent issue of Fibonacci Quarterly for this and related conventions.
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Table 9.15: Apostolico and Fraenkel’s Codes, with New Fibonacci Codes

Apostolico & Fraenkel New Fibonacci Codes
AF2 AF1 NF3

N order 3 order 3 order 2 order 3
1 11 111 11 111
2 1011 0111 011 01111
3 10011 00111 0011 11110
4 11011 10111 1011 001110
5 100011 000111 00011 101110
6 101011 010111 10011 01111
7 110011 100111 01011 0001110
8 1000011 110111 000011 1001110
9 1001011 0000111 100011 0101110

10 1010011 0010111 010011 1101110
11 1011011 0100111 001011 001111
12 1100011 0110111 101011 101111
13 1101011 1000111 0000011 00001110
14 10000011 1010111 1000011 10001110
15 10001011 1100111 0100011 01001110
16 10010011 00000111 0010011 11001110

To encode a value N –

1. Find k such that Sk−1 < N ≤ Sk.

2. Find Q = N − Sk−1 − 1.

3. Encode Fk+1+Q in an order-3 Zeckendorf representation, most significant
bit first.

4. Delete the leading 10 from this codeword and attach the suffix 0111 as
terminator. (The codeword always has a prefix of 10, by virtue of step
2.)

The values 1 and 2 have the special codewords 1→ 111 and 2→ 0111.

To encode the value 11 (their example) –

1. Find k such that Sk−1 < 11 ≤ Sk; k = 5, Sk−1 = 8.

2. Q = 11− 8− 1 = 2.
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3. Encode Fk+1 +Q = 13 + 2 = 15 in an order-3 Zeckendorf representation,
giving 10 010.

4. Delete the leading 10 and add the suffix 0111 to give 010 0111 as the
final codeword.

Again, to encode 40, we find N = 7 and Q = 11; encode 44 + 11 = 55 to
give first 1001100 and thence 01100 0111 as the final codeword.

Table 9.16: Development of the Apostolico-Fraenkel AF 1 Codes

k 1 2 3 4 5 6 7 8
Fk 1 1 2 4 7 13 24 44

S = ΣFk 1 2 4 8 15 28 52 96
Range - - 3–4 5–8 9–15 16–28 29–52 53–96

The second step (Q = N − Sk−1) needs explanation. Consider the order-3
representations of Fk ≤ N < Fk+1 as shown in Table 9.17 for the range 13 ≤
N < 24, (ie F6 ≤ N < F7), with the digit weights in the first row and greater
weights to the right. By the Fibonacci definitions, there are (Fk−1 + Fk−2)
values in this range; the Fk−1 smaller ones end with . . . 01 and the Fk−2 larger
with . . . 11. The adjustment Q = N − Sk−1 eliminates all representations
with most-significant bits . . . 11. Thus a received bit sequence . . . 0111 always
corresponds to the numeric bits . . . 01.

The AF 1 code is then just two bits longer than the Zeckendorf represen-
tation whereas the simpler AF 2 code is three bits longer than the Zeckendorf
representation after absorbing the most-significant 1 bit into its terminator
1110. By discarding some of the possible codewords the AF 1 code is slightly
longer for larger values. Against this it is inherently 1 bit shorter than the
simpler code; the two effects largely cancel.

From Table 9.2, the Fibonacci-3 (or “Tribonacci”) codes have an effective
base b = 1.839 and an expansion x = 1.137. But they follow the general trend
that a more compact code (smaller x) tends to have a more complex length
indication that may offset (or even overwhelm) the smaller expansion.

The first order-3 Zeckendorf code above presented the bits in increasing
significance, followed by the suffix 0111. In the AF 1 code the bits are presented
in decreasing significance, again with a suffix 0111. Now consider the AF 1 code
with its bits in increasing significance, so that the code for 11 is 010 0111 and
for 40 is 11010 0111. But these codes are respectively 01001 11 and 1101001 11,
shifting the break to give a different emphasis to the two components. Both
are the representations of Fk+1 +Q with a suffix of 11.
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Table 9.17: A Range of Order-3 Zeckendorf Representations

digit weights digit weights

N 1 2 4 7 13 N 1 2 4 7 13

13 0 0 0 0 1 19 0 1 1 0 1
14 1 0 0 0 1 20 0 0 0 1 1
15 0 1 0 0 1 21 1 0 0 1 1
16 1 1 0 0 1 22 0 1 0 1 1
17 0 0 1 0 1 23 1 1 0 1 1
18 1 0 1 0 1

So an alternative way of generating a code equivalent to the AF 1 code is to
generate Z(Fk+1 +Q), least-significant bit first, and append a suffix 11.

9.12.4 The “NF3” Order-3 Fibonacci Code

As the order-3 Fibonacci codes may end with either one or two consecutive
1s, the terminator must allow the two cases to be distinguished. Apostolico
and Fraenkel solve the problem by eliminating those codes whose Zeckendorf
representations end in . . . 11.

The “NF3 code” here was first described in Sayood [87]; its description is
copied here. It transmits the order-3 Zeckendorf representation least-significant
bit first (using F (N)) and follows its most significant 1-bit with a suitable
comma or terminator as described later. With the order-2 code, the most-
significant bit pattern (LSB first) is always . . . 01 and a single 1 bit acts as an
unambiguous terminator. With the order-3 code the most significant bit pat-
tern may be either . . . 011 or . . . 01. The terminator must be a run of 111 but
it is also necessary to decide how many of those 1s have numeric significance.

The FN3 code uses the following rules for the terminator.

• If F (N) ends with . . . 01, add the terminator 110, so that the codeword
ends with . . . 01 110.

• If F (N) ends with . . . 011, add the terminator 11, so that the codeword
ends with . . . 011 11.

The bit immediately after the terminating sequence 111 indicates how many
numeric 1s to retain. But the isolated terminator 111 can be retained as a
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unique representation for the minimum value. It always follows on immedi-
ately from another terminator, occurs at the start of the codeword and can be
decoded without ambiguity. While the codeword lengths are similar to those
of the Apostolico & Fraenkel C2 code (a few are 1 bit shorter), the NF3 code
is much simpler to generate. Examples of the NF3 code are shown earlier in
Table 9.15.

Table 9.18: Terminators for Order-5 Fibonacci Code

numerical bits final code
. . . 01 . . . 01.1111.0
. . . 011 . . . 011.111.10
. . . 0111 . . . 0111.11.110
. . . 01111 . . . 01111.1.111

The principle can be extended to higher order Fibonacci codes, but with
increasingly expensive terminators. An order-m code must be built out to
have m terminating 1s, but then needs a code to say how many of those 1s are
numerically significant. The result is that an order-5 code needs on average
a 5 bit terminator, as shown in Table 9.18, with dots inserted to separate
the components of the terminator. The terminator lengths in this table are
Huffman coded according to their probabilities. While the order-5 code is
inherently quite efficient, its costly terminator means that it is shorter than the
order-3 Fibonacci code only for values over about 1 million. Fibonacci codes
of order greater than 3 are expected to be useful only in special circumstances.

9.13 Constant Hamming-Weight Codes

A very recently discovered family of variable length codes is self-delimiting by
always stopping on the second ‘1’ of the representation.

9.13.1 Goldbach Codes

A famous proposition in Number Theory is the “Goldbach Conjecture”, that
every even number is the sum of two primes5. Although not even yet proved
in a mathematical sense, it is certainly believed to be true and has been ex-

5Letter by Christian Goldbach to Leonhard Euler 7 June 1742, restated by Euler
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perimentally verified for values to at least 4× 1017. The Goldbach Conjecture
leads to a curious variable-length integer representation.

Remember the earlier equation that an integer N can be represented as the
scalar product N = d · w, where d is the visible digit vector and w is an
implicit weight vector. Now let w = {1, 3, 5, 7, 11, 13, 17, 19, . . .}, the sequence
of primes. The first few even numbers can then be represented as in Table
9.19. (The representations are not necessarily unique as shown by the two
entries for 8; all except the smallest values have multiple representations.)

Table 9.19: Some “Goldbach” Even Integer Representations

N Sum representation
4 1 + 3 11
6 1 + 5 101
8 3 + 5 011

1 + 7 1001
10 3 + 7 0101
12 5 + 7 0011
14 3 + 11 01001
16 5 + 11 00101
18 7 + 11 00011
20 7 + 13 000101

Table 9.20: Some “Goldbach” General Integer Representations

N Sum representation
3 none
4 0+1+3 011
5 1+1+3 111
6 0+1+5 0101
9 1+3+5 1011
10 0+3+7 00101
13 1+5+7 10011
14 0+3+11 001001
15 1+3+11 101001

Codes based on this principle have been developed by Fenwick [34]. For
example, the first bit is an even/odd switch with a weight of 1, with later bits
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having weights {1, 3, 5, 7, 11, 13, 17, 19, . . .}. The representation is therefore
terminated by the second 1-bit after the first place. It is usual to encode a
biassed value, because the code as given does not handle values 0, 1, 2, or 3.
Examples are given in Table 9.20. Other versions of these codes use a gamma
code to represent the lengths of runs of zeros.

9.13.2 Ibsen Code

Jørgen Ibsen [57] has developed an improved constant Hamming weight code
by abandoning the assumption that each bit should have a specific weight.
(This section has been added for this publication; it is, apparently, otherwise
unpublished.) A version of his code is illustrated in Table 9.21.

Table 9.21: Some “Ibsen” Integer Representations

N Sum representation
1 0+1 11
2 0+2 101
3 1+2 011
4 0+4 1001
5 1+4 0101
6 2+4 0011
7 0+7 10001
10 3+7 00011
11 0+11 100001
15 4+11 000011
16 0+16 1000001

The first 1 has a weight of {0, 1, 2, 3, 4, . . . } (the number of preceding
0s), while the final terminating 1 has a weight based on the total “area” of
all preceding codewords. For a codeword of length `, the final bit has weight
2 + `(` − 3)/2 and the codeword represents values from 2 + `(` − 3)/2 to
`(`− 3)/2 + `.

9.14 Choice of Codes

Variable length codes are designed for the efficient coding of values with dif-
fering probabilities (unknown to the decoder). If, in a message, an integer n
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occurs with a probability Pn, we know from Information Theory that the short-
est overall message coding results if each code has log2(1/Pn) bits, for all values
of n. Thus a “good code” will have shorter representations for more-frequent
values and longer representations for less-frequent values. The following points
come from the author’s experience.

• The Rice codes are a good choice for a peaked distribution, with few very
large or very small values and a preponderance of middle values. The
Rice parameter allows the coding to adjusted for the known distribution
of encoded values.

• The author has used variable length codes mostly in lossless data com-
pression where the message is dominated by small values [36]. The prob-
ability distribution tends to follow a Pn ∝ n−1 law, or even Pn ∝ n−2,
with the smallest symbol having a probability of 0.5 or 0.6.

Here the good codes tend to be those with the simplest structure, either
the Elias β code or the Fraenkel-Klein C1 codes. The main difference
here is the β code represents the smallest value by one bit, whereas
the C1 uses 2 bits, but the C1 code is more efficient for large values.
Therefore, for very skew value distributions, with highly-probable small
values, use the β code, and for less-skew distributions use the C1 codes.
The differences though, tend to be small,

Finally, note that all of these codes follow the “keep it simple” philosophy,
Seemingly clever ideas are all too often counter-productive.

9.15 Wheeler Codes

We conclude with a rather different variable-length code. Instead of using
binary (mostly) for the codeword, this uses symbols from the source alphabet
and is used only for encoding symbol runs.

Symbol runs often occurred in formatted “unit record” equipment, which
used blanks to give correct field alignment. As long strings of blanks were
expensive to transmit or store, the data was often subjected to some form
of run-length encoding, replacing consecutive identical symbols by a count
of the replaced symbols. Often this was only for embedded blanks, because
trailing blanks were easily replaced by End-of-Line symbols). For example a
special introduction code (such as ASCII ESC) might be followed by two coded
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decimal digits, allowing runs of up to 99 blanks. Runs are important too in
data compression, often as part of pre-processing, and this is where they will
usually be encountered.

The method here, communicated by David Wheeler [110] 6 can encode runs
of any symbol within a text string. Wheeler’s original description is rather
complex and difficult, but is given first; a simpler one will follow.

Wheeler’s description Assume that the string “xx” is interpreted as the
start of a following run of N xs. The run length N may be zero, and x
is interpreted to mean the binary representation of the symbol x (which
is usually a byte). Having determined the run length, we convert that
length to a bit stream where the 0-bits, in increasing significance, have
the values 1, 2, 4, 8, . . . and the 1-bits 2, 4, 8, 16, . . . . This encoding is
emitted from the least-significant bit, representing each 0 bit by x and
each 1 bit by x+ 1 (the symbol whose binary representation is 1 greater
than that for x). If the string terminates in x + 1 or x + 2 stuff an
extra x + 2 into the encoded symbol stream (It will be removed during
decoding)7.

In a standard binary code all 0s have a weight of 0, and 1s have weights
1, 2, 4, 8, . . .respectively (the powers of 2). In the Wheeler code successive
0s have weights 1, 2, 4, 8, . . . and successive 1s have weights 2, 4, 8, 16, . . ..
The code is terminated by any character other than x or x + 1. The
first few encodings are shown in Table 9.22. The name “Wheeler 1/2”
arises because the first bit has a weight of 1 or 2, which Wheeler writes
as 1/2. Remember that if the run of xs is followed by x+1 (or x+2) the
code x + 2 is always forced into the output stream; a terminating x + 2
is always removed on decoding.

An alternative explanation Still using “/” to mean “or”, the digit weights
can be written as (0+1)/(1+1), (0+2)/(2+2), (0+4)/(4+4), etc. Thus
each weight is a standard binary weight, plus a 2k weight for digit k. In
a representation of n bits these constant weights add to 2n− 1; adding a
further constant 1 turns these into 2n or a single more-significant 1. Thus
the Wheeler code for N is the same as the binary code for N + 1 with
the most-significant 1 deleted, as may be seen from the last column of
Table 9.22. The Wheeler 1/2 code is little more than a reinterpretation
of a binary representation.

6Wheeler claimed to not know the origin of the code, but it is quite probably his own.
7If this sounds complex, do not worry—many other people also think so!
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A much simpler way of generating the Wheeler code for N suppressed
symbols then is to encode N+1 in binary and ignore the most-significant
or final bit. The “length” is now rather more obvious because an empty
run (no more symbols following the introduction string) must decode as a
1. When decoding, the number is handled as binary, with a 1 implied by
whatever symbol terminates the sequence; the count is then decremented
by 1.

Table 9.22: Bit Weights and Coding in Wheeler 1/2 Code

reverse
Bit weights Sums value binary
1/2 2/4 4/8 N N + 1
0 1 1 01
1 2 2 11
0 0 1+2 3 001
1 0 2+2 4 101
0 1 1+4 5 011
1 1 2+4 6 111
0 0 0 1+2+4 7 0001
1 0 0 2+2+4 8 1001
0 1 0 1+4+4 9 0101
1 1 0 2+4+4 10 1101
0 0 1 1+2+8 11 0011
1 0 1 2+2+8 12 1011
0 1 1 1+4+8 13 0111
1 1 1 2+4+8 14 1111

We now present a more general version of the Wheeler code which can
handle runs of any symbol. (This is also due to Wheeler.) Assume that some
symbol X encodes (say in ASCII) to some binary integer x and assume that
a run is signalled by the two symbols “XX” (two consecutive symbols signal
a run – ’X’ denotes any symbol). Then find the run length ` or number of
following Xs.

Encode –

• Transmit the length ` + 1 in binary, least-significant bit first, en-
coding each 0 bit as x and each 1 as x⊕ 1 (Exclusive Or).
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• The most-significant 1-bit of the length is signalled by a symbol
whose code is neither x nor x⊕ 1.

• If the symbol following the run encodes as either x ⊕ 1 or x ⊕ 2,
stuff a symbol x⊕ 2.

Decode –

• Convert x→ 0 and x⊕ 1→ 1, building a binary number from the
least-significant bit.

• Terminate decoding on any symbol neither x nor x⊕1, interpreting
it as the most-significant 1 (and preserving it as the next symbol
for any further processing).

• Discard any symbol x⊕ 2 which terminates a run.

Table 9.23: Example of Wheeler’s Run-length Code

lengths
String run coded coded string comment
12334 2 1 12334 code 1
1233334 4 3 123334 code 01
12333334 5 4 1233334 code 001
123333334 6 5 1233234 code 101
1299999998 7 6 1299889! code 110 – (stuff ! = 9⊕ 2)
125551 3 2 1255771 code 10, jam 7
12446 2 1 124466 code 1, jam 6

Note here that as ` must be at least 1, the encoded length is usually 1 more
than the number of suppressed symbols. The method actually works if each
and every symbol is assumed to start a run, but inefficiencies may follow from
the stuffed x ⊕ 2 symbols. It is more usual to signal a run by two or more
consecutive identical symbols; the actual offset is decided by experiment.

For an example assume that we have a string of decimal digits, with two
identical symbols signalling a run, as in Table 9.23.
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Chapter 10

Abstract: Much computer data is prone to errors, especially when
transmitted in space (or in time, as in data storage). The correspond-
ing need for error detection and correction has been recognised from
the very beginning of electrical computation. Error correction is a large
and complex subject which is just touched-on here, but error detec-
tion is a much simpler, but seldom discussed subject and is the main
emphasis of this chapter. After a brief mention of parity checks in
textual data transmission, the emphasis is on checksums for verifying
strings of decimal digits. Check-digit algorithms include the Luhn, those
used in ISBN codes, and the Verhoeff and Damm checks, both based
on advanced number theory. The chapter concludes with discussion of
the more-powerful message checksums, especially those of Fletcher and
Adler, and the Cyclic Redundancy checks.

Keywords: Parity codes, Hamming codes, modular arithmetic,
Luhn checksum, ISBN checksum, Verhoeff checksum, Damm checksum,
Fletcher checksum, Adler checksum, CRC checksums.

10.1 Introduction

This chapter is perhaps somewhat out of place in this book as it does not really
deal with data representation. But computer data is frequently exchanged with
the outside world, usually by recording or transmission media1. As all of these

1Error detection is often necessary even when transferring data within a computer as a
special case of transmission.
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operations are potentially error-prone, it is sensible to include some mention
of methods to ensure data integrity. Another justification is that there seemed
to be few, if any, collected accounts of checksums and related error detection
techniques.

But a preliminary comment is appropriate. This chapter presents several
algorithms of varying complexity and varying error-handling ability. Unfortu-
nately the better algorithms are often complex and subtle. While complexity
is of little account when buried in immutable subroutines it can be positively
dangerous if the code is accessible. It is then all too liable to be “improved”
by programmers who think they know how it works. A good general rule is to
remember “KISS” (“Keep It Simple Stupid”), especially if the code is at all
accessible,

10.2 Error Control Codes

Computing has always had to live with errors, especially in data transmission
and data recording. Sometimes these errors are only a nuisance and a simple
retry can obtain satisfactory, accurate, data. But sometimes an error can be
serious, and perhaps even disastrous if an accurate original copy is inaccessible.

Two related, but somewhat parallel disciplines, have developed to deal with
the handling of erroneous data, both part of the general theme of “Coding
Theory” and collected under the generic title of “Error Control”.

Error Detection extends the ideas of parity to provide powerful and reliable
detection of errors, usually by appending a “checksum” of 8, 16 or 32 bits
to the data. The checksum is carefully designed to be sensitive to the
probable errors: a checksum for manual data entry must be sensitive to
digit transposition and repetition, while one for data transmission must
detect long bursts of errors. A detected error invariably leads to an alarm
of some sort and request for data re-entry or retransmission.

Error correction is required if the original data is remote either in space
(such as telemetry) or in time (such as data recording), with the original
somehow inaccessible. In both cases the transmitted data must carry
sufficient redundant information to allow the original to be reconstructed
in the presence of an error. While methods for handling single-bit errors
have been known for many years and errors of just a few bits for nearly
as long, few data errors are that simple. The methods for coding on
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physical transmission or recording media mean that many single errors
at the physical level become bursts of errors at the data level. Burst
error correction is then important, but is unfortunately a very difficult
topic.

Despite the division of error control into two fields, many of the techniques in
one can be applied to the other. In particular, the better error detection codes
are based on polynomial generators and Galois field arithmetic. Exactly the
same techniques can be applied to some of the simpler error correcting codes,
perhaps just by choosing a different generator polynomial. A consequence
of this convergence is that a suitable long checksum can often provide some
degree of error correction over a short message. An example is found in the
ATM cell header which is protected by an 8 bit checksum (or “Header Error
Control” field—HEC), far longer than is usually needed for the 32 bits of the
header. Although it is designed for error detection, the HEC can provide some
error correction as well.

This chapter emphasises codes for error detection where it is possible to
repeat the entry or transmission. Codes for error correction are touched on
only briefly, describing Hamming codes one of the older and simpler error
correcting codes. A full discussion of error correction codes is far beyond the
intended scope of this book.

10.3 More on Parity

The basics of parity were introduced in Section 4.9.10 where a single parity
bit is added to a byte, word, or other simple data unit. Simple parity is fine
for detecting very occasional errors, but becomes less satisfactory for higher
error probabilities and for longer data.

With a bit error probability of p and assuming independent errors, the
probability Pk of an n-bit message having k errors is

P0 = (1− p)n

P1 = n(1− p)n−1p

Pk =
n(n− 1) . . . (n− k + 1)

k!
(1− p)n−kpk

for small p, then P2 ≈
(np)2

2
(the probability of an undetected error)
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Unfortunately a single parity bit detects only odd numbers of errors and does
not detect even numbers of errors. For a message of 12 500 octets (n = 100 000)
and a bit error probability p = 10−6, the probabilities are

P0 90.5% probability of no errors

P1 9.05% probability of one error

P2 0.45% probability of two errors (undetected)

Pk>0 10.5% probability of at least one error

Podd 10.0% probability of any odd errors (detected)

Peven 0.50% probability of any even errors (undetected)

Thus even though 10.5% of messages have detected errors and should be re-
transmitted, 0.5% of the messages contain undetected errors and are falsely
reported as “correct”.

Except where errors are very infrequent, practical error control uses much
more powerful and complex checking functions, with the checking spread over
several inter-related checking bits, so that even a single error affects several
parity bits and multiple errors are unlikely to cancel out and give a “false
positive”. Many of the checks described here are for strings of decimal digits,
while others apply to sequences of bytes or octets.

Figure 10.1: Horizontal and Vertical Parity on a Message

char P a r i t y c h e c k s
hex 50 61 72 69 74 79 20 63 68 65 63 6B 73 HP
VP 0 1 0 0 0 1 1 0 1 0 0 1 1 0

MSB 1 1 1 1 1 1 0 1 1 1 1 1 1 0
0 1 1 1 1 1 1 1 1 1 1 1 1 0
1 0 1 0 1 1 0 0 0 0 0 0 1 1
0 0 0 1 0 1 0 0 1 0 0 1 0 0
0 0 0 0 1 0 0 0 0 1 0 0 0 0
0 0 1 0 0 0 0 1 0 0 1 1 1 1

LSB 0 1 0 1 0 1 0 1 0 1 1 1 1 0

As a simple extension of parity, Figure 10.1 shows an ASCII message with
both character (vertical) parity and message (horizontal) parity as was used on
some early ASCII terminals with block-mode transmission. The top row shows
the characters of the message and the line below that their encoding in (7-bit)
ASCII. Below that row VP shows the even vertical parity of each character
based on the bits as shown in the remaining rows. At the extreme right, the

194   Introduction to Computer Data Representation Peter Fenwick 

  



column headed HP shows the horizontal parity for the entire message, where
each bit is the Exclusive-OR of all preceding bits in that row (or bit-position
within the characters). It is again even parity, though odd parity can be used
if desired in either case. An error is usually signalled if the vertical parity fails
for any character or if the overall horizontal parity fails.

The 2-dimensional parity is much better than the simple 1-dimensional par-
ity in detecting errors; errors will escape detection only if they occur in fours,
in positions on the corner of a rectangle. (If it is known that only one error
has occurred, then that error can be corrected at the intersection of the failing
row and column parities.) It was soon superseded by the much more powerful
CRC-16 checks, described in Section 10.7.10.

10.4 Hamming Codes

The Hamming Code [50] is one of the oldest and simplest of the error-correcting
codes and is a good example of a Single Error Correcting (SEC) code. For the
simplest non-trivial case (and the one which is the usual example) take 4 data
bits and 3 parity bits and arrange them in a 7-bit word as d7d6d5p4d3p2p1,
with the bits numbered from 7 on the left to 1 on the right. The bits whose
numbers are of the form 2k are used as parity bits, with the other bits used as
data, as in Figure 10.2.

Figure 10.2: Example of Hamming Correction

The raw data 1 1 0 1
Bit numbers 7 6 5 4 3 2 1

position data for Hamming 1 1 0 . 1 . .
generate even parities . . . 0 . 1 0
combine for codeword 1 1 0 0 1 1 0
bit#6) corrupted 1 0 0 0 1 1 0 syndrome
generate syndrome 1 0 0 0 1 1 0 1 1 0
syndrome = 6, bit error at ↑

On transmission set the parity bits as below, transmitting the entire 7-bit
word as the codeword.

Checksums and Error Control Introduction to Computer Data Representation   195 

  



p1 = d3 ⊕ d5 ⊕ d7 (the bits with a “1” in the bit number)
p2 = d3 ⊕ d6 ⊕ d7 (the bits with a “2” in the bit number)
p4 = d5 ⊕ d6 ⊕ d7 (the bits with a “4” in the bit number)

On reception, calculate the “syndrome” S = {s4s2s1} from the equations

s1 = p1 ⊕ d3 ⊕ d5 ⊕ d7
s2 = p2 ⊕ d3 ⊕ d6 ⊕ d7
s4 = p4 ⊕ d5 ⊕ d6 ⊕ d7

If S = 0, then the bits are all correct. If S 6= 0, then it gives the number of
the bit in error (assuming just one error).

The Hamming code is easily extended to longer words, by using each bit
number 2k as a parity bit, but does not extend to correcting more than one
error. The example used here is often written as a (7,4) code; each codeword
has 7 bits, with 4 of those for user data. A general SEC Hamming Code is
described as a (2k − 1, 2k − 1− k) code. Examples are the (15,11) and (31,26)
codes.

Adding a single parity bit gives a code which is able to detect two errors
if an internal parity fails, but the overall parity still succeeds, giving a Single
Error Correcting, Double Error Detecting (SEC-DEC) code.

The simpler Cyclic Redundancy codes of Section 10.7.10 give similar per-
formance to Hamming codes, but are more easily extended to correct multiple
errors.

10.5 Modular Checkdigits and Checksums

Most of the checks described here use some form of modular arithmetic, de-
riving some relatively large value from the data and reducing that value to
a smaller one by taking its remainder on division by some modulus. In very
simple cases we may just use a modulus of 10 (which delivers the units decimal
digit), or 256 (to give the least significant 8 bits). Generally the modulus is
chosen using some less obvious criterion which maximises the ability to detect
errors. The simpler techniques use ordinary numerical division and are more
suitable for software calculation, while others use polynomial division and are
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better for hardware implementation. For example, many checking algorithms
work best if the modulus is a prime number. Ordinary parity is the simplest
example of modular arithmetic, taking the sum of the bits modulo 2.

10.5.1 Modular Arithmetic

When adding or subtracting mod p, it is necessary only to divide every value
by p and take the positive remainder. Multiplication and division require more
care.

We say that a “number a is congruent to a′ modulo m” if both a and a′

give the same remainder on division by m. This relation is written

a ≡ a′ mod m

b ≡ b′ mod m

Consider the particular case m = 12, a = 21 and b = 20. Then

a′ = 9 and b′ = 8

and
ab ≡ a′b′ ≡ 0 mod 12

despite neither a nor b being congruent to zero modulo 12. Only for a prime
modulus do we have that if a product is zero, then at least one factor is zero.
Given that many checksums work by forcing an overall value to be congruent
to zero, this is a very important requirement.

10.6 Parity and Arithmetic Checksums

In the following descriptions we will use the generic term “digit” for the basic
data. Depending on the context it may be a decimal digit (range 0 . . . 9), a
byte (range 0 . . . 255), a 32-bit word (range 0 . . . 231−1), etc. In many respects
the algorithms are similar for all cases.

For simplicity the term “checksum” will include terms such as “parity” and
“check-digit”. “Digit” will include “byte”, “character” and “word” as whatever
is the major data unit entering into the calculation. More usually though, the
term “check digit” is used where the entities being checked are decimal digits
(human readable) and the check is itself a decimal digit (or is usually decimal).
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logical sum A checksum is formed by bit-wise Exclusive-ORing together all
the bytes or words of the message.

{0010, 1010, 1001, 0001, 0110} → 0110

Each bit of the checksum is the Exclusive-OR of the corresponding bits
of each data word, as shown in the horizontal parity of Figure 10.1.
Problems with this approach are that errors have limited effect on the
checksum, and that it does not detect transpositions (unimportant for
data transmission, but crucial for data entry).

arithmetic sum This resembles the logical sum, except that the Exclusive-
OR is changed to a conventional arithmetic addition. With this change,
the carries give some inter-dependence between bits of the checksum, but
it is still insensitive to data transpositions.

With most computers the obvious addition uses 2s complement, reducing
the sum modulo 2N for an N bit word. However, with the carries prop-
agating from least- to most-significant bits, the more-significant bits are
much more sensitive to errors than are the less-significant bits. Changing
to 1s-complement addition (adding modulo 2N − 1 rather than modulo
2N), allows the “end-around” carry to give an overall symmetry to the
operation with low-order checksum bits affected by changes in high-order
data bits.

This is the checksum used in TCP/IP (section 3.4). While it is com-
putationally simple and better than a simple Exclusive-OR, it is not as
good as the Fletcher or Adler checksums described later.

Tests on real data by Stone et al [93] show that the TCP/IP checksum
is not good for many types of real-world data, such as character strings
and even real numbers where there may be high correlations between
adjacent words. They show that checksum values are far from uniformly
distributed, and that the 16-bit TCP/IP arithmetic checksum may be
no better than a 10-bit CRC.

10.7 Digit Checksums

The checksums of this section are all designed to check decimal numbers, and
especially ones which are manually entered. Frequent errors during manual
data entry are duplication or deletion of digits, transposition of adjacent dig-
its and substitutions such as “667” for “677”. Simple parity and arithmetic
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sums have the disadvantage that all digits are treated identically; to handle
transposition errors the digits must be treated differently so that the check-
sum is also dependent in some way on the position of each digit. Most of the
examples for digit checksums use systematically varying weights for successive
digits. Wagner and Putter discuss using decimal check digits for a particular
application [108].

In general a “good” checksum includes some aspect of each character’s posi-
tion as well as its value. Thus the simple 1s complement sum or Exclusive OR
checks are “poor” because they take no account of position. The Luhn and
ISBN-13 checks are better because of their alternating weights, but are still
inferior to most of the others discussed here, all of which include the position
in some way or another.

The examples will assume a string of decimal digits

. . . d6 d5 d4 d3 d2 d1 d0

where the subscript corresponds to the power of 10. The digits d6 . . . d1 will
be the supplied data and d0 the checksum digit.

10.7.1 Luhn Algorithm

This algorithm was described in 1954 by H.P. Luhn of IBM [70]; it is now in
the public domain and widely used. This check, discussed briefly in [14][p 49],
is given as an example of a very simple checksum which involves minimal
computation and is appropriate to electromechanical equipment, such as the
IBM 026 Card Punch. It will detect adjacent transpositions (but not 09↔ 90)
but because of the simple repeating pattern of weights is insensitive to many
other errors.

Form the sum of the even digits plus twice the odd digits.

s =
∑

d2i + 2×
∑

d2i+1

and the check digit is the 10s complement of the last digit of s. Thus the check
digit c is

c = 10−
(∑

d2i + 2×
∑

d2i+1

)
mod 10

Wagner and Putter [108] describe a similar algorithm (possibly the same one
given that they provide more details) which is used for some account numbers
and is known as the “IBM check”. The possible difference is that when a digit

Checksums and Error Control Introduction to Computer Data Representation   199 

  



is doubled and exceeds 10, the two digits of the sum are added. Thus 2∗3→ 6,
while 2 ∗ 7→ 14→ 5.

10.7.2 Modular Check

This method is described by Hamming [52][p 28 ff] but is widely used in many
other contexts as well. All digits are weighted by their position in the input
number. While it might seem natural to have the weights increasing from left
to right, the usual “sum of sums” algorithm assigns weights increasing from
right to left.

The value (including checkdigit), must have
∑

(i+ 1)di mod m ≡ 0.

To generate the sum without multiplication (or even prior knowledge of the
number of digits), progressively form the sum of the digits, in order left to
right, and at each stage add the sum into a running “sum of the sums.” To
illustrate with the successive digits p q r s t.

Message Sum Sum of Sums
p p p
q p+ q 2p+ q
r p+ q + r 3p+ 2q + r
s p+ q + r + s 4p+ 3q + 2r + s
t p+ q + r + s+ t 5p+ 4q + 3r + 2s+ t

Hamming [52] gives an example of checksumming a combination of the
letters “A”. . . “Z”, digits “0”. . . “9” and space “ ”. This gives an alphabet of
37 symbols, conveniently a prime number.

10.7.3 ISBN Checks

Two examples of widespread checksums are the ISBN (International Standard
Book Number).2 The ISBN numbers give a unique identifier for books, with
separate codes for each different version of a book (paperback, hard cover,
different publishers, etc.) There are two formats, the earlier ISBN-10 with 10
digits, and the later 13-digit ISBN-13. Their internal structures are different
(and irrelevant here) but the two have quite different validity checking.

2For this section I depart from normal practice and explicitly refer you to the Wikipedia
entries such as “ISBN” and “EAN”, which are not easy to summarise.
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ISBN-10 checksum The ISBN was first defined in 1970 as a sequence of 10
decimal digits indicating the country, the publisher, a sequence number
for the book and a final check digit. The digits are combined with a “sum
of sums” as above and reduced modulo 11 to give a check digit, written as
the final, 10th, digit of the ISBN. With a modulus of 11, the check digits
can range from 0 to 10. While we could just ignore values with a check
digit of 10, that wastes 1/11 of the available numbers. Instead, a check
digit of 10 is represented by “X”, giving an ISBN such as 0 7112 0232 X.

To compute the checksum, calculate . . . 8d7 + 7d6 + 6d5 + 5d4 + 4d3 +
3d2 + 2d1, reduce the sum modulo 11 and take the 11s complement of
the result as the check digit. Including the check digit within the sum
should give a “check” of 0.

c = 11− (
∑

(i+ 1)di) mod 11

To illustrate the verification of an ISBN, consider the example above –

digit sum sum of sums
0 0 + 0 = 0 0 + 0 = 0
7 0 + 7 = 7 0 + 0 = 7
1 7 + 1 = 8 7 + 8 = 15
1 8 + 1 = 9 15 + 9 = 24
2 9 + 2 = 11 24 + 11 = 35
0 11 + 0 = 11 35 + 11 = 46
2 11 + 2 = 13 46 + 13 = 59
3 13 + 2 = 16 59 + 16 = 75
2 16 + 2 = 18 75 + 18 = 93
X 18 +10 = 28 93 + 28 = 121 ≡ 0 mod 11

The final sum of sums is a multiple of 11, showing that this is a valid
ISBN.

ISBN-13 As is all too often the case with fixed-length identification numbers,
the ISBN-10 format eventually became too small for the number of books.
Also, because the ISBN was often printed as a bar code (which codes were
little used when the ISBN-10 was defined in 1970) it became desirable to
include book numbers within the overall “EAN” international bar-code
product numbering scheme. The ISBN-13 standards were published in
2005 and became mandatory in 2007.

The ISBN-13 numbers start with prefix of 978, followed by 9 data digits,
which include publisher and title, and a final check digit. The number
may be written using spaces or hyphens as field separators. (The 978

Checksums and Error Control Introduction to Computer Data Representation   201 

  



prefix is effectively a “Bookland” country code; the 979 prefix is also
available for books.)

The ISBN-13 check digit calculation is quite different from that of ISBN-
10, but follows that of the EAN standard. It is similar to the Luhn
algorithm, Section 10.7.1, but with different alternating weights. The
digits, from left to right, are alternately multiplied by 1 or 3, and the
products summed modulo 10 to give a value ranging from 0 to 9. The 10s
complement of that modulo-10 sum is the check digit. Using subscripts
to denote the multipliers, the ISBN number 978-0-12-62086-0 may be
written (first 12 digits only)

91 73 81 03 11 23 61 23 01 83 61 03

= 9 + 21 + 8 + 0 + 1 + 6 + 6 + 6 + 0 + 24 + 6 + 0

= 90

The sum modulo 10 is 0, and its 10s complement, also 0, becomes the
check digit (confirming the given value).

The checking is not as powerful as that of ISBN-10; for example if two
adjacent digits differ by 5, their transposition will not be detected. But
transpositions are likely only with human input and should not occur
with machine reading, as is now usual with these numbers. However the
check digit is always decimal, avoiding the ‘X’ of ISBN-10. But see later,
Section 10.7.7, for more details.

10.7.4 ID Checksum

This is a variation of the modular checksum which is often used for personal ID
number checksums and the like. In this case the digit weights are successive
powers of 2 and a check digit again makes the result 0 modulo 11. More
formally, the checkdigit is calculated as

d0 = c = 11−
(∑

2i+1di

)
mod 11

and then, for a 6-digit number with checkdigit,

2(d0 + 2(d1 + 2(d2 + 2(d3 + 2(d4 + 2(d5 + 2d6)))))) mod 11 ≡ 0

(Taking digits from the left, double the sum-so-far and add in the next digit.)
The polynomial may be written in a more familiar form as(

n∑
i=0

2idi

)
mod 11 ≡ 0
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To confirm that 6051001 is indeed a valid checked number in this system

6× 64 + 0× 32 + 5× 16 + 1× 8 + 0× 4 + 0× 2 + 1× 1 = 473

As 473 = 43× 11 the result is (0 mod 11) and is correct.

In contrast to the ISBN13, values with a checkdigit of “10” are rejected.

A possible variation using a modulus of 7 allows all numbers to be handled
(no rejects) but at the cost of decreased error detection. This possibility has
not been investigated. However Wagner and Putter [108] describe a similar
modulo 97 code which appends two check digits.

10.7.5 Verhoeff Checksum (Dihedral Group)

This method is discussed in detail by Wagner and Putter [108], who cite both
Verhoeff’s original paper [107] and its rediscovery by Gumm [49]. The algo-
rithm uses operations in the dihedral group D5, which is related to symmetries
of a pentagon. In particular, multiplication in D5 is not commutative, so that
a ∗ b 6= b ∗ a, where ∗ denotes multiplication in D5. Instead of addition using
a simple pattern of weights to differentiate the incoming digits, the digits are
first subjected to a “Permutation”, (perhaps more correctly a “substitution”)
where each is replaced by another, the permutation function depending on
the digit position. The permuted digits are then multiplied in D5 to give the
checksum.

The algorithm is most easily implemented with supporting tables which,
together with the algorithms, are shown in Figure 10.3

Multiplication table (M) This is a 10 by 10 matrix where each element
corresponds to the product of its indices (0-origin) in D5.

Inverse (I) This gives the multiplicative inverse of i, so that i ∗ Inv[i] ≡ 0 in
D5.

Permutation Function (F ) The successive digits are combined by an equa-
tion f1a1 ∗f2a2 ∗ . . .∗fnan, where the successive fi are permutation func-
tions, defined by successive applications of an initial function. Note that
F [i, j] ≡ F [i mod 8, j].

The two functions assume that the digits to be checked are in positions 1 . . . n
of the array dig with dig[0] the check digit.
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Figure 10.3: Tables and Code for Verhoeff (Dihedral) Check

M =



0 1 2 3 4 5 6 7 8 9
1 2 3 4 0 6 7 8 9 5
2 3 4 0 1 7 8 9 5 6
3 4 0 1 2 8 9 5 6 7
4 0 1 2 3 9 5 6 7 8
5 9 8 7 6 0 4 3 2 1
6 5 9 8 7 1 0 4 3 2
7 6 5 9 8 2 1 0 4 3
8 7 6 5 9 3 2 1 0 4
9 8 7 6 5 4 3 2 1 0


I =

(
0 4 3 2 1 5 6 7 8 9

)

F =



0 1 2 3 4 5 6 7 8 9
1 5 7 6 2 8 3 0 9 4
5 8 0 3 7 9 6 1 4 2
8 9 1 6 0 4 3 5 2 7
9 4 5 3 1 2 6 8 7 0
4 2 8 6 5 7 3 9 0 1
2 7 9 3 8 0 6 4 1 5
7 0 4 6 9 1 3 2 5 8
0 1 2 3 4 5 6 7 8 9
1 5 7 6 2 8 3 0 9 4


// Assume n digits, in dig[1]..dig[n], with d[0] the check

int checkDihedral(int n, int dig[])

{

int i, check = 0;

for (i = 0; i <= n; i++)

check = M[check] [F[i \% 8] [dig[i]]];

return check == 0; // OK if check == 0

} // end checkDihedral

void computeDihedral(int n, int dig[])

{

int i, check = 0;

for (i = 1; i <= n; i++)

check = M[check] [F[i \% 8] [dig[i]]];

dig[0] = I[check];

} // end computeDihedral
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In contrast to the simpler mod-11 algorithms, the dihedral check has the
advantage that any combination of data digits can be checksummed. There is
no need to reject those with an unrepresentable check digit. This advantage
comes at the cost of a much less comprehensible algorithm, which depends on
rather inaccessible mathematics.

Despite the undoubted quality of the dihedral algorithm, Wagner and Put-
ter caution against its use, especially in commercial applications which may be
maintained by less-skilled programmers who do not understand the mathemat-
ics3. (This aspect may be less important now that programmers are used to
invoking mysterious and often complex algorithms through Application Inter-
faces such as Java packages.) In their paper, they describe a system where the
customer wanted 4 check digits for 8 data digits; their solution involves three
nested checks. First is a mod-11 check on the 8 data digits, expanding to 9
digits. Next is a mod-97 check on those 9 digits, to a total of 11 digits. Finally,
the 11 digits are subjected to a mod-10 “IBM check”. The resulting code may
be inferior to one using 4 check digits and based on advanced mathematics,
but its three stages are comprehensible to users with modest mathematical
ability. Comprehensibility is often preferred to intellectual excellence.

10.7.6 The Damm Checksum

A similar and newer algorithm, also based on advanced mathematics (but now
using a quasigroup of order 10 rather than the dihedral group) was described
by Damm in 20044. It is remarkably simple and uses the single array of Figure
10.4. Assuming a number with digits numbered left to right d1d2d3d4 . . . and
a “working digit” w we then –

1. Set w = 0

2. Successively set w = M [w, di], working from the left (row w, column di
of the matrix).

3. Append the final w as the check digit.

3Similar comments were made by Knuth when describing what is now called the “Knuth-
Morris-Pratt” pattern matching algorithm. An earlier version of the algorithm, carefully
designed according to finite-state machine theory was, within a few months, “hacked” beyond
recognition by well meaning but ignorant programmers.

4The Wikipedia entry “Damm Algorithm” is apparently one of the few readily accessible
sources, as the formal descriptions are minor parts of Damm’s German PhD thesis.
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Figure 10.4: Table for Damm Checksum

0 1 2 3 4 5 6 7 8 9

0 0 3 1 7 5 9 8 6 4 2
1 7 0 9 2 1 5 4 8 6 3
2 4 2 0 6 8 7 1 3 5 9
3 1 7 5 0 9 8 3 4 2 6
4 6 1 2 3 0 4 5 9 7 8
5 3 6 7 4 2 0 9 5 8 1
6 5 8 6 9 7 2 0 1 3 4
7 8 9 4 5 3 6 2 0 1 7
8 9 4 3 8 6 1 7 2 0 5
9 2 5 8 1 4 3 6 7 9 0

Generating the check digit for the string 2314 gives the following successive
values for w. w = 0; w = M [0, 2] = 1; w = M [1, 3] = 2; w = M [2, 1] = 2;
w = M [2, 4] = 8, giving the check digit as 8. Leading zeros do not affect the
check digit.

Validating the check digit is exactly the same, except that we now include
the final, check, digit in the calculation; the digit from this stage is always zero
for a valid check. (Note that the matrix M has all zeros on the diagonal; if
say the preceding digits give a check of x, the check digit itself should be x, so
yielding a zero from the matrix diagonal.)

10.7.7 Comparison of Digit Checksums

It is useful now to compare the more complex Verhoeff and Damm checksums
against the earlier ISBN13 checksum of section 10.7.3; these three are designed
to check numbers or strings of decimal digits, whereas many of the other checks
really apply to characters or more complex entities. (We neglect the Luhn
algorithm as being a simpler version of the ISBN13.) The results from testing
about 2 million values are given in Table 10.1.

All checks reliably detect single errors, as do the Verhoeff and Damm for
adjacent transpositions. The ISBN13 check will not detect adjacent transpo-
sitions of two digits whose difference is 5, as 1↔ 6 or 8↔ 3.

For more-complex errors, note that any burst can do no more than leave its
intermediate check value as a wrong decimal value, just as would be produced
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Table 10.1: Undetected Error Probabilities

Single Adjacent non-Adjacent
errors transposition Transposition

ISBN13 0.0% 6.25% 58.41%
Damm 0.0% 0.0% 11.06%
Verhoeff 0.0% 0.0% 11.76%

by a single digit error at the end of the burst. Thus any burst error is equivalent
to a single-digit error, (unless it yields the correct intermediate check digit,
with a probability of 10%). Full tests of digit-pair errors have not been done,
but it is reasonable to expect a failure rate of around 10%, in line with the
results for transpositions of separated digits. This test is therefore for only
transpositions of non-adjacent digits.

The ISBN13 check suffers badly because all even digit positions have the
same weight, as do all odd positions. The result is that about half of all
transpositions (even ↔ even positions, odd ↔ odd) cannot be detected. The
two more complex checks give very similar results, both failing about 11% of
the time. There is little to choose between them, but the Damm check is
certainly simpler.

10.7.8 Fletcher Checksum

The Fletcher checksum [38] [59] was developed for the Transport Layer (Level
4) of the OSI communication model. It is fundamentally a sum of sums
method, with all additions done modulo 255. (But note that 255 is not prime!)
Thus to add in the digit di we calculate

s1 = s1 + di mod 255

s2 = s2 + s1 mod 255

with initial values s1 = 1; s2 = 0. If the checksum is at the end of the message
(the usual case) the two check-bytes are set to B1 = s1−s2 and B2 = −2s1+s2
to make the checksum including the two check bytes sum to zero. Testing for
correct transmission is a little different from many checksums, because the
result is correct if either s1 = 0 or s2 = 0. An error is signalled only if both
sums are non-zero.
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If the checksum bytes are at position n and n + 1 of an L-octet message
(numbering 0. . .L− 1), then

bn = (L− n)× s1− s2 and

bn+1 = s2− (L− n+ 1)× s1

The Fletcher checksum is stated to give checking nearly as powerful as the
CRC-16 checksum described below, detecting –
• all single-bit errors,
• all double-bit errors,
• all but 0.000 019% of burst errors up to length 16, and
• all but 0.0015% of longer burst errors.

10.7.9 Adler Checksum

The Adler checksum [22] is a development of the Fletcher checksum and gen-
erates 16-bit sums and a 32-bit checksum. It was devised particularly for the
GZIP text compressor. For each digit (or byte)

s1 = s1 + di mod 65 521

s2 = s2 + s1 mod 65 521

The checksum is the 32-bit value 65 536∗s1+s2, transmitted most- significant
byte first. The values are initialised with s1 = 1, s2 = 0 to give a length-
dependent checksum for all-zero data.

Note that the modulus 65 521 is prime, removing one doubtful feature about
the design of the Fletcher checksum5.

10.7.10 Cyclic Redundancy Checks

These are the most important and widespread of the error-detecting codes
for text or other data of arbitrary length. They are especially suitable for
hardware implementation at very high operating speeds and are used in most
data communications systems. They are still based on modular arithmetic,
but with some major changes from the earlier examples –

5A similar algorithm with modulus 9973 gives a checksum of 8 decimal digits
(10 000 ∗ s1 + s2).
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1. The “number system” is changed from the conventional and familiar
integers to one of finite fields, specifically the Galois Field GF (2). All of
the arithmetic is performed modulo 2, as in point 3 below.

2. The bits are regarded as coefficients in polynomials. This allows the very
highly developed and powerful mathematics of finite fields and polyno-
mial fields to be applied to the theory of error control coding, both error
detection and error correction.

The expression as polynomials also allows a convenient representation
for bit vectors which often have many zero elements. Only the terms
corresponding to 1s appear in the polynomial and they very conveniently
have the bit position shown explicitly as the exponent. Thus these two
representations are equivalent

1 0 0 1 0 1⇐⇒ x5 + x2 + 1

as are also
1 0 0 0 0 0 1 1 1⇐⇒ x8 + x2 + x+ 1

The polynomial variable is truly a dummy variable with little significance
to most of the coding process. It could be regarded as a “carrier” for the
exponents.

3. Numerical arithmetic in integers is replaced by logical operations on the
bits in the GF (2) finite field. Addition and subtraction are now both
equivalent to an Exclusive-OR (⊕) and multiplication is equivalent to a
logical AND (∧). (In both cases, regard the bits as numerical values,
do the numerical operations and take the result modulo 2.) There is no
carry propagation between bits, which immediately removes one of the
main impediments to fast addition.

Practically, this change means that the arithmetic can be done very easily
and quickly by simple logic. While not developed to any great extent
here, this is a great incentive for using these methods in fast hardware.

The most visible operation for cyclic redundancy checks is polynomial di-
vision, as shown in Figure 10.5. Except for the slightly changed subtraction
rules the overall method is precisely that of traditional long division (decimal).
The divisor, which is always a constant, is normalised with its most-significant
bit a 1. (In practice its least significant term is also a 1, giving a polynomial
of the form xN . . . 1. Technically, g(x) is monic.) Because there is no carry
propagation in subtraction, the divisor can be subtracted from the partial re-
mainder whenever the most significant bit of the remainder is a 1; there is no
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Figure 10.5: Polynomial Division — x3(x6 + x3 + 1)÷ x3 + x+ 1

1 0 1 0 1 1 0
1 0 1 1 ) 1 0 0 1 0 0 1 0 0 0

– 1 0 1 1
0 1 0 0

1 0 0 0
– 1 0 1 1

0 1 1 1 0
– 1 0 1 1

1 0 1 0
– 1 0 1 1

0 1 0

concept of a “trial subtraction” or compensation for overdraws as needed in
integer division. The form of the dividend and the way it is written in this
example are deliberately chosen to fit with the use of polynomial division in
forming CRCs (i(x) = x6 + x3 + 1 and g(x) = x3 + x+ 1).

When we apply polynomials to checksum generation, the transmitted data
forms a 1-dimensional bit stream, with earlier bits corresponding to higher-
powers within the polynomial. There are several polynomials involved in trans-
mitting data and checking for correct transmission –

information polynomial i(x) The information polynomial is the transmit-
ted data as provided by the user (usually including headers, addresses
and other transmission control information). The information polyno-
mial is usually transmitted without modification.

generator polynomial g(x) The information polynomial is divided by the
generator polynomial and the remainder from that division is appended
as the checksum. Usually zeros corresponding to the degree of g(x) are
appended to i(x)before the division.

codeword polynomial c(x) Appending the checksum from the division to
the information polynomial forms the codeword polynomial, which is
what is actually transmitted.

error polynomial e(x) During transmission one or more bits of c(x) may be
corrupted. The corrupted positions may be regarded as a polynomial,
the error polynomial e(x).
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received codeword v(x) This is what is received after corruption in transit.
As e(x) marks the corrupted bits in the transmitted data, then clearly
v = c⊕ e, assuming a term-by-term exclusive-OR, or v(x) = c(x) + e(x).

In more detail, if r is the degree of g(x),

1. append r low-order zeros to i(x), to form xri(x).

2. calculate (xri(x) mod g(x)), the remainder on division by g(x)

3. append that remainder to i(x) to form c(x), the transmitted codeword.
Thus the transmitted codeword

c(x) = xri(x)− (xri(x) mod g(x))

is always a multiple of g(x). (Step 1 ensures that the whole of i(x) is
processed by g(x) and also creates a space into which the remainder may
be written.

4. On reception compute

r(x) = v(x) mod g(x)

= e(x) mod g(x) + c(x) mod g(x)

= e(x) mod g(x) , as c(x) mod g(x) ≡ 0 by construction

An error will be undetected if and only if e(x) is a multiple of g(x). The
design of the generator polynomial g(x) therefore determines the ability to
detect errors and is in turn determined by its relationship to e(x).

• If there is single-bit error, then the error polynomial is e(x) = xi, where
i determines the bit in error. If g(x) contains two or more terms it will
never divide e(x) and all single-bit errors will be detected.

• If there are two single-bit isolated errors, then e(x) = xi + xj, or e(x) =
xj(xi−j+1) if i > j. If g(x) is not divisible by x, then all double errors will
be detected if g(x) does not divide xk + 1 for all k up to the maximum
message length. Suitable g(x) may be found by computer search; for
example x15 + x14 + 1 does not divide xk + 1 for any k < 32 768.

• If there is an odd number of bits in error, then e(x) has an odd number
of bits. As no polynomial with an odd number of terms has (x + 1) as
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factor, 6 we make g(x) have (x+ 1) as a factor to detect all odd numbers
of errors.

• A polynomial code with r check bits will detect all burst errors of length
≤ r. A burst error of length k can be represented as xi(xk−1 + . . . + 1).
If g(x) has a constant term it will not have xi as a term, so if the degree
of (xk−1 + . . . + 1) is less than that of g(x), the remainder cannot be
zero.

• If the burst is of length r+ 1, the remainder r(x) will be zero if and only
if the burst is identical to g(x). If all bit combinations are equally likely,
the probability of the intervening r − 1 bits all matching is 1/2r−1.

• For a longer error burst, the probability of an undetected error is 1/2r.

Many of the terms in this description of CRC codes actually arise from
the use of polynomial techniques in error correction developing and improving
on what Hamming Codes showed possible. The key difference in block error-
correcting codes is the remainder from dividing v(x) by g(x) is known as the
syndrome s(x) and can be used to determine the error vector e(x) and thereby
correct any errors. Although the mechanics are similar, the design of g(x) is
quite different from what was described for error detection.

10.7.11 Examples of CRC Polynomials

As a preliminary observation, the polynomial x8+1 generates a simple longitu-
dinal parity over a message of 8-bit characters, and similarly for other character
lengths. [There are two bits in g(x), which in the data stream correspond to
similar bits of two adjacent data characters. The effect of this “window” is
to Exclusive-OR bits of each data character into the corresponding bit of an
overall parity character.]

Some standard error-checking polynomials are –

6Assume that e(x) = (x+ 1)q(x). Then, because e(x) has an odd number of terms, e(1)
must be equal to 1. But e(x) = (x + 1)q(x) = (1 + 1)q(x) = 0.q(x) which is always 0.
Therefore the assumption must be false.
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CRC-12 x12 + x11 + x3 + x+ 1
CRC-16 x16 + x15 + x2 + 1
CRC-CCITT x16 + x12 + x5 + 1
IEEE 802 x32 + x26 + x23 + x22 + x16 + x12 + x11 + x10 + x8+

x7 + x5 + x4 + x2 + x+ 1
ATM HEC x8 + x2 + x+ 1
ATM AAL3/4 x10 + x9 + x5 + x4 + x+ 1

CRC-12 is used for 6-bit character codes in some older banking and flight-
reservation systems.

The 16-bit codes (CRC-16 used largely in North America, and CRC-CCITT
in Europe) can detect all error bursts of 16 or fewer bits, all errors with an
odd number of bits, and 99.998% of bursts of 18 or more bits.

The “ATM HEC” is the Header Error Control code used in ATM cells
(Asynchronous Transfer Mode). It covers the 4 preceding octets and can cor-
rect all single errors and detect many multiple errors.

The “ATM AAL3/4” is used to verify the user data of each ATM cell in the
ATM Adaptation Layers 3 and 4.

The “IEEE 802” checksum has been adopted in many communications sys-
tems apart from the IEEE802.x standards, including Fibre Channel and ATM
AAL-5.

In some cases the details of the checking are changed. For example, with
X.25 frames, using the CRC-CCITT polynomial.

• The shift register is initially preset to all 1s,

• the check digits are inverted as they are shifted out after the information
bits,

• the receiver includes the check field in its calculation, and

• the result must be 1111 0000 1011 1000.

Although the “IEEE 802” generator polynomial is very widely used in many
communications systems it is used with several variations.

In 802.3 Contention Bus (Ethernet) –
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• the first 32 bits of the data are complemented,

• the entire frame including header and user data is divided by the gener-
ator polynomial,

• the FCS bits are inverted as they are shifted out after the information
bits,

• the receiver checks that the FCS generated from the preceding received
data matches the received FCS

and in 802.5 Token Bus –

• the 32-bit register for the checksum is initialised to all 1s,

• the entire frame including header and user data is divided by the gener-
ator polynomial,

• the check bits are inverted as they are shifted out after the information
bits,

• the receiver includes the check field in its calculation, and Calculation

• the result, including the received checksum, must be
x31 + x30 + x26 + x25 + x24 + x18 + x15 + x14 + x12 + x11 + x10 + x8 + x6 +
x5 + x4 + x3 + x+ 1
or, in binary, 1100 0111 0000 0100 1101 1101 0111 1011

10.8 Further Developments

This chapter has just touched on some very large and important areas, which
go far beyond what is appropriate in this book, in particular –

Error Correcting Codes These have been developed far beyond the simple
Hamming Codes described in Section 10.4. As with the Cyclic Redun-
dancy Checks, most codes are described by polynomial methods using
the mathematics of finite fields. A good description of error correcting
codes is given by Blahut [10], with a simpler introduction by Arazi [4],
but these pre-date some very important recent developments such as

214   Introduction to Computer Data Representation Peter Fenwick 

  



“Turbo Codes”. Hamming [52] gives an excellent introduction to coding
in conjunction with Information Theory, but without going far into error
correcting codes.

The power of modern error correcting codes is demonstrated in a Com-
pact Disk player [55]. Even minor surface scratches and dirt can cause
some data loss and a 1mm disk blemish can cause a data loss of 1500
bits. Compact Disc players therefore need excellent error correction and
use some of the most powerful error correcting codes. These codes (tech-
nically a cross-interleaved Reid-Solomon code) can completely correct an
error burst (data drop-out etc) of 4000 data bits. At a Bit Error Rate
(BER) of 10−3 the uncorrected error rate is less than one in 750 hours
and is undetectable at a BER of 10−4. (To further conceal any audi-
ble error, any uncorrectable data is surrounded by a “fade-out” and a
“fade-in” to give a brief silence rather than a noise.)

Message Authentication More-complex checksums include the “Message
Digests” (also known as “Message Signatures” or “Cryptographic Hash
Functions”) which are now used to authenticate messages whose integrity
must be guaranteed. They must detect interference which is malevolent
rather than accidental, requiring a quite different design process and per-
formance analysis. They are also used for software distribution, checking
files of hundreds of megabytes for which simpler checks are inadequate.
They are really a development of cryptography and their whole discussion
and theory comes from that area. In passing it should be mentioned that
Cyclic Redundancy Codes are very weak cryptographically and should
not be used for authentication or message security.

Table 10.2: MD5 and SHA1 Digests for Three 1-byte ASCII Files

1 SHA1 356a192b7913b04c54574d18c28d46e6395428ab

1 MD5 c4ca4238a0b923820dcc509a6f75849b

2 SHA1 da4b9237bacccdf19c0760cab7aec4a8359010b0

2 MD5 c81e728d9d4c2f636f067f89cc14862c

3 SHA1 77de68daecd823babbb58edb1c8e14d7106e83bb

3 MD5 eccbc87e4b5ce2fe28308fd9f2a7baf3

Two earlier message digest routines are MD5 and SHA1 (there are newer
functions, such as SHA-3, but these two give the spirit of the functions).
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Both have source code freely available on the Internet. MD5 calculates
a 128 bit digest (16 hexadecimal digits and SHA1 a 160-bit digest (20
digits); there seems to be no good reason for prefering either one7. Table
10.2 shows the digests for three trivial 1-byte files, containing the single
ASCII digits ‘1’, ‘2’ and ‘3’ (no end-of-line). Note the significant change
from one file to the next; each file differs from its predecessor in only a
single bit, but the digests are completely different.

Data Scrambling At the physical level, where data bits are encoded on
the physical medium, few data transmission techniques tolerate long se-
quences of 0s or 1s, or sometimes other regular repeated patterns. Infor-
mation is “scrambled” or randomised to minimise regularities and ensure
regular data transitions.

This is often done by dividing the data stream by a suitable scrambling
polynomial and transmitting the quotient as the data. The receiver mul-
tiplies the data by the same polynomial to recover the original data.
(The order of division and multiplication could be reversed, but divi-
sion is much more prone to catastrophic error propagation in response to
transmission errors and should be avoided in the receiver.) Some typical
scrambler polynomials are –

x7 + x+ 1 V.27 4800 bps,
x23 + x5 + 1 V.29 9600 bps,
x20 + x3 + 1 V.35 48 000 bps,
x16 + x13 + 1 Bell System 44Mb/s T3

The scrambler polynomials do not of themselves assure satisfactory oper-
ation; a long string of 1s or 0s may cause the shift register to freeze in an
all-1 or all-0 or other repetitive state. In the V.35 standard for example,
an “Adverse State” is recognised if, for 31 bits, each transmitted bit is
identical to the bit 8 before it. An Adverse State causes line data to be
complemented.

10.9 Historical Comments

The use of error-detecting and even error-correcting codes predates computers.
As a very simple example, with telegrams minor errors in letters could be
corrected from the context, but not digit errors. The digits were often all
repeated, in order, at the end of the message as a form of redundancy check.

7But check the current literature because the security of all functions is under continual
examination; new weaknesses are frequently discovered and improved functions announced.
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An even better example comes from commercial code books. In the days
of manual transmission (Morse code, or teleprinters for very advanced work),
transmissions were expensive, relatively open to public scrutiny, often commer-
cially sensitive and certainly liable to transmission errors. Many organisations
used commercial codebooks with 5-letter groups for frequent words or phrases.
Using code groups shortened the data (reducing the cost) and also provided a
measure of security by concealing the information. Transmissions were how-
ever prone to errors and the codes often included error-control mechanisms.
Apart from the expected errors of transpositions and character reversals, other
errors peculiar to Morse code included splitting and joining characters. Figure
10.6 indicates some possible errors from splitting the code for one letter into
two letters.

Figure 10.6: Examples of Morse Code Corruption

A E  T

B T  S

N  I

D  E

or

or

For example, in 1930 “Bentley’s Second Phrase Code” [8] claimed the fol-
lowing properties for its codes8.

1. There was a difference of two letters between any two codewords, includ-
ing the spare codewords.

2. The reversal of any pair of consecutive letters in any codeword will not
form a valid codeword.

3. The reversal of any three consecutive letters in any codeword will not
form a valid codeword.

4. The mutilation of any pair of consecutive letters in any codeword by a
pause-error in transmitting by Morse will not give another valid code-
word.

8It is salutary to note that the book defines over 100 000 codes, all prepared without a
computer.
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Some codes replaced single words or currency amounts, but many 5-letter codes
corresponded to quite long, but frequent, messages. There were many unused
codes which customers could use for private messages.

Many of the early computers such as the Bell System relay machines used
constant-parity codes (such as the 2-out-of-5 codes described in Section 11.7)
and included extensive checking facilities. Apparently Richard Hamming was
using one of these computers in the late 1940s on problems which could run over
the weekend, but was continually frustrated by errors which froze the machine
part way through the calculation. It was from considering that problem and
trying to rectify that situation that he developed the “Hamming codes” which
could not only detect errors (which the machine designers already knew about
and handled) but could correct them. These were described in Section 10.4.

From that time designers of major computers have been well aware of the
need to handle errors. Many errors arise from transmission or similar noise
and are known as “soft” errors; they may be overcome just by retrying the
operation. While other, “hard”, errors may need an actual physical repair
computers can be designed to recover from hard errors and reconstitute the
correct results “on the fly”. Apparently on at least one occasion a major com-
puter suffered a logic failure during an acceptance test, but the error correction
allowed the test to continue satisfactorily.
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Chapter 11

Miscellaneous Topics

Abstract: This chapter contains a variety of topics, especially a
history of numbers, justification for binary bits, good number represen-
tations, the history of ‘word’, ‘bit’ and ‘byte’, a history of character
codes, a variety of decimal codes and Roman numbers.

Keywords: History of number representations, why use 0s and 1s,
good and bad representations, history of byte, kilobytes and Megabytes,
character codes, decimal codes, Roman Numbers, scaling invariance.

This chapter is a miscellany of material more or less related to previous
topics. Some of it is historical background, some expands on less-important
technical details, and some is, well, just interesting.

11.1 A Brief History of Number Representa-

tion

As discussed in Chapter 1, there is a clear distinction between several types
of numbering systems. An accessible introduction to these concepts and the
history of numbers is found in Guedj [48], from which much of this section is
taken. An (exceedingly!) comprehensive discussion of the history of numbers
is given by Ifrah [61] who describes number representations in an enormous
number of civilisations and societies. A later and smaller volume discusses
numbers in relationship to computing (Ifrah [60]).
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Minimal The very simplest level has no true number system at all and is
found in simple societies of (“primitive”?) peoples who live in small
groups and have little need of counting. Ifrah [61] shows that people
can immediately recognise random collections of up to four objects, but
no further unless some regularity allows fast mental arithmetic or some
other technique. This limit is reflected in these very simplest numbering
systems, with words for one, two, three, four, many or perhaps even one,
two, many. In some languages there are different grammatical inflexions
and constructs for the one, two, three, four, many cases, in contrast to
the singular, plural of English.

Descriptive number systems are typically oral such as “two thousand, six
hundred and seventy three”, but often expressed in quite different terms.
They let us talk about quantities, but not much more. In general, each
society seems to have developed its own descriptive number system.

Representational systems such as “MMDCLXXIII” allow us to write values
in a more or less convenient manner; the important word here is write.
These systems are largely an adjunct to written alphabets and some
languages just used abbreviations for say the “hundreds” word. Some
authors claim that the earliest of these number systems actually predate
written text—written symbols were first used for accounting and written
words arose from the need to describe or annotate the values.

Many of these systems are described by Ifrah as additive representations.
The Greeks for example used their 24 letters (plus three older symbols)
for the 27 values 1 . . . 9, 10 . . . 90 and 100 . . . 900, covering an adequate
range of values for most people. Table 11.1 shows lower-case letters;
earlier representations used the upper-case equivalents. Using the codes
shown in Table 11.1, our 231 would be written as σλα, the overscore
indicating a number rather than text, or with primes σ′λ′α′. Three
separate addition tables are needed, for units, tens and hundreds and the
full multiplication table has 27× 27 = 729 entries! Not all products can
be represented within this number system (but see later for extensions
to larger values).

The Greek digit codes are shown in Table 11.1, with the entries for 6,
90 and 900 using the three archaic letters digamma, qoppa and sampi.

Roman numbers are similar, but replicate some symbols and also intro-
duce a confusing subtractive element into the representation. The basic
symbol equivalences are

I ↔ 1, V ↔ 5, X ↔ 10, L↔ 50, C ↔ 100, D ↔ 500, M ↔ 1000
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Table 11.1: Greek and Roman Digit Codes, with Names of Added Symbols

Greek Roman Greek Roman Greek Roman

1 α I 10 ι X 100 ρ C

2 β II 20 κ XX 200 σ C

3 γ III 30 λ XXX 300 τ CC

4 δ IV 40 μ XL 400 υ CCC

5 ε V 50 ν L 500 φ CD

6 F VI 60 ξ LX 600 χ D

7 ζ VII 70 ο LXX 700 ψ DC

8 η VIII 80 π LXXX 800 ω DCC

9 θ IX 90 ϙ XC 900 Ϡ CM

F   digamma ϙ  qoppa Ϡ  sampi

One of the larger symbols may be preceded by the immediately smaller
“units” symbol (I, X or C) which is then subtracted to give values of 4, 9,
40, 90, 400 or 900. The “unit” symbols (I, X, C, M) may be duplicated
to give 1 to 3, or possibly 4 of that value. Except that it uses a group
of up to 4 symbols for what we would regard as units, tens or hundreds
digits, the Roman system is similar to the Greek. Historically, the Roman
numbering system is far messier than the conventional form just given;
these matters are discussed in more detail in Section 11.8.

The alphabetic Greek numbers stopped at 999. We describe here what
seems to be the dominant extension to larger values, but there do seem
to be other alternativess. For values up to 9000, the first 10 digits were
preceded by a prime, as shown in Table 11.2. Values beyond that were
based on the myriad, (M = 10 000), with the number of myriads written
as a count over an M, again shown in Table 11.2.

Table 11.2: Examples of Large Greek Numbers

́A ́Β ́Γ ́Δ ́Ε ́Ζ ́Η ́Θ
1 000 2 000 3 000 4 000 5 000 6 000 7 000 8 000 9 000

α β γ δ ε F ζ η θ

Μ Μ Μ Μ Μ Μ Μ Μ Μ

́F
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Hybrid representations (Ifrah’s term) are an intermediate step between the
additive and positional systems. In modern terms, hybrid representations
combine the digits 1. . . 9 with auxiliary codes to indicate the significance
or weight of the adjoining digit. Thus we might use a following D to rep-
resent tens, C hundreds and K thousands, writing out 2356 as 2K3C4D6,
and 3004 as 3K4. (Note the absence of any “fill” digits in this last case.)

Computational (Ifrah’s positional) representations such as “2673” extend
the earlier forms in a manner that eventually facilitates computation.
The positional notation seems to have developed from the hybrid forms
as a shorthand for representing the numbers on an abacus. As each
column of the abacus corresponds to a specific weight code, a shorthand
form may omit the code, writing the full value 2K3C4D6 as 2356. But
the value represented as 3K4 had empty abacus columns; these were
conveniently filled by empty, null, filler or cypher symbols as 2 · · 4 or
even 2 ◦ ◦ 4 (as a circle is more definite than a dot).

The crucial step in the development of our present number system was
the realisation that the null or filler symbol behaved as an extra digit
similar to 1. . . 9 and that the rules of addition and multiplication were
readily extended to include it. The null symbol ◦ was eventually pro-
moted or enlarged to our present 0.

In Hindu/Arabic numbers the digits change their meaning according to
their position within the number, so the “4” can mean “4 units” (4),
“4 tens” (40), “4 hundreds (400)” and so on. The example value is
written as 501, to show the absence of the tens and to place the ‘5’ in
the correct “hundreds” position. In contrast to representational systems,
larger numbers just need more digits rather than extra symbols (although
we may need new words to talk about them).

Many satisfactory representational number systems were developed (per-
haps for each major written language) and zero was developed by both Baby-
lonians and the Maya; see Ifrah [60]. But it seems that positional numbers
developed only once, in India in the 5th century AD, appearing first in the San-
skrit document Lokavibhaga in 4581 although the concept was clearly known
well before then.

1From internal astronomical evidence, Ifrah dates this document to Monday 25 August
458.
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The Indian number system came to Baghdad in 7732, and the “Arabic”
numbers first appeared in a European document in 976, (arriving actually
through North Africa and Spain) although it was several centuries before they
found general use. An indication of the subtlety of zero is that when Gerbert of
Aurillac took the Hindu/Arabic numbers from Spain to France c970, he took
the digits 1. . . 9, but not the digit 0! The importance of nothing completely
escaped him. It was only from contacts with Moslem scholars during the Cru-
sades and work by Fibonacci, both 2–300 years later, that the Hindu/Arabic
system truly came to Europe.

As a final comment we must note that computational numbers are really a
special case of positional numbers; the two are not truly synonymous. Equiva-
lently, positional number representations do not necessarily simplify computa-
tion. Section 2.2 showed that there are many number systems where the digits
are undifferentiated and their positions are significant; all are described there
by the scalar product N = d ·w. But it is only those where the weight vector
w corresponds to a polynomial in an integer base b that facilitate computation.
Thus base-1, Zeckendorf and mixed-base representations are all positional but
have more-or-less difficult procedures for arithmetic.

Ifrah makes a similar point in discussing the Maya numbers. They had a
genuine zero, possibly devised well before the Hindus, and used a mostly base
20 number system, with successive bases of {. . . , 20, 20, 20, 18, 20}, or digit
weights of {. . . , 144 000, 7200, 360, 20, 1}. The discontinuity at the second
digit meant that the Maya never discovered the computational advantages of
zero.

The “18” appears to have been inserted so that ‘100’ (their system) is nearly
equal to the days in a year. In retrospect, a base-19 system might have been
better and even lead to proper use of zero; 192 = 361, which is closer to 365
than 18× 20.

11.1.1 History of Fractions

Just as the integers arise naturally from counting, so do fractions arise from
measurement and ideas of ratio or division into parts. The ideas of fractions
are probably as old as the ideas of measurement, but often restricted to values
such as 1

2
, 1

3
,and perhaps 2

3
. Greek mathematics concentrated more on ratio

in an attempt to retain the natural numbers.

2It may be no coincidence that first Arab and later European science flowered following
the adoption of a flexible numbering system.
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The ideas of decimal fractions in the modern sense have been traced to al-
Kashi of Samarkand, with his 15th century work “The Key to Arithmetic”.
The European use of decimals dates from Simon Stevin, with his 1582 (or
1585 or 1586) text “The Tenth”. Guedj [48] reproduces a page from a French

edition of “The Tenth”, showing both his new form 2 7 8 4 7h h h h0 1 2 3 and the
older 27 847

1000
.

Duncan [24], describing the development of the calendar, ascribes the in-
vention of the decimal point proper to either G.A. Magnini in 1592 (who used
27.847, as now used in English-speaking countries), or to Clavius in 1593.
(Duncan also ascribes the invention of decimal fractions to the Syrian Ab-
dul Hassan al-Uqlidsi in 952 or 953. But decimal fractions seemed to be not
transmitted to Europe with decimal integers, (possibly because Europeans at
that time barely understood fractions anyway.) Also in 1592 Bürgi [60] would

have written the value as 2
◦
7847. Then in 1608 Snellius suggested 27,847 (as

now used in most European countries). Napier in his 1619 work on logarithms
suggested either “.” (variously known as a stop, full stop, or period) or a “,”
(comma) as reasonable alternatives.

With the extension of the Hindu/Arabic notation to include fractions, the
development of the modern system of number representation was essentially
complete; Ifrah asserts that it is “a perfect system . . . no further development
is possible”.

11.1.2 Possible Prehistoric Mathematics

Three recent books make claims for far, far, earlier development of “modern”
mathematics and numbers; although these claims will certainly be queried,
and queried strongly, it is appropriate to mention them here. Although claims
such as these are often the stuff of arcane speculation, all three authors here
provide considerable factual supporting evidence, evidence which is arguably
as strong as that on which many accepted histories are based.

• Menzies [74] links Atlantis explicitly to the Minoan culture (c2000–1470
BC) and its centre at Thera, now Santorini, which erupted violently
around 1450BC, terminating the Minoan civilisation. Emphasising the
breadth of Minoan trading, he describes the discovery of Minoan artefacts
from India, through the Mediterranean, north into Europe and even
across the Atlantic to where the Minoans apparently mined copper at
Lake Superior.
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He concludes by discussing Minoan mathematics as revealed by hitherto
undeciphered “Minoan Linear A” inscriptions, with concepts then to be
forgotten for 1000 to 1500 years.

• Temple [100], discussing firstly the chronology of Ancient Egypt, moves
on to the “Atlantean” culture (Atlantic, rather than Atlantis, and proba-
bly pre-dating Minoa proper, perhaps 4000–3000BC) which constructed
many trilithons and megaliths (of which Stonehenge is the best-known
example) around the Mediterranean and the Atlantic coast of Europe.

He produces evidence that these megalithic circles were precise astronom-
ical observatories whose design required advanced mathematics, as did
the Atlantean long distance navigation. [Temple claims that “Atlantis”
was misinformation to discourage other mariners from sailing past the
Pillars of Hercules (Gibraltar) into the profitable Atlantic trading sta-
tions; there could be some truth in this too, as a later post-Minoan
development.]

• Freeman [41] compares stone circles in Alberta (c3000BC) with Stone-
henge (c3000BC – c2000BC), yet again showing that both can act as
precise astronomical observatories. The arrival of this knowledge in the
heart of North America remains an open question, as does any possible
trans-Atlantic connection.

Thus all three authors independently point to Bronze Age, and even Stone
Age, cultures with mathematics sufficiently advanced to construct precise as-
tronomical observatories and, in two cases, perform ocean navigation. Whether
all were Minoan, or whether the Minoan culture was the climax of a series of
predecessors, is open to discussion (and contention), but it certainly appears
that “modern” mathematics existed far earlier than previously suspected, only
to be forgotten with the collapse of Minoa and the onset of a Mediterranean
“Dark Ages”.

11.1.3 A Brief Chronology

An enormous amount of mathematical notation was developed in the period
1450–1650, preparing the ground for later developments. While some of this
development has been referred to already, some other important dates are
given here, largely taken from Ifrah [60].
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458 Decimal numbers, with zero, appear in
print in Hindu document.

778 “Hindu” numbers, with zero,
conveyed to Baghdad.

970 Gilbert of Aurilac transfers “Arabic” numbers to
Europe (sans zero).

c1215 Leonardo of Pisa publishes Arabic numbers (including zero).
1484 Nicholas Chuquet used 0, − for negative numbers,

reasonable notation for powers
1489 Johann Widmann + and − for addition and subtraction
1525 Christoph Rudolff the square root sign

√

1557 Robert Recorde = to relate the two sides of an equation
1630 Thomas Harriot the relational symbols < and >
1632 William Oughtred × for multiplication
1656 John Wallis ∞ for infinity

11.2 Why Use Bits, 0 or 1

Despite discredited claims that the binary number system was known to an-
cient Chinese, the first documented use of a binary representation was by
Francis Bacon in 1605 [53] for cryptography, with the first credible mathemat-
ical description given by Napier in 1617. Binary representation was discussed
enthusiastically in 1703 by Liebnitz who ascribed to it mystical properties—
properties that would rejected as spurious by most modern mathematicians
and theologians.

Binary calculation was seriously proposed in 1936 by Phillips [79] and used
by Zuse [113] (1936), and by Atanasoff [5](1939) for their pioneering computers.

Interestingly, Atanasoff selected a binary representation from considering
speed rather than storage efficiency. Binary coding was also selected by other
workers, such as Rajchman [81] in 1942 for artillery fire control computation.
Thus by the time of the Burks, Goldstone and von Neumann report [17] in
1946 the binary number system was so well established that they adopted it
seemingly without discussion.

People tend to be most comfortable with decimal numbers, to base 10,
whereas computers mostly deal with binary numbers, to base 2. We worked
earlier with numbers to bases 2, 8 and 16, and later developed ways of working
with numbers represented to any base. This raises the important question
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as to why computers do not use say decimal digits, 0 . . . 9, in other words
numbers to a base of 10?

The reasons may be summarised as ones of logic, engineering and efficiency.

Logic. Computers are built with devices which use “Boolean logic”, or “2-
valued logic”. The logical values (0 and 1) can be regarded as equivalent
to the data values (also 0 and 1), making it easy to use logic devices to
perform arithmetic. It is unfortunate that the same symbols are used for
both numeric values and logical values, because they really have quite
separate meanings, but the usage is now so entrenched that it is unavoid-
able.

Engineering. It is much easier to make devices which can reliably handle
only two values (0, 1) than, say, 10 values (0 . . . 9). There are two issues
here.

• Modern logic circuits are designed to “latch” into one of the two
states “0” or “1” and in those states they draw negligible power.
Most of the power is consumed in switching between the states,
While circuits can be designed, and are designed, to handle more
than two states, this inevitably leads to increased power consump-
tion in maintaining intermediate values, or slower operation, or
both. With millions of logic circuits in a modern processor, the
per-circuit power consumption must be minimised; just 1 µW per
logic gate converts to several Watts in the complete chip.

• A 2.50 GHz processor operating for 4 weeks without error corre-
sponds to 6 × 1015 error-free operations. The need for good pro-
tection against noise and consequent error is obvious. It is difficult
enough to design fast reliable 2-state logic; devices which can dis-
criminate reliably between 3 or more states are much more difficult
to handle. They exist, but are used mostly in communications where
the need for speed makes it desirable to send several bits in each
signal state.

Efficiency. With bits as the data units we are forced to use binary represen-
tation (or base-2) for numbers. Two ways of looking at efficiency are
given.

1. The first analysis considers the number of “states” needed to rep-
resent a value in different number bases. It assumes that a base-
N digit has a relative cost of “N”, for example as a 1-out-of-N
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code. This is a somewhat dubious assumption but, given the rela-
tive paucity of true N -valued devices, is perhaps not too bad. The
cost with binary coding of digits is considered as the second option.

For example, in decimal numbers, each digit position corresponds
to 10 states. 100 values (0 . . . 99) need 2 digits and 20 states. Values
to 1000 need 30 states. Similarly, in binary numbers each digit (bit)
has 2 states and an N -bit binary number corresponds to a total of
2N states. To represent values to 1024 (1024 = 210, and actually 0
. . . 1023) needs 10 digits and 20 states. Thus binary values to about
1000 need only 20 states and are clearly more efficient than the 30
states needed by decimal values to 1000.

In general, a value V to base b requires logbV digits, each with
b states, or a total of N = b × logbV states. To find the “most
efficient” base, take dN/db = 0, giving the minimum value at b =
e (2.718 28 . . .). For V = 1000, the costs (or number of states) of
several bases are –

number-base cost (states)
2 19.93
e 18.78
3 18.86
10 30
BCD 48

A base-3 representation (ternary numbers) is very close to the op-
timum and base-2 is nearly as good. While a very few base-3 com-
puters have been built (such as the Russian SETUN computer in
the early 1950s which used a bit pair with weights +1 and −1 and
digit values +1, 0 and −1) the practical advantages of base-2 are
such that it is almost universal.

2. Unfortunately, the preceding analysis is somewhat misleading be-
cause it assumes that the “cost” of a representation is proportional
to the number of states. A proportional cost is true if the digit is
represented as a “1-out-of-N” code, but is certainly false if a more
compact coding is used.

A better comparison acknowledges that digits in any base will be
stored as binary values. A value V represented in base b will require
dlogb V e digits, with each digit requiring dlog2 be bits. The costs
under this system are shown in Table 11.3, representing a value of
1 million in bases up to 20.

The costs are the same, and minimum, for powers of 2. As the base
increases above a power of 2 the number of digits usually stays about
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Table 11.3: Costs of Representing 1 000 000 in Various Bases

base bits/digit digits cost base bits/digit digits cost

11 4 6 24
2 1 20 20 12 4 6 24
3 2 13 26 13 4 6 24
4 2 10 20 14 4 6 24
5 3 9 27 15 4 6 24
6 3 8 24 16 4 5 20
7 3 8 24 17 5 5 25
8 3 7 21 18 5 5 25
9 4 7 28 19 5 5 25

10 4 6 24 20 5 5 25

the same, but the bits to represent each digit increases, leading to
an overall increase in the cost. On this model a base of 3 is among
the worst values. Although base 10 is definitely worse than the
powers of 2, there is no change for bases from 10 to 15, at least for
the chosen value of 1 000 000.

11.3 “Good” Number Representations

Having looked in detail at numbers, it is desirable to look at the features
of a “good” number system (and conversely, a bad one). By contrast, poorer
representations will become more apparent in Section 11.1 (Roman and Greek
numbers) and especially Section 11.8 (odd variations on Roman numbers).

As seen later in Section 11.2 it is evident that we should use bits to represent
numbers within a computer, although the argument is somewhat circular and
intertwined with what follows here. Initially, we want some representation for
the integers {0, 1, 2, . . . } which satisfies the criteria below. It should also be
extensible to signed values and to fractional values.

Uniqueness While it is evident that each code should represent only one
value, it is also desirable that each integer should be represented by only
one code3. This aspect interacts with the next.

3This requirement may be slightly relaxed for signed zeros, and perhaps some BCD codes
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Density All possible codes should be used and each distinct code should rep-
resent a separate integral value, as otherwise we waste code space and
could, with a better representation, handle more values.

Uniformity Given the representation for any integer N , there should be a
simple and uniform method of obtaining the representation of N + 1
(and also N − 1), assuming that both N and N + 1 are within the range
of represented values. By extension, addition and subtraction should also
be defined by simple and uniform methods, as also for multiplication and
division.

Arithmetic As a corollary of the last point, the representation should facili-
tate arithmetic.

We saw (Section 2.2) that these criteria are satisfied by representing a value
N by a polynomial in a “base” b with digits {dn, dn−1, . . . , d2, d1, d0} with b an
integer and 0 ≤ di < b.

N = dnb
n + dn−1b

n−1 + · · ·+ d2b
2 + d1b+ d0

But they are not satisfied by most of the “classical” number systems. In
general they represented only a limited range of values, with arithmetic being
difficult if not impossible. These matters are discussed separately, in Section
11.1

11.4 History of “Word”, “Byte”, and “Bit”.

The origins of these terms too often seem to be shrouded in folklore, with many
curious and ingenious explanations. Fortunately, some of the history is well
documented by people who were present at the invention; as far as possible it
is summarised here.

word Historically, the term “word” goes back at least to the 1945 report by
Burks, Goldstine and von Neumann [17], where they propose a computer
with 40-bit words. They justify the word size of 40 bits (and a memory
of 4096 words!), but the use of binary numbers and bits seems to be so
obvious that it warrants no discussion at all, even though ENIAC was a
decimal machine. There is evidence that Rajchman [81] used “word” as
early as 1942.
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byte The term was devised in 1956 by Buchholz and originally meant any
part of a word, especially a part large enough to hold a digit or character.
Buchholz [16] states “The term is coined from from bite, but respelled
to avoid accidental mutation to bit.” Bloch, [11] discussing the IBM
7030 (Stretch) in 1959 stated that “Byte is a generic term to denote
the number of bits to be operated on as a unit by a variable-field-length
instruction”. Brooks [15] states

The term “byte” was coined by Dr. Werner Buchholz, Sys-
tem Planning Manager for Project Stretch, in 1956 or ’57. I
know, because I was there when it happened, and I remember
it clearly. Dr. Harwood Kolsky, who was also in the System
Planning group with us, has also written recently his recollec-
tion, which is the same as mine.

When IBM introduced the System/360 computers in 1964 they adopted
an 8-bit byte as the fundamental unit of data addressing. It was well-
matched to both the 8-bit EBCDIC character code and to the (7-bit +
parity) ASCII code as well as matching other data units of 2n bits.

The introduction of EBCDIC, and especially ASCII, coincided with the
development of “mini-computers” with a 16-bit data unit, superseding
some older ones with 12 bits or 18 bits (although computers based on
the 6-bit characters never disappeared). These 16-bit computers became
widespread and the 8-bit measure combined well with their 16-bit and
32-bit data units. Thus the 8-bit byte became ubiquitous and the earlier
general meaning forgotten.

bit The origin of the term “bit” as an abbreviation for “binary digit” is de-
scribed in a memorandum by MacMillan, quoted by Tropp [103]. The
term was suggested by John Tukey, apparently during a lunchtime con-
versation at Bell Laboratories in late 1946. It is certainly used in a
memorandum by Tukey, dated January 9, 1947, in the sense of a binary
digit.

Very soon afterwards, the same term was adopted by Shannon [90] to
mean, not a binary digit, but the binary information unit (and Shan-
non could well have been at that lunchtime discussion). Shannon also
attributes the name bit to Tukey.

This use is sufficiently close to “binary digit” to cause considerable con-
fusion. Under optimal coding, one bit (digit) can on average represent
one bit (unit) of information, but it generally represents less. One in-
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dividual bit-digit can however represent far more than one bit-unit, but
only if it represents an improbable event.

This aspect was encountered in Chapter 9, in connection with text com-
pression. There probabilistic measures are used to estimate the average
information content per letter (measured in bit-units) and this measure
is compared with the coding density, in bit-digits per letter. Even to
somebody working in the field, the distinctions of “bit” are sometimes
confusing and extreme care is needed.

11.5 Of kilobytes and Megabytes

It is both convenient and unfortunate that 103 ≈ 210 or, 1000 ≈ 1024. The
tradition has grown in computing of speaking of “kilobytes” and “megabytes”
as a rough, order of magnitude, expression of size. While in “computerese”
itself there is little problem, that is not necessarily the case where computing
meets other disciplines.

In particular data communications has a very strong engineering back-
ground where 1 MHz means precisely 1 000 000 Hz, and 1 Mbit/s means pre-
cisely 1 000 000 bits per second, often accurate to parts in 106 or better. Most
certainly, 1 MHz does not mean 1 048 576 Hz. There is considerable scope
for confusion—for example an 800 Mbit/s data link (engineering terminol-
ogy) cannot send 100 Mbytes in 1 second (computing terminology).4 Or a
cleverly crafted exercise which just overloads a communications link collapses
completely when the student assumes that 100 Mbit/s is 104 857 600 bit/s.
(Observe too that a disk whose size is quoted in 106 units may appear larger
than one measured in 220 units!).

In all there are at least three meanings for the prefix “Mega-” –

1. The traditional engineering or scientific 106 (1 000 000).

2. The computing 220 (1 048 576).

3. A curious hybrid measure used in giving the size of computer disks. Here
a megabyte is 1000 × 1024 or 1 024 000. Stating the capacity in this
hybrid measure is much more impressive for marketing. With 1 Tbyte

4Confusion between units is not confined to computers. NASA has lost a Mars vehicle
because of confusion between metric and imperial units. And at least one aircraft is reputed
to have run out of fuel for the very same reason.
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(TeraByte, 1012 bytes), the discrepancy is about 4% and the user will
see at best 0.96 Tbyte (less of course space lost “for formatting” etc.) 5

The author has a “640 Gbyte” disk, which the computer reports as “596.17
Gbyte”. But 596.17× 230 = 640.132× 109, so all are correct – it just depends
on the units!

Some people have adopted an informal convention where the suffix K = 210,
just as k = 103. While this is a useful convention, it is not widely accepted
and provides no solution to the corresponding problem for Mega- and Giga-,
etc.

Accordingly, one international standardisation body, the International Elec-
trotechnical Commission (IEC), approved in 1998 an IEC International Stan-
dard which specified names and prefix symbols for binary multiples as used in
data processing and data transmission. The prefixes are shown in Table 11.4

Table 11.4: International Standard Binary Multiples

Factor Name Symbol Origin Derivation
210 kibi Ki kilobinary (210)1 kilo - (103)1

220 mebi Mi megabinary (210)2 mega - (103)2

230 gibi Gi gigabinary (210)3 giga - (103)3

240 tebi Ti terabinary (210)4 tera - (103)4

250 pebi Pi petabinary (210)5 peta - (103)5

260 exbi Ei exabinary (210)6 exa - (103)6

These values are not formal international standards in the sense of the simi-
lar decimal prefixes, but follow the spirit of those better-established standards
and have been adopted by various regional standards authorities. However
much dissension remains.

It is suggested that in English, the first syllable of the name of the binary-
multiple prefix should be pronounced in the same way as the first syllable of
the name of the corresponding SI prefix, and that the second syllable should
be pronounced as “bee”. So we have a “kilobee”, or a “Gigabee”, and so on.

5Just remember that a disk always has more “Marketing Gigabytes” than “Engineering
Gigabytes”.
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11.6 The Development of Character Codes

As stated earlier in Chapter 8, there were two main streams of character
encodings used in computers, one derived from punched card equipment and
one from data transmission and communications. We now examine those two
streams in more detail.

11.6.1 Card-based Codes

Punched cards had their first major use in data processing when Hermann
Hollerith adopted them for the 1886 US census, after being introduced nearly
100 years earlier to control Jacquard looms and used by Babbage as storage
and control in his Analytical Engine. Through the early 20th century compa-
nies such as IBM and Powers-Samas (later Remington-Rand and then Sperry)
developed punched card based equipment to perform often quite complex data
processing functions.

Devices included key-punches, sorters, printing tabulators and computing
tabulators, many including fixed programming based on plug-boards. When
these business equipment manufacturers started to build computers the exist-
ing card or “unit-record” devices were ready-made for connection to the new
computers to provide input-output facilities.

Both IBM and Remington-Rand used cards 31
4

by 73
8

inches and 0.007 inches
thick6. The Remington-Rand cards had 45 columns with round holes and two
6-bit characters per column, with one character towards the top of the card
and one towards the bottom.

Overall the two systems offered similar equipment and facilities.

The dominant punched card technology however was that of IBM, using
80-column cards with rectangular holes and 12 rows per column; characters
were coded as combinations of the 12 holes, with one character per column.
Initially at least, digits were coded as single punches in rows 0 . . . 9, with a
‘+’ as a ‘12’ punch (top row) and a ‘-’ as an ‘11’ punch. When letters were
added they were coded as multi-punches, using rows 12, 11 and 0 (the three
top rows) as “zone” indicators with 1 . . . 9 as “digits” or “numerics”. Later
still, “special” or punctuation codes were also needed; these often used the “8”

6The size (but not thickness!) was the then size of a US dollar bill, and allowed bill-
handling machines to be used for punched cards.
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row as a further zone. This led to character encodings as shown in Table 11.5.

Table 11.5: Representative IBM Punched Card Codes (BCD)

characters punches
zone digit

0 . . . 9 0 . . . 9
A . . . I 12 1 . . . 9
J . . . R 11 1 . . . 9
S . . . Z 0 2 . . . 9

/ 0 1
. 12, 8 3
$ 11, 8 3
, 0, 8 3
* 11, 8 4
– 11

+ & 12
= # 8 3
′ @ 8 4
) % 12, 8 4
( 0, 8 4

Scientific Business

Unfortunately, two parallel character sets developed, a “commercial” set
and a “scientific” set (perhaps more accurately a “numerical computing” set).
They shared the same punch combinations, with the “scientific” characters
shown to the left in Table 11.5. Thus ‘+’ and ‘&’ shared the same code, as
did ‘=’ and ‘#’.

When IBM rationalized their separate scientific and commercial lines of
computers in the early 1960s with the release of the IBM S/360 computers,
they also introduced a revised card code, with an accompanying 8-bit internal
representation known as EBCDIC (Extended Binary Coded Decimal Inter-
change Code). The new code was clearly based on the earlier BCD code
described above, but introduced many new punctuation or “special” charac-
ters and a set of communication control characters.

The notion of “zone” and “digit” punches was retained in the EBCDIC card
code, but rows 12, 11, 0, 8 and 9 could be zones (in any combination), with
none or one of the rows 1. . . 9 used as the digit. All 256 byte values had a
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card-punch representation, even though some were seldom used. The zones
(12, 11, 0, 8 and 9) could be used as a 5-bit code in conjunction with the 3 bits
from encoding no-punch, or 1 . . . 7 in binary to give an intermediate 8-bit code
before forming the final EBCDIC code, perhaps by table look-up. (The final
EBCDIC code was based more or less on the combination of card punches, but
with some quite anomalous encodings for rarer characters.)

Table 11.6: EBCDIC Codes for Visible Characters

zones → 4 5 6 7 8 9 A B C D E F
↓ rows
0 0000 sp & - 0
1 0001 / a j A J 1
2 0010 b k s B K S 2
3 0011 c l t C L T 3
4 0100 d m u D M U 4
5 0101 e n v E N V 5
6 0110 f o w F O W 6
7 0111 g p x G P X 7
8 1000 h q y H Q Y 8
9 1001 i r z I R Z 9
A 1010 6 c ! :
B 1011 . $ , # { } [ ]
C 1100 < * % @
D 1101 ( ) ′

E 1110 + ; > =
F 1111 | ¬ ? ”

The EBCDIC encoding is shown in Table 11.6, omitting the first four
columns which are used for transmission control and similar functions and
all non-printing codes. The code for a character is the concatenation of the
hexadecimal row and column headings. Thus ‘A’ is coded as C1 (1100 0001)
and ‘+’ as 4E (0100 1110).

In comparison with the ASCII code of the next section –

• The EBCDIC code is quite sparse, spreading the codes over most of the
possible code space, but with major breaks. Thus, ‘special’ characters
seldom share columns with letters or digits.

• Just as with ASCII, a 6-bit subset can combine upper-case letters, digits,
and most of the punctuation symbols.
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• The collation order is quite different; indeed the blocks of digits, upper-
case and lower-case letters are in the reverse order, although the orders
are of course the same within the blocks.

• The characters sets almost coincide. EBCDIC has the characters 6 c and
¬, while ASCII includes ˜ and .̂ EBCDIC originally omitted braces and
brackets { } [ and ]. Even though they were later included, the actual
encoding seemed to depend very much on the actual computer system.
These matters pose grave difficulties for systems which must translate
between ASCII and EBCDIC (see Section 8.6).

The EBCDIC code has been used mostly in mainframe computers, especially
those made by IBM and Burroughs (now Unisys). Although important, it lacks
the widespread acceptance of ASCII and its successors and will not be used in
the rest of this section.

11.6.2 Transmission-based Codes

The first of these codes was devised by Emile Baudot in about 1882. It is
a rather subtle code, which is fully described by Heath [53] and, in modern
terms, used 5 bits to encode each character. It was meant to be encoded on a
manual keyboard, using ”chords” on the left and right hands, with two fingers
on the left and three fingers on the right as shown in Table 11.7. A single left
hand key, and none on the right, switched between the “letters” and “figures”
shift.

Table 11.7: Baudot’s Original Code

Gauche Droite Gauche Droite
10 11 01 00 10 11 01 00

lettres chiffres lettres chiffres

t K J A 100 . ( 6 1 100

Z L H É 110 : = h & 110
X M G E 010 , ) 7 2 010
W N F I 011 ? No F o 011
V P D O 111 ’ % 0 5 111
T Q C U 101 ! / 9 4 101
S R B Y 001 ; - 8 3 001

A different code now known as the “Baudot” code, (also a 5-bit code but
with an English flavour) was invented around 1903 by Murray, a New Zealan-
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der working in London. It used a typewriter-like keyboard instead of Baudot’s
five “piano” keys; the operator did not have to know the symbol codes. The
code allocation looks quite arbitrary, but generally encodes frequent charac-
ters with fewer bits. It is officially called the International Telecommunications
Union International Alphabet 2 (IA-2).

When people first started making computers, those who already made unit-
record or punched card equipment tended to use their existing devices for
input-output, as described in the previous section. Many of the other computer
developers, often smaller and universities or similar organisations, chose to use
what was readily available and not too expensive. Often that equipment was
teleprinters and paper tape.

Table 11.8: The Murray (IA-2, “Baudot”) Code, Extended to 6 Bits

high-order → 0 0 0 1 1 0 1 1
low-order 0 1 2 3
↓ bits Letters Figures

0 0 0 0 0 BLK T BLK 5
0 0 0 1 1 E Z 3 ”
0 0 1 0 2 LF L LF 3

4
or )

0 0 1 1 3 A W - 2
0 1 0 0 4 sp H sp 3

0 1 0 1 5 S Y BELL 6
0 1 1 0 6 I P 8 0
0 1 1 1 7 U Q 7 1
1 0 0 0 8 CR O CR 9
1 0 0 1 9 D B $ 5

8
or ?

1 0 1 0 10 R G 4 &
1 0 1 1 11 J FIGS ′ FIGS

1 1 0 0 12 N M 7
8

or , .
1 1 0 1 13 F X 1

4
or ! /

1 1 1 0 14 C V 1
8

or : 3
8

or ;
1 1 1 1 15 K LTRS 1

2
or ( LTRS

Teleprinter equipment had been available since the early 20th century, using
the 5-bit IA-2 code. This 5-bit code operates in two modes—‘letters shift’ and
‘figures (or numeric) shift’, with explicit codes to force entry to one mode or
the other. With the current shift encoded as an extra bit, it immediately leads
to a 6-bit computer code capable of handling mono-case letters, digits and
some punctuation. This code is shown in Table 11.8. The two “column” bits
are used as a prefix to the four “row” bits in forming the final 6-bit code.
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A major problem is the arbitrary order of both letters and digits, which
makes comparisons and ordering extremely difficult. This code is not well
suited to computers although for simple data transmission the arbitrary en-
coding is quite irrelevant7.

The situation was not helped by the multiplicity of internal codes used on
various computers in the late 1950s. They were usually 6-bit codes and often
based on card code, but incompatible in the details8. That did not matter as
long as computers were isolated entities, but with communications becoming
important there was a clear need for a standard code.

As one example, the Univac 1108 computer was originally designed to to
hold six 6-bit characters in each 36-bit word. For ASCII, the word was divided
into four 9-bit quarter words, each holding one 8-bit character with one spare
bit.

Table 11.9: Table of ASCII-63 Character codes (• may be 0 or 1)

binary hex •000 •001 •010 •011 •100 •101 •110 •111

0000 0 NULL DC0 SP 0 @ P
0001 1 SOM DC1 ! 1 A Q
0010 2 EOA DC2 " 2 B R
0011 3 EOM DC3 # 3 C S
0100 4 EOT DC4 $ 4 D T
0101 5 WRU ERR % 5 E U
0110 6 RU SYNC & 6 F V
0111 7 BELL LEM ’ 7 G W
1000 8 FE0 S0 ( 8 H X
1001 9 HT/SK S1 ) 9 I Y
1010 A LF S2 * : J Z
1011 B VT S3 + ; K [
1100 C FF S4 , < L \ ACK
1101 D CR S5 - = M ]
1110 E SO S6 . > N ↑ ESC
1111 F SI S7 / ? O ← DEL

Given the limitations of the 5-bit code and the plethora of 6-bit codes,

7The author well remembers a code patch sent for a B6700 computer in the 1970s, over a
teleprinter link which used 5-bit IA-2. Its Algol language made much use of symbols such as
: [ ] ; all of which had to be spelled out, or at least with obvious abbreviations. It provided
a graphic illustration of the deficiencies of older transmission alphabets.

8It is not surprising that Univac based a code on the Remington-Rand 40 × 2 column
card format, whereas IBM used their 80 column card.
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the American National Standards Institute issued in 1963 a new code, the
“American Standard Code for Information Interchange”, generally known as
ASCII-63. It was a 7-bit code (8-bit with parity) and provided a rich set of
transmission control codes, in addition to the usual letters and digits and a
good set of punctuation symbols. ASCII-63 was still upper-case-only, lacked
some punctuation symbols, and had some of its control codes aligned more with
traditional transmission equipment than with the requirements of computer
communication. It is shown in Table 11.9.

A revised code was issued in 1967. ASCII-67 extended the alphabet to
include lower-case letters and an extended set of punctuation symbols, still
within the bounds of a 7-bit code, and renamed some of the transmission
codes to reflect more general functions. It is this code which is generally known
as “the ASCII code”. (Strictly the name should be ANSCII, for “American
National Standard Code . . . ”, but few people seem to use that term.) The
international equivalent is known as the International Alphabet 5 (IA–5). Na-
tional codes, of which ASCII-67 is an example, differ mainly in the coding of
currency symbols.

The 7-bit code fitted well with the advent of the 8-bit byte as a funda-
mental data unit in computers, and is shown in Table 11.10. The 8th (most
significant) bit may be 0, 1, or parity.

Two subset codes were also defined in the 1963 standard.

• The ‘central’ four columns (headed ‘010’ to ‘101’) provide a 6-bit subset
which was, at that time, suitable for many computers which required
6-bit codes. (But there are no symbols for “end-of-line”, etc.)

• The first ten digits in the fourth column and the last six symbols in the
third column provided a “4-bit” subset suitable for calculators and the
like. (The resulting codes 0 . . . 9, * + , – . and / are those now provided
on the numeric keypads of most keyboards.)

The adoption of the ASCII code was hastened by the widespread use of
TeletypeTM units ASR-33 and ASR-35 (for ASCII 63) and ASR-37 (for ASCII
67) which combined keyboard and printing with paper tape reader and punch,
albeit all at 10 characters per second. Possibly supplemented with higher per-
formance paper tape equipment, these and similar devices provided the input-
output facilities for the first generation of minicomputers and time-sharing
computers.
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Table 11.10: Table of ASCII-67 Character Codes (• may be 0 or 1)

binary hex •000 •001 •010 •011 •100 •101 •110 •111

0000 0 NUL DLE SP 0 @ P ‘ p
0001 1 SOH DC1 ! 1 A Q a q
0010 2 STX DC2 " 2 B R b r
0011 3 ETX DC3 # 3 C S c s
0100 4 EOT DC4 $ 4 D T d t
0101 5 ENQ NAK % 5 E U e u
0110 6 ACK SYN & 6 F V f v
0111 7 BEL ETB ’ 7 G W g w
1000 8 BS CAN ( 8 H X h x
1001 9 HT EM ) 9 I Y i y
1010 A LF SUB * : J Z j z
1011 B VT ESC + ; K [ k {
1100 C FF FS , < L \ l |
1101 D CR GS - = M ] m }
1110 E SO RS . > N ^ n ~

1111 F SI US / ? O o DEL

6-bit ASCII subset

11.7 More on Decimal Coding

Although almost all decimal applications now use the simple “BCD” coding
in which four bits as { 0000, 0001, . . . , 1000, 1001 } represent the digits 0
. . . 9, with weights {8, 4, 2, 1} there are other representations which have been
important and it is appropriate to mention. Some were used for good technical
reasons, while others were used to avoid actual or apparent patent protection
on the 8421 code. A comprehensive review of early decimal coding is included
in Richards [84].

Examples of these codes are shown in Table 11.11 and are explained in
the following text. Not all are unique, or even well-defined. There are two
columns headed “BCD”. The left hand one is the “direct” and obvious BCD
code discussed earlier, while the right hand column is derived from the “BCD”
card code.

4221 Apart from BCD {8, 4, 2, 1}, the only important decimal code seems
to be “4221” with weights of {4, 2, 2, 1} (or often as {2, 4, 2, 1 }).
This is a “self-complementing” code, in which inverting the bits gives
the 9s complement of the decimal value. There are alternative codings
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Table 11.11: Examples of Various Decimal Codings

BCD 4221 excess 3 2 out of 5 biquinary
N N 9−N N 9−N IBM 650 BCD

0 0000 0000 1111 0011 1100 00110 01010 01 00001
1 0001 0001 1110 0100 1011 00011 10001 01 00010
2 0010 0010 1101 0101 1010 00101 10010 01 00100
3 0011 0011 1100 0110 1001 01001 00011 01 01000
4 0100 0110 0111 0111 1000 01010 10100 01 10000
5 0101 1001 1000 1000 0111 01100 00101 10 00001
6 0110 1100 0011 1001 0110 10001 00110 10 00010
7 0111 1101 1000 1010 0101 10010 11000 10 00100
8 1000 1110 0001 1011 0100 10100 01001 10 01000
9 1001 1111 0000 1100 0011 11000 01010 10 10000

for the 4221 code such as {4→ 1000, 5→ 0111}, subject always to the
constraint that 9s complements of the digits use 1s complements of the
codes.

excess-3 This is another self-complementing code and represents a digit N by
the BCD representation of N + 3. It has been used in some computers.

2 out of 5 These are examples of “constant-parity” codes, perhaps more cor-
rectly “constant weight”) where all representations have the same num-
ber of “1” bits. The 2 out of 5 codes have 2 1s and 3 0s for each digit,
which can represent 5C2 = 10 values. (They use as many bits per digit
as a BCD code with conventional parity.)

Two versions of the 2-out-of-5 constant parity code are shown in the
table. The “IBM 650” version shown is that used in the IBM 650 com-
puter (Brooks & Iverson, 1963) [14] for data in memory. Except when
coding the digit ‘0’, its bits have weights of { 6, 3, 2, 1, 0 }; the ‘0’
bit functions as a parity (which is a interesting example of parity). The
column headed “BCD” uses BCD codes with parity as far as possible.
Representations with a single 1-bit have a parity bit added, while those
with two 1s need no extra parity. Digits 0 and 7 with respectively 0 and
3 bits need special representation.

biquinary This code uses 7 bits per digit, broken into groups of 2 and 5; as
each group must have precisely one 1-bit it is another constant parity
code. The two bits of the first group have weights of 5 and 0, while the
5 bits of the second group have weights of 4, 3, 2, 1 and 0. (The coding
resembles that of an abacus.)
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The biquinary code was used in the processing logic of the IBM 650
following its use in the Bell Laboratories Mark V [63] and Harvard Mark
II [1] relay computers described in the middle 1940s.

Table 11.12: The Weighted 4-Bit Decimal Codings

c 8 7 -4 -2 7 4 2 1 6 3 2 -1 5 4 -3 2
8 6 -4 1 7 4 2 -1 czp 6 3 2 -2 5 3 2 1

c 8 6 -4 -1 7 4 -2 1 6 3 1 1 c 5 3 2 -1
8 5 -4 2 7 4 -2 -1 czp 6 3 1 -1 5 3 1 1
8 5 -4 -2 7 3 2 1 czp 6 3 -1 1 zp 5 3 1 -1
8 4 3 -2 7 3 2 -1 6 3 -1 -1 zp 5 3 -1 1
8 4 2 1 c 7 3 -2 1 czp 6 3 -2 2 5 3 -2 1
8 4 2 -1 z 7 3 -2 -1 6 3 -2 1 5 2 2 1
8 4 -2 1 z 7 -3 2 1 z 6 3 -2 -1 5 2 2 -1

c 8 4 -2 -1 7 -3 2 -1 6 2 2 1 c 5 2 1 1
8 4 -3 2 7 -4 2 1 c 6 2 2 -1 c 4 4 3 -2
8 4 -3 -2 7 -4 2 -1 zp 6 2 -2 1 4 4 2 1

c 8 -4 3 2 c 7 -6 5 3 zp 6 -2 2 1 c 4 4 2 -1
8 -4 3 -2 6 5 4 -3 z 6 -3 2 1 4 4 -2 1
8 -4 2 1 c 6 5 -3 1 6 -4 3 2 4 3 2 1
8 -4 2 -1 6 5 -4 3 6 -4 2 1 4 3 2 -1
8 -4 -2 1 c 6 5 -4 2 6 -5 4 3 c 4 3 1 1

c 8 -5 4 2 6 4 3 -2 5 4 3 -2 c 4 2 2 1
c 8 -6 4 3 6 4 2 1 czp 5 4 3 -3 c 3 3 2 1

8 -6 4 1 6 4 2 -1 5 4 2 1 -6 5 4 3
7 6 -5 3 c 6 4 -2 1 5 4 2 -1 -7 6 5 3
7 5 -3 1 6 4 -2 -1 5 4 -2 1
7 5 -3 -1 c 6 4 -3 2 5 4 -2 -1

c 7 5 -4 1 6 3 2 1 czp 5 4 -3 3

Because the conventional BCD coding with weights of 8, 4, 2, 1 uses only
5/8 of the available combinations, there are other ways of representing decimal
digits with 4 bits. Richards [84] gives a table with 70 weighted codes, but as
he comments “the listing is more for the record than any practical value”. In
similar spirit, Table 11.12 extends his listing and shows 93 possible codes for
decimal digits, where each of the four bits has a constant weight. The listing
here has been prepared by a search of all possible 4-bit codes and is believed to
be complete. The weights are ordered in non-increasing absolute values. The
two “boxed” entries are the usual BCD codes. Special codes are flagged as —

c “Self-complementing” codes; inverting all the bits of these codes gives the
9s complement of the original value. [Assume a weight vector w where
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∑
wi = 9. A digit vector d represents a value

∑
diwi = N . To comple-

ment the representation, replace each di by 1− di; the changed value is
then

∑
(1−di)wi =

∑
wi−

∑
diwi = 9−N , which is the 9s complement.]

p Each of these codes is a permutation of another code; half are redundant.

z These allow 0 to be represented by a non-zero code; the codeword 0000 is
legitimate, but with these weights there is always another way of repre-
senting a zero value; all codes have some negative weights.

11.8 Roman Numbers, and Oddities

Here we take a further look at Roman numbers. They provide an excellent
example of a poorly-designed number system; assuming that is that they were
ever really designed at all.

To recap, the “official” Roman number system is based on the symbols
I=1, V=5, X=10, L=50, C=100, D=500, M=1000. Numbers are written in
decreasing significance of the symbols, adding the represented values. The
symbols I, X, C and M may be repeated, so that XX represents 20 and CCC
300. However a lesser symbol may be written as a prefix to an immediately
greater one, and is then subtracted, so that IV represents 4 and XC 90, although
90 can be written as LXXXX and 4 as IIII.

Despite the problems to be discussed, the Roman representation seems now
to be well defined and stable, at least for values up to MMMCMXCIX. As the
Roman representation is now usually restricted to dates and page numbers,
this limit is not important.

That Roman numbers are not uniquely defined is immediately obvious from
many clock faces, which use IIII for 4 and VIIII for 9. But these are the least
of the variations. Ifrah [61] discusses the extension of Roman numbers to
larger values; the extensions are best described as inconsistent and confusing.
For example, an overline could represent multiplication by 1000, so that M
represented 1 000 000. But the overline could also represent letters being used
as numerals. To reduce this confusion, the overline could be accompanied by
side bars giving

557 274 = |DLVII| CCLXXIV = 557× 1000 + 274

Or, the sidebars could sometimes mean multiplication by 100 000! The Roman
number system was conducive to neither accuracy nor arithmetic.
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There is doubt about even uniqueness of representation. Within the basic
rules of adding most values, but subtracting lesser prefixes, there seems to be
precedent for almost anything that worked! Or rather, anything that looked
as though it might work!

Should 999 be written as CMXCIX, as IM, or perhaps as XMIX? There is
even precedent for writing 18 as IIXX [26], but also for writing 2000 as IIM
where the prefix acts as a multiplier! 9

There is no uniform rule by which the progression from I → II implies
VIII → IX, and so on. While it might be obvious that I + II → III, is there
any obvious reason why MCMXCVIII+II → MM?

Variations on the Roman number system were many and inconsistent. From
a book on one-letter words [20], we can obtain the codes in Figure 11.1.

Figure 11.1: Roman Digits—Usual and Unusual

B 300 *C 100 *D 500 E 250 #F 40 G 400
H 200 *I 1 J 1 K 250 *L 50 *M 1000
N 90 O 11 P 400 #Q 500 #R 80 S 70
T 160 V 5 *X 10 #Y 150 #Z 2000

“Standard” codes are preceded by *; occasional mediæval codes by #

The general level of Roman mathematical ability is well illustrated by their
calendar [24, pp 40ff]. When Julius Cæsar introduced the “Julian Calendar” in
46 BCE (having taken advice from Egyptian astronomers, who possibly knew
even then that a year of 3651

4
days was not completely accurate) he had first to

decree a year of 445 days to correct for accumulated errors and “adjustments”.
But before long the priests started having leap years every three years instead
of four. . . . And matters were not helped by counting years afresh with each
new Emperor’s reign.

The problems remained until work by Cassiodorus and Dioysius Exeguus
introduced the “Anno Dominii” (AD or CE) calendar around 520 [24, pp 96–
101], calculating all dates from a calculable historical date.

9Many of these aberrations may do no more than reflect the incompetence and innumer-
acy of the workers concerned. The mistakes of stonemasons are especially durable.
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11.9 Scaling Invariance

The material of this section is rather philosophical, dealing with the underly-
ing justification for logarithmic representations and, especially, floating-point.
While it somewhat removed from most ideas of Computer Data it is a topic
which is seldom described. But, and this is the most important, I found it
interesting!

In 1881 Simon Newcomb observed that the earlier pages of a book of loga-
rithms showed much greater use than later pages, and in 1938 Frank Benford
found that over an enormous variety of naturally occurring values, about 30%
had a first digit of 1, 18% started with 2, but only about 5% started with a
9. Empirically, Benford’s law states that the probability of the first digit of a
value being n varies as log(1+1/n). It was then shown by Pinkham [80] in 1961
that this distribution follows from combining many independent distributions.

Hamming [51] deals specifically with floating-point numbers in computers,
showing that values in base b follow the reciprocal distribution

r(x) =
1

x ln b

In particular he shows that this is a limiting distribution, to which others tend
under multiplication and division, stating that this fact is “well-known (to
comparatively few people)”10. He also discusses the distribution of floating-
point exponents and conjectures that exponents tend to a normal distribution,
with a variance proportional to the number of operations.

Physically, Benford’s law follows from the requirement that physical values
must maintain their mutual relationships irrespective of any change of units
or scaling. Computationally, the principle of scaling invariance has important
consequences in the design of number representations for physical quantities.
Here, it may be stated as –

The results of a computation should be independent of the system
of units, after allowing for any necessary scaling to reconcile the
units.

As an adjunct to the principle of scaling invariance, there are good economic
reasons to avoid excessive precision in number representation. Excessive preci-
sion costs money in hardware and storage because both costs increase at least

10This phrase, or variants, seem to be a “Hamming trademark”.
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linearly with precision. It also costs execution time with multiplication and
division often increasing as n log n or n2 for n-bit precision; “higher” func-
tions often show an even stronger variation of cost versus precision. Thus
we assume that the calculation precision should be commensurate with data
precision (with a sufficient guard against rounding and truncation errors), but
not greatly in excess of that precision.

Real-world problems may be set and solved in any acceptable set of phys-
ical units (such as inches or centimetres, kilograms or pounds). After scaling
appropriate to the units, results should be the same in any consistent system.
Thus, the final answer should not depend on whether the calculation is done in
units of metres, centimetres or kilometres (or even nanometres or lightyears!).

In the large scale conversion between older cgs (centimetre-gram-second)
and newer MKS (metre-kilogram-second) units immediately introduces
factors of 100 in length and 1000 in mass, with derived factors of 105

for force (1 Newton = 105 dyne) and 107 for work (1 Joule = 107 erg).
Further complications arise in the cgs system, where two systems of
electrical units, electromagnetic units (emu) and electrostatic units (esu),
differ by the velocity of light (c ≈ 3× 1010) as the scaling factor, or even
by a ratio of c2 ≈ 9 × 1020). Just changing the measurement units can
change numerical values by factors up to 3 × 1010, placing considerable
demands on the number system. Fixed-point integers or fractions are
certainly inappropriate.

A length of 500 metres (MKS) corresponds to a length of 50 000 cen-
timetres (cgs); a fixed-point precision adequate for MKS units is quite
inadequate for cgs units. MKS values to cgs precision will appear to be
much more accurate than cgs values for the corresponding calculation,
with correspondingly reduced rounding and truncation. The results will
seem to be much more accurate than with cgs units, in violation of the
principle of scaling invariance. The differences are even more significant
when cgs electrostatic and electromagnetic units are compared.

In the small scale the need for robustness against scaling by small values
(say < 20) implies a small number base in the floating-point representa-
tion to avoid significant changes in precision over relatively small changes
in value. The IBM S/360 representation is notorious in regard to small-
scale invariance because the hexadecimal base makes the precision vary
between 21–24 bits as values change over a range of 1:16. Its represen-
tation of π/4 is about one decimal digit more accurate than the repre-
sentation of 2π.
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The ideal representation should have a fixed precision that is quite inde-
pendent of any multiplicative scaling; this implies a fixed-point logarithm as
the “best” representation. But the logarithmic representations, as described
above, have their own particular problems and are little used. The usual
representation (floating-point) then copies directly the standard scientific rep-
resentation, with the significant digits normalised to a value of O(1) and an
exponential scaling factor (that contains the logarithmic aspect).
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Chapter 12

Concluding Comments

It is now nearly two-thirds of a century since the first computers operated.
In that time computers have “grown” so that, compared with even 25 years
ago, (one human generation) a computer then equivalent to a supercomputer
(a “strategic export”) is now a pocket-sized consumer item and the computing
equipment for a major data centre of similar age corresponds to that now on
a domestic desk.

In that time there have been corresponding changes in data representation
within computers. Although the main data aggregates (arrays, stacks, queues,
lists, hash tables, etc) appeared very quickly, it took much longer to stabilise
the representation of the individual components; that development has been
a major theme of this book. Thus we have seen various ways of representing
integers (and fractions), “real” numbers and characters (and text), all as de-
scribed here. Many of these have been tried and found wanting. It is quite
likely (famous last words) that there will be little major development beyond
what is given here at this most fundamental level.

While it might be possible to squeeze a bit more speed out of processors and
somewhat higher data density on storage devices (more famous last words),
there are very real physical limits, many involving the time for communication
between physically separated components. The major future developments in
computing are likely to involve intensive computing on extensive data, areas
which are far beyond this book.

Thus this book attempts to encapsulate the present state of data represen-
tation within computers and, hopefully, the situation at this level for some
time into the future.
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