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Preface

This report on evaluating machine learning models arose out of a
sense of need. The content was first published as a series of six tech‐
nical posts on the Dato Machine Learning Blog. I was the editor of
the blog, and I needed something to publish for the next day. Dato
builds machine learning tools that help users build intelligent data
products. In our conversations with the community, we sometimes
ran into a confusion in terminology. For example, people would ask
for cross-validation as a feature, when what they really meant was
hyperparameter tuning, a feature we already had. So I thought, “Aha!
I’ll just quickly explain what these concepts mean and point folks to
the relevant sections in the user guide.”

So I sat down to write a blog post to explain cross-validation, hold-
out datasets, and hyperparameter tuning. After the first two para‐
graphs, however, I realized that it would take a lot more than a sin‐
gle blog post. The three terms sit at different depths in the concept
hierarchy of machine learning model evaluation. Cross-validation
and hold-out validation are ways of chopping up a dataset in order
to measure the model’s performance on “unseen” data. Hyperpara‐
meter tuning, on the other hand, is a more “meta” process of model
selection. But why does the model need “unseen” data, and what’s
meta about hyperparameters? In order to explain all of that, I
needed to start from the basics. First, I needed to explain the high-
level concepts and how they fit together. Only then could I dive into
each one in detail.

Machine learning is a child of statistics, computer science, and
mathematical optimization. Along the way, it took inspiration from
information theory, neural science, theoretical physics, and many
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other fields. Machine learning papers are often full of impenetrable
mathematics and technical jargon. To make matters worse, some‐
times the same methods were invented multiple times in different
fields, under different names. The result is a new language that is
unfamiliar to even experts in any one of the originating fields.

As a field, machine learning is relatively young. Large-scale applica‐
tions of machine learning only started to appear in the last two dec‐
ades. This aided the development of data science as a profession.
Data science today is like the Wild West: there is endless opportu‐
nity and excitement, but also a lot of chaos and confusion. Certain
helpful tips are known to only a few.

Clearly, more clarity is needed. But a single report cannot possibly
cover all of the worthy topics in machine learning. I am not covering
problem formulation or feature engineering, which many people
consider to be the most difficult and crucial tasks in applied
machine learning. Problem formulation is the process of matching a
dataset and a desired output to a well-understood machine learning
task. This is often trickier than it sounds. Feature engineering is also
extremely important. Having good features can make a big differ‐
ence in the quality of the machine learning models, even more so
than the choice of the model itself. Feature engineering takes knowl‐
edge, experience, and ingenuity. We will save that topic for another
time.

This report focuses on model evaluation. It is for folks who are start‐
ing out with data science and applied machine learning. Some seas‐
oned practitioners may also benefit from the latter half of the report,
which focuses on hyperparameter tuning and A/B testing. I certainly
learned a lot from writing it, especially about how difficult it is to do
A/B testing right. I hope it will help many others build measurably
better machine learning models!

This report includes new text and illustrations not found in the orig‐
inal blog posts. In Chapter 1, Orientation, there is a clearer explana‐
tion of the landscape of offline versus online evaluations, with new
diagrams to illustrate the concepts. In Chapter 2, Evaluation Met‐
rics, there’s a revised and clarified discussion of the statistical boot‐
strap. I added cautionary notes about the difference between train‐
ing objectives and validation metrics, interpreting metrics when the
data is skewed (which always happens in the real world), and nested
hyperparameter tuning. Lastly, I added pointers to various software
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packages that implement some of these procedures. (Soft plugs for
GraphLab Create, the library built by Dato, my employer.)

I’m grateful to be given the opportunity to put it all together into a
single report. Blogs do not go through the rigorous process of aca‐
demic peer reviewing. But my coworkers and the community of
readers have made many helpful comments along the way. A big
thank you to Antoine Atallah for illuminating discussions on A/B
testing. Chris DuBois, Brian Kent, and Andrew Bruce provided
careful reviews of some of the drafts. Ping Wang and Toby Roseman
found bugs in the examples for classification metrics. Joe McCarthy
provided many thoughtful comments, and Peter Rudenko shared a
number of new papers on hyperparameter tuning. All the awesome
infographics are done by Eric Wolfe and Mark Enomoto; all the
average-looking ones are done by me.

If you notice any errors or glaring omissions, please let me know:
alicez@dato.com. Better an errata than never!

Last but not least, without the cheerful support of Ben Lorica and
Shannon Cutt at O’Reilly, this report would not have materialized.
Thank you!
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Orientation

Cross-validation, RMSE, and grid search walk into a bar. The bar‐
tender looks up and says, “Who the heck are you?”

That was my attempt at a joke. If you’ve spent any time trying to
decipher machine learning jargon, then maybe that made you
chuckle. Machine learning as a field is full of technical terms, mak‐
ing it difficult for beginners to get started. One might see things like
“deep learning,” “the kernel trick,” “regularization,” “overfitting,”
“semi-supervised learning,” “cross-validation,” etc. But what in the
world do they mean?

One of the core tasks in building a machine learning model is to
evaluate its performance. It’s fundamental, and it’s also really hard.
My mentors in machine learning research taught me to ask these
questions at the outset of any project: “How can I measure success
for this project?” and “How would I know when I’ve succee‐
ded?” These questions allow me to set my goals realistically, so that I
know when to stop. Sometimes they prevent me from working on
ill-formulated projects where good measurement is vague or infeasi‐
ble. It’s important to think about evaluation up front.

So how would one measure the success of a machine learning
model? How would we know when to stop and call it good? To
answer these questions, let’s take a tour of the landscape of machine
learning model evaluation.

The Machine Learning Workflow
There are multiple stages in developing a machine learning model
for use in a software application. It follows that there are multiple
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1 For the sake of simplicity, we focus on “batch training” and deployment in this report.
Online learning is a separate paradigm. An online learning model continuously adapts
to incoming data, and it has a different training and evaluation workflow. Addressing it
here would further complicate the discussion.

places where one needs to evaluate the model. Roughly speaking, the
first phase involves prototyping, where we try out different models to
find the best one (model selection). Once we are satisfied with a pro‐
totype model, we deploy it into production, where it will go through
further testing on live data.1 Figure 1-1 illustrates this workflow.

Figure 1-1. Machine learning model development and evaluation
workflow

There is not an agreed upon terminology here, but I’ll discuss this
workflow in terms of “offline evaluation” and “online evaluation.”
Online evaluation measures live metrics of the deployed model on
live data; offline evaluation measures offline metrics of the prototy‐
ped model on historical data (and sometimes on live data as well).

In other words, it’s complicated. As we can see, there are a lot of col‐
ors and boxes and arrows in Figure 1-1.
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Why is it so complicated? Two reasons. First of all, note that online
and offline evaluations may measure very different metrics. Offline
evaluation might use one of the metrics like accuracy or precision-
recall, which we discuss in Chapter 2. Furthermore, training and
validation might even use different metrics, but that’s an even finer
point (see the note in Chapter 2). Online evaluation, on the other
hand, might measure business metrics such as customer lifetime
value, which may not be available on historical data but are closer to
what your business really cares about (more about picking the right
metric for online evaluation in Chapter 5).

Secondly, note that there are two sources of data: historical and live.
Many statistical models assume that the distribution of data stays the
same over time. (The technical term is that the distribution is sta‐
tionary.) But in practice, the distribution of data changes over time,
sometimes drastically. This is called distribution drift. As an exam‐
ple, think about building a recommender for news articles. The
trending topics change every day, sometimes every hour; what was
popular yesterday may no longer be relevant today. One can imagine
the distribution of user preference for news articles changing rapidly
over time. Hence it’s important to be able to detect distribution drift
and adapt the model accordingly.

One way to detect distribution drift is to continue to track the
model’s performance on the validation metric on live data. If the per‐
formance is comparable to the validation results when the model
was built, then the model still fits the data. When performance starts
to degrade, then it’s probable that the distribution of live data has
drifted sufficiently from historical data, and it’s time to retrain the
model. Monitoring for distribution drift is often done “offline” from
the production environment. Hence we are grouping it into offline
evaluation.

Evaluation Metrics
Chapter 2 focuses on evaluation metrics. Different machine learning
tasks have different performance metrics. If I build a classifier to
detect spam emails versus normal emails, then I can use classifica‐
tion performance metrics such as average accuracy, log-loss, and
area under the curve (AUC). If I’m trying to predict a numeric
score, such as Apple’s daily stock price, then I might consider the
root-mean-square error (RMSE). If I am ranking items by relevance
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to a query submitted to a search engine, then there are ranking los‐
ses such as precision-recall (also popular as a classification metric)
or normalized discounted cumulative gain (NDCG). These are
examples of performance metrics for various tasks.

Offline Evaluation Mechanisms
As alluded to earlier, the main task during the prototyping phase is
to select the right model to fit the data. The model must be evaluated
on a dataset that’s statistically independent from the one it was
trained on. Why? Because its performance on the training set is an
overly optimistic estimate of its true performance on new data. The
process of training the model has already adapted to the training
data. A more fair evaluation would measure the model’s perfor‐
mance on data that it hasn’t yet seen. In statistical terms, this gives
an estimate of the generalization error, which measures how well the
model generalizes to new data.

So where does one obtain new data? Most of the time, we have just
the one dataset we started out with. The statistician’s solution to this
problem is to chop it up or resample it and pretend that we have
new data.

One way to generate new data is to hold out part of the training set
and use it only for evaluation. This is known as hold-out validation.
The more general method is known as k-fold cross-validation.
There are other, lesser known variants, such as bootstrapping or
jackknife resampling. These are all different ways of chopping up or
resampling one dataset to simulate new data. Chapter 3 covers off‐
line evaluation and model selection.

Hyperparameter Search
You may have heard of terms like hyperparameter search, auto-
tuning (which is just a shorter way of saying hyperparameter
search), or grid search (a possible method for hyperparameter
search). Where do those terms fit in? To understand hyperparame‐
ter search, we have to talk about the difference between a model
parameter and a hyperparameter. In brief, model parameters are the
knobs that the training algorithm knows how to tweak; they are
learned from data. Hyperparameters, on the other hand, are not
learned by the training method, but they also need to be tuned. To
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make this more concrete, say we are building a linear classifier to
differentiate between spam and nonspam emails. This means that
we are looking for a line in feature space that separates spam from
nonspam. The training process determines where that line lies, but
it won’t tell us how many features (or words) to use to represent the
emails. The line is the model parameter, and the number of features
is the hyperparameter.

Hyperparameters can get complicated quickly. Much of the proto‐
typing phase involves iterating between trying out different models,
hyperparameters, and features. Searching for the optimal hyperpara‐
meter can be a laborious task. This is where search algorithms such
as grid search, random search, or smart search come in. These are
all search methods that look through hyperparameter space and find
good configurations. Hyperparameter tuning is covered in detail in
Chapter 4.

Online Testing Mechanisms
Once a satisfactory model is found during the prototyping phase, it
can be deployed to production, where it will interact with real users
and live data. The online phase has its own testing procedure. The
most commonly used form of online testing is A/B testing, which is
based on statistical hypothesis testing. The basic concepts may be
well known, but there are many pitfalls and challenges in doing it
correctly. Chapter 5 goes into a checklist of questions to ask when
running an A/B test, so as to avoid some of the pernicious pitfalls.

A less well-known form of online model selection is an algorithm
called multiarmed bandits. We’ll take a look at what it is and why it
might be a better alternative to A/B tests in some situations.

Without further ado, let’s get started!

Online Testing Mechanisms | 5





Evaluation Metrics

Evaluation metrics are tied to machine learning tasks. There are dif‐
ferent metrics for the tasks of classification, regression, ranking,
clustering, topic modeling, etc. Some metrics, such as precision-
recall, are useful for multiple tasks. Classification, regression, and
ranking are examples of supervised learning, which constitutes a
majority of machine learning applications. We’ll focus on metrics for
supervised learning models in this report.

Classification Metrics
Classification is about predicting class labels given input data. In
binary classification, there are two possible output classes. In multi‐
class classification, there are more than two possible classes. I’ll
focus on binary classification here. But all of the metrics can be
extended to the multiclass scenario.

An example of binary classification is spam detection, where the
input data could include the email text and metadata (sender, send‐
ing time), and the output label is either “spam” or “not spam.” (See
Figure 2-1.) Sometimes, people use generic names for the two
classes: “positive” and “negative,” or “class 1” and “class 0.”

There are many ways of measuring classification performance.
Accuracy, confusion matrix, log-loss, and AUC are some of the most
popular metrics. Precision-recall is also widely used; I’ll explain it in
“Ranking Metrics” on page 12.
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Figure 2-1. Email spam detection is a binary classification problem
(source: Mark Enomoto | Dato Design)

Accuracy
Accuracy simply measures how often the classifier makes the correct
prediction. It’s the ratio between the number of correct predictions
and the total number of predictions (the number of data points in
the test set):

accuracy = # correct predictions
# total data points

Confusion Matrix
Accuracy looks easy enough. However, it makes no distinction
between classes; correct answers for class 0 and class 1 are treated
equally—sometimes this is not enough. One might want to look at
how many examples failed for class 0 versus class 1, because the cost
of misclassification might differ for the two classes, or one might
have a lot more test data of one class than the other. For example,
when a doctor makes a medical diagnosis that a patient has cancer
when he doesn’t (known as a false positive) has very different conse‐
quences than making the call that a patient doesn’t have cancer
when he does (a false negative). A confusion matrix (or confusion
table) shows a more detailed breakdown of correct and incorrect
classifications for each class. The rows of the matrix correspond to
ground truth labels, and the columns represent the prediction.

Suppose the test dataset contains 100 examples in the positive class
and 200 examples in the negative class; then, the confusion table
might look something like this:

 Predicted as positive Predicted as negative

Labeled as positive 80 20

Labeled as negative 5 195
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Looking at the matrix, one can clearly tell that the positive class has
lower accuracy  (80/(20 + 80) = 80%) than the negative class (195/
(5 + 195) = 97.5%). This information is lost if one only looks at the
overall accuracy, which in this case would be (80 + 195)/(100 + 200)
= 91.7%.

Per-Class Accuracy
A variation of accuracy is the average per-class accuracy—the aver‐
age of the accuracy for each class. Accuracy is an example of what’s
known as a micro-average, and average per-class accuracy is a
macro-average. In the above example, the average per-class accuracy
would be (80% + 97.5%)/2 = 88.75%. Note that in this case, the aver‐
age per-class accuracy is quite different from the accuracy.

In general, when there are different numbers of examples per class,
the average per-class accuracy will be different from the accuracy.
(Exercise for the curious reader: Try proving this mathematically!)
Why is this important? When the classes are imbalanced, i.e., there
are a lot more examples of one class than the other, then the accu‐
racy will give a very distorted picture, because the class with more
examples will dominate the statistic. In that case, you should look at
the per-class accuracy, both the average and the individual per-class
accuracy numbers.

Per-class accuracy is not without its own caveats. For instance, if
there are very few examples of one class, then test statistics for that
class will have a large variance, which means that its accuracy esti‐
mate is not as reliable as other classes. Taking the average of all the
classes obscures the confidence measurement of individual classes.

Log-Loss
Log-loss, or logarithmic loss, gets into the finer details of a classifier.
In particular, if the raw output of the classifier is a numeric proba‐
bility instead of a class label of 0 or 1, then log-loss can be used. The
probability can be understood as a gauge of confidence. If the true
label is 0 but the classifier thinks it belongs to class 1 with probabil‐
ity 0.51, then even though the classifier would be making a mistake,
it’s a near miss because the probability is very close to the decision
boundary of 0.5. Log-loss is a “soft” measurement of accuracy that
incorporates this idea of probabilistic confidence.
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Mathematically, log-loss for a binary classifier looks like this:

log‐loss = − 1
N ∑i = 1

N yi log pi + 1 − yi log 1 − pi

Formulas like this are incomprehensible without years of grueling,
inhuman training. Let’s unpack it. pi is the probability that the ith
data point belongs to class 1, as judged by the classifier. yi is the true
label and is either 0 or 1. Since yi is either 0 or 1, the formula essen‐
tially “selects” either the left or the right summand. The minimum is
0, which happens when the prediction and the true label match up.
(We follow the convention that defines 0 log 0 = 0.)

The beautiful thing about this definition is that it is intimately tied
to information theory: log-loss is the cross entropy between the dis‐
tribution of the true labels and the predictions, and it is very closely
related to what’s known as the relative entropy, or Kullback–Leibler
divergence. Entropy measures the unpredictability of something.
Cross entropy incorporates the entropy of the true distribution, plus
the extra unpredictability when one assumes a different distribution
than the true distribution. So log-loss is an information-theoretic
measure to gauge the “extra noise” that comes from using a predic‐
tor as opposed to the true labels. By minimizing the cross entropy,
we maximize the accuracy of the classifier.

AUC
AUC stands for area under the curve. Here, the curve is the receiver
operating characteristic curve, or ROC curve for short. This exotic
sounding name originated in the 1950s from radio signal analysis,
and was made popular by a 1978 paper by Charles Metz called
"Basic Principles of ROC Analysis.” The ROC curve shows the sensi‐
tivity of the classifier by plotting the rate of true positives to the rate
of false positives (see Figure 2-2). In other words, it shows you how
many correct positive classifications can be gained as you allow for
more and more false positives. The perfect classifier that makes no
mistakes would hit a true positive rate of 100% immediately, without
incurring any false positives—this almost never happens in practice.
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Figure 2-2. Sample ROC curve (source: Wikipedia)

The ROC curve is not just a single number; it is a whole curve. It
provides nuanced details about the behavior of the classifier, but it’s
hard to quickly compare many ROC curves to each other. In partic‐
ular, if one were to employ some kind of automatic hyperparameter
tuning mechanism (a topic we will cover in Chapter 4), the machine
would need a quantifiable score instead of a plot that requires visual
inspection. The AUC is one way to summarize the ROC curve into a
single number, so that it can be compared easily and automatically.
A good ROC curve has a lot of space under it (because the true posi‐
tive rate shoots up to 100% very quickly). A bad ROC curve covers
very little area. So high AUC is good, and low AUC is not so good.

For more explanations about ROC and AUC, see this excellent tuto‐
rial by Kevin Markham. Outside of the machine learning and data
science community, there are many popular variations of the idea of
ROC curves. The marketing analytics community uses lift and gain
charts. The medical modeling community often looks at odds ratios.
The statistics community examines sensitivity and specificity.
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Ranking Metrics
We’ve arrived at ranking metrics. But wait! We are not quite out of
the classification woods yet. One of the primary ranking metrics,
precision-recall, is also popular for classification tasks.

Ranking is related to binary classification. Let’s look at Internet
search, for example. The search engine acts as a ranker. When the
user types in a query, the search engine returns a ranked list of web
pages that it considers to be relevant to the query. Conceptually, one
can think of the task of ranking as first a binary classification of “rel‐
evant to the query” versus “irrelevant to the query,” followed by
ordering the results so that the most relevant items appear at the top
of the list. In an underlying implementation, the classifier may
assign a numeric score to each item instead of a categorical class
label, and the ranker may simply order the items by the raw score.

Another example of a ranking problem is personalized recommen‐
dation. The recommender might act either as a ranker or a score
predictor. In the first case, the output is a ranked list of items for
each user. In the case of score prediction, the recommender needs to
return a predicted score for each user-item pair—this is an example
of a regression model, which we will discuss later.

Precision-Recall
Precision and recall are actually two metrics. But they are often used
together. Precision answers the question, “Out of the items that the
ranker/classifier predicted to be relevant, how many are truly rele‐
vant?” Whereas, recall answers the question, “Out of all the items
that are truly relevant, how many are found by the ranker/classi‐
fier?” Figure 2-3 contains a simple Venn diagram that illustrates pre‐
cision versus recall.
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Figure 2-3. Illustration of precision and recall

Mathematically, precision and recall can be defined as the following:

precision = # happy correct answers
# total items returned by ranker

recall = # happy correct answers
# total relevant items

Frequently, one might look at only the top k items from the ranker,
k = 5, 10, 20, 100, etc. Then the metrics would be called “preci‐
sion@k” and “recall@k.”

When dealing with a recommender, there are multiple “queries” of
interest; each user is a query into the pool of items. In this case, we
can average the precision and recall scores for each query and look
at “average precision@k” and “average recall@k.” (This is analogous
to the relationship between accuracy and average per-class accuracy
for classification.)

Precision-Recall Curve and the F1 Score
When we change k, the number of answers returned by the ranker,
the precision and recall scores also change. By plotting precision
versus recall over a range of k values, we get the precision-recall
curve. This is closely related to the ROC curve. (Exercise for the
curious reader: What’s the relationship between precision and the
false-positive rate? What about recall?)

Just like it’s difficult to compare ROC curves to each other, the same
goes for the precision-recall curve. One way of summarizing the
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precision-recall curve is to fix k and combine precision and recall.
One way of combining these two numbers is via their harmonic
mean:

F1 = 2 precision*recall
precision + recall

Unlike the arithmetic mean, the harmonic mean tends toward the
smaller of the two elements. Hence the F1 score will be small if
either precision or recall is small.

NDCG
Precision and recall treat all retrieved items equally; a relevant item
in position k counts just as much as a relevant item in position 1.
But this is not usually how people think. When we look at the results
from a search engine, the top few answers matter much more than
answers that are lower down on the list.

NDCG tries to take this behavior into account. NDCG stands for
normalized discounted cumulative gain. There are three closely
related metrics here: cumulative gain (CG), discounted cumulative
gain (DCG), and finally, normalized discounted cumulative gain.
Cumulative gain sums up the relevance of the top k items. Discoun‐
ted cumulative gain discounts items that are further down the list.
Normalized discounted cumulative gain, true to its name, is a nor‐
malized version of discounted cumulative gain. It divides the DCG
by the perfect DCG score, so that the normalized score always lies
between 0.0 and 1.0. See the Wikipedia article for detailed mathe‐
matical formulas.

DCG and NDCG are important metrics in information retrieval and
in any application where the positioning of the returned items is
important.

Regression Metrics
In a regression task, the model learns to predict numeric scores. For
example, when we try to predict the price of a stock on future days
given past price history and other information about the company
and the market, we can treat it as a regression task. Another example
is personalized recommenders that try to explicitly predict a user’s
rating for an item. (A recommender can alternatively optimize for
ranking.)

14 | Evaluation Metrics
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RMSE
The most commonly used metric for regression tasks is RMSE
(root-mean-square error), also known as RMSD (root-mean-square
deviation). This is defined as the square root of the average squared
distance between the actual score and the predicted score:

RMSE =
∑i yi − yi

2

n

Here, yi denotes the true score for the ith data point, and yi denotes
the predicted value. One intuitive way to understand this formula is
that it is the Euclidean distance between the vector of the true scores
and the vector of the predicted scores, averaged by n, where n is
the number of data points.

Quantiles of Errors
RMSE may be the most common metric, but it has some problems.
Most crucially, because it is an average, it is sensitive to large outli‐
ers. If the regressor performs really badly on a single data point, the
average error could be very big. In statistical terms, we say that the
mean is not robust (to large outliers).

Quantiles (or percentiles), on the other hand, are much more
robust. To see why this is, let’s take a look at the median (the 50th
percentile), which is the element of a set that is larger than half of
the set, and smaller than the other half. If the largest element of a set
changes from 1 to 100, the mean should shift, but the median would
not be affected at all.

One thing that is certain with real data is that there will always be
“outliers.” The model will probably not perform very well on them.
So it’s important to look at robust estimators of performance that
aren’t affected by large outliers. It is useful to look at the median
absolute percentage:

MAPE = median yi − yi /yi

It gives us a relative measure of the typical error. Alternatively, we
could compute the 90th percentile of the absolute percent error,
which would give an indication of an “almost worst case” behavior.
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“Almost Correct” Predictions
Perhaps the easiest metric to interpret is the percent of estimates
that differ from the true value by no more than X%. The choice of X
depends on the nature of the problem. For example, the percent of
estimates within 10% of the true values would be computed by per‐
cent of |(yi – ŷi)/yi| < 0.1. This gives us a notion of the precision of
the regression estimate.

Caution: The Difference Between Training
Metrics and Evaluation Metrics
Sometimes, the model training procedure may use a different metric
(also known as a loss function) than the evaluation. This can happen
when we are reappropriating a model for a different task than it was
designed for. For instance, we might train a personalized recom‐
mender by minimizing the loss between its predictions and
observed ratings, and then use this recommender to produce a
ranked list of recommendations.

This is not an optimal scenario. It makes the life of the model diffi‐
cult—it’s being asked to do a task that it was not trained to do! Avoid
this when possible. It is always better to train the model to directly
optimize for the metric it will be evaluated on. But for certain met‐
rics, this may be very difficult or impossible. (For instance, it’s very
hard to directly optimize the AUC.) Always think about what is the
right evaluation metric, and see if the training procedure can opti‐
mize it directly.

Caution: Skewed Datasets—Imbalanced
Classes, Outliers, and Rare Data
It’s easy to write down the formula of a metric. It’s not so easy to
interpret the actual metric measured on real data. Book knowledge
is no substitute for working experience. Both are necessary for suc‐
cessful applications of machine learning.

Always think about what the data looks like and how it affects the
metric. In particular, always be on the look out for data skew. By data
skew, I mean the situations where one “kind” of data is much more
rare than others, or when there are very large or very small outliers
that could drastically change the metric.
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Earlier, we mentioned how imbalanced classes could be a caveat in
measuring per-class accuracy. This is one example of data skew—
one of the classes is much more rare compared to the other class. It
is problematic not just for per-class accuracy, but for all of the met‐
rics that give equal weight to each data point. Suppose the positive
class is only a tiny portion of the observed data, say 1%—a common
situation for real-world datasets such as click-through rates for ads,
user-item interaction data for recommenders, malware detection,
etc. This means that a “dumb” baseline classifier that always classi‐
fies incoming data as negative would achieve 99% accuracy. A good
classifier should have accuracy much higher than 99%. Similarly, if
looking at the ROC curve, only the top left corner of the curve
would be important, so the AUC would need to be very high in
order to beat the baseline. See Figure 2-4 for an illustration of these
gotchas.

Figure 2-4. Illustration of classification accuracy and AUC under
imbalanced classes

Any metric that gives equal weight to each instance of a class has a
hard time handling imbalanced classes, because by definition, the
metric will be dominated by the class(es) with the most data. Fur‐
thermore, they are problematic not only for the evaluation stage, but
even more so when training the model. If class imbalance is not
properly dealt with, the resulting model may not know how to pre‐
dict the rare classes at all.

Data skew can also create problems for personalized recommenders.
Real-world user-item interaction data often contains many users
who rate very few items, as well as items that are rated by very few
users. Rare users and rare items are problematic for the recommen‐
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der, both during training and evaluation. When not enough data is
available in the training data, a recommender model would not be
able to learn the user’s preferences, or the items that are similar to a
rare item. Rare users and items in the evaluation data would lead to
a very low estimate of the recommender’s performance, which com‐
pounds the problem of having a badly trained recommender.

Outliers are another kind of data skew. Large outliers can cause
problems for a regressor. For instance, in the Million Song Dataset, a
user’s score for a song is taken to be the number of times the user
has listened to this song. The highest score is greater than 16,000!
This means that any error made by the regressor on this data point
would dwarf all other errors. The effect of large outliers during eval‐
uation can be mitigated through robust metrics such as quantiles of
errors. But this would not solve the problem for the training phase.
Effective solutions for large outliers would probably involve careful
data cleaning, and perhaps reformulating the task so that it’s not
sensitive to large outliers.

Related Reading
• An Introduction to ROC Analysis”.Tom Fawcett. Pattern Recog‐

nition Letters, 2006.
• Chapter 7 of Data Science for Business discusses the use of

expected value as a useful classification metric, especially in
cases of skewed data sets.

Software Packages
Many of the metrics (and more) are implemented in various soft‐
ware packages for data science.

• R: Metrics package.
• Python: scikit-learn’s model evaluation methods and GraphLab

Create’s fledgling evaluation module.
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Offline Evaluation Mechanisms:
Hold-Out Validation, Cross-

Validation, and Bootstrapping

Now that we’ve discussed the metrics, let’s re-situate ourselves in the
machine learning model workflow that we unveiled in Figure 1-1.
We are still in the prototyping phase. This stage is where we tweak
everything: features, types of model, training methods, etc. Let’s dive
a little deeper into model selection.

Unpacking the Prototyping Phase: Training,
Validation, Model Selection
Each time we tweak something, we come up with a new model.
Model selection refers to the process of selecting the right model (or
type of model) that fits the data. This is done using validation
results, not training results. Figure 3-1 gives a simplified view of this
mechanism.
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Figure 3-1. The prototyping phase of building a machine learning
model

In Figure 3-1, hyperparameter tuning is illustrated as a “meta” pro‐
cess that controls the training process. We’ll discuss exactly how it is
done in Chapter 4. Take note that the available historical dataset is
split into two parts: training and validation. The model training pro‐
cess receives training data and produces a model, which is evaluated
on validation data. The results from validation are passed back to
the hyperparameter tuner, which tweaks some knobs and trains the
model again.

The question is, why must the model be evaluated on two different
datasets?

In the world of statistical modeling, everything is assumed to be sto‐
chastic. The data comes from a random distribution. A model is
learned from the observed random data, therefore the model is ran‐
dom. The learned model is evaluated on observed datasets, which is
random, so the test results are also random. To ensure fairness, tests
must be carried out on a sample of the data that is statistically inde‐
pendent from that used during training. The model must be validated
on data it hasn’t previously seen. This gives us an estimate of the
generalization error, i.e., how well the model generalizes to new data.

In the offline setting, all we have is one historical dataset. Where
might we obtain another independent set? We need a testing mecha‐
nism that generates additional datasets. We can either hold out part
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of the data, or use a resampling technique such as cross-validation
or bootstrapping. Figure 3-2 illustrates the difference between the
three validation mechanisms.

Figure 3-2. Hold-out validation, k-fold cross-validation, and bootstrap
resampling

Why Not Just Collect More Data?
Cross-validation and bootstrapping were invented in the age of
“small data.” Prior to the age of Big Data, data collection was difficult
and statistical studies were conducted on very small datasets. In
1908, the statistician William Sealy Gosset published the Student’s t-
distribution on a whopping 3000 records—tiny by today’s standards
but impressive back then. In 1967, the social psychologist Stanley
Milgram and associates ran the famous small world experiment on a
total of 456 individuals, thereby establishing the notion of “six
degrees of separation” between any two persons in a social network.
Another study of social networks in the 1960s involved solely 18
monks living in a monastery. How can one manage to come up with
any statistically convincing conclusions given so little data?

One has to be clever and frugal with data. The cross-validation, jack‐
knife, and bootstrap mechanisms resample the data to produce mul‐
tiple datasets. Based on these, one can calculate not just an average
estimate of test performance but also a confidence interval. Even
though we live in the world of much bigger data today, these con‐
cepts are still relevant for evaluation mechanisms.
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Hold-Out Validation
Hold-out validation is simple. Assuming that all data points are i.i.d.
(independently and identically distributed), we simply randomly
hold out part of the data for validation. We train the model on the
larger portion of the data and evaluate validation metrics on the
smaller hold-out set.

Computationally speaking, hold-out validation is simple to program
and fast to run. The downside is that it is less powerful statistically.
The validation results are derived from a small subset of the data,
hence its estimate of the generalization error is less reliable. It is also
difficult to compute any variance information or confidence inter‐
vals on a single dataset.

Use hold-out validation when there is enough data such that a sub‐
set can be held out, and this subset is big enough to ensure reliable
statistical estimates.

Cross-Validation
Cross-validation is another validation technique. It is not the only
validation technique, and it is not the same as hyperparameter tun‐
ing. So be careful not to get the three (the concept of model valida‐
tion, cross-validation, and hyperparameter tuning) confused with
each other. Cross-validation is simply a way of generating training
and validation sets for the process of hyperparameter tuning. Hold-
out validation, another validation technique, is also valid for hyper‐
parameter tuning, and is in fact computationally much cheaper.

There are many variants of cross-validation. The most commonly
used is k-fold cross-validation. In this procedure, we first divide the
training dataset into k folds (see Figure 3-2). For a given hyperpara‐
meter setting, each of the k folds takes turns being the hold-out vali‐
dation set; a model is trained on the rest of the k – 1 folds and meas‐
ured on the held-out fold. The overall performance is taken to be
the average of the performance on all k folds. Repeat this procedure
for all of the hyperparameter settings that need to be evaluated, then
pick the hyperparameters that resulted in the highest k-fold average.

Another variant of cross-validation is leave-one-out cross-
validation. This is essentially the same as k-fold cross-validation,
where k is equal to the total number of data points in the dataset.
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Cross-validation is useful when the training dataset is so small that
one can’t afford to hold out part of the data just for validation pur‐
poses.

Bootstrap and Jackknife
Bootstrap is a resampling technique. It generates multiple datasets
by sampling from a single, original dataset. Each of the “new” data‐
sets can be used to estimate a quantity of interest. Since there are
multiple datasets and therefore multiple estimates, one can also cal‐
culate things like the variance or a confidence interval for the esti‐
mate.

Bootstrap is closely related to cross-validation. It was inspired by
another resampling technique called the jackknife, which is essen‐
tially leave-one-out cross-validation. One can think of the act of
dividing the data into k folds as a (very rigid) way of resampling the
data without replacement; i.e., once a data point is selected for one
fold, it cannot be selected again for another fold.

Bootstrap, on the other hand, resamples the data with replacement.
Given a dataset containing N data points, bootstrap picks a data
point uniformly at random, adds it to the bootstrapped set, puts that
data point back into the dataset, and repeats.

Why put the data point back? A real sample would be drawn from
the real distribution of the data. But we don’t have the real distribu‐
tion of the data. All we have is one dataset that is supposed to repre‐
sent the underlying distribution. This gives us an empirical distribu‐
tion of data. Bootstrap simulates new samples by drawing from the
empirical distribution. The data point must be put back, because
otherwise the empirical distribution would change after each draw.

Obviously, the bootstrapped set may contain the same data point
multiple times. (See Figure 3-2 for an illustration.) If the random
draw is repeated N times, then the expected ratio of unique instan‐
ces in the bootstrapped set is approximately 1 – 1/e ≈ 63.2%. In
other words, roughly two-thirds of the original dataset is expected to
end up in the bootstrapped dataset, with some amount of replica‐
tion.

One way to use the bootstrapped dataset for validation is to train the
model on the unique instances of the bootstrapped dataset and vali‐
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date results on the rest of the unselected data. The effects are very
similar to what one would get from cross-validation.

Caution: The Difference Between Model
Validation and Testing
Thus far I’ve been careful to avoid the word “testing.” This is because
model validation is a different step than model testing. This is a sub‐
tle point. So let me take a moment to explain it.

The prototyping phase revolves around model selection, which
requires measuring the performance of one or more candidate mod‐
els on one or more validation datasets. When we are satisfied with
the selected model type and hyperparameters, the last step of the
prototyping phase should be to train a new model on the entire set of
available data using the best hyperparameters found. This should
include any data that was previously held aside for validation. This is
the final model that should be deployed to production.

Testing happens after the prototyping phase is over, either online in
the production system or offline as a way of monitoring distribution
drift, as discussed earlier in this chapter.

Never mix training data and evaluation data. Training, validation,
and testing should happen on different datasets. If information from
the validation data or test data leaks into the training procedure, it
would lead to a bad estimate of generalization error, which then
leads to bitter tears of regret.

A while ago, a scandal broke out around the ImageNet competition,
where one team was caught cheating by submitting too many mod‐
els to the test procedure. Essentially, they performed hyperparame‐
ter tuning on the test set. Building models that are specifically tuned
for a test set might help you win the competition, but it does not
lead to better models or scientific progress.

Summary
To recap, here are the important points for offline evaluation and
model validation:

1. During the model prototyping phase, one needs to do model
selection. This involves hyperparameter tuning as well as model
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training. Every new model needs to be evaluated on a separate
dataset. This is called model validation.

2. Cross-validation is not the same as hyperparameter tuning.
Cross-validation is a mechanism for generating training and
validation splits. Hyperparameter tuning is the mechanism by
which we select the best hyperparameters for a model; it might
use cross-validation to evaluate the model.

3. Hold-out validation is an alternative to cross-validation. It is
simpler testing and computationally cheaper. I recommend
using hold-out validation as long as there is enough data to be
held out.

4. Cross-validation is useful when the dataset is small, or if you are
extra paranoid.

5. Bootstrapping is a resampling technique. It is very closely
related to the way that k-fold cross-validation resamples the
data. Both bootstrapping and cross-validation can provide not
only an estimate of model quality, but also a variance or quan‐
tiles of that estimate.

Related Reading
• “The Bootstrap: Statisticians Can Reuse Their Data to Quantify

the Uncertainty of Complex Models.” Cosma Shalizi. American
Scientist, May–June 2010.

Software Packages
• R: cvTools
• Python: scikit-learn provides a cross-validation module and

out-of-bag estimators that follow the same idea as bootstrap‐
ping. GraphLab Create offers hold-out validation and cross vali‐
dation.
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Hyperparameter Tuning

In the realm of machine learning, hyperparameter tuning is a “meta”
learning task. It happens to be one of my favorite subjects because it
can appear like black magic, yet its secrets are not impenetrable. In
this chapter, we’ll talk about hyperparameter tuning in detail: why
it’s hard, and what kind of smart tuning methods are being devel‐
oped to do something about it.

Model Parameters Versus Hyperparameters
First, let’s define what a hyperparameter is, and how it is different
from a normal nonhyper model parameter.

Machine learning models are basically mathematical functions that
represent the relationship between different aspects of data. For
instance, a linear regression model uses a line to represent the rela‐
tionship between “features” and “target.” The formula looks like this:

wTx = y

where x is a vector that represents features of the data and y is a
scalar variable that represents the target (some numeric quantity
that we wish to learn to predict).

This model assumes that the relationship between x and y is linear.
The variable w is a weight vector that represents the normal vector
for the line; it specifies the slope of the line. This is what’s known as
a model parameter, which is learned during the training phase.
“Training a model” involves using an optimization procedure to
determine the best model parameter that “fits” the data.
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There is another set of parameters known as hyperparameters, some‐
times also knowns as “nuisance parameters.” These are values that
must be specified outside of the training procedure. Vanilla linear
regression doesn’t have any hyperparameters. But variants of linear
regression do. Ridge regression and lasso both add a regularization
term to linear regression; the weight for the regularization term is
called the regularization parameter. Decision trees have hyperpara‐
meters such as the desired depth and number of leaves in the tree.
Support vector machines (SVMs) require setting a misclassification
penalty term. Kernelized SVMs require setting kernel parameters
like the width for radial basis function (RBF) kernels. The list
goes on.

What Do Hyperparameters Do?
A regularization hyperparameter controls the capacity of the model,
i.e., how flexible the model is, how many degrees of freedom it has
in fitting the data. Proper control of model capacity can prevent
overfitting, which happens when the model is too flexible, and the
training process adapts too much to the training data, thereby losing
predictive accuracy on new test data. So a proper setting of the
hyperparameters is important.

Another type of hyperparameter comes from the training process
itself. Training a machine learning model often involves optimizing
a loss function (the training metric). A number of mathematical
optimization techniques may be employed, some of them having
parameters of their own. For instance, stochastic gradient descent
optimization requires a learning rate or a learning schedule. Some
optimization methods require a convergence threshold. Random
forests and boosted decision trees require knowing the number of
total trees (though this could also be classified as a type of regulari‐
zation hyperparameter). These also need to be set to reasonable val‐
ues in order for the training process to find a good model.

Hyperparameter Tuning Mechanism
Hyperparameter settings could have a big impact on the prediction
accuracy of the trained model. Optimal hyperparameter settings
often differ for different datasets. Therefore they should be tuned for
each dataset. Since the training process doesn’t set the hyperparame‐
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ters, there needs to be a meta process that tunes the hyperparame‐
ters. This is what we mean by hyperparameter tuning.

Hyperparameter tuning is a meta-optimization task. As Figure 4-1
shows, each trial of a particular hyperparameter setting involves
training a model—an inner optimization process. The outcome of
hyperparameter tuning is the best hyperparameter setting, and the
outcome of model training is the best model parameter setting.

Figure 4-1. The relationship between hyperparameter tuning and
model training

For each proposed hyperparameter setting, the inner model training
process comes up with a model for the dataset and outputs evalua‐
tion results on hold-out or cross-validation datasets. After evaluat‐
ing a number of hyperparameter settings, the hyperparameter tuner
outputs the setting that yields the best performing model. The last
step is to train a new model on the entire dataset (training and vali‐
dation) under the best hyperparameter setting. Example 4-1 is a
Pythonic version of the pseudocode. (The training and validation
step can be conceptually replaced with a cross-validation step.)
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Example 4-1. Pseudo-Python code for a very simple hyperparameter
tuner

func hyperparameter_tuner (training_data, 
                           validation_data, 
                           hp_list):
    hp_perf = []

    # train and evaluate on all hyperparameter settings 
    foreach hp_setting in hp_list:
        m = train_model(training_data, hp_setting)
        validation_results = eval_model(m, validation_data)
        hp_perf.append(validation_results)

    # find the best hyperparameter setting
    best_hp_setting = hp_list[max_index(hp_perf)]

    # IMPORTANT: 
    # train a model on *all* available data using the best
    # hyperparameters
    best_m = train_model(training_data.append(validation_data),
                         best_hp_setting)

    return (best_hp_setting, best_m)

This pseudocode is correct for grid search and random search. But
the smart search methods do not require a list of candidate settings
as input. Rather it does something smarter than a for-loop through a
static set of candidates. We’ll see how later.

Hyperparameter Tuning Algorithms
Conceptually, hyperparameter tuning is an optimization task, just
like model training.

However, these two tasks are quite different in practice. When train‐
ing a model, the quality of a proposed set of model parameters can
be written as a mathematical formula (usually called the loss func‐
tion). When tuning hyperparameters, however, the quality of those
hyperparameters cannot be written down in a closed-form formula,
because it depends on the outcome of a black box (the model train‐
ing process).

This is why hyperparameter tuning is much harder. Up until a few
years ago, the only available methods were grid search and random
search. In the last few years, there’s been increased interest in auto-
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tuning. Several research groups have worked on the problem, pub‐
lished papers, and released new tools.

Grid Search
Grid search, true to its name, picks out a grid of hyperparameter
values, evaluates every one of them, and returns the winner. For
example, if the hyperparameter is the number of leaves in a decision
tree, then the grid could be 10, 20, 30, …, 100. For regularization
parameters, it’s common to use exponential scale: 1e-5, 1e-4, 1e-3,
…, 1. Some guesswork is necessary to specify the minimum and
maximum values. So sometimes people run a small grid, see if the
optimum lies at either endpoint, and then expand the grid in that
direction. This is called manual grid search.

Grid search is dead simple to set up and trivial to parallelize. It is the
most expensive method in terms of total computation time. How‐
ever, if run in parallel, it is fast in terms of wall clock time.

Random Search
I love movies where the underdog wins, and I love machine learning
papers where simple solutions are shown to be surprisingly effective.
This is the storyline of “Random Search for Hyper Parameter Opti‐
mization” by Bergstra and Bengio. Random search is a slight varia‐
tion on grid search. Instead of searching over the entire grid, ran‐
dom search only evaluates a random sample of points on the grid.
This makes random search a lot cheaper than grid search. Random
search wasn’t taken very seriously before. This is because it doesn’t
search over all the grid points, so it cannot possibly beat the opti‐
mum found by grid search. But then along came Bergstra and Ben‐
gio. They showed that, in surprisingly many instances, random
search performs about as well as grid search. All in all, trying 60
random points sampled from the grid seems to be good enough.

In hindsight, there is a simple probabilistic explanation for the
result: for any distribution over a sample space with a finite maxi‐
mum, the maximum of 60 random observations lies within the top
5% of the true maximum, with 95% probability. That may sound
complicated, but it’s not. Imagine the 5% interval around the true
maximum. Now imagine that we sample points from this space and
see if any of them land within that maximum. Each random draw
has a 5% chance of landing in that interval; if we draw n points inde‐
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pendently, then the probability that all of them miss the desired
interval is (1 – 0.05)n. So the probability that at least one of them
succeeds in hitting the interval is 1 minus that quantity. We want at
least a 0.95 probability of success. To figure out the number of draws
we need, just solve for n in the following equation:

1 – (1 – 0.05)n > 0.95

We get n >= 60. Ta-da!

The moral of the story is: if at least 5% of the points on the grid yield
a close-to-optimal solution, then random search with 60 trials will find
that region with high probability. The condition of the if-statement is
very important. It can be satisfied if either the close-to-optimal
region is large, or if somehow there is a high concentration of grid
points in that region. The former is more likely, because a good
machine learning model should not be overly sensitive to the hyper‐
parameters, i.e., the close-to-optimal region is large.

With its utter simplicity and surprisingly reasonable performance,
random search is my go-to method for hyperparameter tuning. It’s
trivially parallelizable, just like grid search, but it takes much fewer
tries and performs almost as well most of the time.

Smart Hyperparameter Tuning
Smarter tuning methods are available. Unlike the “dumb” alterna‐
tives of grid search and random search, smart hyperparameter tun‐
ing is much less parallelizable. Instead of generating all the candi‐
date points up front and evaluating the batch in parallel, smart tun‐
ing techniques pick a few hyperparameter settings, evaluate their
quality, then decide where to sample next. This is an inherently iter‐
ative and sequential process. It is not very parallelizable. The goal is
to make fewer evaluations overall and save on the overall computa‐
tion time. If wall clock time is your goal, and you can afford multi‐
ple machines, then I suggest sticking to random search.

Buyer beware: smart search algorithms require computation time to
figure out where to place the next set of samples. Some algorithms
require much more time than others. Hence it only makes sense if
the evaluation procedure—the inner optimization box—takes much
longer than the process of evaluating where to sample next. Smart
search algorithms also contain parameters of their own that need to
be tuned. (Hyper-hyperparameters?) Sometimes tuning the hyper-
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hyperparameters is crucial to make the smart search algorithm
faster than random search.

Recall that hyperparameter tuning is difficult because we cannot
write down the actual mathematical formula for the function we’re
optimizing. (The technical term for the function that is being opti‐
mized is response surface.) Consequently, we don’t have the deriva‐
tive of that function, and therefore most of the mathematical opti‐
mization tools that we know and love, such as the Newton method
or stochastic gradient descent (SGD), cannot be applied.

I will highlight three smart tuning methods proposed in recent
years: derivative-free optimization, Bayesian optimization, and ran‐
dom forest smart tuning. Derivative-free methods employ heuristics
to determine where to sample next. Bayesian optimization and ran‐
dom forest smart tuning both model the response surface with
another function, then sample more points based on what the model
says.

Jasper Snoek, Hugo Larochelle, and Ryan P. Adams used Gaussian
processes to model the response function and something called
Expected Improvement to determine the next proposals. Gaussian
processes are trippy; they specify distributions over functions. When
one samples from a Gaussian process, one generates an entire func‐
tion. Training a Gaussian process adapts this distribution over the
data at hand, so that it generates functions that are more likely to
model all of the data at once. Given the current estimate of the func‐
tion, one can compute the amount of expected improvement of any
point over the current optimum. They showed that this procedure of
modeling the hyperparameter response surface and generating the
next set of proposed hyperparameter settings can beat the evaluation
cost of manual tuning.

Frank Hutter, Holger H. Hoos, and Kevin Leyton-Brown suggested
training a random forest of regression trees to approximate the
response surface. New points are sampled based on where the ran‐
dom forest considers to be the optimal regions. They call this SMAC
(Sequential Model-based Algorithm Configuration). Word on the
street is that this method works better than Gaussian processes for
categorical hyperparameters.

Derivative-free optimization, as the name suggests, is a branch of
mathematical optimization for situations where there is no deriva‐
tive information. Notable derivative-free methods include genetic
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algorithms and the Nelder-Mead method. Essentially, the algorithms
boil down to the following: try a bunch of random points, approxi‐
mate the gradient, find the most likely search direction, and go
there. A few years ago, Misha Bilenko and I tried Nelder-Mead for
hyperparameter tuning. We found the algorithm delightfully easy to
implement and no less efficient that Bayesian optimization.

The Case for Nested Cross-Validation
Before concluding this chapter, we need to go up one more level and
talk about nested cross-validation, or nested hyperparameter tuning.
(I suppose this makes it a meta-meta-learning task.)

There is a subtle difference between model selection and hyperpara‐
meter tuning. Model selection can include not just tuning the hyper‐
parameters for a particular family of models (e.g., the depth of a
decision tree); it can also include choosing between different model
families (e.g., should I use decision tree or linear SVM?). Some
advanced hyperparameter tuning methods claim to be able to
choose between different model families. But most of the time this is
not advisable. The hyperparameters for different kinds of models
have nothing to do with each other, so it’s best not to lump them
together.

Choosing between different model families adds one more layer to
our cake of prototyping models. Remember our discussion about
why one must never mix training data and evaluation data? This
means that we now must set aside validation data (or do cross-
validation) for the hyperparameter tuner.

To make this precise, Example 4-2 shows the pseudocode in Python
form. I use hold-out validation because it’s simpler to code. You can
do cross-validation or bootstrap validation, too. Note that at the end
of each for loop, you should train the best model on all the available
data at this stage.
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Example 4-2. Pseudo-Python code for nested hyperparameter tuning

func nested_hp_tuning(data, model_family_list):
    perf_list = []
    hp_list = []

    for mf in model_family_list:
        # split data into 80% and 20% subsets
        # give subset A to the inner hyperparameter tuner,
        # save subset B for meta-evaluation
        A, B = train_test_split(data, 0.8)

        # further split A into training and validation sets
        C, D = train_test_split(A, 0.8)

        # generate_hp_candidates should be a function that knows 
        # how to generate candidate hyperparameter settings 
        # for any given model family
        hp_settings_list = generate_hp_candidates(mf)

        # run hyperparameter tuner to find best hyperparameters
        best_hp, best_m = hyperparameter_tuner(C, D, 
                                               hp_settings_list)

        result = evaluate(best_m, B)
        perf_list.append(result)
        hp_list.append(best_hp)
        # end of inner hyperparameter tuning loop for a single 
        # model family
        

    # find best model family (max_index is a helper function
    # that finds the index of the maximum element in a list)
    best_mf = model_family_list[max_index(perf_list)]
    best_hp = hp_list[max_index(perf_list)]

    # train a model from the best model family using all of 
    # the data
    model = train_mf_model(best_mf, best_hp, data)
    return (best_mf, best_hp, model)

Hyperparameters can make a big difference in the performance of a
machine learning model. Many Kaggle competitions come down to
hyperparameter tuning. But after all, it is just another optimization
task, albeit a difficult one. With all the smart tuning methods being
invented, there is hope that manual hyperparameter tuning will
soon be a thing of the past. Machine learning is about algorithms
that make themselves smarter over time. (It’s not a sinister Skynet;
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it’s just mathematics.) There’s no reason that a machine learning
model can’t eventually learn to tune itself. We just need better opti‐
mization methods that can deal with complex response surfaces.
We’re almost there!

Related Reading
• “Random Search for Hyper-Parameter Optimization.” James

Bergstra and Yoshua Bengio. Journal of Machine Learning
Research, 2012.

• “Algorithms for Hyper-Parameter Optimization.” James Berg‐
stra, Rémi Bardenet, Yoshua Bengio, and Balázs Kégl.” Neural
Information Processing Systems, 2011. See also a SciPy 2013 talk
by the authors.

• “Practical Bayesian Optimization of Machine Learning Algo‐
rithms.” Jasper Snoek, Hugo Larochelle, and Ryan P. Adams.
Neural Information Processing Systems, 2012.

• “Sequential Model-Based Optimization for General Algorithm
Configuration.” Frank Hutter, Holger H. Hoos, and Kevin
Leyton-Brown. Learning and Intelligent Optimization, 2011.

• “Lazy Paired Hyper-Parameter Tuning.” Alice Zheng and
Mikhail Bilenko. International Joint Conference on Artificial
Intelligence, 2013.

• Introduction to Derivative-Free Optimization (MPS-SIAM Series
on Optimization). Andrew R. Conn, Katya Scheinberg, and Luis
N. Vincente, 2009.

• Gradient-Based Hyperparameter Optimization Through
Reversible Learning. Dougal Maclaurin, David Duvenaud, and
Ryan P. Adams. ArXiv, 2015.

Software Packages
• Grid search and random search: GraphLab Create, scikit-learn.
• Bayesian optimization using Gaussian processes: Spearmint

(from Jasper et al.)
• Bayesian optimization using Tree-based Parzen Estimators:

Hyperopt (from Bergstra et al.)
• Random forest tuning: SMAC (from Hutter et al.)
• Hyper gradient: hypergrad (from Maclaurin et al.)
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The Pitfalls of A/B Testing

Figure 5-1. (Source: Eric Wolfe | Dato Design)

Thus far in this report, I’ve mainly focused on introducing the basic
concepts in evaluating machine learning, with an occasional cau‐
tionary note here and there. This chapter is just the opposite. I’ll
give a cursory overview of the basics of A/B testing, and focus
mostly on best practice tips. This is because there are many books
and articles that teach statistical hypothesis testing, but relatively few
articles about what can go wrong.

A/B testing is a widespread practice today. But a lot can go wrong in
setting it up and interpreting the results. We’ll discuss important
questions to consider when doing A/B testing, followed by an over‐
view of a promising alternative: multiarmed bandits.
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Recall that there are roughly two regimes for machine learning eval‐
uation: offline and online. Offline evaluation happens during the
prototyping phase where one tries out different features, models,
and hyperparameters. It’s an iterative process of many rounds of
evaluation against a chosen baseline on a set of chosen evaluation
metrics. Once you have a model that performs reasonably well, the
next step is to deploy the model to production and evaluate its per‐
formance online, i.e., on live data. This chapter discusses
online testing.

A/B Testing: What Is It?
A/B testing has emerged as the predominant method of online test‐
ing in the industry today. It is often used to answer questions like,
“Is my new model better than the old one?” or “Which color is bet‐
ter for this button, yellow or blue?” In the A/B testing setup, there is
a new model (or design) and an incumbent model (or design).
There is some notion of live traffic, which is split into two groups: A
and B, or control and experiment. Group A is routed to the old
model, and group B is routed to the new model. Their performance
is compared and a decision is made about whether the new model
performs substantially better than the old model. That is the rough
idea, and there is a whole statistical machinery that makes this state‐
ment much more precise.

This machinery is known as statistical hypothesis testing. It decides
between a null hypothesis and an alternate hypothesis. Most of the
time, A/B tests are formulated to answer the question, “Does this
new model lead to a statistically significant change in the key met‐
ric?” The null hypothesis is often “the new model doesn’t change the
average value of the key metric,” and the alternative hypothesis “the
new model changes the average value of the key metric.” The test for
the average value (the population mean, in statistical speak) is the
most common, but there are tests for other population parameters
as well.

There are many books and online resources that describe statistical
hypothesis testing in rigorous detail. I won’t attempt to replicate
them here. For the uninitiated, www.evanmiller.org/ provides an
excellent starting point that explains the details of hypothesis testing
and provides handy software utilities.
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Briefly, A/B testing involves the following steps:

1. Split into randomized control/experimentation groups.
2. Observe behavior of both groups on the proposed methods.
3. Compute test statistics.
4. Compute p-value.
5. Output decision.

Simple enough. What could go wrong?

A lot, as it turns out! A/B tests are easy to understand but tricky to
do right. Here are a list of things to watch out for, ranging from
pedantic to pragmatic. Some of them are straightforward and well-
known, while others are more tricky than they sound.

Pitfalls of A/B Testing
1. Complete Separation of Experiences
First, take a look at your user randomization and group splitting
module. Does it cleanly split off a portion of your users for the
experimentation group? Are they experiencing only the new design
(or model, or whatever)?

It’s important to cleanly and completely separate the experiences
between the two groups. Suppose you are testing a new button for
your website. If the button appears on every page, then make sure
the same user sees the same button everywhere. It’ll be better to split
by user ID (if available) or user sessions instead of individual page
visits.

Also watch out for the possibility that some of your users have been
permanently “trained” by the old model or design and prefer the
way things were before. In their KDD 2012 paper, Kohavi et al. calls
this the carryover effect. Such users carry the “baggage of the old”
and may return biased answers for any new model. If you think this
might be the case, think about acquiring a brand new set of users or
randomizing the test buckets.

It’s always good to do some A/A testing to make sure that your test‐
ing framework is sound. In other words, perform the randomization
and the split, but test both groups on the same model or design. See
if there are any observable differences. Only move to A/B testing if
the system passes the A/A test.
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2. Which Metric?
The next important question is, on which metric should you evalu‐
ate the model? Ultimately, the right metric is probably a business
metric. But this may not be easily measurable in the system. For
instance, search engines care about the number of users, how long
they spend on the site, and their overall market share. Comparison
statistics are not readily available to the live system. So they will
need to approximate the ultimate business metric of market share
with measurable ones like number of unique visitors per day and
average session length. In practice, short-term, measurable live met‐
rics may not always align with long-term business metrics, and it
can be tricky to design the right metric.

Backing up for a second, there are four classes of metrics to think
about: business metrics, measurable live metrics, offline evaluation
metrics, and training metrics. We just discussed the difference
between business metrics and live metrics that can be measured.
Offline evaluation metrics are things like the classification, regres‐
sion, and ranking metrics we discussed previously. The training
metric is the loss function that is optimized during the training pro‐
cess. (For example, a support vector machine optimizes a combina‐
tion of the norm of the weight vector and misclassification penal‐
ties.)

The optimal scenario is where all four of those metrics are either
exactly the same or are linearly aligned with each other. The former
is impossible. The latter is unlikely. So the next thing to shoot for is
that these metrics always increase or decrease with each other. How‐
ever, you may still encounter situations where a linear decrease in
RMSE (a regression metric) does not translate to a linear increase in
click-through rates. (Kohavi et al. described some interesting exam‐
ples in their KDD 2012 paper.) Keep this in mind and save your
efforts to optimize where it counts the most. You should always be
tracking all of these metrics, so that you know when things go out of
whack—usually a sign of distribution drift or software and instru‐
mentation bugs.

3. How Much Change Counts as Real Change?
Once you’ve settled on the metric, the next question is, how much of
a change in this metric matters? This is required for picking the
number of observations you need for the experiment. Like question
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#2, this is probably not solely a data science question but a business
question. Pick a reasonable value up front and stick to it. Avoid the
temptation to shift it later, as you start to see the results.

4. One-Sided or Two-Sided Test?
Making the wrong choice here could get you (almost) fired. One-
sided (or one-tailed) tests only test whether the new model is better
than the baseline. It does not tell you if it is in fact worse. You should
always test both, unless you are confident it can never be worse, or
there are zero consequences for it being worse. A two-sided (or two-
tailed) test allows the new model to be either better or worse than
the original. It still requires a separate check for which is the case.

5. How Many False Positives Are You Willing to Tolerate?
A false positive in A/B testing means that you’ve rejected the null
hypothesis when the null hypothesis is true. In other words, you’ve
decided that your model is better than the baseline when it isn’t bet‐
ter than the baseline. What’s the cost of a false positive? The answer
depends on the application.

In a drug effectiveness study, a false positive could cause the patient
to use an ineffective drug. Conversely, a false negative could mean
not using a drug that is effective at curing the disease. Both cases
could have a very high cost to the patient’s health.

In a machine learning A/B test, a false positive might mean switch‐
ing to a model that should increase revenue when it doesn’t. A false
negative means missing out on a more beneficial model and losing
out on potential revenue increase.

A statistical hypothesis test allows you to control the probability of
false positives by setting the significance level, and false negatives via
the power of the test. If you pick a false positive rate of 0.05, then
out of every 20 new models that don’t improve the baseline, on aver‐
age 1 of them will be falsely identified by the test as an improve‐
ment. Is this an acceptable outcome to the business?

6. How Many Observations Do You Need?
The number of observations is partially determined by the desired
statistical power. This must be determined prior to running the test.
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A common temptation is to run the test until you observe a signifi‐
cant result. This is wrong.

The power of a test is its ability to correctly identify the positives,
e.g., correctly determine that a new model is doing well when it is in
fact superior. It can be written as a formula that involves the signifi‐
cance level (question #5), the difference between the control and
experimentation metrics (question #3), and the size of the samples
(the number of observations included in the control and the experi‐
mentation group). You pick the right value for power, significance
level, and the desired amount of change. Then you can compute
how many observations you need in each group. A recent blog post
from StitchFix goes through the power analysis in minute detail.

As explained in detail on Evan Miller’s website, do NOT stop the
test until you’ve accumulated this many observations! Specifically,
do not stop the test as soon as you detect a “significant” difference.
The answer is not to be trusted since it doesn’t yet have the statistical
power for good decision making.

7. Is the Distribution of the Metric Gaussian?
The vast majority of A/B tests use the t-test. But the t-test makes
assumptions that are not always satisfied by all metrics. It’s a good
idea to look at the distribution of your metric and check whether the
assumptions of the t-test are valid.

The t-test assumes that the two populations are Gaussian dis‐
tributed. Does your metric fit a Gaussian distribution? The common
hand-wavy justification is to say, “Almost everything converges to a
Gaussian distribution due to the Central Limit Theorem.” This is
usually true when:

1. The metric is an average.
2. The distribution of metric values has one mode.
3. The metric is distributed symmetrically around this mode.

These are actually easily violated in real-world situations. For exam‐
ple, the accuracy or the click-through rate is an average, but the area
under the curve (AUC) is not. (It is an integral.) The distribution of
the metric may not have one mode if there are multiple user popula‐
tions within the control or experimental group. The metric is not
symmetric if, say, it can be any positive number but can never be
negative. Kohavi et al. gives examples of metrics that are definitely
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not Gaussian and whose standard error does not decrease with
longer tests. For example, metrics involving counts are better mod‐
eled as negative binomials.

When these assumptions are violated, the distribution may take
longer than usual to converge to a Gaussian, or not at all. Usually,
the average of more than 30 observations starts to look like a Gaus‐
sian. When there is a mixture of populations, however, it will take
much longer. Here are a few rules of thumb that can mitigate the
violation of t-test assumptions:

1. If the metric is nonnegative and has a long tail, i.e., it’s a count
of some sort, take the log transform.

2. Alternatively, the family of power transforms tends to stabilize
the variance (decrease the variance or at least make it not
dependent on the mean) and make the distribution more
Gaussian-like.

3. The negative binomial is a better distribution for counts.
4. If the distribution looks nowhere near a Gaussian, don’t use the

t-test. Pick a nonparametric test that doesn’t make the Gaussian
assumption, such as the Mann-Whitney U test.

8. Are the Variances Equal?
Okay, you checked and double-checked and you’re really sure that
the distribution is a Gaussian, or will soon become a Gaussian. Fine.
Next question: are the variances equal for the control and the exper‐
imental group?

If the groups are split fairly (uniformly at random), the variances are
probably equal. However, there could be subtle biases in your stream
splitter (see question #1). Or perhaps one population is much
smaller compared to the other. Welch’s t-test is a little-known alter‐
native to the much more common Student’s t-test. Unlike Student’s
t-test, Welch’s t-test does not assume equal variance. For this reason,
it is a more robust alternative. Here’s what Wikipedia says about the
advantages and limitations of Welch’s t-test:

Welch’s t-test is more robust than Student’s t-test and maintains
type I error rates close to nominal for unequal variances and for
unequal sample sizes. Furthermore, the power of Welch’s t-test
comes close to that of Student’s t-test, even when the population
variances are equal and sample sizes are balanced.
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It is not recommended to pre-test for equal variances and then
choose between Student’s t-test or Welch’s t-test. Rather, Welch’s t-
test can be applied directly and without any substantial disadvan‐
tages to Student’s t-test as noted above. Welch’s t-test remains
robust for skewed distributions and large sample sizes. Reliability
decreases for skewed distributions and smaller samples, where one
could possibly perform Welch’s t-test on ranked data.

In practice, this may not make too big of a difference, because the t-
distribution is well approximated by the Gaussian when the sample
sizes are larger than 20. However, Welch’s t-test is a safe choice that
works regardless of sample size or whether the variance is equal. So
why not?

9. What Does the p-Value Mean?
As Cosma Shalizi explained in his very detailed and technical blog
post, most people interpret the p-value incorrectly. A small p-value
does not imply a significant result. A smaller p-value does not imply a
more significant result. The p-value is a function of the size of the
samples, the difference between the two populations, and how well
we can estimate the true means. I’ll leave the curious, statistically
minded reader to digest the blog post (highly recommended!). The
upshot is that, in addition to running the hypothesis test and com‐
puting the p-value, one should always check the confidence interval
of the two population mean estimates. If the distribution is close to
being Gaussian, then the usual standard error estimation applies.
Otherwise, compute a bootstrap estimate, which we discussed in
Chapter 3. This can differentiate between the two cases of “there is
indeed a significant difference between the two populations” versus
“I can’t tell whether there is a difference because the variances of the
estimates are too high so I can’t trust the numbers.”

10. Multiple Models, Multiple Hypotheses
So you are a hard-working data scientist and you have not one but
five new models you want to test. Or maybe 328 of them. Your web‐
site has so much traffic that you have no problem splitting off a por‐
tion of the incoming traffic to test each of the models at the same
time. Parallel A1/.../Am/B testing, here we come!

But wait, now you are in the situation of multiple hypothesis testing.
Remember the false positive rate we talked about in question #5?
Testing multiple hypotheses increases the overall false positive prob‐
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ability. If one test has a false positive rate of 0.05, then the probabil‐
ity that none of the 20 tests makes a false positive drops precipi‐
tously to (1 – 0.05)20 = 0.36. What’s more, this calculation assumes
that the tests are independent. If the tests are not independent (i.e.,
maybe your 32 models all came from the same training dataset?),
then the probability of a false positive may be even higher.

Benjamini and Hochberg proposed a useful method for dealing with
false positives in multiple tests. In their 1995 paper, “Controlling the
False Discovery Rate: A Practical and Powerful Approach to Multi‐
ple Testing,” they proposed a modified procedure that orders the p-
values from each test and rejects the null hypothesis for the smallest
normalized p-values (p i ≤

i
m q, where q is the desired significance

level, m is the total number of tests, and i is the ranking of the p-
value). This test does not assume that the tests are independent or
are normally distributed, and has more statistical power than the
classic Bonferroni correction.

Even without running multiple tests simultaneously, you may still
run into the multiple hypothesis testing scenario. For instance, if
you are changing your model based on live test data, submitting
new models until something achieves the acceptance threshold, then
you are essentially running multiple tests sequentially. It’s a good
idea to apply the Benjamini-Hochberg procedure (or one of its
derivatives) to control the false discovery rate in this situation as
well.

11. How Long to Run the Test?
The answer to how long to run your A/B test depends not just on
the number of observations you need in order to achieve the desired
statistical power (question #6). It also has to do with the user experi‐
ence.

In some fields, such as pharmaceutical drug testing, running the test
too long has ethical consequences for the user; if the drug is already
proven to be effective, then stopping the trial early may save lives in
the control group. Balancing the need for early stopping and suffi‐
cient statistical power led to the study of sequential analysis, where
early stopping points are determined a priori at the start of the trials.

In most newly emergent machine learning applications, running the
test longer is not as big of a problem. More likely, the constraint is
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distribution drift, where the behavior of the user changes faster than
one can collect enough observations. (See question #12.)

When determining the length of a trial, it’s important to go beyond
what’s known as the Novelty effect. When users are switched to a
new experience, their initial reactions may not be their long-term
reactions. In other words, if you are testing a new color for a button,
the user may initially love the button and click it more often, just
because it’s novel, or she may hate the new color and never touch it,
but eventually she would get used to the new color and behave as
she did before. It’s important to run the trial long enough to get past
the period of the “shock of the new.”

The metric may also display seasonality. For instance, the website
traffic may behave one way during the day and another way at night,
or perhaps people buy different types of clothes in the summer ver‐
sus fall. It’s important to take this into account and discount foresee‐
able changes when collecting data for the trial.

12. Catching Distribution Drift
We introduced the notion of distribution drift in Chapter 1. Many
machine learning models make a stationarity assumption, that the
data looks and behaves one way for all eternity. But this is not true
in practice. The world changes quickly. Nothing lasts forever. Trans‐
lated into statistical terms, this means that the distribution of the
data will drift from what the model was originally trained upon.

Distribution drift invalidates the current model. It no longer per‐
forms as well as before. It needs to be updated.

To catch distribution drift, it’s a good idea to monitor the offline
metric (used for evaluations during offline testing/prototyping) on
live data, in addition to online testing. If the offline metric changes
significantly, then it is time to update the model by retraining on
new data.

Multi-Armed Bandits: An Alternative
With all of the potential pitfalls in A/B testing, one might ask
whether there is a more robust alternative. The answer is yes, but
not exactly for the same goals as A/B testing. If the ultimate goal is
to decide which model or design is the best, then A/B testing is the
right framework, along with its many gotchas to watch out for.

46 | The Pitfalls of A/B Testing

http://bit.ly/deng-xu
http://bit.ly/google-button


However, if the ultimate goal is to maximize total reward, then mul‐
tiarmed bandits and personalization is the way to go.

The name “multiarmed bandits” (MAB) comes from gambling. A
slot machine is a one-armed bandit; each time you pull the lever, it
outputs a certain reward (most likely negative). Multiarmed bandits
are like a room full of slot machines, each one with an unknown
random payoff distribution. The task is to figure out which arm to
pull and when, in order to maximize the reward. There are many
MAB algorithms: linear UCB, Thompson sampling (or Bayesian
bandits), and Exp3 are some of the most well known. John Myles
White wrote a wonderful book that explains these algorithms. Ste‐
ven Scott wrote a great survey paper on Bayesian bandit algorithms.
Sergey Feldman has a few blog posts on this topic as well.

If you have multiple competing models and you care about maxi‐
mizing overall user satisfaction, then you might try running an
MAB algorithm on top of the models that decides when to serve
results from which model. Each incoming request is an arm pull; the
MAB algorithm selects the model, forwards the query to it, gives the
answer to the user, observes the user’s behavior (the reward for the
model), and adjusts the estimate for the payoff distribution. As folks
from zulily and RichRelevance can attest, MABs can be very effec‐
tive at increasing overall reward.

On top of plain multiarmed bandits, personalizing the reward to
individual users or user groups may provide additional gains. Dif‐
ferent users often have different rewards for each model. Shoppers
in Atlanta, GA, may behave very differently from shoppers in Syd‐
ney, Australia. Men may buy different things than women. With
enough data, it may be possible to train a separate MAB for each
user group or even each user. It is also possible to use contextual
bandits for personalization, where one can fold in information
about the user’s context into the models for the reward distribution
of each model.

Related Reading
• “Deploying Machine Learning in Production,” slides from my

Strata London 2015 talk.
• “So, You Need a Statistically Significant Sample?” Kim Larsen,

StitchFix blog post, May 2015.
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• “How Optimizely (Almost) Got Me Fired.” Peter Borden,
SumAll blog post, June 2014.

• “Online Experiments for Computational Social Science.” Eytan
Bakshy and Sean J. Taylor, WWW 2015 tutorial.

• “A Modern Bayesian Look at the Multi-Armed Bandit.” Steven
L. Scott. Applied Stochastic Models in Business and Industry,
2010.

• Evan Miller’s website, especially this page: “How Not to Run an
A/B Test.”

• MAB usage at zulily: “Experience Optimization at zulily.” Trey
Causey, zulily blog post, June 2014.

• Cult idol Cosma Shalizi on the correct interpretation of the p-
value. (It’s not a real cult, just a group of loyal followers, myself
included.)

• “Trustworthy Online Controlled Experiments: Five Puzzling
Outcomes Explained.” Ron Kohavi, Alex Deng, Brian Frasca,
Roger Longbotham, Toby Walker, Ya Xu. KDD 2012.

• “A/B Testing Using the Negative Binomial Distribution in an
Internet Search Application.” Saharon Rosset and Slava Boro‐
dovsky, Tel Aviv University, 2012.

• Controlling the False Discovery Rate: A Practical and Powerful
Approach to Multiple Testing. Yoav Benjamini and Yosef Hoch‐
berg, Journal of the Royal Statistical Society, 1995.

• RichRelevance blog posts on bandit algorithms, Thompson
sampling, and personalization via contextual bandits. Sergey
Feldman, June 2014.

• Bandit Algorithms for Website Optimization, John Myles White,
O’Reilly, 2012.

• Survey of classic bandit algorithms: “Algorithms for the Multi-
Armed Bandit Problem.” Volodymyr Kuleshov and Doina Pre‐
cup. Journal of Machine Learning Research, 2000.

That’s All, Folks!
This concludes our journey through the kingdom of evaluating
machine learning models. As you can see, there are some bountiful
hills and valleys, but also many hidden corners and dangerous pit‐
falls. Knowing the ins and outs of this realm will help you avoid
many unhappy incidents on the way to machine learning-izing your
world. Happy exploring, adventurers!
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http://bit.ly/sumall-fired
http://eytan.github.io/www-15-tutorial/
http://bit.ly/baye-bandit
http://bit.ly/miller-how-not
http://bit.ly/miller-how-not
http://bit.ly/zulily-opt
http://bactra.org/weblog/1111.html
http://bactra.org/weblog/1111.html
http://bit.ly/deng-xu
http://bit.ly/deng-xu
http://bit.ly/ab-neg-test
http://bit.ly/ab-neg-test
http://bit.ly/false-discov
http://bit.ly/false-discov
http://bit.ly/bandit-recs
http://bit.ly/rr-tsample
http://bit.ly/rr-tsample
http://bit.ly/per-bandits
http://bit.ly/bandit-alg
http://bit.ly/kuleshov-precup
http://bit.ly/kuleshov-precup
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