

Bayesian Analysis with Python

Unleash the power and flexibility of the Bayesian
framework

Osvaldo Martin

 BIRMINGHAM - MUMBAI

Bayesian Analysis with Python

Copyright © 2016 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, without the prior written
permission of the publisher, except in the case of brief quotations embedded in
critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy
of the information presented. However, the information contained in this book
is sold without warranty, either express or implied. Neither the author nor Packt
Publishing, and its dealers and distributors will be held liable for any damages
caused or alleged to be caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: November 2016

Production reference: 1211116

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham B3 2PB, UK.

ISBN 978-1-78588-380-4

www.packtpub.com

Credits

Author
Osvaldo Martin

Reviewer
Austin Rochford

Commissioning Editor
Veena Pagare

Acquisition Editor
Tushar Gupta

Content Development Editor
Aishwarya Pandere

Technical Editor
Suwarna Patil

Copy Editor
Safis Editing

Vikrant Phadke

Project Coordinator
Nidhi Joshi

Proofreader
Safis Editor

Indexer
Mariammal Chettiyar

Graphics
Disha Haria

Production Coordinator
Nilesh Mohite

Cover Work
Nilesh Mohite

About the Author

Osvaldo Martin is a researcher at The National Scientific and Technical Research
Council (CONICET), the main organization in charge of the promotion of science
and technology in Argentina. He has worked on structural bioinformatics and
computational biology problems, especially on how to validate structural protein
models. He has experience in using Markov Chain Monte Carlo methods to simulate
molecules and loves to use Python to solve data analysis problems. He has taught
courses about structural bioinformatics, Python programming, and, more recently,
Bayesian data analysis. Python and Bayesian statistics have transformed the way he
looks at science and thinks about problems in general. Osvaldo was really motivated
to write this book to help others in developing probabilistic models with Python,
regardless of their mathematical background. He is an active member of the PyMOL
community (a C/Python-based molecular viewer), and recently he has been making
small contributions to the probabilistic programming library PyMC3.

I would like to thank my wife, Romina, for her support while writing
this book and in general for her support in all my projects, specially
the unreasonable ones. I also want to thank Walter Lapadula,
Juan Manuel Alonso, and Romina Torres-Astorga for providing
invaluable feedback and suggestions on my drafts.

A special thanks goes to the core developers of PyMC3. This book
was possible only because of the dedication, love, and hard work
they have put into PyMC3. I hope this book contributes to the spread
and adoption of this great library.

About the Reviewer

Austin Rochford is a principal data scientist at Monetate Labs, where he
develops products that allow retailers to personalize their marketing across billions
of events a year. He is a mathematician by training and is a passionate advocate of
Bayesian methods.

www.PacktPub.com

eBooks, discount offers, and more
Did you know that Packt offers eBook versions of every book published, with PDF
and ePub files available? You can upgrade to the eBook version at www.PacktPub.
com and as a print book customer, you are entitled to a discount on the eBook copy.
Get in touch with us at customercare@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign
up for a range of free newsletters and receive exclusive discounts and offers on Packt
books and eBooks.

https://www.packtpub.com/mapt

Get the most in-demand software skills with Mapt. Mapt gives you full access to all
Packt books and video courses, as well as industry-leading tools to help you plan
your personal development and advance your career.

Why subscribe?
• Fully searchable across every book published by Packt
• Copy and paste, print, and bookmark content
• On demand and accessible via a web browser

[i]

Table of Contents
Preface vii
Chapter 1: Thinking Probabilistically - A Bayesian Inference Primer 1

Statistics as a form of modeling 2
Exploratory data analysis 2
Inferential statistics 3

Probabilities and uncertainty 5
Probability distributions 7
Bayes' theorem and statistical inference 10

Single parameter inference 13
The coin-flipping problem 13

The general model 14
Choosing the likelihood 14
Choosing the prior 16
Getting the posterior 18
Computing and plotting the posterior 18
Influence of the prior and how to choose one 21

Communicating a Bayesian analysis 23
Model notation and visualization 23
Summarizing the posterior 24

Highest posterior density 24
Posterior predictive checks 27
Installing the necessary Python packages 28
Summary 29
Exercises 29

Chapter 2: Programming Probabilistically – A PyMC3 Primer 31
Probabilistic programming 32

Inference engines 33
Non-Markovian methods 33
Markovian methods 36

Table of Contents

[ii]

PyMC3 introduction 46
Coin-flipping, the computational approach 46

Model specification 47
Pushing the inference button 48
Diagnosing the sampling process 48

Summarizing the posterior 55
Posterior-based decisions 55

ROPE 56
Loss functions 57

Summary 58
Keep reading 58
Exercises 59

Chapter 3: Juggling with Multi-Parametric and
Hierarchical Models 61

Nuisance parameters and marginalized distributions 62
Gaussians, Gaussians, Gaussians everywhere 64

Gaussian inferences 64
Robust inferences 69

Student's t-distribution 69
Comparing groups 75

The tips dataset 76
Cohen's d 80
Probability of superiority 81

Hierarchical models 81
Shrinkage 84

Summary 88
Keep reading 88
Exercises 89

Chapter 4: Understanding and Predicting Data with Linear
Regression Models 91

Simple linear regression 92
The machine learning connection 92
The core of linear regression models 93
Linear models and high autocorrelation 100

Modifying the data before running 101
Changing the sampling method 103

Interpreting and visualizing the posterior 103
Pearson correlation coefficient 107

Pearson coefficient from a multivariate Gaussian 110
Robust linear regression 113
Hierarchical linear regression 117

Correlation, causation, and the messiness of life 124

Table of Contents

[iii]

Polynomial regression 126
Interpreting the parameters of a polynomial regression 129
Polynomial regression – the ultimate model? 130

Multiple linear regression 131
Confounding variables and redundant variables 135
Multicollinearity or when the correlation is too high 138
Masking effect variables 142
Adding interactions 144

The GLM module 145
Summary 146
Keep reading 146
Exercises 147

Chapter 5: Classifying Outcomes with Logistic Regression 149
Logistic regression 150

The logistic model 151
The iris dataset 152
The logistic model applied to the iris dataset 155

Making predictions 158
Multiple logistic regression 159

The boundary decision 159
Implementing the model 160
Dealing with correlated variables 162
Dealing with unbalanced classes 163
How do we solve this problem? 165
Interpreting the coefficients of a logistic regression 165
Generalized linear models 166
Softmax regression or multinomial logistic regression 167

Discriminative and generative models 171
Summary 174
Keep reading 174
Exercises 175

Chapter 6: Model Comparison 177
Occam's razor – simplicity and accuracy 178

Too many parameters leads to overfitting 179
Too few parameters leads to underfitting 181
The balance between simplicity and accuracy 182

Regularizing priors 183
Regularizing priors and hierarchical models 184

Predictive accuracy measures 185
Cross-validation 185

Table of Contents

[iv]

Information criteria 186
The log-likelihood and the deviance 186
Akaike information criterion 187
Deviance information criterion 188
Widely available information criterion 189
Pareto smoothed importance sampling leave-one-out cross-validation 190
Bayesian information criterion 190

Computing information criteria with PyMC3 190
A note on the reliability of WAIC and LOO computations 194

Interpreting and using information criteria measures 194
Posterior predictive checks 196

Bayes factors 197
Analogy with information criteria 199
Computing Bayes factors 199

Common problems computing Bayes factors 202
Bayes factors and information criteria 202
Summary 205
Keep reading 205
Exercises 205

Chapter 7: Mixture Models 207
Mixture models 207

How to build mixture models 209
Marginalized Gaussian mixture model 215
Mixture models and count data 216

The Poisson distribution 216
The Zero-Inflated Poisson model 218
Poisson regression and ZIP regression 220

Robust logistic regression 223
Model-based clustering 225

Fixed component clustering 227
Non-fixed component clustering 227

Continuous mixtures 228
Beta-binomial and negative binomial 228
The Student's t-distribution 229

Summary 230
Keep reading 230
Exercises 230

Chapter 8: Gaussian Processes 233
Non-parametric statistics 234
Kernel-based models 234

The Gaussian kernel 235
Kernelized linear regression 235

Table of Contents

[v]

Overfitting and priors 241
Gaussian processes 242

Building the covariance matrix 243
Sampling from a GP prior 243
Using a parameterized kernel 245

Making predictions from a GP 247
Implementing a GP using PyMC3 252

Posterior predictive checks 254
Periodic kernel 255

Summary 257
Keep reading 257
Exercises 258

Index 259

[vii]

Preface
Bayesian statistics has been around for more than 250 years now. During this time
it has enjoyed as much recognition and appreciation as disdain and contempt.
Through the last few decades it has gained more and more attention from people in
statistics and almost all other sciences, engineering, and even outside the walls of the
academic world. This revival has been possible due to theoretical and computational
developments. Modern Bayesian statistics is mostly computational statistics. The
necessity for flexible and transparent models and a more interpretation of statistical
analysis has only contributed to the trend.

Here, we will adopt a pragmatic approach to Bayesian statistics and we will not
care too much about other statistical paradigms and their relationship to Bayesian
statistics. The aim of this book is to learn about Bayesian data analysis with the help
of Python. Philosophical discussions are interesting but they have already been
undertaken elsewhere in a richer way than we can discuss in these pages.

We will take a modeling approach to statistics, we will learn to think in terms of
probabilistic models, and apply Bayes' theorem to derive the logical consequences
of our models and data. The approach will also be computational; models will
be coded using PyMC3—a great library for Bayesian statistics that hides most of
the mathematical details and computations from the user. Bayesian methods are
theoretically grounded in probability theory and hence it's no wonder that many
books about Bayesian statistics are full of mathematical formulas requiring a certain
level of mathematical sophistication. Learning the mathematical foundations of
statistics could certainly help you build better models and gain intuition about
problems, models, and results. Nevertheless, libraries, such as PyMC3 allow us to
learn and do Bayesian statistics with only a modest mathematical knowledge, as you
will be able to verify by yourself throughout this book.

Preface

[viii]

What this book covers
Chapter 1, Thinking Probabilistically – A Bayesian Inference Primer, tells us about
Bayes' theorem and its implications for data analysis. We then proceed to describe
the Bayesian-way of thinking and how and why probabilities are used to deal
with uncertainty. This chapter contains the foundational concepts used in the rest
of the book.

Chapter 2, Programming Probabilistically – A PyMC3 Primer, revisits the concepts from
the previous chapter, this time from a more computational perspective. The PyMC3
library is introduced and we learn how to use it to build probabilistic models, get
results by sampling from the posterior, diagnose whether the sampling was done
right, and analyze and interpret Bayesian results.

Chapter 3, Juggling with Multi-Parametric and Hierarchical Models, tells us about the
very basis of Bayesian modeling and we start adding complexity to the mix. We
learn how to build and analyze models with more than one parameter and how to
put structure into models, taking advantages of hierarchical models.

Chapter 4, Understanding and Predicting Data with Linear Regression Models, tells us
about how linear regression is a very widely used model per se and a building block
of more complex models. In this chapter, we apply linear models to solve regression
problems and how to adapt them to deal with outliers and multiple variables.

Chapter 5, Classifying Outcomes with Logistic Regression, generalizes the the linear
model from previous chapter to solve classification problems including problems
with multiple input and output variables.

Chapter 6, Model Comparison, discusses the difficulties associated with comparing
models that are common in statistics and machine learning. We will also learn a bit
of theory behind the information criteria and Bayes factors and how to use them to
compare models, including some caveats of these methods.

Chapter 7, Mixture Models, discusses how to mix simpler models to build more
complex ones. This leads us to new models and also to reinterpret models learned
in previous chapters. Problems, such as data clustering and dealing with count data,
are discussed.

Chapter 8, Gaussian Processes, closes the book by briefly discussing some more
advanced concepts related to non-parametric statistics. What kernels are, how to use
kernelized linear regression, and how to use Gaussian processes for regression are
the central themes of this chapter.

Preface

[ix]

What you need for this book
This book is written for Python version >= 3.5, and it is recommended that you use
the most recent version of Python 3 that is currently available, although most of the
code examples may also run for older versions of Python, including Python 2.7 with
minor adjustments.

Maybe the easiest way to install Python and Python libraries is using Anaconda,
a scientific computing distribution. You can read more about Anaconda and
download it from https://www.continuum.io/downloads. Once Anaconda is in
our system, we can install new Python packages with this command: conda install
NamePackage.

We will use the following python packages:

• Ipython 5.0

• NumPy 1.11.1

• SciPy 0.18.1

• Pandas 0.18.1

• Matplotlib 1.5.3

• Seaborn 0.7.1

• PyMC3 3.0

Who this book is for
Undergraduate or graduate students, scientists, and data scientists who are not
familiar with the Bayesian statistical paradigm and wish to learn how to do Bayesian
data analysis. No previous knowledge of statistics is assumed, for either Bayesian or
other paradigms. The required mathematical knowledge is kept to a minimum and
all concepts are described and explained with code, figures, and text. Mathematical
formulas are used only when we think it can help the reader to better understand the
concepts. The book assumes you know how to program in Python. Familiarity with
scientific libraries such as NumPy, matplotlib, or Pandas is helpful but not essential.

Preface

[x]

Conventions
In this book, you will find a number of text styles that distinguish between different
kinds of information. Here are some examples of these styles and an explanation of
their meaning.

Code words in text, database table names, folder names, filenames, file extensions,
pathnames, dummy URLs, user input, and Twitter handles are shown as follows: "To
compute the HPD in the correct way we will use the function plot_post."

A block of code is set as follows:

n_params = [1, 2, 4]
p_params = [0.25, 0.5, 0.75]
x = np.arange(0, max(n_params)+1)
f, ax = plt.subplots(len(n_params), len(p_params), sharex=True,
 sharey=True)
for i in range(3):
 for j in range(3):
 n = n_params[i]
 p = p_params[j]
 y = stats.binom(n=n, p=p).pmf(x)
 ax[i,j].vlines(x, 0, y, colors='b', lw=5)
 ax[i,j].set_ylim(0, 1)
 ax[i,j].plot(0, 0, label="n = {:3.2f}\np =
 {:3.2f}".format(n, p), alpha=0)
 ax[i,j].legend(fontsize=12)
ax[2,1].set_xlabel('$\\theta$', fontsize=14)
ax[1,0].set_ylabel('$p(y|\\theta)$', fontsize=14)
ax[0,0].set_xticks(x)

Any command-line input or output is written as follows:

conda install NamePackage

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about
this book—what you liked or disliked. Reader feedback is important for us as it helps
us develop titles that you will really get the most out of.

To send us general feedback, simply e-mail feedback@packtpub.com, and mention
the book's title in the subject of your message.

Preface

[xi]

If there is a topic that you have expertise in and you are interested in either writing
or contributing to a book, see our author guide at www.packtpub.com/authors.

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to
help you to get the most from your purchase.

Downloading the example code
You can download the example code files for this book from your account at
http://www.packtpub.com. If you purchased this book elsewhere, you can
visit http://www.packtpub.com/support and register to have the files e-mailed
directly to you.

You can download the code files by following these steps:

1. Log in or register to our website using your e-mail address and password.
2. Hover the mouse pointer on the SUPPORT tab at the top.
3. Click on Code Downloads & Errata.
4. Enter the name of the book in the Search box.
5. Select the book for which you're looking to download the code files.
6. Choose from the drop-down menu where you purchased this book from.
7. Click on Code Download.

You can also download the code files by clicking on the Code Files button on the
book's webpage at the Packt Publishing website. This page can be accessed by
entering the book's name in the Search box. Please note that you need to be logged in
to your Packt account.

Once the file is downloaded, please make sure that you unzip or extract the folder
using the latest version of:

• WinRAR / 7-Zip for Windows
• Zipeg / iZip / UnRarX for Mac
• 7-Zip / PeaZip for Linux

The code bundle for the book is also hosted on GitHub at https://github.com/
PacktPublishing/Bayesian-Analysis-with-Python. We also have other code
bundles from our rich catalog of books and videos available at https://github.
com/PacktPublishing/. Check them out!

Preface

[xii]

Downloading the color images of this book
We also provide you with a PDF file that has color images of the screenshots/
diagrams used in this book. The color images will help you better understand the
changes in the output. You can download this file from https://www.packtpub.
com/sites/default/files/downloads/BayesianAnalysiswithPython_
ColorImages.pdf.

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes
do happen. If you find a mistake in one of our books—maybe a mistake in the text or
the code—we would be grateful if you could report this to us. By doing so, you can
save other readers from frustration and help us improve subsequent versions of this
book. If you find any errata, please report them by visiting http://www.packtpub.
com/submit-errata, selecting your book, clicking on the Errata Submission Form
link, and entering the details of your errata. Once your errata are verified, your
submission will be accepted and the errata will be uploaded to our website or added
to any list of existing errata under the Errata section of that title.

To view the previously submitted errata, go to https://www.packtpub.com/books/
content/support and enter the name of the book in the search field. The required
information will appear under the Errata section.

Piracy
Piracy of copyrighted material on the Internet is an ongoing problem across all
media. At Packt, we take the protection of our copyright and licenses very seriously.
If you come across any illegal copies of our works in any form on the Internet, please
provide us with the location address or website name immediately so that we can
pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected pirated
material.

We appreciate your help in protecting our authors and our ability to bring you
valuable content.

Questions
If you have a problem with any aspect of this book, you can contact us at
questions@packtpub.com, and we will do our best to address the problem.

[1]

Thinking Probabilistically -
A Bayesian Inference Primer

Probability theory is nothing but common sense reduced to calculation.

 -Pierre-Simon Laplace

In this chapter, we will learn the core concepts of Bayesian statistics and some of the
instruments in the Bayesian toolbox. We will use some Python code in this chapter,
but this chapter will be mostly theoretical; most of the concepts in this chapter will be
revisited many times through the rest of the book. This chapter, being intense on the
theoretical side, may be a little anxiogenic for the coder in you, but I think it will ease
the path to effectively applying Bayesian statistics to your problems.

In this chapter, we will cover the following topics:

• Statistical modeling
• Probabilities and uncertainty
• Bayes' theorem and statistical inference
• Single parameter inference and the classic coin-flip problem
• Choosing priors and why people often don't like them, but should
• Communicating a Bayesian analysis
• Installing all Python packages

Thinking Probabilistically - A Bayesian Inference Primer

[2]

Statistics as a form of modeling
Statistics is about collecting, organizing, analyzing, and interpreting data, and
hence statistical knowledge is essential for data analysis. Another useful skill when
analyzing data is knowing how to write code in a programming language such as
Python. Manipulating data is usually necessary given that we live in a messy world
with even messier data, and coding helps to get things done. Even if your data is
clean and tidy, programming will still be very useful since modern Bayesian statistics
is mostly computational statistics.

Most introductory statistical courses, at least for non-statisticians, are taught as a
collection of recipes that more or less go like this; go to the the statistical pantry, pick
one can and open it, add data to taste and stir until obtaining a consistent p-value,
preferably under 0.05 (if you don't know what a p-value is, don't worry; we will
not use them in this book). The main goal in this type of course is to teach you how
to pick the proper can. We will take a different approach: we will also learn some
recipes, but this will be home-made rather than canned food; we will learn how to
mix fresh ingredients that will suit different gastronomic occasions. But before we
can cook, we must learn some statistical vocabulary and also some concepts.

Exploratory data analysis
Data is an essential ingredient of statistics. Data comes from several sources, such as
experiments, computer simulations, surveys, field observations, and so on. If we are
the ones that will be generating or gathering the data, it is always a good idea to first
think carefully about the questions we want to answer and which methods we will
use, and only then proceed to get the data. In fact, there is a whole branch of statistics
dealing with data collection known as experimental design. In the era of data deluge,
we can sometimes forget that gathering data is not always cheap. For example, while
it is true that the Large Hadron Collider (LHC) produces hundreds of terabytes a
day, its construction took years of manual and intellectual effort. In this book we will
assume that we already have collected the data and also that the data is clean and
tidy, something rarely true in the real world. We will make these assumptions in
order to focus on the subject of this book. If you want to learn how to use Python for
cleaning and manipulating data and also a primer on machine learning, you should
probably read the book Python Data Science Handbook by Jake VanderPlas.

Chapter 1

[3]

OK, so let's assume we have our dataset; usually, a good idea is to explore and
visualize it in order to get some intuition about what we have in our hands. This can
be achieved through what is known as Exploratory Data Analysis (EDA), which
basically consists of the following:

• Descriptive statistics
• Data visualization

The first one, descriptive statistics, is about how to use some measures (or statistics)
to summarize or characterize the data in a quantitative manner. You probably
already know that you can describe data using the mean, mode, standard deviation,
interquartile ranges, and so forth. The second one, data visualization, is about
visually inspecting the data; you probably are familiar with representations such
as histograms, scatter plots, and others. While EDA was originally thought of as
something you apply to data before doing any complex analysis or even as an
alternative to complex model-based analysis, through the book we will learn that
EDA is also applicable to understanding, interpreting, checking, summarizing, and
communicating the results of Bayesian analysis.

Inferential statistics
Sometimes, plotting our data and computing simple numbers, such as the average
of our data, is all we need. Other times, we want to make a generalization based
on our data. We may want to understand the underlying mechanism that could
have generated the data, or maybe we want to make predictions for future
(yet unobserved) data points, or we need to choose among several competing
explanations for the same observations. That's the job of inferential statistics. To do
inferential statistics we will rely on probabilistic models. There are many types of
models and most of science, and I will add all of our understanding of the real world,
is through models. The brain is just a machine that models reality (whatever reality
might be) see this TED talk about the machine that builds the reality http://www.
tedxriodelaplata.org/videos/m%C3%A1quina-construye-realidad.

Thinking Probabilistically - A Bayesian Inference Primer

[4]

What are models? Models are simplified descriptions of a given system (or process).
Those descriptions are purposely designed to capture only the most relevant aspects
of the system, and hence, most models do not pretend they are able to explain
everything; on the contrary, if we have a simple and a complex model and both
models explain the data more or less equally well, we will generally prefer the
simpler one. This heuristic for simple models is known as Occam's razor, and we will
discuss how it is related to Bayesian analysis in Chapter 6, Model Comparison.

Model building, no matter which type of model you are building, is an iterative
process following more or less the same basic rules. We can summarize the Bayesian
modeling process using three steps:

1. Given some data and some assumptions on how this data could have been
generated, we will build models. Most of the time, models will be crude
approximations, but most of the time this is all we need.

2. Then we will use Bayes' theorem to add data to our models and derive the
logical consequences of mixing the data and our assumptions. We say we are
conditioning the model on our data.

3. Lastly, we will check that the model makes sense according to different
criteria, including our data and our expertise on the subject we are studying.

In general, we will find ourselves performing these three steps in a non-linear
iterative fashion. Sometimes we will retrace our steps at any given point: maybe we
made a silly programming mistake, maybe we found a way to change the model and
improve it, maybe we need to add more data.

Bayesian models are also known as probabilistic models because they are built
using probabilities. Why probabilities? Because probabilities are the correct
mathematical tool to model the uncertainty in our data, so let's take a walk through
the garden of forking paths.

Chapter 1

[5]

Probabilities and uncertainty
While Probability Theory is a mature and well-established branch of mathematics,
there is more than one interpretation of what probabilities are. To a Bayesian, a
probability is a measure that quantifies the uncertainty level of a statement. If we
know nothing about coins and we do not have any data about coin tosses, it is
reasonable to think that the probability of a coin landing heads could take any value
between 0 and 1; that is, in the absence of information, all values are equally likely,
our uncertainty is maximum. If we know instead that coins tend to be balanced, then
we may say that the probability of a coin landing is exactly 0.5 or may be around 0.5
if we admit that the balance is not perfect. If now, we collect data, we can update
these prior assumptions and hopefully reduce the uncertainty about the bias of the
coin. Under this definition of probability, it is totally valid and natural to ask about
the probability of life on Mars, the probability of the mass of the electron being 9.1 x
10-31 kg, or the probability of the 9th of July of 1816 being a sunny day. Notice, for
example, that the question of whether or not life exists on Mars has a binary outcome
but what we are really asking is how likely is it to find life on Mars given our data
and what we know about biology and the physical conditions on that planet? The
statement is about our state of knowledge and not, directly, about a property of
nature. We are using probabilities because we cannot be sure about the events,
not because the events are necessarily random. Since this definition of probability
is about our epistemic state of mind, sometimes it is referred to as the subjective
definition of probability, explaining the slogan of subjective statistics often attached
to the Bayesian paradigm. Nevertheless, this definition does not mean all statements
should be treated as equally valid and so anything goes; this definition is about
acknowledging that our understanding about the world is imperfect and conditioned
on the data and models we have made. There is not such a thing as a model-free or
theory-free understanding of the world; even if it were be possible to free ourselves
from our social preconditioning, we will end up with a biological limitation: our
brain, subject to the evolutionary process, has been wired with models of the world.
We are doomed to think like humans and we will never think like bats or anything
else! Moreover, the universe is an uncertain place and, in general the best we can
do is to make probabilistic statements about it. Notice that it does not matter if
the underlying reality of the world is deterministic or stochastic; we are using
probability as a tool to quantify uncertainty.

Thinking Probabilistically - A Bayesian Inference Primer

[6]

Logic is about thinking without making mistakes. Under the Aristotelian or classical
logic, we can only have statements taking the values true or false. Under the
Bayesian definition of probability, certainty is just a special case: a true statement has
a probability of 1, a false one has probability 0. We would assign a probability of 1
about life on Mars only after having conclusive data indicating something is growing
and reproducing and doing other activities we associate with living organisms.
Notice, however, that assigning a probability of 0 is harder because we can always
think that there is some Martian spot that is unexplored, or that we have made
mistakes with some experiment, or several other reasons that could lead us to falsely
believe life is absent on Mars when it is not. Related to this point is Cromwell's rule,
stating that we should reserve the use of the prior probabilities of 0 or 1 to logically
true or false statements. Interesting enough, Cox mathematically proved that if we
want to extend logic to include uncertainty we must use probabilities and probability
theory. Bayes' theorem is just a logical consequence of the rules of probability as
we will see soon. Hence, another way of thinking about Bayesian statistics is as an
extension of logic when dealing with uncertainty, something that clearly has nothing
to do with subjective reasoning in the pejorative sense. Now that we know the
Bayesian interpretation of probability, let's see some of the mathematical properties
of probabilities. For a more detailed study of probability theory, you can read
Introduction to probability by Joseph K Blitzstein & Jessica Hwang.

Probabilities are numbers in the interval [0, 1], that is, numbers between 0 and 1,
including both extremes. Probabilities follow some rules; one of these rules is the
product rule:

() () (), |p A B p A B p B=

We read this as follows: the probability of A and B is equal to the probability of
A given B, times the probability of B. The expression p(A, B) represents the joint
probability of A and B. The expression p(A|B) is used to indicate a conditional
probability; the name refers to the fact that the probability of A is conditioned on
knowing B. For example, the probability that a pavement is wet is different from
the probability that the pavement is wet if we know (or given that) is raining. A
conditional probability can be larger than, smaller than or equal to the unconditioned
probability. If knowing B does not provides us with information about A, then
p(A|B)=p(A). That is A and B are independent of each other. On the contrary, if
knowing B gives us useful information about A, then the conditional probability
could be larger or smaller than the unconditional probability depending on whether
knowing B makes A less or more likely.

Chapter 1

[7]

Conditional probabilities are a key concept in statistics, and understanding them is
crucial to understanding Bayes' theorem, as we will see soon. Let's try to understand
them from a different perspective. If we reorder the equation for the product rule, we
get the following:

() ()
()
,

|
p A B

p A B
p B

=

Notice that a conditional probability is always larger or equal than the joint
probability. The reasons are that: we do not condition on zero-probability events, this
is implied in the expression, and probabilities are restricted to be in
the interval [0, 1]. Why do we divide by p(B)? Knowing B is equivalent to saying that
we have restricted the space of possible events to B and thus, to find the conditional
probability, we take the favorable cases and divide them by the total number of
events. It is important to realize that all probabilities are indeed conditionals, there is
not such a thing as an absolute probability floating in vacuum space. There is always
some model, assumption, or condition, even if we don't notice or know them. The
probability of rain is not the same if we are talking about Earth, Mars, or some other
place in the Universe. In the same way, the probability of a coin landing heads or
tails depends on our assumptions of the coin being biased in one way or another.
Now that we are more familiar with the concept of probability, let's jump to the next
topic, probability distributions.

Probability distributions
A probability distribution is a mathematical object that describes how likely different
events are. In general, these events are restricted somehow to a set of possible
events. A common and useful conceptualization in statistics is to think that data was
generated from some probability distribution with unobserved parameters. Since
the parameters are unobserved and we only have data, we will use Bayes' theorem
to invert the relationship, that is, to go from the data to the parameters. Probability
distributions are the building blocks of Bayesian models; by combining them in
proper ways we can get useful complex models.

We will meet several probability distributions throughout the book; every time
we discover one we will take a moment to try to understand it. Probably the most
famous of all of them is the Gaussian or normal distribution. A variable x follows a
Gaussian distribution if its values are dictated by the following formula:

()
()2

221| ,
2

x

pdf x e
µ

σµ σ
σ π

− −

=

Thinking Probabilistically - A Bayesian Inference Primer

[8]

In the formula, µ and σ are the parameters of the distributions. The first one can
take any real value, that is, µ∈� , and dictates the mean of the distribution (and also
the median and mode, which are all equal). The second is the standard deviation,
which can only be positive and dictates the spread of the distribution. Since there are
an infinite number of possible combinations of µ and σ values, there is an infinite
number of instances of the Gaussian distribution and all of them belong to the same
Gaussian family. Mathematical formulas are concise and unambiguous and some
people say even beautiful, but we must admit that meeting them can be intimidating;
a good way to break the ice is to use Python to explore them. Let's see what the
Gaussian distribution family looks like:

import matplotlib.pyplot as plt
import numpy as np
from scipy import stats
import seaborn as sns

mu_params = [-1, 0, 1]
sd_params = [0.5, 1, 1.5]
x = np.linspace(-7, 7, 100)
f, ax = plt.subplots(len(mu_params), len(sd_params), sharex=True,
 sharey=True)
for i in range(3):
 for j in range(3):
 mu = mu_params[i]
 sd = sd_params[j]
 y = stats.norm(mu, sd).pdf(x)
 ax[i,j].plot(x, y)
 ax[i,j].plot(0, 0,
 label="$\\mu$ = {:3.2f}\n$\\sigma$ = {:3.2f}".format
 (mu, sd), alpha=0)
 ax[i,j].legend(fontsize=12)
ax[2,1].set_xlabel('x', fontsize=16)
ax[1,0].set_ylabel('$pdf(x)$', fontsize=16)
plt.tight_layout()

Chapter 1

[9]

The output of the preceding code is as follows:

A variable, such as x, that comes from a probability distribution is called a random
variable. It is not that the variable can take any possible value. On the contrary, the
values are strictly controlled by the probability distribution; the randomness arises
from the fact that we could not predict which value the variable will take, but only
the probability of observing those values. A common notation used to say that a
variable is distributed as a Gaussian or normal distribution with parameters µ and
σ is as follows:

(),x N µ σ∼

The symbol ~ (tilde) is read as is distributed as.

There are two types of random variable, continuous and discrete. Continuous random
variables can take any value from some interval (we can use Python floats to represent
them), and the discrete random variables can take only certain values (we can use
Python integers to represent them).

Many models assume that successive values of a random variables are all sampled
from the same distribution and those values are independent of each other. In such a
case, we will say that the variables are independently and identically distributed, or
iid variables for short. Using mathematical notation, we can see that two variables are
independent if () () (),p x y p x p y= for every value of x and y:

Thinking Probabilistically - A Bayesian Inference Primer

[10]

A common example of non iid variables are temporal series, where a temporal
dependency in the random variable is a key feature that should be taken into account.
Take for example the following data coming from http://cdiac.esd.ornl.gov.
This data is a record of atmospheric CO2 measurements from 1959 to 1997. We are
going to load the data (included with the accompanying code) and plot it.

data = np.genfromtxt('mauna_loa_CO2.csv', delimiter=',')
plt.plot(data[:,0], data[:,1])
plt.xlabel('$year$', fontsize=16)
plt.ylabel('$CO_2 (ppmv)$', fontsize=16)

Each point corresponds to the measured levels of atmospheric CO2 per month. It is
easy to see in this plot the temporal dependency of data points. In fact, we have two
trends here, a seasonal one (this is related to cycles of vegetation growth and decay)
and a global one indicating an increasing concentration of atmospheric CO2.

Bayes' theorem and statistical inference
Now that we have learned some of the basic concepts and jargon from statistics,
we can move to the moment everyone was waiting for. Without further ado let's
contemplate, in all its majesty, Bayes' theorem:

() () ()
()
|

|
p D H p H

p H D
p D

=

Chapter 1

[11]

Well, it is not that impressive, is it? It looks like an elementary school formula and yet,
paraphrasing Richard Feynman, this is all you need to know about Bayesian statistics.

Learning where Bayes' theorem comes from will help us to understand its meaning.
In fact, we have already seen all the probability theory necessary to derive it:

• According to the product rule, we have the following:

() () (), |p H D p H D p D=

• This can also be written as follows:

() () (), |p H D p D H p H=

• Given than the terms on the left are equal, we can write the following:

() () () ()| |p D H p H p H D p D=

• And if we reorder it, we get Bayes' theorem:

() () ()
()
|

|
p D H p H

p H D
p D

=

Now, let's see what this formula implies and why it is important. First, it says that
p(D|H) is not necessarily the same as p(D|H). This is a very important fact, one that's
easy to miss in daily situations even for people trained in statistics and probability.
Let's use a simple example to clarify why these quantities are not necessary the same.
The probability of having two legs given these someone is a human is not the same
as the probability of being a human given that someone has two legs. Almost all
humans have two legs, except for people that have suffered from accidents or birth
problems, but a lot of non-human animals have two legs, such as birds.

If we replace H with hypothesis and D with data, Bayes' theorem tells us how to
compute the probability of a hypothesis H given the data D, and that's the way you will
find Bayes' theorem explained in a lot of places. But, how do we turn a hypothesis into
something that we can put inside Bayes' theorem? Well, we do that using probability
distributions so, in general, our H will be a hypothesis in a very narrow sense. What
we will be really doing is trying to find parameters of our models, that is, parameters
of probability distributions. So maybe, instead of hypothesis, it is better to talk about
models and avoid confusion. And by the way, don't try to set H to statements such
as "unicorns are real", unless you are willing to build a realistic probabilistic model of
unicorn existence!

Thinking Probabilistically - A Bayesian Inference Primer

[12]

Since Bayes' theorem is central and we will use it over and over again, let's learn the
names of its parts:

• p(H): Prior
• p(D|H): Likelihood
• p(H|D): Posterior
• p(D): Evidence

The prior distribution should reflect what we know about the value of some
parameter before seeing the data D. If we know nothing, like Jon Snow, we will use
flat priors that do not convey too much information. In general, we can do better,
as we will learn through this book. The use of priors is why some people still think
Bayesian statistics is subjective, even when priors are just another assumption that
we made when modeling and hence are just as subjective (or objective) as any other
assumption, such as likelihoods.

The likelihood is how we will introduce data in our analysis. It is an expression of
the plausibility of the data given the parameters.

The posterior distribution is the result of the Bayesian analysis and reflects all
that we know about a problem (given our data and model). The posterior is a
probability distribution for the parameters in our model and not a single value. This
distribution is a balance of the prior and the likelihood. There is a joke that says: A
Bayesian is one who, vaguely expecting a horse, and catching a glimpse of a donkey,
strongly believes he has seen a mule. One way to kill the mood after hearing this joke
is to explain that if the likelihood and priors are both vague you will get a posterior
reflecting vague beliefs about seeing a mule rather than strong ones. Anyway the
joke captures the idea of a posterior being somehow a compromise between prior
and likelihood. Conceptually, we can think of the posterior as the updated prior in
the light of the data. In fact, the posterior of one analysis can be used as the prior of
a new analysis after collecting new data. This makes Bayesian analysis particularly
suitable for analyzing data that becomes available in sequential order. Some examples
could be early warning systems for disasters that process online data coming from
meteorological stations and satellites. For more details read about online machine
learning methods.

Chapter 1

[13]

The last term is the evidence, also known as marginal likelihood. Formally, the
evidence is the probability of observing the data averaged over all the possible
values the parameters can take. Anyway, for most of the parts of the book, we will
not care about the evidence, and we will think of it as a simple normalization factor.
This will not be problematic since we will only care about the relative values of the
parameters and not their absolute ones. If we ignore the evidence, we can write
Bayes' theorem as a proportionality:

() () ()| |p H D p D H p H∝

Understanding the exact role of each term will take some time and will also require
some examples, and that's what the rest of the book is for.

Single parameter inference
In the last two sections, we have learned several important concepts, but two of them
are essentially the core of Bayesian statistics, so let's restate them in a single sentence.
Probabilities are used to measure the uncertainty we have about parameters, and
Bayes' theorem is the mechanism to correctly update those probabilities in the light
of new data, hopefully reducing our uncertainty.

Now that we know what Bayesian statistics is, let's learn how to do Bayesian
statistics with a simple example. We are going to begin inferring a single
unknown parameter.

The coin-flipping problem
The coin-flip problem is a classical problem in statistics and goes like this. We toss a
coin a number of times and record how many heads and tails we get. Based on this
data we try to answer questions such as is the coin fair? Or, more generally, how
biased is the coin? While this problem may sound dull, we should not underestimate
it. The coin-flipping problem is a great example to learn the basic of Bayesian
statistics; on the one hand, it is about tossing coins, something familiar to almost
anyone; on the other, it is a simple model that we can solve and compute with ease.
Besides, many real problems consist of binary mutually exclusive outcomes such
as 0 or 1, positive or negative, odds or evens, spam or ham, safe or unsafe, healthy
or unhealthy, and so on. Thus, even when we are talking about coins, this model
applies to any of those problems.

Thinking Probabilistically - A Bayesian Inference Primer

[14]

In order to estimate the bias of a coin, and in general to answer any questions in
a Bayesian setting, we will need data and a probabilistic model. For this example,
we will assume that we have already tossed a coin a number of times and we have
recorded the number of observed heads, so the data part is done. Getting the model
will take a little bit more effort. Since this is our first model, we will do all the
necessary math (don't be afraid, I promise it will be painless) and we will proceed
step by step very slowly. In the next chapter we will revisit this problem by using
PyMC3 to solve it numerically, that is, without us doing the math. Instead we will
let PyMC3 and our computer do the math.

The general model
The first thing we will do is generalize the concept of bias. We will say that a coin
with a bias of 1 will always land heads, one with a bias of 0 will always land tails,
and one with a bias of 0.5 will land half of the time heads and half of the time tails.
To represent the bias, we will use the parameter θ , and to represent the total number
of heads for an N number of tosses, we will use the variable y. According to Bayes'
theorem we have the following formula:

() () ()| |p y p y pθ θ θ∝

Notice that we need to specify which prior ()p θ and likelihood ()|p y θ we will use.
Let's start with the likelihood.

Choosing the likelihood
Let's assume that a coin toss does not affect other tosses, that is, we are assuming
coin tosses are independent of each other. Let's also assume that only two outcomes
are possible, heads or tails. I hope you agree these are very reasonable assumptions
to make for our problem. Given these assumptions, a good candidate for the
likelihood is the binomial distribution:

() ()
()!| 1

! !
N yyNp y

N N y
θ θ θ −= −

−

This is a discrete distribution returning the probability of getting y heads (or in
general, success) out of N coin tosses (or in general, trials or experiments) given a
fixed value of θ . The following code generates 9 binomial distributions; each subplot
has its own legend indicating the corresponding parameters:

n_params = [1, 2, 4]
p_params = [0.25, 0.5, 0.75]

Chapter 1

[15]

x = np.arange(0, max(n_params)+1)
f, ax = plt.subplots(len(n_params), len(p_params), sharex=True,
 sharey=True)
for i in range(3):
 for j in range(3):
 n = n_params[i]
 p = p_params[j]
 y = stats.binom(n=n, p=p).pmf(x)
 ax[i,j].vlines(x, 0, y, colors='b', lw=5)
 ax[i,j].set_ylim(0, 1)
 ax[i,j].plot(0, 0, label="n = {:3.2f}\np =
 {:3.2f}".format(n, p), alpha=0)
 ax[i,j].legend(fontsize=12)
ax[2,1].set_xlabel('$\\theta$', fontsize=14)
ax[1,0].set_ylabel('$p(y|\\theta)$', fontsize=14)
ax[0,0].set_xticks(x)

Thinking Probabilistically - A Bayesian Inference Primer

[16]

The binomial distribution is also a reasonable choice for the likelihood. Intuitively,
we can see that θ indicates how likely it is that we will obtain a head when tossing a
coin, and we have observed that event y times. Following the same line of reasoning
we get that 1 θ− is the chance of getting a tail, and that event has occurred N-y times.

OK, so if we know θ , the binomial distribution will tell us the expected distribution
of heads. The only problem is that we do not know θ ! But do not despair; in
Bayesian statistics, every time we do not know the value of a parameter, we put
a prior on it, so let's move on and choose a prior.

Choosing the prior
As a prior we will use a beta distribution, which is a very common distribution in
Bayesian statistics and looks like this:

() ()
() ()

1 11p α βα β
θ θ θ

α β
− −Γ +

= −
Γ Γ

If we look carefully we will see that the beta distribution looks similar to the
binomial except for the term with the Γ . This is the Greek uppercase gamma letter
and represents what is known as gamma function. All that we care about at this
point is that the first term is a normalization constant that ensures the distribution
integrates to 1 and that the beta distribution has two parameters, α and β ,
that control the distribution. Using the following code, we will explore our third
distribution so far:

params = [0.5, 1, 2, 3]
x = np.linspace(0, 1, 100)
f, ax = plt.subplots(len(params), len(params), sharex=True,
 sharey=True)
for i in range(4):
 for j in range(4):
 a = params[i]
 b = params[j]
 y = stats.beta(a, b).pdf(x)
 ax[i,j].plot(x, y)
 ax[i,j].plot(0, 0, label="$\\alpha$ = {:3.2f}\n$\\beta$ =
 {:3.2f}".format(a, b), alpha=0)
 ax[i,j].legend(fontsize=12)
ax[3,0].set_xlabel('$\\theta$', fontsize=14)
ax[0,0].set_ylabel('$p(\\theta)$', fontsize=14)

Chapter 1

[17]

OK, the beta distribution is nice, but why are we using it for our model? There are
many reasons to use a beta distribution for this and other problems. One of them
is that the beta distribution is restricted to be between 0 and 1, in the same way our
parameter θ is. Another reason is its versatility. As we can see in the preceding
figure, the distribution adopts several shapes, including a uniform distribution,
Gaussian-like distributions, U-like distributions, and so on. A third reason is that the
beta distribution is the conjugate prior of the binomial distribution (which we are
using as the likelihood). A conjugate prior of a likelihood is a prior that, when used in
combination with the given likelihood, returns a posterior with the same functional
form as the prior. Untwisting the tongue, every time we use a beta distribution as
prior and a binomial distribution as likelihood, we will get a beta as a posterior.
There are other pairs of conjugate priors, for example, the Gaussian distribution is the
conjugate prior of itself. For a more detailed discussion read https://en.wikipedia.
org/wiki/Conjugate_prior. For many years, Bayesian analysis was restricted to the
use of conjugate priors. Conjugacy ensures mathematical tractability of the posterior,
which is important given that a common problem in Bayesian statistics is to end
up with a posterior we cannot solve analytically. This was a deal breaker before the
development of suitable computational methods to solve any possible posterior. From
the next chapter on, we will learn how to use modern computational methods to solve
Bayesian problems whether we choose conjugate priors or not.

Thinking Probabilistically - A Bayesian Inference Primer

[18]

Getting the posterior
Let's remember Bayes' theorem says that the posterior is proportional to the
likelihood times the prior:

() () ()| |p y p y pθ θ θ∝

So for our problem, we have to multiply the binomial and the beta distributions:

() ()
() ()

() ()
1 1!| 1

! !
N yyNp y

N N y
α βα β

θ θ θ θ θ
α β

− − −Γ +
∝ −

− Γ Γ

Now let's simplify this expression. To our practical concerns we can drop all the
terms that do not depend on θ and our results will still be valid. So we can write
the following:

() () 1 1| 1 N yyp y α βθ θ θ θ 1− θ− − −∝ −

Reordering it, we get the following:

() ()11| N yyp y βαθ θ 1− θ − + −− +∝

If we pay attention, we will see that this expression has the same functional form
of a beta distribution (except for the normalization) with posterior prior yα α= + and
posterior prior N yβ β= + − , which means that the posterior for our problem is the

beta distribution:

() ()| ,prior priorp y Beta y N yθ α β= + + −

Computing and plotting the posterior
Now that we have the analytical expression for the posterior, let's use Python to
compute it and plot the results. In the following code you will see there is actually
one line that computes the results while the others are there just to plot them:

theta_real = 0.35
trials = [0, 1, 2, 3, 4, 8, 16, 32, 50, 150]
data = [0, 1, 1, 1, 1, 4, 6, 9, 13, 48]

beta_params = [(1, 1), (0.5, 0.5), (20, 20)]

Chapter 1

[19]

dist = stats.beta
x = np.linspace(0, 1, 100)

for idx, N in enumerate(trials):
 if idx == 0:
 plt.subplot(4,3, 2)
 else:
 plt.subplot(4,3, idx+3)
 y = data[idx]
 for (a_prior, b_prior), c in zip(beta_params, ('b', 'r', 'g')):
 p_theta_given_y = dist.pdf(x, a_prior + y, b_prior + N - y)
 plt.plot(x, p_theta_given_y, c)
 plt.fill_between(x, 0, p_theta_given_y, color=c, alpha=0.6)

 plt.axvline(theta_real, ymax=0.3, color='k')
 plt.plot(0, 0, label="{:d} experiments\n{:d} heads".format(N,
 y), alpha=0)
 plt.xlim(0,1)
 plt.ylim(0,12)
 plt.xlabel(r'θ')
 plt.legend()
 plt.gca().axes.get_yaxis().set_visible(False)
plt.tight_layout()

Thinking Probabilistically - A Bayesian Inference Primer

[20]

On the first line we have 0 experiments done, hence these curves are just our priors.
We have three curves, one per prior:

• The blue one is a uniform prior. This is equivalent to saying that all the
possible values for the bias are equally probable a priori.

• The red one is similar to the uniform. For the sake of this example we will
just say that we are a little bit more confident that the bias is either 0 or 1 than
the rest of the values.

• The green and last one is centered and concentrated around 0.5, so this
prior is compatible with information indicating that the coin has more or
less about the same chance of landing heads or tails. We could also say this
prior is compatible with the belief that most coins are fair. While such a word
is commonly used in Bayesian discussions we think is better to talk about
models that are informed by data.

The rest of the subplots show posteriors ()|p yθ for successive experiments.
Remember that we can think of posteriors as updated priors given the data. The
number of experiments (or coin tosses) and the number of heads are indicated in
each subplot's legend. There is also a black vertical line at 0.35 representing the true
value for θ . Of course, in real problems we do not know this value, and it is here just
for pedagogical reasons. This figure can teach us a lot about Bayesian analysis, so
let's take a moment to understand it:

• The result of a Bayesian analysis is the posterior distribution, not a single
value but a distribution of plausible values given the data and our model.

• The most probable value is given by the mode of the posterior (the peak of
the distribution).

• The spread of the posterior is proportional to the uncertainty about the value
of a parameter; the more spread the distribution, the less certain we are.

• Even when
1 4 0.5
2 8
= = it is easy to see that the uncertainty we have in the first

example is larger than in the second one because we have more data that
supports our inference. This intuition is reflected in the posterior.

• Given a sufficiently large amount of data, two or more Bayesian models
with different priors will tend to converge to the same result. In the limit
of infinite data, no matter which prior we use, we will always get the same
posterior. Remember that infinite is a limit and not a number, so from a
practical point of view in some cases the infinite amount of data could be
approximated with a really small number of data points.

Chapter 1

[21]

• How fast posteriors converge to the same distribution depends on the data and
the model. In the previous figure we can see that the blue and red posteriors
look almost indistinguishable after only 8 experiments, while the red curve
continues to be separated from the other two even after 150 experiments.

• Something not obvious from the figure is that we will get the same result
if we update the posterior sequentially than if we do it all at once. We can
compute the posterior 150 times, each time adding one more observation and
using the obtained posterior as the new prior, or we can just compute one
posterior for the 150 tosses at once. The result will be exactly the same. This
feature not only makes perfect sense, also leads to a natural way of updating
our estimations when we get new data, a situation common in many data
analysis problems.

Influence of the prior and how to choose one
From the preceding example, it is clear that priors influence the result of the analysis.
This is totally fine, priors are supposed to do this. Newcomers to Bayesian analysis
(as well as detractors of this paradigm) are in general a little nervous about how to
choose priors, because they do not want the prior to act as a censor that does not
let the data speak for itself! That's okay, but we have to remember that data does
not really speak; at best, data murmurs. Data only makes sense in the light of our
models, including mathematical and mental models. There are plenty of examples in
the history of science where the same data leads people to think differently about the
same topics. Check for example a recent experiment that appeared in the New York
Times http://www.nytimes.com/interactive/2016/09/20/upshot/the-error-
the-polling-world-rarely-talks-about.html?_r=0.

Some people fancy the idea of using non-informative priors (also known as flat,
vague, or diffuse priors); these priors have the least possible amount of impact on the
analysis. While it is possible to use them, in general, we can do better. Throughout
this book we will follow the recommendations of Gelman, McElreath, Kruschke and
many others, and we will prefer weakly informative priors. For many problems we
often know something about the values a parameter can take, we may know that a
parameter is restricted to being positive, or we may know the approximate range it
can take, or if we expect the value to be close to zero or above/below some value. In
such cases, we can use priors to put some weak information in our models without
being afraid of being too pushy with our data. Because these priors work to keep the
posterior distribution approximately within certain reasonable bounds, they are also
know as regularizing priors.

Thinking Probabilistically - A Bayesian Inference Primer

[22]

Of course, it can also be possible to use informative priors. These are very strong priors
that convey a lot of information. Depending on your problem, it could be easy or not
to find this type of prior; for example, in my field of work (structural bioinformatics),
people have been using all the prior information they can get, in Bayesian and non-
Bayesian ways, to study and especially predict the structure of proteins. This is
reasonable because we have been collecting data from thousands of carefully designed
experiments for decades and hence we have a great amount of trustworthy prior
information at our disposal. Not using it would be absurd! So the take-home message
is if you have reliable prior information, there is no reason to discard that information,
including the non-nonsensical argument that not using information we trust is
objective. Imagine if every time an automotive engineer has to design a new car, she
has to start from scratch and re-invent the combustion engine, the wheel, and for that
matter, the whole concept of a car. That is not the way things work.

Now we know that there are different kind of priors, but this probably doesn't make us
less nervous about choosing among them. Maybe it would be better to not have priors
at all. That would make things easier. Well, every model, Bayesian or not has some
kind of priors in some way or another, even if the prior does not appear explicitly. In
fact many results from frequentist statistics can be seen as special cases of a Bayesian
model under certain circumstances, such as flat priors. Let's pay attention to the
previous figure one more time. We can see that the mode (the peak of the posterior) of
the blue posterior agrees with the expected value for θ from a frequentist analysis:

ˆ y
N

θ =

Notice that θ̂ is a point estimate (a number) and not a posterior distribution (or
any other type of distribution for that matter). So notice that you can not really
avoid priors, but if you include them in your analysis you will get a distribution
of plausible values and not only the most probable one. Another advantage of
being explicit about priors is that we get more transparent models, meaning more
easy to criticize, debug (in a broad sense of the word), and hopefully improve.
Building models is an iterative process; sometimes the iteration takes a few minutes,
sometimes it could take years. Sometimes it will only involve you and sometimes
people you do not even know. Reproducibility matters and transparent assumptions
in a model contributes to it.

We are free to use more than one prior (or likelihood) for a given analysis if we are
not sure about any special one. Part of the modeling process is about questioning
assumptions, and priors are just that. Different assumptions will lead to different
models, using data and our domain knowledge of the problem we will be able to
compare models. Chapter 06, Model Comparison will be devoted to this issue.

Chapter 1

[23]

Since priors have a central role in Bayesian statistics, we will keep discussing them as
we face new problems. So if you have doubts and feel a little bit confused about this
discussion just keep calm and don't worry, people have been confused for decades
and the discussion is still going on.

Communicating a Bayesian analysis
Now that we have the posterior, the analysis is finished and we can go home. Well,
not yet! We probably need to communicate or summarize the results to others, or
even record for later use by ourselves.

Model notation and visualization
If you want to communicate the result, you may need, depending on your audience,
to also communicate the model. A common notation to succinctly represent
probabilistic models is as follows:

• θ ∼ Beta(α, β)
• y ∼ Bin(n = 1, p = θ)

This is the model we use for the coin-flip example. As we may remember, the
symbol ~ indicates that the variable is a random variable distributed according to the
distribution on the right, that is, θ is distributed as a beta distribution with parameters
α and β , and y is distributed as a binomial with parameter n=1 and p θ= . The very
same model can be represented graphically using Kruschke's diagrams:

Thinking Probabilistically - A Bayesian Inference Primer

[24]

On the first level, we have the prior that generates the values for θ , then the
likelihood and, on the last line, the data. Arrows indicate the relationship between
variables, and the ~ symbol indicates the stochastic nature of the variables.

All Kruschke's diagrams in the book were made using the templates provided by
Rasmus Bååth (http://www.sumsar.net/blog/2013/10/diy-kruschke-style-
diagrams/). I would like to specially thanks him for making these templates available.

Summarizing the posterior
The result of a Bayesian analysis is the posterior distribution. This contains all the
information about our parameters according to the data and the model. If possible,
we can just show the posterior distribution to our audience. In general, it is also a
good idea to report the mean (or mode or median) of the distribution to have an idea
of the location of the distribution and some measure, such as the standard deviation,
to have an idea of the dispersion and hence the uncertainty in our estimate. The
standard deviation works well for normal-like distributions but can be misleading
for other types of distributions, such as skewed ones. So intead, we could use the
following approach.

Highest posterior density
A commonly used device to summarize the spread of a posterior distribution is to
use a Highest Posterior Density (HPD) interval. An HPD is the shortest interval
containing a given portion of the probability density. One of the most commonly
used is the 95% HPD or 98% HPD, often accompanied by the 50% HPD. If we say
that the 95% HPD for some analysis is [2-5], we mean that according to our data and
model we think the parameter in question is between 2 and 5 with a 0.95 probability.
This is a very intuitive interpretation, to the point that often people misinterpret
frequentist confidence intervals as if they were Bayesian credible intervals. If you
are familiar with the frequentist paradigm please note that both type of intervals
have different interpretations. Performing a fully Bayesian analysis enables us to talk
about the probability of a parameter having some value. While this is not possible
in the frequentist framework since parameters are fixed by design, a frequentist
confidence interval contains or does not contain the true value of a parameter.
Another word of caution before we continue: there is nothing special about choosing
95% or 50% or any other value. They are just arbitrary commonly used values; we
are free to choose the 91.37% HPD interval if we like. If you want to use the 95%
value, it's OK; just remember that this is just a default value and any justification of
which value we should use will be always context-dependent and not automatic.

Chapter 1

[25]

Computing the 95% HPD for a unimodal distribution is easy, since it is defined by
the percentiles 2.5 and 97.5:

def naive_hpd(post):
 sns.kdeplot(post)
 HPD = np.percentile(post, [2.5, 97.5])
 plt.plot(HPD, [0, 0], label='HPD {:.2f} {:.2f}'.format(*HPD),
 linewidth=8, color='k')
 plt.legend(fontsize=16);
 plt.xlabel(r'θ', fontsize=14)
 plt.gca().axes.get_yaxis().set_ticks([])

np.random.seed(1)
post = stats.beta.rvs(5, 11, size=1000)
naive_hpd(post)
plt.xlim(0, 1)

Thinking Probabilistically - A Bayesian Inference Primer

[26]

For a multi-modal distribution, the computation of the HPD is a little bit more
complicated. If we apply our naive definition of the HPD to a mixture of Gaussians
we will get the following:

np.random.seed(1)
gauss_a = stats.norm.rvs(loc=4, scale=0.9, size=3000)
gauss_b = stats.norm.rvs(loc=-2, scale=1, size=2000)
mix_norm = np.concatenate((gauss_a, gauss_b))

naive_hpd(mix_norm)

As we can see in the preceding figure, the HPD computed in the naive way includes
values with a low probability, approximately between [0, 2]. To compute the HPD in
the correct way we will use the function plot_post, which you can download from
the accompanying code that comes with the book:

from plot_post import plot_post
plot_post(mix_norm, roundto=2, alpha=0.05)
plt.legend(loc=0, fontsize=16)
plt.xlabel(r"θ", fontsize=14)

Chapter 1

[27]

As you can see from the preceding figure, the 95% HPD is composed of two
intervals. plot_post also returns the values for the two modes.

Posterior predictive checks
One of the nice elements of the Bayesian toolkit is that once we have a posterior, it is
possible to use the posterior to generate future data y, that is, predictions. Posterior
predictive checks consist of comparing the observed data and the predicted data to
spot differences between these two sets. The main goal is to check for auto-consistency.
The generated data and the observed data should look more or less similar, otherwise
there was some problem during the modeling or some problem feeding the data to
the model. But even if we did not make any mistake, differences could arise. Trying to
understand the mismatch could lead us to improve models or at least to understand
their limitations. Knowing which part of our problem/data the model is capturing well
and which it is not is valuable information even if we do not know how to improve
the model. Maybe the model captures well the mean behavior of our data but fails to
predict rare values. This could be problematic for us, or maybe we only care about the
mean, so this model will be okay for us. The general aim will be not to declare that a
model is false; instead we follow George Box's advice, all models are wrong, but some
are useful. We just want to know which part of the model we can trust and try to test
whether the model is a good fit for our specific purpose. How confident one can be
about a model is certainly not the same across disciplines. Physics can study systems
under highly controlled conditions using high-level theories, so models are often
seen as good descriptions of reality. Other disciplines such as sociology and biology
study complex, difficult to isolate systems, and models have a weaker epistemological
status. Nevertheless, independently of which discipline you are working in, models
should always be checked and posterior predictive checks together with ideas from
exploratory data analysis are a good way to check our models.

Thinking Probabilistically - A Bayesian Inference Primer

[28]

Installing the necessary Python packages
The code in the book was written using Python version 3.5, and it is recommended
you use the most recent version of Python 3 that is currently available, although most
of the code examples may also run for older versions of Python, including Python 2.7,
but code could need minor adjustments.

The recommended way to install Python and Python libraries is using Anaconda, a
scientific computing distribution. You can read more about Anaconda and download
it from https://www.continuum.io/downloads. Once Anaconda is in our system,
we can install new Python packages with the following command:

conda install NamePackage

We will use the following Python packages:

• Ipython 5.0

• NumPy 1.11.1

• SciPy 0.18.1

• Pandas 0.18.1

• Matplotlib 1.5.3

• Seaborn 0.7.1

• PyMC3 3.0

To install the latest stable version of PyMC3, run the following command on a
command-line terminal:

pip install pymc3

Chapter 1

[29]

Summary
We began our Bayesian journey with a very brief discussion about statistical
modeling, probability theory and an introduction of the Bayes' theorem. We then
use the coin-tossing problem as an excuse to introduce basic aspects of Bayesian
modeling and data analysis. We used this classic example to convey some of the
most important ideas of Bayesian statistics such as using probability distributions to
build models and represent uncertainties. We tried to demystify the use of priors and
put them on an equal footing with other elements that we must decide when doing
data analysis, such as other parts of the model like the likelihood, or even more meta
questions like why are we trying to solve a particular problem in the first place. We
ended the chapter discussing the interpretation and communication of the results of
a Bayesian analysis. In this chapter we have briefly summarized the main aspects of
doing Bayesian data analysis. Throughout the rest of the book we will revisit these
ideas to really absorb them and use them as the scaffold of more advanced concepts.
In the next chapter we will focus on computational techniques to build and analyze
more complex models and we will introduce PyMC3 a Python library that we will
use to implement and analyze all our Bayesian models.

Exercises
We don't know if the brain really works in a Bayesian way, in an approximate
Bayesian fashion, or maybe some evolutionary (more or less) optimized heuristics.
Nevertheless, we know that we learn by exposing ourselves to data, examples, and
exercises. Although you may disagree with this statement given our record as a
species on wars, economic-systems that prioritize profit and not people's wellbeing,
and other atrocities. Anyway, I strongly recommend you to do the proposed
exercises at the end of each chapter:

1. Modify the code that generated figure 3 in order to add a dotted vertical line
showing the observed rate head/(number of tosses), compare the location of
this line to the mode of the posteriors in each subplot.

2. Try reploting figure 3 using other priors (beta_params) and other data
(trials and data).

3. Read about Cromwell's rule at Wikipedia https://en.wikipedia.org/
wiki/Cromwell%27s_rule.

4. Explore different parameters for the Gaussian, binomial and beta plots.
Alternatively, you may want to plot a single distribution instead of a grid
of distributions.

5. Read about probabilities and the Dutch book at Wikipedia
https://en.wikipedia.org/wiki/Dutch_book.

[31]

Programming Probabilistically
– A PyMC3 Primer

Now that we have a basic understanding of Bayesian statistics we are going to
learn how to build probabilistic models using computational tools; specifically
we are going to learn about probabilistic programming. The main idea is that we
are going to use code to describe our models and make inferences from them. It is
not that we are too lazy to learn the mathematical way, nor are we elitist hardcore
hackers—I-dream-in-code. One important reason behind this choice is that many
models do not lead to a closed-form analytic posterior, that is, we can only compute
those posteriors using numerical techniques. Another reason to learn probabilistic
programing is that modern Bayesian statistics is done mainly by writing code, and
since we already know Python, why would we do it in another way?! Probabilistic
programming offers an effective way to build complex models and allows us to focus
more on model design, evaluation, and interpretation, and less on mathematical or
computational details.

In this chapter, we are going to learn about numerical methods used in Bayesian
statistics and how to use PyMC3, a very flexible Python library for probabilistic
programming. Knowing PyMC3 will also help us to learn more advanced Bayesian
concepts in a more practical way.

In this chapter, we will cover the following topics:

• Probabilistic programming
• Inference engines
• PyMC3 primer
• The coin-flipping problem revisited
• Model checking and diagnoses

Programming Probabilistically – A PyMC3 Primer

[32]

Probabilistic programming
Bayesian statistics is conceptually very simple: we have some data that is fixed, in
the sense that we cannot change what we have measured, and we have parameters
whose values are of interest to us and hence we explore their plausible values.
All the uncertainties we have are modeled using probabilities. In other statistical
paradigms, there are different types of unknown quantities; in the Bayesian
framework everything that is unknown is treated the same. If we do not know a
quantity we assign a probability distribution to it. Then, Bayes' theorem is used
to transform the prior probability distribution ()p θ (what we know about a given
problem before observing the data), into a posterior distribution ()|p Dθ (what we
know after observing data). In other words, Bayesian statistics is a form of learning.

Although conceptually simple, fully probabilistic models often lead to analytically
intractable expressions. For many years, this was a real problem and was probably
one of the main reasons that hindered the wide adoption of Bayesian methods. The
arrival of the computational era and the development of numerical methods that can
be applied to compute the posterior for almost any possible model has dramatically
transformed Bayesian data analysis practices. We can think of these numerical
methods as universal inference engines, because in principle, the inference part can
be automated just by pushing the inference button, a term coined by Thomas Wiecki,
one of the core developers of PyMC3.

The possibility of automating the inference part has led to the development of
probabilistic programming languages (PPL) that allow for a clear separation
between model creation and inference. In the PPL framework, users specify a
full probabilistic model by writing a few lines of code and then inference follows
automatically. It is expected that probabilistic programming will have a major impact
on data science and other disciplines by enabling practitioners to build complex
probabilistic models in a less time-consuming and less error-prone way.

I think one good analogy for the impact that the programming languages can have
in scientific computing is the introduction of the Fortran programming language
more than 6 decades ago. While nowadays Fortran has lost its shine, at one time it
was considered to be very revolutionary. For the first time, scientists moved away
from computational details and began focusing on building numerical methods,
models, and simulations in a more natural way. In a similar fashion, probabilistic
programming hides from the user details on how probabilities are manipulated and
how the inference is performed, allowing users to focus on model specification and
analysis of results.

Chapter 2

[33]

Inference engines
There are several methods to compute the posterior even when it is not possible to
solve it analytically. Some of the methods are:

• Non-Markovian methods:
 ° Grid computing
 ° Quadratic approximation
 ° Variational methods

• Markovian methods:
 ° Metropolis-Hastings
 ° Hamiltonian Monte Carlo/No U-Turn Sampler

Nowadays, Bayesian analysis is performed mainly by using Markov Chain
Monte Carlo (MCMC) methods, with variational methods gaining momentum for
bigger datasets. We do not need to really understand these methods to perform
Bayesian analysis, that's the whole point of probabilistic programming languages,
but knowing at least how they work at a conceptual level is often very useful, for
example for debugging our models.

Non-Markovian methods
Let's start our discussion of inference engines with the non-Markovian methods.
These methods are in general faster than Markovian ones. For some problems they
are very useful on their own, and for other types of problems they only provide
a crude approximation of the true posterior, but nevertheless they can be used
to provide a reasonable starting point for Markovian methods. The meaning of
Markovian will be explained later.

Grid computing
Grid computing is a brute-force approach. Even if you are not able to compute the
whole posterior, you may be able to compute the prior and the likelihood for a
given number of points. Let's assume we want to compute the posterior for a single
parameter model. The grid approximation is as follows:

1. Define a reasonable interval for the parameter (the prior should give
you a hint).

2. Place a grid of points (generally equidistant) on that interval.
3. For each point in the grid we multiply the likelihood and the prior.

Programming Probabilistically – A PyMC3 Primer

[34]

Optionally, we may normalize the computed values (divide the result at each point
by the sum of all points).

Is easy to see that a larger number of points (or equivalently a reduced size of the
grid) will result in a better approximation. In fact, if we take an infinite number
of points we will get the exact posterior. The grid approach does not scale well
for many parameters (also referred as dimensions); as you increase the number of
parameters the volume of the posterior gets relatively smaller compared with the
sampled volume. In other words, we will spend most of the time computing values
with an almost null contribution to the posterior, making this approach unfeasible
for many statistical and data science problems.

The following code implements the grid approach to solve the coin-flipping
problem we began to explore in Chapter 1, Thinking Probabilistically - A Bayesian
Inference Primer:

def posterior_grid(grid_points=100, heads=6, tosses=9):
 """
 A grid implementation for the coin-flip problem
 """
 grid = np.linspace(0, 1, grid_points)
 prior = np.repeat(5, grid_points)
 likelihood = stats.binom.pmf(heads, tosses, grid)
 unstd_posterior = likelihood * prior
 posterior = unstd_posterior / unstd_posterior.sum()
 return grid, posterior

Assuming we made 4 tosses and we observe only 1 head we have the following:

points = 15
h, n = 1, 4
grid, posterior = posterior_grid_approx(points, h, n)
plt.plot(grid, posterior, 'o-', label='heads = {}\ntosses =
 {}'.format(h, n))
plt.xlabel(r'θ')
plt.legend(loc=0)

Chapter 2

[35]

Quadratic method
The quadratic approximation, also known as the Laplace method or the normal
approximation, consists of approximating the posterior with a Gaussian distribution.
This method often works because in general the region close to the mode of the
posterior distribution is more or less normal, and in fact in many cases is actually a
Gaussian distribution. This method consists of two steps. First, find the mode of the
posterior distribution. This can be done using optimization methods; that is, methods
to find the maximum or minimum of a function, and there are many off-the-shelf
methods for this purpose. This will be the mean of the approximating Gaussian.
Then we can estimate the curvature of the function near the mode. Based on this
curvature, the standard deviation of the approximating Gaussian can be computed.
We are going to apply this method once we have introduced PyMC3.

Variational methods
Most of modern Bayesian statistics is done using Markovian methods (see the next
section), but for some problems those methods can be too slow and they do not
necessarily parallelize well. The naive approach is to simply run n chains in parallel
and then combine the results, but for many problems this is not a really good
solution. Finding effective ways of parallelizing them is an active research area.

Programming Probabilistically – A PyMC3 Primer

[36]

Variational methods could be a better choice for large datasets (think big data)
and/or for likelihoods that are too expensive to compute. In addition, these
methods are useful for quick approximations to the posterior and as starting points
for MCMC methods.

The general idea of variational methods is to approximate the posterior with a
simpler distribution; this may sound similar to the Laplace approximation, but the
similarities vanish when we check the details of the method. The main drawback
of variational methods is that we must come up with a specific algorithm for each
model, so it is not really a universal inference engine, but a model-specific one.

Of course, lots of people have tried to automatize variational methods. A recently
proposed method is the automatic differentiation variational inference (ADVI)
(see http://arxiv.org/abs/1603.00788). At the conceptual level, ADVI works
in the following way:

1. Transform the parameters to make them live in the real line. For example,
taking the logarithm of a parameter restricted to positive values we obtain an
unbounded parameter on the interval [],−∞ ∞ .

2. Approximate the unbounded parameters with a Gaussian distribution.
Notice that a Gaussian on the transformed parameter space is non-Gaussian
on the original parameter space, hence this is not the same as the Laplace
approximation.

3. Use an optimization method to make the Gaussian approximation as close
as possible to the posterior. This is done by maximizing a quantity known as
the Evidence Lower Bound (ELBO). How we measure the similarity of two
distributions and what ELBO is exactly, at this point, is a mathematical detail.

ADVI is already implemented on PyMC3 and we will use it later in the book.

Markovian methods
There is a family of related methods collectively know as MCMC methods. As with
the grid computing approximation, we need to be able to compute the likelihood and
prior for a given point and we want to approximate the whole posterior distribution.
MCMC methods outperform the grid approximation because they are designed to
spend more time in higher probability regions than in lower ones. In fact, a MCMC
method will visit different regions of the parameter space in accordance with their
relative probabilities. If region A is twice as likely as region B, then we are going
to get twice the samples from A as from B. Hence, even if we are not capable of
computing the whole posterior analytically, we could use MCMC methods to take
samples from it, and the larger the sample size the better the results.

Chapter 2

[37]

What is in a name? Well, sometimes not much, sometimes a lot. To understand what
MCMC methods are we are going to split the method into the two MC parts, the
Monte Carlo part and the Markov Chain part.

Monte Carlo
The use of random numbers explains the Monte Carlo part of the name. Monte Carlo
methods are a very broad family of algorithms that use random sampling to compute
or simulate a given process. Monte Carlo is a very famous casino located in the
Principality of Monaco. One of the developers of the Monte Carlo method, Stanislaw
Ulam, had an uncle who used to gamble there. The key idea Stan had was that while
many problems are difficult to solve or even formulate in an exact way, they can
be effectively studied by taking samples from them, or by simulating them. In fact,
as the story goes, the motivation was to answer questions about the probability of
getting a particular hand in a solitary game. One way to solve this problem was to
follow the analytical combinatorial problem. Another way, Stan argued, was to play
several games of solitaire and just count how many of the hands we play match the
particular hand we are interested in! Maybe this sounds obvious, or at least pretty
reasonable; for example, you may have used re-sampling methods to solve your
statistical problems. But remember this mental experiment was performed about
70 years ago, a time when the first practical computers began to be developed. The
first application of the method was to solve a problem of nuclear physics, a problem
really hard to tackle using the conventional tools at that time. Nowadays, even
personal computers are powerful enough to solve many interesting problems using
the Monte Carlo approach and hence these methods are applied to a wide variety of
problems in science, engineering, industry, arts, and so on.

A classic pedagogical example of using a Monte Carlo method to compute a quantity
of interest is the numerical estimation of π . In practice there are better methods for
this particular computation, but its pedagocial value still remains. We can estimate
the value of π with the following procedure:

1. Throw N points at random into a square of side 2R.
2. Draw a circle of radius R inscribed in the square and count the number of

points that are inside that circle.

3. Estimate π̂ as the ratio 4 inside
N

× .

A couple of notes: We know a point is inside a circle if the following relation is true:

()2 2x y R+ ≤

Programming Probabilistically – A PyMC3 Primer

[38]

The area of the square is ()22R and the area of the circle is 2Rπ . Thus we

know that the ratio of the area of the square to the area of the circle is
4
π , and the area

of the circle and squares are proportional to the number of points inside the circle
and the total N points, respectively.

Using a few lines of Python we can run this simple Monte Carlo simulation and
compute π and also the relative error of our estimate compared to the true
value of π :

N = 10000

x, y = np.random.uniform(-1, 1, size=(2, N))
inside = (x**2 + y**2) <= 1
pi = inside.sum()*4/N
error = abs((pi - np.pi)/pi)* 100

outside = np.invert(inside)

plt.plot(x[inside], y[inside], 'b.')
plt.plot(x[outside], y[outside], 'r.')
plt.plot(0, 0, label='$\hat \pi$ = {:4.3f}\nerror = {:4.3f}%'.
format(pi, error), alpha=0)
plt.axis('square')
plt.legend(frameon=True, framealpha=0.9, fontsize=16);

Chapter 2

[39]

In the preceding code we can see that the outside variable is only used to get the

plot; we do not need it for computing
4 inside
N

×
. Another clarification: because our

computation is restricted to the unit circle we can omit computing the square root
from the computation of the inside variable.

Markov chain
A Markov chain is a mathematical object consisting of a sequence of states and a set
of probabilities describing the transitions among those states. A chain is Markovian
if the probability of moving to other states depends only on the current state.
Given such a chain, we can perform a random walk by choosing a starting point
and moving to other states following the transition probabilities. If we somehow
find a Markov chain with transitions proportional to the distribution we want to
sample from (the posterior distribution in Bayesian analysis), sampling becomes
just a matter of moving between states in this chain. So, how do we find this chain if
we do not know the posterior in the first place? Well, there is something known as
detailed balance condition. Intuitively, this condition says that we should move in
a reversible way (a reversible process is a common approximation in physics). That
is, the probability of being in state i and moving to state j should be the same as the
probability of being in state j and moving towards state i.

In summary, all this means that if we manage to create a Markov Chain satisfying
detailed balance we can sample from that chain with the guarantee that we will get
samples from the correct distribution. This is a truly remarkable result! The most
popular method that guarantees detailed balance is the Metropolis-Hasting algorithm.

Metropolis-Hastings
To conceptually understand this method, we are going to use the following analogy.
Suppose we are interested in finding the volume of water a lake contains and
which part of the lake has the deepest point. The water is really muddy so we can't
estimate the depth just by looking to the bottom, and the lake is really big, so a grid
approximation does not seem like a very good idea. In order to develop a sampling
strategy, we seek help from two of our best friends, Markovia and Monty. After
some discussion they come up with the following algorithm that requires a boat;
nothing fancy, we can even use a wooden raft, and a very long stick. This is cheaper
than a sonar and we have already spent all our money on the boat, anyway!

1. Initialize the measuring by choosing a random place in the lake and move
the boat there.

2. Use the stick to measure the depth of the lake.
3. Move the boat to some other point and take a new measurement.

Programming Probabilistically – A PyMC3 Primer

[40]

4. Compare the two measures in the following way:
 ° If the new spot is deeper than the old one, write down in your

notebook the depth of the new spot and repeat from 2.
 ° If the spot is shallower than the old one, we have two options: to

accept or reject. Accepting means to write down the depth of the new
spot and repeat from 2. Rejecting means to go back to the old spot
and write down (again) the value for the depth of the old spot.

How do we decide to accept or reject a new spot? Well, the trick is to apply the
Metropolis-Hastings criteria. This means to accept the new spot with a probability
that is proportional to the ratio of the depth of the new and old spots.

If we follow this iterative procedure, we will get not only the total volume of the lake
and the deepest point, but we will also get an approximation of the entire curvature
of the bottom of the lake. As you may have already guessed, in this analogy the
curvature of the bottom of the lake is the posterior distribution and the deepest point
is the mode. According to our friend Markovia, the larger the number of iterations
the better the approximation.

Indeed, theory guarantees that under certain general circumstances, we are going
to get the exact answer if we get an infinite number of samples. Luckily for us, in
practice and for many, many problems, we can get a very accurate approximation
using a relatively small number of samples.

Let's look at the method now in a little bit more formal way. For some distributions,
like the Gaussian, we have very efficient algorithms to get samples from, but for
some other distributions such as many of the posterior distributions, we are going
to find this is not the case. Metropolis-Hastings enables us to obtain samples from
any distribution with probability p(x) given that we can compute at least a value
proportional to it. This is very useful since in a lot of problems like Bayesian statistics
the hard part is to compute the normalization factor, the denominator of the Bayes'
theorem. The Metropolis-Hastings algorithm has the following steps:

1. Choose an initial value for our parameter ix . This can be done randomly or
by using some educated guess.

2. We choose a new parameter value 1ix + , sampling from an easy-to-sample
distribution such as a Gaussian or uniform distribution ()1 |i iQ x x+ . We can
think of this step as perturbing the state ix somehow.

3. We compute the probability of accepting a new parameter value by using the

Metropolis-Hastings criteria () ()
()

()
()

1 1
1

1

|
| 1,

|
i i i

a i i
i i i

p x q x x
p x x min

p x q x x
+ +

+
+

=

.

Chapter 2

[41]

4. If the probability computed on 3 is larger than the value taken from a
uniform distribution on the interval [0, 1] we accept the new state, otherwise
we stay in the old state.

5. We iterate from 2 until we have enough samples. Later we will see what
enough means.

A couple of things to take into account:

• If the proposal distribution ()1 |i iQ x x+ is symmetric we get () ()
()

1
1 | 1, i

a i i
i

p x
p x x min

p x
+

+

=

,

often referred to as Metropolis criteria (we drop the Hastings part).
• Steps 3 and 4 imply that we will always accept or move to a most probable

state, to a most probable parameter value. Less probable parameter values
are accepted probabilistically given the ratio between the probability of the
new parameter value 1ix + and the old parameter value ix . This criteria for
accepting steps gives us a more efficient sampling approach compared to the
grid approximation, while ensuring a correct sampling.

• The target distribution (the posterior distribution in Bayesian statistics) is
approximated by saving the sampled (or visited) parameter values. We save
a sampled value 1ix + if we accept moving to a new state 1ix + . If we reject
moving to 1ix + , we save the value of ix .

At the end of the process we will have a list of values sometimes refereed to as a
sample chain or trace. If everything was done the right way these samples will be
an approximation of the posterior. The most frequent values in our trace will be the
most probable values according to the posterior. An advantage of this procedure is
that analyzing the posterior is simple. We have effectively transformed integrals
(of the posterior) into just summing values in our vector of sampled values.

The following code illustrates a very basic implementation of the Metropolis
algorithm. Is not meant to solve any real problem, only to show it is possible to
sample from a function if we know how to compute its value at a given point.
Notice also that the following implementation has nothing Bayesian in it; there is no
prior and we do not even have data! Remember that the MCMC methods are very
general algorithms that can be applied to a broad array of problems. For example,
in a (non-Bayesian) molecular model, instead of func.pdf(x) we would have a
function computing the energy of the system for the state x.

Programming Probabilistically – A PyMC3 Primer

[42]

The first argument of the metropolis function is a SciPy distribution; we are
assuming we do not know how to directly get samples from this distribution.

def metropolis(func, steps=10000):
 """A very simple Metropolis implementation"""
 samples = np.zeros(steps)
 old_x = func.mean()
 old_prob = func.pdf(old_x)

 for i in range(steps):
 new_x = old_x + np.random.normal(0, 0.5)
 new_prob = func.pdf(new_x)
 acceptance = new_prob/old_prob
 if acceptance >= np.random.random():
 samples[i] = new_x
 old_x = new_x
 old_prob = new_prob
 else:
 samples[i] = old_x
 return samples

In the next example we have defined func as a beta function, simply because is easy
to change their parameters and get different shapes. We are plotting the samples
obtained by metropolis as a histogram and also the True distribution as a
red line:

func = stats.beta(0.4, 2)
samples = metropolis(func=func)
x = np.linspace(0.01, .99, 100)
y = func.pdf(x)
plt.xlim(0, 1)
plt.plot(x, y, 'r-', lw=3, label='True distribution')
plt.hist(samples, bins=30, normed=True, label='Estimated
 distribution')
plt.xlabel('x', fontsize=14)
plt.ylabel('$pdf(x)$', fontsize=14)
plt.legend(fontsize=14)

Chapter 2

[43]

At this point I hope you have a good conceptual grasp of the Metropolis-Hastings
method. You may need to go back and read the previous pages, that's totally fine. I
also strongly recommend that you check this post at http://twiecki.github.io/
blog/2015/11/10/mcmc-sampling/ one of the core developers of PyMC3. He has
a simple example of the implementation of the metropolis method to compute a
posterior distribution, including a very nice visualization of the sampling process
and a brief a discussion on how the width of the proposal distribution affects
the results.

Programming Probabilistically – A PyMC3 Primer

[44]

Hamiltonian Monte Carlo/NUTS
MCMC methods, including Metropolis-Hastings, come with the theoretical guarantee
that if we take enough samples we will get an accurate approximation of the correct
distribution. However, in practice it could take more time than we have to get enough
samples. For that reason, alternatives to the general Metropolis-Hastings algorithm have
been proposed. Many of those alternative methods such as the Metropolis-Hastings
algorithm itself, were developed originally to solve problems in statistical mechanics,
a branch of physics that studies properties of atomic and molecular systems. One such
modification is known as Hamiltonian Monte Carlo or Hybrid Monte Carlo (HMC).
In simple terms a Hamiltonian is a description of the total energy of a physical system.
The name Hybrid is also used because is was originally conceived as a hybridization of
molecular mechanics, a widely used simulation technique for molecular systems, and
Metropolis-Hastings. The HMC method is essentially the same as Metropolis-Hastings
except that instead of proposing random displacements of our boat we do something
more clever instead; we move the boat following the curvature of the lake's bottom.
Why is this clever? Because in doing so we try to avoid one of the main problems of
Metropolis-Hastings: the exploration is slow and samples tend to be autocorrelated,
since most of the proposed moves are rejected.

So, how can we try to understand this method without going into mathematical
details? Imagine we are in the lake with our boat. In order to decide where to move
next we let a ball roll at the bottom of the lake, starting from our current position.
Remember that this method was brought to us by the same people that treat horses
as spheres, so our our ball is not only perfectly spherical, it also has no friction and
thus is not slowed down by the water or mud. Well, we throw a ball and we let it roll
for a short moment, and then we move the boat to where the ball is. Now we accept
or reject this step using the Metropolis criteria just as we saw with the Metropolis-
Hastings method. The whole procedure is repeated a number of times. This modified
procedure has a higher chance of accepting new positions, even if they are far away
relative to the previous position.

Chapter 2

[45]

Out of our Gedanken experiment and back to the real world, the price we pay for this
much cleverer Hamiltonian-based proposal is that we need to compute gradients of
our function. A gradient is just a generalization of the concept of derivative to more
than one dimension. We can use gradient information to simulate the ball moving in
a curved space. So, we are faced with a trade-off; each HMC step is more expensive
to compute than a Metropolis-Hastings one but the probability of accepting that
step is much higher with HMC than with Metropolis. For many problems, this
compromise turns in favor of the HMC method, especially for complex ones.
Another drawback with HMC methods is that to have really good sampling we need
to specify a couple of parameters. When done by hand it takes some trial and error
and also requires experience from the user, making this procedure a less universal
inference engine than we may want. Luckily for us, PyMC3 comes with a relatively
new method known as No-U-Turn Sampler (NUTS). This method has proven very
useful in providing the sampling efficiency of HMC methods, but without the need
to manually adjust any knob.

Other MCMC methods
There are plenty of MCMC methods out there and indeed people keep proposing
new methods, so if you think you can improve sampling methods there is a wide
range of persons that will be interested in your ideas. Mentioning all of them
and their advantages and drawbacks is completely out of the scope of this book.
Nevertheless, there are a few worth mentioning because you may hear people talk
about them, so it is nice to at least have an idea of what are they talking about.

Another sampler that has been used extensively for molecular systems simulations
is the Replica Exchange method, also known as parallel tempering or Metropolis
Coupled MCMC (or MC3; maybe that's too many MCs). The basic idea of this
method is to simulate different replicas in parallel. Each replica follows the
Metropolis-Hastings algorithm. The only difference between replicas is that the
value of a parameter called temperature (physics influence once more time!) controls
the probability of accepting less probable positions. From time to time, the method
attempts a swap between replicas. The swapping is also accepted/rejected according
to the Metropolis-Hastings criteria, but this time taking into account both replicas'
temperatures. The swapping between chains can be attempted between random
chains but it is generally preferable to do it for neighboring replicas; that is, replicas
with similar temperatures and hence a higher probability-of-acceptance ratio. The
intuition for this method is that as we increase the temperature the probability of
accepting the new proposed position increases, and decreases with lower and lower
temperatures. Replicas at higher temperatures explore the system more freely; for
these replicas the surface becomes effectively flatter and thus easier to explore. For a
replica with infinite temperature, all states are equally likely. The exchange between
replicas avoids replicas at low temperatures getting trapped in local minima. This
method is well suited for exploring systems with multiple minima.

Programming Probabilistically – A PyMC3 Primer

[46]

PyMC3 introduction
PyMC3 is a Python library for probabilistic programming. The last version at the
moment of writing is 3.0.rc2 released on October 4th, 2016. PyMC3 provides a very
simple and intuitive syntax that is easy to read and that is close to the syntax used
in the statistical literature to describe probabilistic models. PyMC3 is written using
Python, where the computationally demanding parts are written using NumPy
and Theano. Theano is a Python library originally developed for deep learning that
allows us to define, optimize, and evaluate mathematical expressions involving
multidimensional arrays efficiently. The main reason PyMC3 uses Theano is because
some of the sampling methods, like NUTS, need gradients to be computed and
Theano knows how to do automatic differentiation. Also, Theano compiles Python
code to C code, and hence PyMC3 is really fast. This is all the information about
Theano we need to have to use PyMC3. If you still want to learn more about it start
reading the official Theano tutorial at http://deeplearning.net/software/
theano/tutorial/index.html#tutorial.

Coin-flipping, the computational approach
Let's revisit the coin-flipping problem, but this time using PyMC3. The first
requirement is to get our data. We will use the same synthetic data as before. Since
we are generating the data we know the value of θ , theta_real in the following
code. Of course, for a real dataset we would not have this knowledge and in fact this
is what we want to estimate:

np.random.seed(123)
n_experiments = 4
theta_real = 0.35
data = stats.bernoulli.rvs(p=theta_real, size=n_experiments)
print(data)

array([1, 0, 0, 0])

Chapter 2

[47]

Model specification
Now that we have the data, we need to specify the model. Remember this is done
by specifying the likelihood and the prior using probability distributions. As the
likelihood, we will use the binomial distribution with n=1 and p θ= , and for
the prior a beta with 1α β= = . This beta distribution is equivalent to a uniform
distribution in the interval [0,1]. We can write the model using mathematical
notation as follows:

(),Betaθ α β∼

()1,y Bin n p θ= =∼

This statistical model has an almost one-to-one translation to the PyMC3 syntax. The
first line of the code creates a container for our first model, PyMC3 uses the with
statement to indicate that everything inside the with block points to the same model.
You can think of this as syntactic sugar to ease model specification. Imaginatively, our
model is called our_first_model. The second line specifies the prior, and, as you can
see, the syntax follows the mathematical notation closely. We call the random variable
theta. Please note that this name matches the first argument of the PyMC3 Beta
function; having both names the same is a good practice to avoid confusion. Then we
will use the name of the variable to extract information from the sampled posterior.
The variable theta is a stochastic variable; we can think of this variable as the rule to
generate numbers from a given distribution (a beta distribution in this case) and not
actual numbers. The third line specifies the likelihood following the same syntax as
for the prior except that we pass the data using the observed argument. This is the
way in which we tell PyMC3 that this is the likelihood. The data can be a Python list, a
NumPy array or a Pandas DataFrame. That's all it takes to specify our model!

with pm.Model() as our_first_model:
 theta = pm.Beta('theta', alpha=1, beta=1)
 y = pm.Bernoulli('y', p=theta, observed=data)

Programming Probabilistically – A PyMC3 Primer

[48]

Pushing the inference button
For this problem the posterior can be computed analytically and we can also take
samples form the posterior using PyMC3 with just a few lines. At the first line we
call find_MAP; this function calls optimization routines provided by SciPy and tries
to return the Maximum a Posteriori (MAP). Calling find_MAP is optional; sometimes
it works to provide a good starting point for the sampling method, sometimes it
does not help too much, so often we can avoid it. Then, the next line is used to
define the sampling method. Here we are using Metropolis-Hastings, simply called
Metropolis. PyMC3 allows us to assign different samplers to different random
variables; for now we have a model with only one parameter, but later we will have
more variables. Alternatively, we can even omit this line and PyMC3 will assign
samplers automatically to each variable based on properties of those variables. For
example, NUTS works only for continuous variables and hence cannot be used
with a discrete one, Metropolis can deal with discrete variables, and other types of
variables have specially dedicated samplers. In general we should let PyMC3 choose
the sampler for us. The last line performs the inference. The first argument is the
number of samples we want, and the second and third arguments are the sampling
method and the starting point. As we just saw, these arguments are optional:

 start = pm.find_MAP()
 step = pm.Metropolis()
 trace = pm.sample(1000, step=step, start=start)

We have specified the model and done inference with just a few lines of code. Let's
give a warm applause to the developers of PyMC3 for giving us this wonderful library!

Diagnosing the sampling process
Since we are approximating the posterior with a finite number of samples, the
first thing we need to do is to check if we have a reasonable approximation. There
are several tests we can run, some are visual and some quantitative. These tests
try to find problems with our samples but they cannot prove we have the correct
distribution; they can only provide evidence that the sample seems reasonable. If we
find problems with the sample, the solutions are:

• Increase the number of samples.

Chapter 2

[49]

• Remove a number of samples from the beginning of the trace. This is know
as burn-in. MCMC methods often take some time until we start getting
samples from the target distribution. The burn-in will not be necessary for an
infinite sample, as it is not part of the Markovian theory. Instead, removing
the first samples is an ad hoc trick to get better results given that we are
getting a finite sample. Remember we should not get confused by mixing
mathematical objects with the approximation of those objects. Spheres,
Gaussian, Markov chains, and all the mathematical objects live only in the
platonic world of the ideas, not in our imperfect but real world.

• Re-parametrize the model, that is express the model in a different but
equivalent way.

• Transform the data. This can help a lot to get a much more efficient sampling.
When transforming the data we should take care to interpret the result in
the transformed space or, alternatively, revert the transformation before
interpreting the results.

We will explore all these options further throughout the book.

Convergence
Generally, the first task we will perform is to check what the results look like.
The traceplot function is ideally suited to this task:

burnin = 100
chain = trace[burnin:]
pm.traceplot(chain, lines={'theta':theta_real});

We get two plots for each unobserved variable. On the left, we get a kernel density
estimation (KDE) plot; this is like the smoothed version of a histogram. On the right,
we get the individual sampled values at each step during the sampling. Notice that
the read line is indicating the value of the variable theta_real.

Programming Probabilistically – A PyMC3 Primer

[50]

What do we need to look at when we see these plots? Well, KDE plots should look
like smooth curves. Often, as the number of data increases, the distribution of each
parameter will tend to become Gaussian-like; this is due to the law of the large
numbers. Of course, this is not always true. The plot on the right should look like
white noise; we are looking for good mixing. We should not see any recognizable
pattern, we should not see a curve going up or down, instead we want a curve
meandering around a single value. For multimodal distributions or discrete
distributions we expect the curve to not spend too much time in a value or region
before moving to other regions, we want to see sampled values moving freely among
these regions. We should also expect to see a stable auto-similar trace, that is, a
trace that at different points looks more or less the same; for example, the first 10%
(or so) should look similar to other portions in the trace like the last 50% or 10%.
Once again, we do not want patterns; instead we expect something noisy. See the
following figure for some examples of traces with good mixing (on the right) and
bad mixing (on the left):

If the first part of the trace looks different than the others this is an indication of the
need for burnin. If we see a lack of auto-similarity in other parts or we see some
pattern this is an indication for more steps, or the need to use a different sampler or
a different parametrization. For difficult models, we may apply a combination of all
these strategies.

Chapter 2

[51]

PyMC3 allows us to run a model several times in parallel and thus get a parallel
chain for the same parameter. This is specified with the argument njobs in the
sample function. Using traceplot, we plot all the chains for the same parameter in
the same plot. Since each chain is independent of the others and each chain should
be a good sample, all the chain should look similar to each other. Besides checking
for convergence, these parallel chains can be used also for inference; instead of
discarding the extra chains, we can combine them to increase the sample size:

with our_first_model:
 step = pm.Metropolis()
 multi_trace = pm.sample(1000, step=step, njobs=4)

burnin = 0
multi_chain = multi_trace[burnin:]
pm.traceplot(multi_chain, lines={'theta':theta_real});

A quantitative way to check for convergence is by using the Gelman-Rubin test. The
idea of this test is to compare the variance between chains with the variance within
chains, so of course we need more than one chain for this test to work. Ideally, we
should expect a value of ˆ 1R = . As an empirical rule, we will be ok with a value
below 1.1; higher values are signaling a lack of convergence:

pm.gelman_rubin(multi_chain)
{'theta': 1.0074579751170656, 'theta_logodds': 1.009770031607315}

Programming Probabilistically – A PyMC3 Primer

[52]

We can also visualize the R̂ for every parameter together with the mean, 50% HPD
and 95% HPD for each parameter distribution using the function forestplot:

pm.forestplot(multi_chain, varnames=['theta']);

The function summary provides a text-format summary of the posterior. We get the
mean, standard deviation, and the HPD intervals:

pm.summary(multi_chain)
theta:
 Mean SD MC Error 95% HPD interval

 0.339 0.173 0.006 [0.037, 0.659]
 Posterior quantiles:
 2.5 25 50
75 97.5
 |--------------|==============|==============|--------------|
 0.063 0.206 0.318
0.455 0.709

Chapter 2

[53]

Alternatively, the function df_summary, returns a similar result but using a
Pandas DataFrame:

pm.df_summary(multi_chain)

mean sd mc_error hpd_2.5 hpd_97.5

theta 0.33883 0.17305 0.00592 0.03681 0.65916

One of the quantities returned is the mc_error. This is an estimation of the error
introduced by the sampling method. The estimation takes into account that the
samples are not truly independent of each other. The mc_error is the standard error
of the means x of n blocks, each block is just a portion of the trace:

()
errorMC

n
σ

=
x

This error should be of course below the precision we want in our results. Since the
sampling methods are stochastic, every time we re-run our models the values returned
by summary or df_summary will be different; nevertheless, they should be similar for
different runs. If they are not as similar as we want we may need more samples.

Autocorrelation
An ideal sample will lack autocorrelation, that is, a value at one point should be
independent of the values at other points. In practice, samples generated from
MCMC methods, especially Metropolis-Hastings, can be autocorrelated. Some
models will also lead to more autocorrelated samples due to correlations in the way
one parameter depends on the others. PyMC3 comes with a convenient function to
plot the autocorrelation:

pm.autocorrplot(chain)

Programming Probabilistically – A PyMC3 Primer

[54]

The plot shows the average correlation of sample values compared to successive
points (up to 100 points). Ideally we should see no autocorrelation, in practice;
we seek samples that quickly drop to low values of autocorrelation. The more
autocorrelated a parameter is, the larger the number of samples we will need
to obtain a given precision; that is, autocorrelation has the detrimental effect of
lowering the effective number of samples.

Effective size
A sample with autocorrelation has less information than a sample of the same size
without autocorrelation. Hence, given a sample of a certain size with a certain degree
of autocorrelation we could try to estimate what will be the size of the sample with
the same information without autocorrelation. That number will be the effective size
of the sample. Ideally both quantities should be the same; the closer the two numbers
the more efficient our sampling. The effective size of sample could serve us as a
guide. If we want to estimate mean values of a distribution we will need an effective
sample of at least 100 samples; if we want to estimate quantities that depend on the
tails of distribution, such as the limits of credible intervals, we will need an effective
size of 1000 to 10000 samples.

pm.effective_n(multi_chain)['theta']
667

One way to have more efficient sampling is of course to use a better sampling
method. An alternative is to transform the data or re-parametrize the model. Another
commonly used option in the literature is to thin a chain. Thinning is just taking
every k-esim observation. In Python, we would say taking slices of a chain. Thinning
will indeed reduce the autocorrelation, but at the expense of reducing the number
of samples. So in practice, it is generally a better idea to just increase the number of
samples instead of doing thinning. Nonetheless, thinning can be useful, for example,
to reduce storage requirements. When high autocorrelation cannot be avoided, we
are obligated to compute long chains, and if our models contain many parameters
storage can become problematic. Also we may need to do some post-processing of
the posterior such as performing some expensive computation. In such cases having
a smaller sample of minimally autocorrelated values could be important.

All the diagnostic tests we have seen have an empirical component and none of
them is definitive. In practice, we run several tests and, if all of them look OK, then
we proceed to further analyses. If we detect problems we have to go back and fix
them; this is just part of the iterative process of modeling. It is also important to
notice that having to run convergence tests is not really part of the Bayesian theory
but is about the Bayesian practice, given that we are computing the posterior using
numerical methods.

Chapter 2

[55]

Summarizing the posterior
As we have already seen, the result of a Bayesian analysis is a posterior distribution.
This contains all the information about our parameters, according to the data and the
model. One way to visually summarize the posterior is to use the plot_posterior
function that comes with PyMC3. This function accepts a PyMC3 trace or a NumPy
array as a main argument. By default, plot_posterior shows a histogram for the
credible parameters together with the mean of the distribution and the 95% HPD as
a thick black line at the bottom of the plot. Different interval values can be set for the
HPD with the argument alpha_level. We are going to refer to this type of plot as
Kruschke's plot, since John K. Kruschke introduced this type of plot in his great book
Doing Bayesian Data Analysis:

pm.plot_posterior(chain, kde_plot=True)

Posterior-based decisions
Sometimes describing the posterior is not enough. Sometimes we need to make
decisions based on our inferences. We have to reduce a continuous estimation to a
dichotomous one: yes or no, contaminated or safe, and so on. Back to our problem,
we may need to decide if the coin is fair or not fair. A fair coin is one with a θ value
of exactly 0.5. Strictly speaking, the chance of such a result is zero (think of an infinite
number of trailing zeros), hence in practice we relax our definition of fairness and we
will say a fair coin is one with a value of θ around 0.5. What around exactly means
is context-dependent; there is no auto-magic rule that will fit everyone's intentions.
Decisions are inherently subjective and our mission is to take the most informed
possible decisions according to our goals.

Intuitively, one way to take such an informed decision is to compare the HPD to the
value of interest, 0.5 in our case. In the preceding figure, we can see that the HPD
goes from ~ 0.06 to ~0.71 and hence 0.5 is included in the HPD. According to our
posterior, the coin seems to be tail-biased, but we cannot completely rule out the
possibility that the coin is fair; maybe if we want a sharper decision we will need to
collect more data to reduce the spread of the posterior or maybe we missed some
important information that we could use to define a more informative prior.

Programming Probabilistically – A PyMC3 Primer

[56]

ROPE
One possible option to take a posterior-based decision is to define a Region Of
Practical Equivalence (ROPE). This is just an interval around the value of interest;
for example, we could say that any value in the interval [0.45, 0.55] will be, for our
purposes, practically equivalent to 0.5. Once again the ROPE is context-dependent.
So, now we are going to compare the ROPE to the HPD. We can define at least
three scenarios:

• The ROPE does not overlap with the HPD, and hence we can say the coin
is not fair

• The ROPE contains the entire HPD; we will say the coin is fair
• The ROPE partially overlaps with HPD; we cannot say the coin is fair

or unfair

Of course, if we choose a ROPE to cover the entire interval [0, 1], we will always say
we have a fair coin no matter what data we have but probably nobody is going to
agree with our ROPE definition.

The plot_posterior function can be used to plot a ROPE. The ROPE appears
as a semi-transparent red and very thick line, together with the overlayed limits
of the ROPE:

pm.plot_posterior(chain, kde_plot=True, rope=[0.45, .55])

Chapter 2

[57]

We can also pass to plot_posterior a reference value, for example 0.5, that
we want to compare with the posterior. We will get a green vertical line and the
proportion of the posterior above and below our reference value:

pm.plot_posterior(chain, kde_plot=True, ref_val=0.5)

For a more detailed discussion of the use of the ROPE you could read chapter 12 of
the great book Doing Bayesian Data Analysis by John Kruschke (I know I have already
said this is a great book, but it is true!). This chapter also discusses how to perform
hypothesis testing in a Bayesian framework and the caveats of hypothesis testing,
whether in a Bayesian or non-Bayesian setting.

Loss functions
If you think these ROPE rules sound a little bit clunky and you want something
more formal, loss functions are what you are looking for! To make a good decision
it is important to have the highest possible level of precision for the estimated value
of some parameter, but it is also important to take into account the cost of making
a mistake. The benefit/cost trade-off can be mathematically formalized using cost
functions, also know as loss functions. A loss function tries to capture the cost of
predicting X (the coin is fair) when Y (the coin is not fair) turns out to be true. In many
problems, the cost of making a decision is asymmetric. It is not the same to decide that
it is safe not to administer a certain vaccine to children under five and being right,
that being wrong. Making a bad decision could cost thousands of lives and produce a
health crisis that could be avoided by administrator a relatively cheap and very safe
vaccine. The subject of making good informed decisions has been studied for years
and is known as decision theory.

Programming Probabilistically – A PyMC3 Primer

[58]

Summary
In this chapter, we learned about probabilistic programming and how inference
engines leverage the power of Bayesian modeling. We discussed the main conceptual
ideas behind MCMC methods and its central role in modern Bayesian data analysis.
We encountered, for the first time, the powerful and easy-to-use PyMC3 library.
We revisited the coin-flipping problem from the previous chapter, this time using
PyMC3 to define it, solve it, and also perform model checks and diagnoses that are a
very important part of the modeling process.

In the next chapter, we will keep building our Bayesian analytics skills by learning
how to work with models having more than one parameter and how to make
parameters talk to each other.

Keep reading
• The PyMC3 documentation; be sure to check the examples section:

https://pymc-devs.github.io/pymc3/.
• Probabilistic Programming and Bayesian Methods for Hackers by Cameron

Davidson-Pilon and several contributors. This book/notebooks were
originally written using PyMC2 and now have been ported to PyMC3:
https://github.com/quantopian/Probabilistic-Programming-and-
Bayesian-Methods-for-Hackers.

• While My MCMC Gently Samples, a blog from Thomas Wiecki, core
developer of PyMC3: http://twiecki.github.io/.

• Statistical Rethinking by Richard McElreath is a very nice introductory book
about Bayesian Analysis; the problem is that the examples are in R/Stan.
Hence I am porting the examples in the book to Python/PyMC3. Check the
GitHub repository at https://github.com/aloctavodia/Statistical-
Rethinking-with-Python-and-PyMC3.

• Doing Bayesian Data Analysis by John K. Kruschke is another nice introductory
book about Bayesian Analysis, with a similar problem. Most of the examples
from the first edition of the book are ported to Python/PyMC3 in the
following GitHub repository: https://github.com/aloctavodia/Doing_
bayesian_data_analysis.

Chapter 2

[59]

Exercises
We don't know if the brain really works in a Bayesian way, in an approximate
Bayesian fashion, or maybe some evolutionary (more or less) optimized heuristics.
Nevertheless, we know that we learn by exposing ourselves to data, examples, and
exercises, although you may disagree with this statement given our record as a species
on wars, economic-systems that prioritize profit and not people's wellbeing, and other
atrocities. Anyway, I strongly recommend you do the following exercises:

1. Use the grid approach with other priors; for example, try with prior =
(grid <= 0.5).astype(int) or prior = abs(grid – 0.5), or try
defining your own crazy priors. Experiment with other data, like increasing
the total amount of data or making it more or less even in terms of the
number of heads you observe.

2. In the code we use to estimate π keep the number N fixed and re-run the
code a couple of times. Notice that the results are different because we are
using random numbers, but also check that the error is more or less in the
same order. Try changing the number N of points and rerun the code. Can
you guesstimate how the number of N points and the error are related? For
a better estimation you may want to modify the code to compute the error as
a function of N. You can also run the code a few times with the same N and
compute the mean error and standard deviation of the error. You can plot
these results using the errorbar() function from matplotlib. Try using a
set of Ns like 100, 1000, 10000; that is, a difference of one order of magnitude
or so.

3. Modify the func argument you pass to the metropolis function. Try using
the values of the prior from Chapter 1, Thinking Probabilistically - A Bayesian
Inference Primer. Compare this code with the grid approach. Which part
should be modified to be able to use it to solve a Bayesian inference problem?

4. Compare your answer from the previous exercise to the code in the following
link: http://twiecki.github.io/blog/2015/11/10/mcmc-sampling/ by
Thomas Wiecki.

5. Using PyMC3, change the parameters of the prior beta distribution to
match those of the previous chapter and compare the results to the previous
chapter. Replace the beta distribution with a uniform one in the interval [0,1].
Are the results equivalent to ()1, 1beta α β= = ? Is the sampling slower, faster,
or the same? What about using a larger interval such as [-1, 2]? Does the
model run? What errors do you get? And what do you get if you don't use
find_MAP() (remember to also remove the start argument from the sample
function, especially if you are working with a Jupyter/IPython notebook!).

Programming Probabilistically – A PyMC3 Primer

[60]

6. Modify the amount of burnin. Try it with values such as 0 and 500. Try it also
with and without the find_MAP() function. How different are the results?
Hint: this is a very simple model to sample from; remember this exercise for
future chapters when we work on more complex models.

7. Use your own data, try to recapitulate the chapter but using data that is
interesting to you. This is a valid exercise for the rest of the book!

8. Read about the coal mining disaster model that is part of the PyMC3
documentation: http://pymc-devs.github.io/pymc3/notebooks/
getting_started.html#Case-study-2:-Coal-mining-disasters. Try to
implement and run this model by yourself.

Besides the exercises you will find at the end of each chapter, you can always try
to (and probably should) think of problems you are interested in and how to apply
what you have learned to that problem. Maybe you will need to define your problem
in a different way, or maybe you will need to expand or modify the models you have
learned. Try to change the model; if you think the task is beyond your actual skills,
note down the problem and save it for a future time after reading other chapters
of the book. Eventually, if the book does not answer your questions, check the
PyMC3 examples (http://pymc-devs.github.io/pymc3/examples.html) or ask a
question in Stack Overflow with the tag PyMC3.

[61]

Juggling with Multi-Parametric
and Hierarchical Models

In the previous two chapters, we learned the core ideas of the Bayesian approach and
how to use PyMC3 to do Bayesian inference. If we want to build models of arbitrary
complexity (and we certainly do), we must learn how to build multi-parametric
models. Almost all interesting problems out there need to be modeled using more
than one parameter. Moreover, in many real-world problems, some parameters
depend on the values of other parameters; such relationships can be elegantly
modeled using Bayesian hierarchical models. We will learn how to build these
models and the advantages of using them. These are such important concepts that
we will keep revisiting them over and over again throughout the rest of the book.

In this chapter, we will cover the following topics:

• Nuisance parameters and marginalized distributions
• The Gaussian model
• Robust estimation in the presence of outliers
• Comparing groups and measuring the effect size
• Hierarchical models and shrinkage

Juggling with Multi-Parametric and Hierarchical Models

[62]

Nuisance parameters and marginalized
distributions
While almost any interesting model is multi-parametric, it is also true that not all the
parameters we need in order to build a model are of direct interest to us. Sometimes
we need to add a parameter just to build the model, even when we do not really
care about this parameter. It may happen that we need to estimate the mean value
of a Gaussian distribution to answer an important question we have. For such a
model, and unless we know the value of the standard deviation, we should also
estimate it even if we do not care about it. Parameters necessary to build a model
but not interesting by themselves are known as nuisance parameters. Under the
Bayesian paradigm, any unknown quantity is treated in the same way, so whether a
parameter is or is not a nuisance parameter is more related to our questions than to
the parameter itself, the model, or the inference process.

At this point, you may think that having to build a model with parameters that are of
no interest is a burden more than an advantage. On the contrary, by including them,
we allow the uncertainty we have about those parameters to propagate adequately to
our results. In many problems, we have measurements that we need to convert to a
quantity of interest; for example, in magnetic resonance imaging (MRI), we convert
the radio frequency absorbed and emitted by certain nuclei (mostly hydrogen) into
images of the interior of a person. Those conversions usually require some nuisance
parameters and Bayesian statistics allow those values (and the uncertainty) to be
estimated instead of fixing them into some pre-calibrated value or, as is often the
case in many problems, using some educated guess or rule of thumb that more or
less works well in practice.

We can write Bayes' theorem for a two-parameter model as follows:

() () ()1 2 1 2 1 2, | | , ,p y p y pθ θ θ θ θ θ∝

This can be easily generalized to more than two parameters; just keep adding sθ . We
are assuming the 1θ and 2θ are scalars (numbers) and not vectors. The first difference
to what we saw in previous chapters is that now we have a bidimensional posterior
representing the joint distribution of both 1θ and 2θ together. Now let's assume for
a moment that 2θ is a nuisance parameter for our problem. How do we express the
posterior in terms of 1θ only? We have to marginalize the posterior over 2θ :

() ()1 1 2 2| , |p y p y dθ θ θ θ= ∫

Chapter 3

[63]

That is, we integrate the posterior over all the possible values of 2θ , effectively
expressing the posterior in terms of 1θ , but taking into account implicitly the
uncertainty of 2θ . For a discrete variable, the integral becomes a summation. The
following figure shows the joint distribution of 1θ and 2θ in the center and the
marginal distribution of 1θ and 2θ at the above and right margins, respectively:

Hence, every time we hear about the marginal distribution of parameter x, we
must think of the average distribution of x taken over the entire distribution of the
other parameters.

Marginalization is not only useful to get a unidimensional slice of a multidimensional
posterior but also to simplify the mathematical and computational analysis. Sometimes
it is possible to theoretically marginalize nuisance parameters before computing the
posterior. We will see examples of this in Chapter 7, Mixture Models.

Juggling with Multi-Parametric and Hierarchical Models

[64]

Once nice feature of getting the posterior by simulation, for example, using PyMC3,
is that we will get a separate vector for each parameter in the model. That is, the
parameters are already marginalized for us.

Gaussians, Gaussians, Gaussians
everywhere
We introduce the Bayesian ideas using the beta-binomial model mainly because of its
simplicity. Another very simple model is the Gaussian or normal model. Gaussians
are very appealing from a mathematical point of view because working with them
is easy; for example, we know that the conjugate prior of the Gaussian mean is the
Gaussian itself. Besides, there are many phenomena that can be nicely approximated
using Gaussians; essentially, almost every time that we measure the average of
something, using a big enough sample size, that average will be distributed as a
Gaussian. The details of when this is true, when this is not true, and when this is
more or less true are elaborated in the central limit theorem (CLT); you may want
to stop reading now and search about this really central statistical concept (very bad
pun intended). Well, we were saying that many phenomena are indeed averages.
Just to follow a cliché, the height (and almost any other trait of a person, for that
matter) is the result of many environmental factors and many genetic factors, and
hence we get a nice Gaussian distribution for the height of adult persons. Well,
indeed we get a bimodal one as the result of overlapping the distribution of heights
of women and men. In summary, Gaussians are easy to work with and they are
more or less abundant in nature, and hence many of the statistical methods you may
already know, or have at least heard of, are based on normality assumptions. Thus, it
is important to learn how to build these models and then it is also equally important
to learn how to relax the normality assumptions, something surprisingly easy in a
Bayesian framework and with modern computational tools like PyMC3.

Gaussian inferences
The following example corresponds to experimental measurements in nuclear
magnetic resonance, a technique to study molecules and also living things (because,
after all, they are just a bunch of molecules). For all we care for this example, we
could have been measuring the height of a group of people, the average time to travel
back home, the weight of oranges we buy at the supermarket, the number of sexual
partners of the Tokay gecko, or in fact any measurement that we can approximate
with a Gaussian distribution. In this example, we have 48 measurements:

data = np.array([51.06, 55.12, 53.73, 50.24, 52.05, 56.40, 48.45,
52.34, 55.65, 51.49, 51.86, 63.43, 53.00, 56.09, 51.93, 52.31, 52.33,
57.48, 57.44, 55.14, 53.93, 54.62, 56.09, 68.58, 51.36, 55.47, 50.73,

Chapter 3

[65]

51.94, 54.95, 50.39, 52.91, 51.5, 52.68, 47.72, 49.73, 51.82, 54.99,
52.84, 53.19, 54.52, 51.46, 53.73, 51.61, 49.81, 52.42, 54.3, 53.84,
53.16])

A plot of this dataset shows a Gaussian-like distribution except for two data points
far away from the mean:

sns.kdeplot(data)

Let's for a moment forget about those two points and assume a Gaussian
distribution. Since we do not know the mean or the standard deviation, we must set
priors for both of them. Then, a reasonable model could be as follows:

(),Uniform l hµ ∼

()hHalfNormalσ σ∼

(),y Normal µ σ∼

Juggling with Multi-Parametric and Hierarchical Models

[66]

Thus, µ comes from a uniform distribution with boundaries l and h, lower and
upper respectively, and σ comes from a half-normal distribution with standard
deviation hσ . A half-normal distribution is like the regular normal distribution but
restricted to positive values; it is like we have folded the normal distribution by its
mean. Finally, in our model, the data y comes from a normal distribution with the
parameters µ and σ . Using Kruschke-style diagrams, we have the following:

hl

uniform

�
�

half-normal

� �

�

��

normal

y

If we do not know the possible values of µ and σ , we can set priors reflecting
our ignorance. One option is to set the boundaries of the uniform distribution to
be (l=40, h=75), which is a range larger than the range of the data. Alternatively,
we could have chosen a wider range based, for example, on our previous knowledge.
We may know that is not physically possible to have values below 0 or above 100. So
we could set the prior for the mean as a uniform, with parameters (l=0, h=100). For
the half normal, we will use a value of σσ is equal to 10, just a large value for
the data:

Chapter 3

[67]

Using PyMC3, we can write the model as follows:

with pm.Model() as model_g:
 mu = pm.Uniform('mu', 40, 75)
 sigma = pm.HalfNormal('sigma', sd=10)
 y = pm.Normal('y', mu=mu, sd=sigma, observed=data)

 trace_g = pm.sample(1100)

The traceplot looks OK and we can continue with the analysis; you could instead
be a little more skeptical and run all the diagnostic tests we learned in Chapter 2,
Programming Probabilistically – A PyMC3 Primer. As you may have noticed, this
traceplot has two rows: one for each parameter. These are the marginalized
distributions; remember that the posterior is really bi-dimensional:

chain_g = trace_g[100:]
pm.traceplot(chain_g)

We are going to print the summary of our parameters for later use:

pm.df_summary(chain_g)

mean sd mc_error hpd_2.5 hpd_97.5
mu 53.51 0.53 0.02 52.56 54.54

sigma 3.55 0.38 0.01 2.86 4.32

Juggling with Multi-Parametric and Hierarchical Models

[68]

Now that we have computed the posterior, we can use it to simulate data from it.
Then we can check how consistent the simulated data is with the observed data.
If you remember from Chapter 1, Thinking Probabilistically – A Bayesian Primer, we
generically call these types of comparisons posterior predictive checks, because we
are using the posterior to make predictions and those predictions to check the model.
Using PyMC3, it is really easy to get posterior predictive samples using the function
sample_ppc(). In the following code, we are generating 100 predictions from the
posterior, each one of the same size as the data. Notice that we have to pass the trace
and the model to sample_ppc(), while the other arguments are optional:

y_pred = pm.sample_ppc(chain_g, 100, model_g, size=len(data))
sns.kdeplot(data, c='b')
for i in y_pred['y']:
 sns.kdeplot(i, c='r', alpha=0.1)
plt.xlim(35, 75)
plt.title('Gaussian model', fontsize=16)
plt.xlabel('x', fontsize=16)

Chapter 3

[69]

In the previous figure, the blue line is a KDE of the data and the semi-transparent
red lines are KDE computed from each one of the 100 posterior predictive samples.
We can see that the mean of the samples seems to be slightly displaced to the right
and that the variance seems to be greater for the samples than for the data. In the
following section, we are going to improve the model and get a better match with
the data.

Robust inferences
One objection you may have with the previous model is that we are assuming a
Gaussian distribution but we have two data points on the tails of the distribution.
So it is not looking really Gaussian. Since the tails of the Gaussian distribution fall
very quickly as we move away from the mean, the Gaussian (at least an
anthropomorphized one) is surprised by seeing those two points and reacts by moving
itself toward those points and also by increasing the standard deviation. We may
argue that those points have an excessive weight in determining the parameters of the
Gaussian. So what to do? One option is to declare those points outliers and remove
them from the data. We may have a valid reason to discard those points, maybe a
malfunction of the equipment or a human error while measuring those two data
points. Sometimes we may even fix those data points, since they are just a result of
a coding problem while cleaning the data. On many occasions, we may also want to
automate the outlier elimination process by using one of the many outlier rules. Two
of them are as follows:

• Outliers are all data points below 1.5 times the interquartile range from the
lower quartile or 1.5 times the interquartile range above the upper quartile

• All data points below or above two times the standard deviation of our data
should be declared outliers and banished from our data

Student's t-distribution
Instead of using one of these rules and changing the data, we can change the model.
As a general rule, Bayesians prefer to encode assumptions directly in the model by
using different priors or likelihoods than through ad-hoc heuristics like these outlier
removal rules.

Juggling with Multi-Parametric and Hierarchical Models

[70]

One very useful option when dealing with outliers is to replace the Gaussian
likelihood with the Student's t-distribution. This distribution has three parameters:
the mean, the scale (analogous to the standard deviation), and the degrees of freedom
usually referred to as ν , which can vary in the interval []0,∞ . Following Kruschke's
nomenclature, we are going to call ν the normality parameter, since it is in charge of
controlling how normal-like the distribution is. For a value of 1ν = , we get heavier
tails than the Gaussian and the distribution is often called Cauchy or Lorentz,
depending on the field. By heavy tails, we mean that it is more probable to find values
away from the mean compared to a Gaussian, or in other words, they are not as
concentrated around the mean as in a lighter tail distribution like the Gaussian. For
example, 95% of the Cauchy distribution points are found between -12.7 and 12.7.
Instead, for a Gaussian (with standard deviation one), this occurs between -1.96 and
1.96. On the other side, we know that when ν approaches infinity, we recover the
Gaussian distribution (you can't be more normal than the normal distribution, right?).
A very curious feature of the Student's t-distribution is that it has no defined mean
when 1ν ≤ . Of course, in practice, a sample from a Student's t-distribution is just a
bunch of numbers from which it is always possible to compute an empirical mean,
but the theoretical distribution itself does not have a defined mean. Intuitively, this
can be understood as follows: the tails of the distribution are so heavy that at any
moment, it could happen that we get a sampled value from almost anywhere from the
real line, so if you keep getting numbers, we will never approximate to a fixed value,
instead the estimate will keep wandering around. Just try the following code several
times (and then change df to a larger number, such as 100):

np.mean(stats.t(loc=0, scale=1, df=1).rvs(100))

In a similar fashion, the variance of this distribution is only defined for values of
2ν > . So be careful that the scale of the Student's t-distribution is not the same as the

standard deviation. For 2ν <= the distribution has no defined variance and hence
no defined standard deviation; both the scale and the standard deviation become
closer and closer as ν approaches infinity:

x_values = np.linspace(-10, 10, 200)
for df in [1, 2, 5, 30]:
 distri = stats.t(df)
 x_pdf = distri.pdf(x_values)
 plt.plot(x_values, x_pdf, label=r'ν = {}'.format(df))

x_pdf = stats.norm.pdf(x_values)
plt.plot(x_values, x_pdf, label=r'$\nu = \infty$')
plt.xlabel('x')
plt.ylabel('p(x)', rotation=0)
plt.legend(loc=0, fontsize=14)
plt.xlim(-7, 7)

Chapter 3

[71]

Using the Student's t-distribution, our model can be written as follows:

()
()
()

()

,

, ,

h

Uniform l h

HalfNormal

v Exponential

y StudentT v

µ

σ σ

λ

µ σ

∼

∼

∼

∼

Juggling with Multi-Parametric and Hierarchical Models

[72]

The main difference with the previous, Gaussian, model is that now the likelihood
is a Student's t-distribution and since we have a new parameter, we need one more
prior for it. We are going to use an exponential distribution with mean 30. From the
preceding figure, we can see that a Student's t -distribution looks pretty similar to
a Gaussian (even when it is not). In fact, from the same figure, we can see most of
the action happens for relatively small values of ν . Hence, the exponential prior
with mean 30 is a weakly informative prior saying we more or less think ν should
be around 30, but can move to smaller and larger values with ease. Graphically, we
have the following:

h
�

l
�

uniform

�
�

half-normal

�

exponential

� � �

�

�

�

�

t distrib.

y

As usual, PyMC3 allows us to modify our model adding just a few lines. The only
cautionary word here is that the exponential in PyMC3 is parameterized with the
inverse of the mean of the distribution:

with pm.Model() as model_t:
 mu = pm.Uniform('mu', 40, 75)
 sigma = pm.HalfNormal('sigma', sd=10)
 nu = pm.Exponential('nu', 1/30)
 y = pm.StudentT('y', mu=mu, sd=sigma, nu=nu, observed=data)
 trace_t = pm.sample(1100)
chain_t = trace_t[100:]
pm.trace_plot(chain_t)

Chapter 3

[73]

Now print the summary and compare it with our previous results. Before you keep
reading, take a moment to spot the difference between both results. Did you notice
something interesting?

pm.df_summary(chain_t)

mean sd mc_error hpd_2.5 hpd_97.5
mu 52.99 0.38 0.01 52.28 53.81

sigma 2.15 0.39 0.02 1.42 2.97

nu 4.13 2.78 0.19 1.19 8.54

Well, we can see that the estimation of µ between both models is similar, with
a difference of ~0.5. The estimation of σ changes from ~3.5 to ~2.1. This is a
consequence of the Student's t-distribution giving less weight (being less shocked)
by values away from the mean. We can also see that the value of µ is ν ~4, that is,
we do not have a very Gaussian-like distribution, but one with heavier tails.

Juggling with Multi-Parametric and Hierarchical Models

[74]

Now we are going to do a posterior predictive check of the Student's t -distribution
model, and we are going to compare it to the Gaussian model:

y_pred = pm.sample_ppc(chain_t, 100, model_t, size=len(data))
sns.kdeplot(data, c='b')
for i in y_pred['y']:
 sns.kdeplot(i, c='r', alpha=0.1)
plt.xlim(35, 75)
plt.title("Student's t model", fontsize=16)
plt.xlabel('x', fontsize=16)

As we can now see, using the Student's t-distribution in our model leads to
predictive samples that seem to better fit the data in terms of the location of the peak
of the distribution and also its spread; notice also how the samples extend far away
from the bulk of the data. This is a direct consequence of the Student's t-distribution
expecting to see data points far away from the bulk of the data in both directions.
The Student's t-distribution in our model allows us to have a more robust estimation
because the outliers, instead of pulling the mean toward them and increasing the
standard deviation, have the effect of decreasing ν so the mean and the scale are
estimated with more weight from the bulk of the data points. Once again, it is
important to remember that the scale is not the standard deviation. Nevertheless, the
scale is related to the spread of the data; the lower its value, the more concentrated
the distribution. Also, for values of ν above ~2, the value of the scale tends to be
pretty close (at least for all practical purposes) to the values estimated after removing
the outliers. So, as a rule of thumb, for values of ν not that small, and taking into
account that it is not really theoretically correct, we may consider the scale of a
Student's t-distribution as a reasonable practical proxy for the standard deviation of
the data after removing outliers.

Chapter 3

[75]

Comparing groups
One common task in statistical analysis is to compare groups; for example, we may
be interested in how well a patient responds to some drug, the reduction of car
accidents by the introduction of a new traffic regulation, or students' test responses
under different teaching approaches, and so on. Sometimes this type of question
is framed under the hypothesis-testing scenario, with the goal of declaring a result
statistically significant. Relying only on statistical significance can be problematic
for many reasons: on one hand, statistical significance is not necessarily practical
significance; on the other, a really small effect can be declared significant just by
collecting enough data. Also, the idea of statistical significance is connected to
computing p-values. There is a long record of studies and essays showing that, more
often than not, p-values are used and interpreted the wrong way, even for scientists
who use statistics on a daily basis. Under the Bayesian framework, we do not need
to compute p-values, so we are going to leave them on the side. Instead we are going
to focus on estimating how different two groups are. After all, in practice, what we
most often really want to know is the effect size, that is, a quantitative estimation of
the strength of the phenomenon under study.

Sometimes when comparing groups, people talk about a control group and a
treatment group (or maybe more than one control and treatment group). This makes
sense, for example, when we want to test a new drug: because of the placebo effect
and other reasons, we want to compare the new drug (the treatment) against a
control group (a group not receiving the drug). In this case, we want to know how
well our drug works to cure a disease compared to doing nothing (or, as is generally
done, against the placebo effect). Another interesting question will be how good our
drug is compared with the (already approved) most-used drug to treat that illness. In
such a case, the control group cannot be a placebo; it should be the other drug. Bogus
control groups are a good way to lie, using statistics. For example, imagine you work
for an evil dairy-product company that wants to sell overly sugared yogurts to kids
by telling their parents that your yogurt boosts the immune system. One way to back
up your claim with research is by using milk or water as a control group, instead of
another cheaper, less sugary, less marketed yogurt. It may sound silly put this way,
but when someone says something is harder, better, faster, stronger, remember to
ask what baseline is used for comparison.

Juggling with Multi-Parametric and Hierarchical Models

[76]

The tips dataset
To explore the ideas in this section, we are going to use the tips dataset that comes
with seaborn. We want to study the effect of the day of the week on the amount
of tips at a restaurant. For this example, notice there is not really a control group
and a treatment group. This is just an observational study, not an experiment like
in the drug example. If we wish, we can arbitrarily establish one day, for example,
Thursday, as the reference, or control, even when we are not controlling a thing. One
of the caveats of observational studies is that it is not possible to establish a causal
relationship, just correlations. In fact, the study of how to get causal relationships
from data is a very active research area. We will come back to this in Chapter 4,
Understanding and Predicting Data with Linear Regression Models. For now, let's start the
analysis by loading the dataset as a Pandas data frame using just one line of code. If
you are not familiar with Pandas, the tail command is just showing the last portion
of the data frame (you can also try using head):

tips = sns.load_dataset('tips')
tips.tail()

total_bill tip sex smoker day time size
239 29.03 5.92 Male No Sat Dinner 3

240 27.18 2.00 Female Yes Sat Dinner 2

241 22.67 2.00 Male Yes Sat Dinner 2

242 17.82 1.75 Male No Sat Dinner 2

From this data frame, we are only going to use the day and tip columns. We can plot
our data using the violinplot function from seaborn:

sns.violinplot(x='day', y='tip', data=tips)

Chapter 3

[77]

Just to simplify things, we are going to create two variables: the y variable with the
amount of the tips and idx with a categorical dummy variable or index; that is,
instead of having Thursday, Friday, Saturday, and Sunday, we are going to have the
values 0, 1, 2, and 3:

y = tips['tip'].values
idx = pd.Categorical(tips['day']).codes

The model for this problem is almost the same as before; the only difference is that
now, µ and σ are going to be vectors instead of scalar random variables. In other
words, every time we sample from our priors, we are going to get four values for
µ and four values for σ , instead of one, as in our previous model. PyMC3 syntax
is extremely helpful for this situation: instead of writing for loops, we can write
our model in a vectorized way. The changes from the previous, normal, model are
minimal. For the priors, we need to pass a shape argument and for the likelihood, we
need to properly index µ and σ , and that's why we create the idx variable:

with pm.Model() as comparing_groups:
 means = pm.Normal('means', mu=0, sd=10, shape=len(set(x)))
 sds = pm.HalfNormal('sds', sd=10, shape=len(set(x)))

 y = pm.Normal('y', mu=means[idx], sd=sds[idx], observed=y)

 trace_cg = pm.sample(5000)
chain_cg = trace_cg[100::]
pm.traceplot(chain_cg)

Juggling with Multi-Parametric and Hierarchical Models

[78]

As always, one option is to report the estimated values as summarized by the
df_summary function; you can do that (and also the diagnostic tests!). It's important
to remember that a Bayesian analysis returns a complete distribution of credible
values (given the data and model). And, hence, we can operate with a posterior and
ask the posterior all the questions we may think reasonable. For example, we may
ask for the distribution of the difference of the means between groups, and that is
what we are going to do next.

We are going to use the PyMC3 function plot_posterior with a reference value
(ref_val) of 0 because we want to compare the posterior against this value (no
difference). The following code is just a way to plot the difference without repeating
the comparison. Instead of getting the all-against-all matrix, we are just plotting the
upper triangular portion. The only weird part in the code and the plot is something
called the Cohen's d and the probability of superiority, which we will explain in the
coming paragraphs. But they are nothing more than ways to express the effect size:

dist = dist = stats.norm()
_, ax = plt.subplots(3, 2, figsize=(16, 12))

comparisons = [(i,j) for i in range(4) for j in range(i+1, 4)]
pos = [(k,l) for k in range(3) for l in (0, 1)]

for (i, j), (k,l) in zip(comparisons, pos):
 means_diff = chain_cg['means'][:,i]-chain_cg['means'][:,j]
 d_cohen = (means_diff / np.sqrt((chain_cg['sds'][:,i]**2 +
 chain_cg['sds'][:,j]**2) / 2)).mean()
 ps = dist.cdf(d_cohen/(2**0.5))

 pm.plot_posterior(means_diff, ref_val=0, ax=ax[k, l],
 color='skyblue')
 ax[k, l].plot(0, label="Cohen's d = {:.2f}\nProb sup =
 {:.2f}".format(d_cohen, ps) ,alpha=0)
 ax[k, l].set_xlabel('$\mu_{}-\mu_{}$'.format(i, j),
 fontsize=18)
 ax[k,l].legend(loc=0, fontsize=14)

Chapter 3

[79]

In the preceding example, one way to interpret the results is by comparing the reference
value with the HPD interval. According to the previous figure, we have only one case
when the 95% HPD excludes 0 (our reference value), the difference in tips between
Thursday and Sunday. For all the other examples, we cannot rule out a difference of
0 (according to the HPD-reference-value-overlap criteria). But even for that case, is an
average difference of ~0.5 dollars large enough? Is that difference enough to accept
working on Sunday and missing the opportunity to spend time with family or friends?
Is that difference enough to justify averaging the tips over the four days and giving
every waiter and waitress the same amount of tip money? Those kinds of questions
cannot be answered by statistics; they can only be informed by statistics.

Juggling with Multi-Parametric and Hierarchical Models

[80]

There are several ways to try to measure the effect size; we are going to see two of
them: the Cohen's d and the probability of superiority.

Cohen's d
A common way to measure the effect size (at least in some fields, such as
psychology) is the Cohen's d:

1 2
2 2
1 2

2

µ µ

σ σ

−

+

So the effect size is the difference of the means with respect to the average standard
deviation of both groups. In the preceding code, we compute the Cohen's d from the
estimated means and standard deviation, so we could also report a distribution of
Cohen's d and not just the mean value.

When comparing groups is important to include the variability of each group, for
example using the standard deviation. A change of about x units from one group to
another could be explained by every individual data point changing exactly x units,
or by half of them changing 0 and the other half changing 2x units, and of course by
many other combinations. The effect size computed in terms of the Cohen's d, can be
interpreted as a Z-score, so a Cohen's d of 0.5 could be interpreted as a difference of
0.5 standard deviation of one group with respect to the other. The problem of using
Cohen's d is that it does not sound like a very interpretable quantity and we need
to calibrate ourselves to say if a given value is big, small, medium, and so on. Of
course, this calibration can be acquired with practice, but once again, what is a big
effect is context-dependent; if we perform several analyses for more or less the same
type of problem, we can get used to a Cohen's d of, say, 1, so when we get a Cohen's
d of, say, 2, we know we have something important (or someone made a mistake
somewhere!). You'll find a very nice web page to explore what different values
of Cohen's d look like at http://rpsychologist.com/d3/cohend. On that page,
you will also find other ways to express an effect size; some of them could be more
intuitive, such as the probability of superiority.

Chapter 3

[81]

Probability of superiority
This is another way to report the effect size and is defined as the probability that a
data point from one group has a larger value than one taken from the other group.
If we assume that the distribution for both groups is normal, we can compute the
probability of superiority from the Cohen's d (as we did in the preceding code) using
the following expression:

2
ps δ = Φ

Here, Φ is the cumulative normal distribution and δ is the Cohen's d. We can
compute the point estimation of the probability of superiority (what is usually
reported) or we can compute a whole distribution of values. Also note that we can use
this formula, which assumes normality, for computing the probability of superiority
from the Cohen's d, or we can just compute it from the posterior (see the exercise
section). This is a very nice advantage of using MCMC methods. Once we get samples
from the posterior, we can compute quantities from it, such as the probability of
superiority (or many others), without relying on distributional assumptions.

Hierarchical models
Suppose we want to analyze the quality of water in a city, so we take samples by
dividing the city into neighborhoods or hydrological zones. We may think we have
two options to analyze this data:

• Estimate variables for each neighborhood/zone as separate entities
• Pool the data together and estimate the water quality of the city as a single

big group

Both options could be reasonable, depending on what we want to know. We can
justify the first option by saying we obtain a more detailed view of the problem,
which otherwise could become invisible or less evident if we average the data. The
second option can be justified by saying that if we pool the data, we obtain a bigger
sample size and hence a more accurate estimation. Both are good reasons, but we
can do something else, something in between. We can build a model to estimate the
water quality of each neighborhood and, at the same time, estimate the quality of the
whole city. This type of model is known as a hierarchical model or multilevel model,
because we model the data using a hierarchical structure or one with multiple levels.

Juggling with Multi-Parametric and Hierarchical Models

[82]

So, how do we build a hierarchical model? Well, in a nutshell, we put shared priors
over our priors. Instead of fixing the parameters of our priors to some constant
numbers, we estimate them directly from the data by placing priors over them.
These higher-level priors are often called hyper-priors, and their parameters hyper-
parameters; hyper means over in Greek. Of course, it is also possible to put priors
over the hyper-priors and create as many levels as we want; the problem is that
the model rapidly becomes difficult to understand and unless the problem really
demands more structure, adding more levels does not help to make better inferences.
On the contrary, we end up entangled in a web of hyper-priors and hyper-
parameters without the ability to assign any meaningful interpretation to them,
partially spoiling the advantages of model-based statistics. After all, the main idea of
building models is to make sense of data.

To illustrate the main concepts of hierarchical models, we are going to use a toy
model of the water quality example we discussed at the beginning of this section,
and we are going to use synthetic data. Imagine we have collected water samples
from three different regions of the same city and we have measured the lead content
of water; samples with lead concentration above recommendations from the World
Health Organization (WHO) are marked with zero and samples with the following
values are marked with one. This is just a pedagogic example; in a more realistic
example, we would have a continuous measurement of lead concentration and
probably many more groups. Nevertheless, for our current purposes, this example is
good enough to uncover the details of hierarchical models.

We generate the synthetic data with the following code:

N_samples = [30, 30, 30]
G_samples = [18, 18, 18]

group_idx = np.repeat(np.arange(len(N_samples)), N_samples)
data = []
for i in range(0, len(N_samples)):
 data.extend(np.repeat([1, 0], [G_samples[i], N_samples[i]-
 G_samples[i]]))

We are simulating an experiment where we have measured three groups, each one
consisting of a certain number of samples; we store the total number of samples
per group in the N_samples list. Using the list G_samples, we keep a record of the
number of good-quality samples per group. The rest of the code is there just to
generate the list data, filled with 0s and 1s.

Chapter 3

[83]

The model is essentially the same one we use for the coin problem, except that now
we have to specify the hyper-priors that will influence the beta-prior:

()
()

()
()
,

HalfCauchy

HalfCauchy

Beta

y Bern

α

β

α β

β β

θ α β

θ

∼

∼

∼

∼

Using Kruschke diagrams, it is evident that this new model has one additional level
compared to all previous models:

�

� �

�

�

y

n=1

� � �
beta

binomial

half-Cauchy

�
�

�
�

half-Cauchy

with pm.Model() as model_h:
 alpha = pm.HalfCauchy('alpha', beta=10)
 beta = pm.HalfCauchy('beta', beta=10)

 theta = pm.Beta('theta', alpha, beta, shape=len(N_samples))

 y = pm.Bernoulli('y', p=theta[group_idx], observed=data)

Juggling with Multi-Parametric and Hierarchical Models

[84]

 trace_j = pm.sample(2000)
chain_h = trace_h[200:]
pm.traceplot(chain_h)

Shrinkage
Please now join me in a brief experiment. I will need you to print the summary
and save the result for later use. Then I want you to re-run the model two more
times, always keeping a record of the summary, one time setting all the elements
of G_samples to three, and one last time setting one element to 18 and the other two
to 3. Before continuing, please take a moment to think about the outcome of this
experiment. Focus on the estimated mean value of theta in each experiment. Based
on the first two runs of the model, could you predict the outcome of the third case?

If we put the result in a table, we get something more or less like this; remember,
small variations could occur due to the stochastic nature of the NUTS sampler:

G_samples Theta (mean)
18, 18, 18 0.6, 0.6, 0.6
3, 3, 3 0.1, 0.1, 0.1
18, 3, 3 0.53, 0.14, 0.14

Chapter 3

[85]

In the first row, we see that for 18 good samples out of 30 we get that the mean
estimation for θ is 0.6; remember that now, theta is a vector, since we have three
groups, and thus we have a mean value for each group. Then on the second row, we
have only 3 good samples out of 30 and the mean of θ is 0.1. At the end, on the last
row, we get something interesting and probably unexpected. Instead of getting a mix
of the mean estimates of θ from the other rows, such as 0.6, 0.1, 0.1, we get different
values, namely 0.53, 0.14, 0.14. What on Earth happened? Maybe a convergence
problem or some error with the model specification? Nothing of that, we get our
estimate shrunk toward the common mean. And this is totally OK; indeed, this is just
a consequence of our model; by putting hyper-priors, we are estimating the values
of our (beta) prior from the data itself and each group is informing the rest, and
in turn is informed by the estimation of the others. In other words, the groups are
effectively sharing information through the hyper-prior and we are observing what
is known as shrinkage. This effect is the consequence of partially pooling the data;
we are modeling the groups neither as independent from each other nor as a single
big group. We have something in the middle, and one of the consequences is the
shrinkage effect.

Why is this useful? Because having shrinkage contributes to more stable inference.
This is in many ways similar to what we saw with the Student t -distribution and the
outliers. Using heavy tail distribution results in a model that is more robust or less
responsive to data points away from the mean. Introducing hyper-priors, and hence
inferences at a higher level, results in a more conservative model (probably the first
time I use "conservative" in a flattering way), one that is less responsive to extreme
values in individual groups. To illustrate this, imagine we have a neighborhood
with a different number of samples; the smaller the sample size, the easier it is to get
bogus results. At an extreme, if you take only one sample in a given neighborhood,
you may just hit the only really old lead pipe in the whole neighborhood or, on
the other hand, the only one made out of PVC. In one case you will overestimate the
bad quality and in the other underestimate it. Under a hierarchical model, the
mis-estimation will be ameliorated by the information provided by the other groups.
Of course, a larger sample size will also do the trick but, more often than not, that is
not an option.

Juggling with Multi-Parametric and Hierarchical Models

[86]

The amount of shrinkage depends, of course, on the data; a group with more data
will pull the estimate of the other groups harder than a group with fewer data points.
If several groups are similar and one group is different, the similar groups are going
to inform the others of their similarity and reinforce a common estimation, while
they are going to pull toward them the estimation for the less similar group; this is
exactly what we saw in the previous example. The hyper-priors also have a part in
modulating the amount of shrinkage. We can effectively use an informative prior to
shrink our estimate to some reasonable value if we have trustworthy information
about the group-level distribution. Nothing prevents us of building a hierarchical
model with just two groups. But we would prefer to have several groups. Intuitively
the reason is that getting shrinkage is like thinking that each group is a data point
and we are estimating the standard deviation at the group-level. We generally do not
trust an estimation with a few data points unless we have a strong prior to inform
our estimation, something similar is true for a hierarchical model.

We may also be interested in seeing what the estimated prior looks like. One way to
do this is as follows:

x = np.linspace(0, 1, 100)
for i in np.random.randint(0, len(chain_h), size=100):
 pdf = stats.beta(chain_h['alpha'][i], chain_h['beta'][i]).pdf(x)
 plt.plot(x, pdf, 'g', alpha=0.05)

dist = stats.beta(chain_h['alpha'].mean(), chain_h['beta'].mean())
pdf = dist.pdf(x)
mode = x[np.argmax(pdf)]
mean = dist.moment(1)
plt.plot(x, pdf, label='mode = {:.2f}\nmean = {:.2f}'.format(mode,
 mean))

plt.legend(fontsize=14)
plt.xlabel(r'θ_{prior}', fontsize=16)

Chapter 3

[87]

Paraphrasing the Zen of Python, we can certainly say, hierarchical models are one
honking great idea - let's do more of those! In the following chapters, we will keep
building hierarchical models and learning how to use them to build better models,
including a more detailed discussion of the overfitting and underfitting problem
when building models, in Chapter 6, Model Comparison.

Juggling with Multi-Parametric and Hierarchical Models

[88]

Summary
In this chapter, we built from the last two by extending our abilities to manage
models with more than one parameter. This turned out to be something very simple
to do with the help of PyMC3. For example, obtaining the marginal distribution
from the posterior is just a matter of properly indexing the trace. We also explored
a few examples of using the posterior to derive quantities of interest from it, such
as synthetic data or measures to better explain the data. We found the Gaussian
model for the first, but certainly not the last, time, since it is one of the pillars of data
analysis. Before we had any time to glorify the Gaussian model, we pushed it to its
limits with the help of potential outliers in the data. Therefore, we learned to relax
the normality assumption by using the Student's t-distribution, which led us to the
concept of robust models and how we can change a model to better fit our problem.
We used the Gaussian model in the context of comparing groups, a common data
analysis task in many circumstances, and we discussed some measures of effect size
to help us quantify how different groups are. We save for the last, as we usually do
with a fine dessert, one of the most important concepts to learn: hierarchical models
or how to structure a problem to get better inferences and shrunken estimates by
partially pooling information from groups.

At the turn of this page, we will learn about linear models and how to use them to
make sense of data.

Keep reading
• Doing Bayesian Data Analysis, Second Edition by John Kruschke. Chapter 9.
• Statistical Rethinking by Richard McElreath. Chapter 12.
• Bayesian Data Analysis, Third Edition by Andrew Gelman and others. Chapter 5.
• After reading Chapter 4, Understanding and Predicting Data with Linear

Regression Models, be sure to check the GLM-hierarchial and Rugby examples
from PyMC3's documentation.

Chapter 3

[89]

Exercises
1. For the first model, change the prior for the mean to a Gaussian distribution

centered at the empirical mean and play with a couple of reasonable values
for the standard deviation of this prior. How robust/sensitive are the
inferences to these changes? What do you think of using a Gaussian, which is
an unbounded distribution, to model bounded data like this? Remember we
said is not possible to get values below 0 or above 100.

2. Using the data from the first example, compute the empirical mean and the
standard deviation with and without outliers. Compare those results to the
Bayesian estimation using the Gaussian and Student's t-distribution . Repeat
the exercise adding more outliers.

3. Modify the tips example to make it robust to outliers. Try with one shared
ν for all groups and also with one ν per group. Run posterior predictive
checks to assess these three models.

4. Compute the probability of superiority directly from the posterior (without
computing Cohen's d first). You can use the function sample_ppc() to take a
sample from each group. Is it really different from the calculation assuming
normality? Can you explain the result?

5. Repeat the exercise we did on the main text with the water quality example,
but this time without hierarchical structure. Just use a flat prior such as Beta
(alpha=1, beta=1). Compare the results of both models.

6. Create a hierarchical version of the tips example by partially pooling across the
days of week. Compare the results to those obtained without the hierarchical
structure.

7. Repeat the examples in this chapter, but initialize the sampling with the
find_MAP() function . Did you get the same inferences? How the use of
find_MAP() changes the amounts of burn-in? Are the inferences faster,
slower, or the same?

8. Run diagnostic tests for all the models and take action, such as running more
steps if necessary.

9. Use your own data with at least one of the models in this chapter. Remember
the three steps of model building from Chapter 1, Thinking Probabilistic – A
Bayesian Inference Primer.

[91]

Understanding and
Predicting Data with

Linear Regression Models
In this chapter, we are going to see one of the most widely used models in statistics
and machine learning: the linear regression model. This model is very useful on its
own and also can be considered as a building block of several other methods. If you
took a statistics course (even a non-Bayesian one), you may have heard of simple
and multiple linear regression, logistic regression, ANOVA, ANCOVA, and so on.
All these methods are variations of the same underlying motif, the linear regression
model, and this is the main topic of this chapter.

In this chapter, we will cover the following topics:

• Linear regression models
• Simple linear regression
• Robust linear regression
• Hierarchical linear regression
• Polynomial regression
• Multiple linear regression
• Interactions

Understanding and Predicting Data with Linear Regression Models

[92]

Simple linear regression
Many problems we find in science, engineering, and business are of the following
form. We have a continuous variable, and by continuous we mean a variable
represented using real numbers (or floats if you wish). We call this variable the
dependent, predicted, or outcome variable. And we want to model how this
dependent variable depends on one or more variables, which we call independent,
predictor, or input variables. The independent variable can be continuous or it
can be categorical. These type of problems can be modeled using linear regression.
If we have only one independent variable we may use a simple linear regression
model problem; if we have more than one independent variable then we may apply
a multiple linear regression model. Some typical situations that linear regression
models can be used in are as follows:

• Model the relationship between factors like rain, soil salinity, and the
presence/absence of fertilizer in crop productivity. Then answer questions
such as: Is the relationship linear? How strong is this relationship? Which
factors have the strongest effect?

• Find a relationship between average chocolate consumption by country and
the number of Nobel laureates in that country. And then understand why
this relationship could be spurious.

• Predict the gas bill (used for heating and cooking) of your house by using the
sun radiation from the local weather report. How accurate is this prediction?

The machine learning connection
Paraphrasing Kevin P. Murphy, machine learning (ML) is an umbrella term for a
collection of methods to automatically learn patterns in data, and then use what we
learn to predict future data or to take decisions in a state of uncertainty. ML and
statistics are really intertwined subjects and the connections are made clearer if you
take a probabilistic perspective, as Kevin Murphy does in his great book. While
these domains are deeply connected at a conceptual and mathematical level, the
jargon could make the connection opaque. So let me bring the ML vocabulary to the
problem in this chapter. Using ML terminology we say a regression problem is an
example of supervised learning. Under the ML framework, we have a regression
problem when we want to learn a mapping from x to y , with y being a continuous
variable. We say the learning process is supervised because we know the values of
x - y pairs; in some sense, we know the correct answer and all the remaining

questions are about how to generalize these observations (or this dataset) to any
possible future observation, that is to a situation when we know x but not y .

Chapter 4

[93]

The core of linear regression models
Now that we have discussed some general ideas about linear regression, and we
have also established a bridge between the vocabulary used in statistics and ML,
let's begin to learn how to build linear models.

Chances are high that you are already familiar with the following equation:

i iy xα β= +

This equation says there is a linear relation between the variable x and the variable
y . The exact form is given by the parameter β which controls the slope on the line.

The slope can be interpreted as the change in the variable y per unit change in the
variable x . The other parameter, α , is known as the intercept and tells us the value
of iy when ix = 0. Graphically, the intercept is the point where the line intercepts
the y axis.

There are several ways to find the parameters for a linear model; one of these methods
is known as least squares fitting. Every time you fitted a line using some software you
were most likely using this method under the hood. The method returns the values
of α and β that produce the lowest average quadratic error between the observed
y and the predicted y (for each value of x). Expressed in that way the problem of

estimating α and β is an optimization problem, that is, a problem where we try to
minimize (or maximize) some function. Optimization is not the only way to find the
solution to a regression model. The same problem can be stated under a probabilistic
(Bayesian) framework. Thinking probabilistically gave us several advantages; we can
obtain the best values of α and β (the same as with optimization methods) together
with the uncertainty estimation of those parameters. Optimization methods require
extra work to provide this information. Additionally, we get the flexibility of Bayesian
methods, meaning we will be able to adapt our models to our particular problems; for
example, moving away from normality assumptions, or building hierarchical linear
models as we will see next in this chapter.

Probabilistically, a linear regression model can be expressed as:

(),N µ α β σ ε= + =∼y x

Understanding and Predicting Data with Linear Regression Models

[94]

That is, the data vector y is assumed to be distributed as a Gaussian with mean
α β+ x and with standard deviation ε .

Since we do not know the values of α , β , or ε , we have to set prior distributions
for them. A reasonable choice would be:

()
()
()

,

,

0, s

N

N

U h

α α

β β

α µ σ

β µ σ

ε

∼

∼

∼

For a prior over α we can use a very flat Gaussian, that is one with a high value of
ασ , relative to the scale of the data. In general, we do not know where the intercept

can be, and its value can vary a lot from one problem to another. The same goes
for the slope, although for many problems we can at least know the sign of it a
priori. For epsilon, we can set sh , to a large value on the scale of the variable y, for
example, ten times the value for its standard deviation. These very vague priors
guarantee an almost null effect of the prior over the data. Under this Bayesian
model for simple linear regression with effectively flat priors, we will get essentially
the same estimates as using the least squares method. Alternatives to the uniform
distribution are the half normal or the half Cauchy distributions. The half Cauchy
generally works well as a good regularizing prior (see Chapter 6, Model Comparison
for details) If we want to use really strong priors around some specific value for the
standard deviation we can use the gamma distribution. The default parametrization
of the gamma distribution in many packages can be a little bit confusing at first, but
fortunately PyMC3 allows us to define it using the shape and rate or the mean and
standard deviation.

Before continuing with the linear regression let's take a look at the gamma
distribution for a set of different parameters:

rates = [1, 2, 5]
scales = [1, 2, 3]

x = np.linspace(0, 20, 100)
f, ax = plt.subplots(len(rates), len(scales), sharex=True,
 sharey=True)
for i in range(len(ass)):
 for j in range(len(scales)):
 rate = rates[i]
 scale = scales[j]
 rv = stats.gamma(a=rate, scale=scale)
 ax[i,j].plot(x, rv.pdf(x))

Chapter 4

[95]

 ax[i,j].plot(0, 0,
 label="$\\alpha$ = {:3.2f}\n$\\theta$ =
 {:3.2f}".format(rate, scale), alpha=0)
 ax[i,j].legend()
ax[2,1].set_xlabel('x')
ax[1,0].set_ylabel('$pdf(x)$')

Understanding and Predicting Data with Linear Regression Models

[96]

Continuing with the linear regression model, using the nice and easy-to-interpret
Kruschke diagrams, we have:

normal

�
�

�
�

�
�

�
�

�
�

normal half-Cauchy

� �

�

�

�

���

�

normal

y

X

=

Now of course we need the data to feed the model. Once again we are going to rely
on a synthetic data set to build intuition on the model. We will create the datasets in
such a way that we know the values of the parameters that later we are going to try
to find out.

np.random.seed(314)
N = 100
alfa_real = 2.5
beta_real = 0.9
eps_real = np.random.normal(0, 0.5, size=N)

x = np.random.normal(10, 1, N)
y_real = alfa_real + beta_real * x
y = y_real + eps_real

plt.figure(figsize=(10,5))
plt.subplot(1,2,1)
plt.plot(x, y, 'b.')
plt.xlabel('x', fontsize=16)
plt.ylabel('y', fontsize=16, rotation=0)
plt.plot(x, y_real, 'k')
plt.subplot(1,2,2)
sns.kdeplot(y)
plt.xlabel('y', fontsize=16)

Chapter 4

[97]

Now we use PyMC3 to fit the model, nothing we have not seen before. Wait,
in fact there is something new! µ is expressed in the model as a deterministic
variable. All the variables we have seen up to now were stochastic, that is we get a
different number every time we ask for a value. Instead, a deterministic variable is
fully determined by its arguments, even if the arguments are stochastic, as in the
following code. If we specify a deterministic variable, PyMC3 will save the variable
in the trace for us:

with pm.Model() as model:
 alpha = pm.Normal('alpha', mu=0, sd=10)
 beta = pm.Normal('beta', mu=0, sd=1)
 epsilon = pm.HalfCauchy('epsilon', 5)

 mu = pm.Deterministic('mu', alpha + beta * x)
 y_pred = pm.Normal('y_pred', mu=mu, sd=epsilon, observed=y)

 start = pm.find_MAP()
 step = pm.Metropolis()
 trace = pm.sample(10000, step, start)

Alternatively, we could have obviated specifying a deterministic variable and
just written:

y_pred = pm.Normal('y_pred', mu= alpha + beta * x, sd=epsilon,
 observed=y)

Understanding and Predicting Data with Linear Regression Models

[98]

The traceplot does look a little bit funny. Notice how the trace for the alpha and
beta parameters wanders up and down slowly; compare it with the KDE for epsilon,
which is signaling good mixing. It is clear we have a problem.

pm.traceplot(chain);

Chapter 4

[99]

The autocorrelation plot shows we have a lot of autocorrelation for α and β ,
and not for ε . As we will see next, this is the typical behavior for linear models.
Notice that we omit plotting the deterministic variable µ by passing the varnames
argument to the autocorrplot function:

varnames = ['alpha', 'beta', 'epsilon']
pm.autocorrplot(trace, varnames)

Understanding and Predicting Data with Linear Regression Models

[100]

Linear models and high autocorrelation
So, we have a very ugly autocorrelation for α and β and therefore we get very poor
sampling and a low number of effective samples compared to the actual number of
samples. That's a good diagnostic but what is really happening? Well, we are the
victims of our own assumptions. No matter which line we fit to our data, all of them
should pass for one point, the mean of the x variable and the mean of the y variable.
Hence the line-fitting process is somehow equivalent to spinning a straight line fixed at
the center of the data. An increase in the slope means a decrease of the intercept and the
other way around. Both parameters are going to be correlated by the definition of the
model. This can be clearly seen if we plot the posterior (we are excluding ε for clarity):

sns.kdeplot(trace['alpha'], trace['beta'])
plt.xlabel(r'α', fontsize=16)
plt.ylabel(r'β', fontsize=16, rotation=0)

Hence, the shape of the posterior (excluding ε) is a very diagonal space. For algorithms
such as Metropolis-Hastings, this can be very problematic. Because, if we propose large
steps for individual parameters, most of the proposed values will fall outside of this
high probability zone; if we propose small steps, they will need to be very really small
to accept them. Either way we get a high autocorrelation in the sampling process and
a very poor mixing. Even more, the higher the dimensionality of our data the more
stressed this problem, because the total parameter space grows much faster than the
plausible parameter space. For more information about this pervasive problem in data
analysis check the Wikipedia entry for the curse of dimensionality.

Chapter 4

[101]

Before continuing and for the sake of truth, let me clarify a point. The fact that the line
is constrained to pass through the mean of the data is only true for the least square
method (and its assumptions). Using Bayesian methods, this constrain is relaxed.
Later in the examples, we will see that in general we get lines around the mean values
of x and y . and not exactly through the mean. Moreover, if we use strong priors we
could end with lines far away from the mean of x and y . Nevertheless, the idea that
the autocorrelation is related to a line spinning around a more or less defined point
remains true, and that is all we need to understand and fix the high autocorrelation
problem, as we will see now using two different approaches.

Modifying the data before running
One simple solution to our problem is to center the x data. For each ix data point,
we subtract the mean of the x variable (x):

′ = −x x x

As a result, ′x will be centered at 0, and hence the pivot point when changing the
slope is the intercept and the plausible parameter space is now more circular or less
autocorrelated.

Centering data is not only a computational trick, it can also help in interpreting
the data. The intercept is the value of iy when 0ix = . For many problems this
interpretation has no real meaning. For example, for quantities such as the height
or weight, values of zero are meaningless and hence the intercept has no value in
helping to make sense of the data. Instead, when centering the variables the intercept
is always the value of iy for the mean value of ix . For some problems, it may be useful
to estimate the intercept precisely because it is not feasible to experimentally measure
the value of 0ix = and hence the estimated intercept can provide us with valuable
information; however, extrapolations have their caveats, so be careful when doing this!

We may want to report the estimated parameters in terms of the centered data or in
terms of the uncentered data depending on our problem and audience. If we need to
report the parameters as if they were determined in the original scale we can do the
following to put them back into the original scale:

aα β′ ′= − x

Understanding and Predicting Data with Linear Regression Models

[102]

This correction is the result of the following algebraic reasoning:

()
a

a
a

β ε
β ε
β β ε

′ = −
′ ′ ′= + +

′ ′= + − +

′ ′ ′= − + +

x x x
y x

y x x
y x x

Then it follows that:

α α β
β β
′ ′= +

′=
x

We can even go further and transform the data by standardizing it before running
models. Standardizing is a common practice for linear regression models in
statistics and machine learning since many algorithms behave better when the data
is standardized. This transformation is achieved by centering the data and also
dividing it by the standard deviation. Mathematically we have:

sd

−′ =
x xx
x

sd

−′ =
y yy
y

One advantage of standardizing the data is that we can always use the same weakly
informative priors, without having to think about the scale of the data, because we
have re-scaled the data! For standardized data, the intercept will always be around
zero and the slope around -1 and 1. Standardizing the data allows us to talk in terms
of Z-scores, that is, in units of standard deviation. If someone tells us that the value
of a parameter is -1.3 in Z-score units we automatically know that the value is 1.3
standard deviations below the mean irrespective of the actual value of the mean
and the actual value of the standard deviation of the data. A change in one unit is a
change in one standard deviation whatever the scale of the original data is. This can
be very useful when working with several variables; having all variables in the same
scale can simplify the interpretation of the data.

Chapter 4

[103]

Changing the sampling method
Another approach to ameliorating the autocorrelation problem is to use a different
sampling method. NUTS has fewer difficulties than Metropolis in sampling
such restricted diagonal spaces. The reason is that NUTS moves according to the
curvature of the posterior and hence it is easier for it to move along a diagonal space.
As we have already seen, NUTS can be slower than Metropolis per step, but usually
needs far fewer steps to get a reasonable approximation to the posterior.

The following section corresponds to results obtained from the previous model and
using the NUTS sampler instead of Metropolis.

Interpreting and visualizing the posterior
As we have already seen, we can explore the posterior using the PyMC3 functions,
traceplot and df_summary, or we can use our own functions. For a linear
regression it could be useful to plot the average line that fits the data together with
the average mean values of α and β :

plt.plot(x, y, 'b.');
alpha_m = trace_n['alpha'].mean()
beta_m = trace_n['beta'].mean()
plt.plot(x, alpha_m + beta_m * x, c='k', label='y = {:.2f} +
 {:.2f} * x'.format(alpha_m, beta_m))
plt.xlabel('x', fontsize=16)
plt.ylabel('y', fontsize=16, rotation=0)
plt.legend(loc=2, fontsize=14)

Understanding and Predicting Data with Linear Regression Models

[104]

Alternatively, we can also make a plot reflecting the posterior uncertainty using
semitransparent lines sampled from the posterior:

plt.plot(x, y, 'b.');

idx = range(0, len(trace_n['alpha']), 10)
plt.plot(x, trace_n['alpha'][idx] + trace_n['beta'][idx] *
 x[:,np.newaxis], c='gray', alpha=0.5);

plt.plot(x, alpha_m + beta_m * x, c='k', label='y = {:.2f} +
 {:.2f} * x'.format(alpha_m, beta_m))

plt.xlabel('x', fontsize=16)
plt.ylabel('y', fontsize=16, rotation=0)
plt.legend(loc=2, fontsize=14)

Notice that uncertainty is lower in the middle, although it is not reduced to a single
point; that is, the posterior is compatible with lines not passing exactly for the mean
of the data, as we have already mentioned.

Chapter 4

[105]

Having the semitransparent lines is perfectly fine but we may want to add a cool-
factor to the plot and use instead a semitransparent band to illustrate the Highest
Posterior Density (HPD) interval of µ . Notice this was the main reason for defining
the variable mu as a deterministic in the model, just to simplify the following code:

plt.plot(x, alpha_m + beta_m * x, c='k', label='y = {:.2f} +
 {:.2f} * x'.format(alpha_m,beta_m))

idx = np.argsort(x)
x_ord = x[idx]
sig = pm.hpd(trace_n['mu'], alpha=.02)[idx]
plt.fill_between(x_ord, sig[:,0], sig[:,1], color='gray')

plt.xlabel('x', fontsize=16)
plt.ylabel('y', fontsize=16, rotation=0)

One more option is to plot the HPD (95 and 50, for example) of the predicted data
, that is, where we expect to see the 95% and 50% of future data, according to our

model. For the figure we are going to use a darker gray for the HPD 50 and a lighter
gray for the HPD 95. Getting the posterior predictive samples is easy in PyMC3
using the sample_ppc function:

ppc = pm.sample_ppc(chain_n, samples=1000, model=model_n)

Understanding and Predicting Data with Linear Regression Models

[106]

And now we plot the results:

plt.plot(x, y, 'b.')
plt.plot(x, alpha_m + beta_m * x, c='k', label='y = {:.2f} + {:.2f} *
x'.format(alpha_m, beta_m))

sig0 = pm.hpd(ppc['y_pred'], alpha=0.5)[idx]
sig1 = pm.hpd(ppc['y_pred'], alpha=0.05)[idx]
plt.fill_between(x_ord, sig0[:,0], sig0[:,1], color='gray', alpha=1)
plt.fill_between(x_ord, sig1[:,0], sig1[:,1], color='gray', alpha=0.5)

plt.xlabel('x', fontsize=16)
plt.ylabel('y', fontsize=16, rotation=0)

The irregular look of the boundaries of the HPD comes from the fact that, to make
this plot, we are taking posterior predictive samples from the observed values of x
and not from a continuous interval, and also from the fact that fill_between is just
doing a simple linear interpolation between successive points. Notice how the plot is
more serrated the more data points we have. The serrated aspect can be minimized
by taking more samples from y_pred (try it, for example, with 10,000 samples).

Chapter 4

[107]

Pearson correlation coefficient
Many times we want to measure the degree of (linear) dependence between two
variables. The most common measure of the linear correlation between two variables
is the Pearson correlation coefficient, often identified just with a lowercase r. When
the value of r is +1 we have a perfect positive linear correlation, that is, an increase
of one variable predicts an increase of the other. When we have -1, we have a perfect
negative linear correlation and the increase of one variable predicts a decrease of the
other. When r is 0 we have no linear correlation. The Pearson correlation coefficient
says nothing about non-linear correlations. It is easy to confuse r with the slope of a
regression. Check the following very nice image from Wikipedia showing that both
quantities are not necessarily the same thing: https://en.wikipedia.org/wiki/
Correlation_and_dependence#/media/File:Correlation_examples2.svg.

Part of the confusion may be explained by the following relationship:

()
()

r
σ

β
σ

=
x
y

That is, the slope and the Pearson correlation coefficient have the same value
only when the standard deviation of x and y are equal. Notice that it is true, for
example, when we standardize the data. Just to clarify:

• The Pearson correlation coefficient is a measure of the degree of correlation
between two variables and is always restricted to the interval [-1, 1]. The
scale of the data is irrelevant.

• The slope indicates how much y changes per unit change of x and can take
any real value.

The Pearson coefficient is related to a quantity known as the determination
coefficient and for a linear regression model it is just the square of the Pearson
coefficient, that is, r² (or R² and pronounced just as r squared). The determination
coefficient can be interpreted as the proportion of the variance in the dependent
variable that is predictable from the independent variable.

Now we are going to see how to compute r and r² with PyMC3 by extending the
simple linear regression model. And we are going to do it in two different ways:

• One way is to use the equation we just saw, relating the slope and the
Pearson correlation coefficient. See the deterministic variable rb.

Understanding and Predicting Data with Linear Regression Models

[108]

• The other way is related to the least squares method and we are going to skip
the details of its derivation. See the deterministic variable rss. If we check
the code, we will see the variable ss_reg. This is a measure of the dispersion
between the fitted line and the mean of the data, and is proportional to the
variance in the model. Notice that the formula resembles the once for the
variance; the difference is that we are not dividing by the number of data
points. The variable ss_tot is proportional to the variance of the predicted
variable.

Then, the full mode is:

with pm.Model() as model_n:
 alpha = pm.Normal('alpha', mu=0, sd=10)
 beta = pm.Normal('beta', mu=0, sd=1)
 epsilon = pm.HalfCauchy('epsilon', 5)

 mu = alpha + beta * x
 y_pred = pm.Normal('y_pred', mu=mu, sd=epsilon, observed=y)

 rb = pm.Deterministic('rb', (beta * x.std() / y.std()) ** 2)

 y_mean = y.mean()
 ss_reg = pm.math.sum((mu - y_mean) ** 2)
 ss_tot = pm.math.sum((y - y_mean) ** 2)
 rss = pm.Deterministic('rss', ss_reg/ss_tot)

 start = pm.find_MAP()
 step = pm.NUTS()
 trace_n = pm.sample(2000, step=step, start=start)
pm.traceplot(chain_n)

Chapter 4

[109]

pm.df_summary(cadena_n, varnames)

mean sd mc_error hpd_2.5 hpd_97.5

alpha 2.11 0.49 1.87e-02 1.21 3.13

beta 0.94 0.05 1.82e-03 0.84 1.03

epsilon 0.45 0.03 1.30e-03 0.39 0.52

rb 0.80 0.08 3.09e-03 0.64 0.96

rss 0.80 0.08 3.22e-03 0.64 0.95

Understanding and Predicting Data with Linear Regression Models

[110]

Pearson coefficient from a multivariate Gaussian
Another way to compute the Pearson coefficient is by estimating the covariance
matrix of a multivariate Gaussian distribution. A multivariate Gaussian distribution
is the generalization of the Gaussian distribution to more than one dimension. Let's
focus on the case of two dimensions because that is what we are going to use right
now; generalizing to higher dimensions is almost trivial once we understand the
bivariate case. To fully describe a bivariate Gaussian distribution we need 2 means
(or a vector with two elements), one for each marginal Gaussian. We also need 2
standard deviations, right? Well not exactly; we need a 2 x 2 covariance matrix,
which looks like this:

2
1 2 1

2
2 1 2

x x x

x x x

σ ρσ σ
ρσ σ σ

=

∑

Where ∑ is the Greek capital sigma letter; it is a common practice to use it to
represent the covariance matrix. In the main diagonal we have the variances of each
variable, expressed as the square of their standard deviations 1xσ and 2xσ . The rest
of the elements in the matrix are the covariances (the variance between variables)
expressed in terms of the individual standard deviations and ρ , the Pearson
correlation coefficient between variables. Notice we have a single ρ because
we have only two dimensions/variables. For three variables we would have 3
Pearson coefficients. For 4 variables we will get 6. To compute these numbers you
can use the binomial coefficient, remember the definition of the binomial distribution
from Chapter 1, Thinking Probabilistically - A Bayesian Inference Primer.

The following code generates contour plots for bivariate Gaussian distributions with
both means fixed at 0, 0, one standard deviation fixed at 1, the other taking the values
1 or 2, and different values for the Pearson correlation coefficient.

sigma_x1 = 1
sigmas_x2 = [1, 2]
rhos = [-0.99, -0.5, 0, 0.5, 0.99]

x, y = np.mgrid[-5:5:.1, -5:5:.1]
pos = np.empty(x.shape + (2,))
pos[:, :, 0] = x; pos[:, :, 1] = y

f, ax = plt.subplots(len(sigmas_x2), len(rhos), sharex=True,
 sharey=True)

for i in range(2):

Chapter 4

[111]

 for j in range(5):
 sigma_x2 = sigmas_x2[i]
 rho = rhos[j]
 cov = [[sigma_x1**2, sigma_x1*sigma_x2*rho],
 [sigma_x1*sigma_x2*rho, sigma_x2**2]]
 rv = stats.multivariate_normal([0, 0], cov)
 ax[i,j].contour(x, y, rv.pdf(pos))
 ax[i,j].plot(0, 0,
 label="$\\sigma_{{x2}}$ = {:3.2f}\n$\\rho$ =
 {:3.2f}".format(sigma_x2, rho), alpha=0)
 ax[i,j].legend()
ax[1,2].set_xlabel('x_1')
ax[1,0].set_ylabel('x_2')

Understanding and Predicting Data with Linear Regression Models

[112]

Now that we know the Multivariate Gaussian distribution we can use it to estimate
the Pearson correlation coefficient. Since we do not know the values of the covariance
matrix we have to put priors over it. One solution is to use the Wishart distribution,
which is the conjugate prior of the inverse covariance matrix of a multivariate-
normal. The Wishart distribution can be considered as the generalization to higher
dimensions of the gamma distribution we saw earlier or also as the generalization of
the chi squared distribution. A second option is to use the LKJ prior; this is a prior
for the correlation matrix (and not the covariance matrix), which may be convenient
given that it is generally more useful to think in terms of correlations. We are going
to explore a third option and we are going to put priors directly for 1xσ , 2xσ and ρ
and then use those values to manually build the covariance matrix.

with pm.Model() as pearson_model:

 mu = pm.Normal('mu', mu=data.mean(0), sd=10, shape=2)

 sigma_1 = pm.HalfNormal('simga_1', 10)
 sigma_2 = pm.HalfNormal('sigma_2', 10)
 rho = pm.Uniform('rho', -1, 1)

 cov = pm.math.stack(([sigma_1**2, sigma_1*sigma_2*rho],
 [sigma_1*sigma_2*rho, sigma_2**2]))

 y_pred = pm.MvNormal('y_pred', mu=mu, cov=cov, observed=data)

 start = pm.find_MAP()
 step = pm.NUTS(scaling=start)
 trace_p = pm.sample(1000, step=step, start=start)

Chapter 4

[113]

Notice that we are getting ρ the Pearson coefficient, an in the previous example we
got the squared of the Pearson coefficient. Taking this into account you will see that
the values obtained in this and the previous example closely match.

Robust linear regression
Assuming our data follows a Gaussian distribution is perfectly reasonable in many
situations. By assuming Gaussianity, we are not necessarily saying that our data
is really Gaussian; instead we are saying that it is a reasonable approximation for
our current problem. As we saw in the previous chapter, sometimes this Gaussian
assumption fails, for example in the presence of outliers. We learned that using
a Student's t-distribution is a way to effectively deal with outliers and get a more
robust inference. The very same idea can be applied to linear regression.

Understanding and Predicting Data with Linear Regression Models

[114]

To exemplify the robustness that a Student's t-distribution brings to a linear
regression we are going to use a very simple and nice dataset: the third data group
from the Anscombe quartet. If you do not know what the Anscombe quartet is,
remember to check it later at Wikipedia. We can upload it from seaborn:

ans = sns.load_dataset('anscombe')
x_3 = ans[ans.dataset == 'III']['x'].values
y_3 = ans[ans.dataset == 'III']['y'].values

And now let's check what this tiny dataset looks like:

plt.figure(figsize=(10,5))
plt.subplot(1,2,1)
beta_c, alpha_c = stats.linregress(x_3, y_3)[:2]
plt.plot(x_3, (alpha_c + beta_c* x_3), 'k', label='y ={:.2f} + {:.2f}
* x'.format(alpha_c, beta_c))
plt.plot(x_3, y_3, 'bo')
plt.xlabel('x', fontsize=16)
plt.ylabel('y', rotation=0, fontsize=16)
plt.legend(loc=0, fontsize=14)
plt.subplot(1,2,2)
sns.kdeplot(y_3);
plt.xlabel('y', fontsize=16)

Chapter 4

[115]

Now we are going to rewrite the model using a Student's t-distribution instead
of a Gaussian. This change also introduces the need to specify the value of ν , the
normality parameter. If you do not remember the role of this parameter check the
previous chapter before continuing.

Also in the following model we are using a shifted exponential, to avoid values of
nu close to zero. The non-shifted exponential puts too much weight on values close
to zero. In my experience this is fine for data with non-to-moderate outliers but
for data with extreme outliers (or data with few bulk points), as in the Anscombe's
third data set, it is better to avoid such low values. Take this, as well as other prior
recommendations, with a pinch of salt. These recommendations are generally
observations based on some data sets (and problems) I (or others) have worked on
and may not apply to your problems and data sets. Other common priors for ν are
gamma(2, 0.1) or gamma(mu=20, sd=15).

As a side note, by adding an underscore _, to the end of a PyMC3 variable, as in nu_,
the variable is hidden from the user.

with pm.Model() as model_t:
 alpha = pm.Normal('alpha', mu=0, sd=100)
 beta = pm.Normal('beta', mu=0, sd=1)
 epsilon = pm.HalfCauchy('epsilon', 5)
 nu = pm.Deterministic('nu', pm.Exponential('nu_', 1/29) + 1)

 y_pred = pm.StudentT('y_pred', mu=alpha + beta * x_3,
 sd=epsilon, nu=nu, observed=y_3)

 start = pm.find_MAP()
 step = pm.NUTS(scaling=start)
 trace_t = pm.sample(2000, step=step, start=start)

I am going to skip some code and plots here (just to save space). I am going to
omit plots such as the traceplot and the autocorrelation plot, but you should
not. Instead I am going to plot just the mean fitted line. I am using also the SciPy
linregress (frequentist) method to plot the non-robust line. You may try plotting
the line obtained using the Bayesian method from the previous example.

beta_c, alpha_c = stats.linregress(x_3, y_3)[:2]

plt.plot(x_3, (alpha_c + beta_c * x_3), 'k', label='non-robust',
 alpha=0.5)
plt.plot(x_3, y_3, 'bo')
alpha_m = trace_t['alpha'].mean()
beta_m = trace_t['beta'].mean()

Understanding and Predicting Data with Linear Regression Models

[116]

plt.plot(x_3, alpha_m + beta_m * x_3, c='k', label='robust')

plt.xlabel('x', fontsize=16)
plt.ylabel('y', rotation=0, fontsize=16)
plt.legend(loc=2, fontsize=12)

Let's run a posterior predictive check to explore how well our model captures the
data. We can let PyMC3 do the hard work of sampling from the posterior for us:

ppc = pm.sample_ppc(chain_t, samples=200, model=model_t, random_
seed=2)
for y_tilde in ppc['y_pred']:
 sns.kdeplot(y_tilde, alpha=0.5, c='g')
sns.kdeplot(y_3, linewidth=3)

Chapter 4

[117]

You should see something like this:

For the bulk of the data, we get a very good match. Also notice that our model
predicts values away from the bulk and not just above the bulk. For our current
purposes, this model is performing just fine and it does not need further changes.
Nevertheless, notice that for some problems we may want to avoid negative values.
In such a case, we should probably go back and change the model and restrict the
possible values of y to positive values.

Hierarchical linear regression
In the previous chapter, we learned the rudiments of hierarchical models. We can
apply these concepts to linear regression and model several groups at the same time
including estimations at the group level and estimations above the group level.
As we saw, this is done by including hyperpriors.

We are going to create eight related data groups, including one with just one
data point:

N = 20
M = 8
idx = np.repeat(range(M-1), N)
idx = np.append(idx, 7)

alpha_real = np.random.normal(2.5, 0.5, size=M)

Understanding and Predicting Data with Linear Regression Models

[118]

beta_real = np.random.beta(60, 10, size=M)
eps_real = np.random.normal(0, 0.5, size=len(idx))

y_m = np.zeros(len(idx))
x_m = np.random.normal(10, 1, len(idx))
y_m = alpha_real[idx] + beta_real[idx] * x_m + eps_real

Our data looks like this:

j, k = 0, N
for i in range(M):
 plt.subplot(2,4,i+1)
 plt.scatter(x_m[j:k], y_m[j:k])
 plt.xlim(6, 15)
 plt.ylim(7, 17)
 j += N
 k += N
plt.tight_layout()

Now we are going to center the data before feeding it to the model:

x_centered = x_m - x_m.mean()

First we are going to fit a non-hierarchical model, just as we have already seen. The
only difference is that now we are going to include code to re-scale alpha to the
original scale.

with pm.Model() as unpooled_model:
 alpha_tmp = pm.Normal('alpha_tmp', mu=0, sd=10, shape=M)

Chapter 4

[119]

 beta = pm.Normal('beta', mu=0, sd=10, shape=M)
 epsilon = pm.HalfCauchy('epsilon', 5)

 nu = pm.Exponential('nu', 1/30)

 y_pred = pm.StudentT('y_pred', mu=alpha_tmp[idx] + beta[idx]
* x_centered, sd=epsilon, nu=nu, observed=y_m)

 alpha = pm.Deterministic('alpha', alpha_tmp - beta *
 x_m.mean())

 start = pm.find_MAP()
 step = pm.NUTS(scaling=start)
 trace_up = pm.sample(2000, step=step, start=start)

Now let's check the results. As we can see, everything looks fine except for one alpha
and one beta parameter. We can see from the trace that for one case the trace is not
converging and is just wandering freely:

varnames=['alpha', 'beta', 'epsilon', 'nu']
pm.traceplot(trace_up, varnames);

Understanding and Predicting Data with Linear Regression Models

[120]

You may have already guessed what is going on. Of course it does not make sense
to try to fit a unique line through only one point. We need at least two points,
otherwise the parameters alpha and beta are unbounded. That is totally true unless
we provide some more information; we can do this by using priors. Putting a strong
prior for alpha can lead to a well-defined set of lines even for one data point. Another
way to convey information is by defining hierarchical models, since hierarchical
models allow information to be shared between groups. This becomes very useful in
cases where we have groups with sparse data. In this example, we have taken that
sparsity of the data to the extreme (a group with a single data point), just to make the
message clear.

Now we are going to implement a hierarchical model that is the same as a regular
linear regression model but with hyperpriors, as you can see in the following
Kruschke diagram:

� �

�

�

���

�

t distrib.

y

� �
X

=

v(alternatively v+1)

normal

�
� �

�
�

�

�
�

normal

�
�

half-cauchy exponential

�

normal
�

� �

normal

�
�

half-cauchy

�
�

half-cauchy

� � �
�

�
�

�
�

�
�

�
�

�
�

�

Chapter 4

[121]

In the following PyMC3 model the main differences with the previous model are:

• We add the hyperpriors.
• We also add a few lines to transform the parameters back to the original

uncentered scale. Remember this is not mandatory; we can keep the
parameters in the transformed scale but we should be careful when
interpreting the results.

• We use ADVI, instead of find_MAP(), to initialize and provide a covariance
scaling matrix for NUTS. If you do not remember about ADVI go back and
check Chapter 2, Programming Probabilistically – A PyMC3 Primer for a short
theoretical description. Also check the exercise section of this chapter for a
more practical discussion.

with pm.Model() as hierarchical_model:
 alpha_tmp_mu = pm.Normal('alpha_tmp_mu', mu=0, sd=10)
 alpha_tmp_sd = pm.HalfNormal('alpha_tmp_sd', 10)
 beta_mu = pm.Normal('beta_mu', mu=0, sd=10)
 beta_sd = pm.HalfNormal('beta_sd', sd=10)

 alpha_tmp = pm.Normal('alpha_tmp', mu=alpha_tmp_mu, sd=alpha_
tmp_sd, shape=M)
 beta = pm.Normal('beta', mu=beta_mu, sd=beta_sd, shape=M)
 epsilon = pm.HalfCauchy('epsilon', 5)
 nu = pm.Exponential('nu', 1/30)

 y_pred = pm.StudentT('y_pred', mu=alpha_tmp[idx] + beta[idx] *
x_centered, sd=epsilon, nu=nu, observed=y_m)

 alpha = pm.Deterministic('alpha', alpha_tmp - beta * x_m.
mean())
 alpha_mu = pm.Deterministic('alpha_mu', alpha_tmp_mu - beta_mu
* x_m.mean())
 alpha_sd = pm.Deterministic('alpha_sd', alpha_tmp_sd - beta_mu
* x_m.mean())

 mu, sds, elbo = pm.variational.advi(n=100000, verbose=False)
 cov_scal = np.power(hierarchical_model.dict_to_array(sds), 2)
 step = pm.NUTS(scaling=cov_scal, is_cov=True)
 trace_hm = pm.sample(1000, step=step, start=mu)

Understanding and Predicting Data with Linear Regression Models

[122]

And now the traceplot and summary dataframe, even for the little lonely point:

varnames=['alpha', 'alpha_mu', 'alpha_sd', 'beta',
 'beta_mu', 'beta_sd', 'epsilon', 'nu']
pm.traceplot(trace_hm, varnames)

Chapter 4

[123]

Let's plot the fitted lines, including the one for the lonely point! Of course that line is
mostly informed by the data points in the rest of the groups.

j, k = 0, N
x_range = np.linspace(x_m.min(), x_m.max(), 10)
for i in range(M):
 plt.subplot(2,4,i+1)
 plt.scatter(x_m[j:k], y_m[j:k])
 alfa_m = cadena_a['alpha'][:,i].mean()
 beta_m = cadena_a['beta'][:,i].mean()
 plt.plot(x_range, alfa_m + beta_m*x_range, c='k', label='y
 = {:.2f} + {:.2f} * x'.format(alfa_m, beta_m))
 plt.xlim(x_m.min()-1, x_m.max()+1)
 plt.ylim(y_m.min()-1, y_m.max()+1)
 j += N
 k += N
plt.tight_layout()

Understanding and Predicting Data with Linear Regression Models

[124]

Correlation, causation, and the messiness
of life
Suppose we want to predict how much are we are going to pay for gas to heat our
home during winter and suppose we know the amount of sun radiation in the zone
we live in. In this example, the sun radiation is going to be the independent variable,
x , and the bill is the dependent variable, y . It is very important to note that there

is nothing preventing us from inverting the question and asking about the sun
radiation, given the bill. If we establish a linear relationship (or any other relation for
that matters), we can go from x to y or vice versa. We call a variable independent
because its value cannot be predicted by the model; instead it is an input of the
model and the dependent variable is the output. We say that the value of one
variable depends on the value of the other because we build a model specifying such
a dependency. We are not establishing a causal relationship between variables and
we are not saying x causes y . Always remember the following mantra: correlation
does not imply causation. Let us develop this idea a little bit more. It is possible to
predict the gas bill of a home from the sun radiation and the sun radiation from the
gas bill. We can agree that it is not true that we can control the radiation the sun
emits by changing the thermostat of our house! However, it is true that higher sun
radiation can be related to a lower gas bill.

It is therefore important to remember that the statistical model we are building is
one thing and the physical mechanism relating the variables is another. To establish
that a correlation can be interpreted in terms of causation, we need to add a plausible
physical mechanism to the description of the problem; a correlation is simply not
enough. A very nice and amusing page that shows clear examples of correlated
variables with no causal relationship can be found at http://www.tylervigen.com/
spurious-correlations.

Chapter 4

[125]

Is a correlation useless when it comes to establishing a causal link? Not at all, a
correlation can, in fact, support a causal link if we perform a carefully designed
experiment. For example, we know global warming is highly correlated to the
increasing levels of atmospheric CO2. From this observation alone, we cannot conclude
if higher temperatures are causing an increase in the levels of CO2 or if the higher levels
of the gas are increasing the temperature. Further more, it could happen that there is a
third variable that we are not taking into account and which is producing both higher
temperatures and higher levels of CO2. However, and pay attentions to this, we can do
an experiment where we build a set of glass tanks filled with different quantities of CO2.
We can have one with regular air (that contains ~0.04% of CO2) and the others with
air plus increasing amounts of CO2. We then let these tanks receive sunlight for, let's
say, three hours. If we do this we will verify that tanks with higher levels of CO2 have
higher final temperatures. Hence. we will conclude that indeed CO2 is a green-house
effect gas. Using the same experiment, we can also measure the concentration of CO2
at the end of the experiment to check that temperature does not cause the CO2 level
to increase, at least not from air. In fact, higher temperature can contribute to higher
levels of CO2 because oceans are a reservoir of CO2 and CO2 is less soluble in water
when temperatures increase. Long story short, summer is coming and we are not doing
enough to solve this self-inflected problem.

Another important aspect we can discuss with this example that even when the
sun radiation and the gas bill are connected and maybe the sun radiation can be
used to predict the gas bill, the relationship is more complicated and other variables
are involved. Let's see, higher sun radiation means that more energy is delivered
to a home, part of that energy is reflected and part is turned into heat, part of the
heat is absorbed by the house, and part is lost to the environment. The amount of
heat lost depends upon several factors, such as the outside temperature and the
wind pressure. Then we have the fact that the gas bill could also be affected by
other factors, such as the international price of oil and gas, the costs/profits for
the company (and its level of greed), and also how tightly the State regulates the
company. We are trying to model all this mess with just a line and two variables!!!
So, taking into account the context of our problems is always a necessity and can
lead us to better interpretation, less risk of making nonsensical statements, and
better predictions; taking into account the context may even give us clues on how to
improve our model.

Understanding and Predicting Data with Linear Regression Models

[126]

Polynomial regression
I hope you are excited about the skills you have learned so far in this chapter. Now
we are going to learn how to fit curves using linear regression. One way to fit curves
using a linear regression model is by building a polynomial like this:

0 1 2 3
0 1 2 3

n
nµ β β β β β= + + + +…x x x x x

If we pay attention, we can see the simple linear model hidden in this polynomial.
To uncover it, all we need to do is to make all the nβ coefficients labeled higher than
1 exactly zero. And then we will get:

0 1
0 1µ β β= +x x

Polynomial regression is still linear regression, the linearity in the model is related to
how the parameters enter in to the model, not the variables.

Let's try building a polynomial regression starting from the simpler polynomial
model (after a constant and line), a parabola.

0 1 2
0 1 2µ β β β= + +x x x

The third term controls the curvature of the relationship.

As a dataset, we are going to use the second group of the anscombe quartet. We are
going to upload this dataset from seaborn and we are going to plot it.

ans = sns.load_dataset('anscombe')
x_2 = ans[ans.dataset == 'II']['x'].values
y_2 = ans[ans.dataset == 'II']['y'].values
x_2 = x_2 - x_2.mean()
y_2 = y_2 - y_2.mean()
plt.scatter(x_2, y_2)
plt.xlabel('x', fontsize=16)
plt.ylabel('y', fontsize=16, rotation=0)

Chapter 4

[127]

with pm.Model() as model_poly:
 alpha = pm.Normal('alpha', mu=0, sd=10)
 beta1 = pm.Normal('beta1', mu=0, sd=1)
 beta2 = pm.Normal('beta2', mu=0, sd=1)
 epsilon = pm.Uniform('epsilon', lower=0, upper=10)

 mu = alpha + beta1 * x_2 + beta2 * x_2**2

 y_pred = pm.Normal('y_pred', mu=mu, sd=epsilon,
 observed=y_2)

 start = pm.find_MAP()
 step = pm.NUTS(scaling=start)
 trace_poly = pm.sample(3000, step=step, start=start)
pm.traceplot(trace_poly)

Understanding and Predicting Data with Linear Regression Models

[128]

Once again, we are going to omit some checks and summaries and just plot the
results, a nice curved line fitting the data almost with no errors. Take into account
the minimalistic nature of the dataset.

x_p = np.linspace(-6, 6)
y_p = trace_poly['alpha'].mean() + trace_poly['beta1'].mean()
 * x_p + trace_poly['beta2'].mean() * x_p**2
plt.scatter(x_2, y_2)
plt.xlabel('x', fontsize=16)
plt.ylabel('y', fontsize=16, rotation=0)
plt.plot(x_p, y_p, c='r')

Chapter 4

[129]

Interpreting the parameters of a polynomial
regression
One of the problems of polynomial regression is the interpretation of the parameters.
If we want to know how y changes per unit change of x , we cannot just check the
value of 1β , because 2β , and higher coefficients if present, had an effect on such a
quantity. So the β coefficients are no longer slopes, they are something else. In the
previous example, 1β is positive and hence the curve begins with a positive slope,
but 2β is negative and hence after a while the line begins to curve downwards. It is
like we have two forces at play, one pushing the line up and the other down. The
interplay depends on the value of x . When xi < ~11, the dominating contribution
comes from 1β , and when xi > ~11 2β dominates.

The problem of interpreting the parameters is not just a mathematical problem,
because this can be solved by careful inspection and understanding of the model.
The problem is that in many cases the parameters are not translated to a meaningful
quantity in our domain knowledge. We cannot relate them with the metabolic rate
of a cell or the energy emitted by a star or the number of bedrooms in a house. They
are just parameters without a clear physical meaning. Such a model could be useful
for predicting but is not very useful for understanding the underlying process that
generates the data. Also in practice, polynomials of order higher than two or three
are not generally very useful models and other models are preferred, such as the
ones we will discuss in Chapter 8, Gaussian Processes.

Understanding and Predicting Data with Linear Regression Models

[130]

Polynomial regression – the ultimate model?
As we saw, we can think of the line as a sub-model of the parabola when 2β is equal
to zero, and a line is also a sub-model of a cubic model when 2β and 3β are equal to
zero. And of course, the parabola is a sub-model of the cubic one when 3β … OK, I
will stop it here, but I think you already notice the pattern. This suggests an algorithm
for using the linear regression model to fit an arbitrary complex model. We build a
polynomial of infinite order and somehow we make most of the coefficients zero until
we get a perfect fit of our data. To test this idea, we can start with a simple example.
Let's use the quadratic model we just built to fit the third set of the Anscombe dataset.
I will wait here while you do that. I am still waiting, do not worry.

OK, if you really did the exercise you will have observed by yourself that it is
possible to use a quadratic model to fit a line. While it may seem the previous simple
experiment validates the idea of building an infinite order polynomial to fit data, we
should curb our enthusiasm. In general, using a polynomial to fit data is not the best
idea. Why? Because it does not matter which data we have. In principle, it is always
possible to find a polynomial to fit the data perfectly! Why is this a problem? Well
that's the subject of Chapter 6, Model Comparison, but spoiler alert! A model that fits
your current data perfectly will in general be a poor description of unobserved data.
The reason is that any real dataset will contain noise and sometimes (hopefully) an
interesting pattern. An arbitrary, over-complex model will fit the noise, leading to
poor predictions. This is known as overfitting and is a pervasive phenomenon in
statistics and machine learning. Polynomial regression makes for a convenient straw
man when it comes to overfitting because it is easy to see the problem and generate
intuition. Nevertheless, with more complex models it is often easy to overfit, even
without realizing. Part of the job, when analyzing data, is to be sure that the model is
not overfitting. We will discuss this topic in detail in Chapter 6, Model Comparison.

Besides the overfitting problem, we generally prefer models we can understand.
The parameters of a line are generally easier to interpret in a physically meaningful
way than the parameters of a cubic model, even if the cubic model explains the data
slightly better.

Chapter 4

[131]

Multiple linear regression
In all previous examples we have been working with one dependent variable
and one independent variable, but in many cases we will find that we have many
independent variables we want to include in our model. Some examples could be:

• Perceived quality of wine (dependent) and acidity, density, alcohol level,
residual sugar, and sulphate content (independent variables)

• Student average grades (dependent) and family income, distance
home-school, and mother education (independent variables)

In such a cases, we will have the mean of the dependent variable modeled as:

1 1 2 2 3 3 m mµ α β β β β= + + + +…x x x x

Notice that this is not exactly the same as the polynomial regression we saw before.
Now we have different variables instead of successive powers of the same variable.

Using linear algebra notation we can write a shorter version:

µ α= + Xβ

Where β is a vector of coefficients of length m, that is, the number of dependent
variables. The variable X is a matrix of size m n× if n is the number of observations
and m is the number of independent variables. If you are a little rusty with your
linear algebra, you may want to check the Wikipedia article about the dot product
between two vectors and its generalization to matrix multiplication. But basically
what you need to know is we are just using a shorter and more convenient way to
write our model:

1 1i i m mβ β β= = + +∑ �β X x x x

Using the simple linear regression model, we find a straight line that (hopefully)
explains our data. Under the multiple linear regression model we find, instead, an
hyperplane of dimension m. Thus, the model for the multiple linear regression is
essentially the same as we use for simple linear regression, the only difference being
that now β is a vector and X is a matrix.

Understanding and Predicting Data with Linear Regression Models

[132]

Let us define our data:

np.random.seed(314)
N = 100
alpha_real = 2.5
beta_real = [0.9, 1.5]
eps_real = np.random.normal(0, 0.5, size=N)

X = np.array([np.random.normal(i, j, N) for i,j in zip([10, 2],
 [1, 1.5])])
X_mean = X.mean(axis=1, keepdims=True)
X_centered = X - X_mean
y = alpha_real + np.dot(beta_real, X) + eps_real

Now we are going to define a convenient function to plot three scatter plots, two
between each independent variable and the dependent variable and the last one
between both dependent variables. Nothing fancy at all, just a function we will
use a couple of times during the rest of this chapter.

def scatter_plot(x, y):
 plt.figure(figsize=(10, 10))
 for idx, x_i in enumerate(x):
 plt.subplot(2, 2, idx+1)
 plt.scatter(x_i, y)
 plt.xlabel('$x_{}$'.format(idx), fontsize=16)
 plt.ylabel('y', rotation=0, fontsize=16)

 plt.subplot(2, 2, idx+2)
 plt.scatter(x[0], x[1])
 plt.xlabel('$x_{}$'.format(idx-1), fontsize=16)
 plt.ylabel('$x_{}$'.format(idx), rotation=0, fontsize=16)

Chapter 4

[133]

Using the scatter_plot function just defined we can visualize our synthetic data:

scatter_plot(X_centered, y)

Now let's use PyMC3 to define a model suitable for multiple linear regression. As
expected, the code looks pretty similar to the one used for simple linear regression.
The main differences are:

• The variable beta is Gaussian with shape two, one slope per each
independent variable.

• We define the variable mu using the function pm.math.dot(), that is, the dot
product or matrix product we mention early from linear algebra.

Understanding and Predicting Data with Linear Regression Models

[134]

If you are familiar with NumPy you probably know that NumPy includes a dot
function, and from Python 3.5 (and from NumPy 1.10) a new matrix operator
@ is also included. Nevertheless, here we use the dot function from PyMC3, which
is just an alias for a Theano matrix multiplication operator. We are doing so because
the variable beta is a Theano tensor and not a NumPy array.

with pm.Model() as model_mlr:
 alpha_tmp = pm.Normal('alpha_tmp', mu=0, sd=10)
 beta = pm.Normal('beta', mu=0, sd=1, shape=2)
 epsilon = pm.HalfCauchy('epsilon', 5)

 mu = alpha_tmp + pm.math.dot(beta, X_centered)

 alpha = pm.Deterministic('alpha', alpha_tmp –
 pm.math.dot(beta, X_mean))

 y_pred = pm.Normal('y_pred', mu=mu, sd=epsilon, observed=y)

 start = pm.find_MAP()
 step = pm.NUTS(scaling=start)
 trace_mlr = pm.sample(5000, step=step, start=start)
varnames = ['alpha', 'beta', 'epsilon']
pm.traceplot(trace_mlr, varnames)

Let's summarize the inferred parameter values for easier analysis of the results.
How well did the model do?

pm.df_summary(trace_mlr, varnames)

Chapter 4

[135]

mean sd mc_error hpd_2.5 hpd_97.5
alpha_0 2.07 0.50 5.96e-03 1.10 3.09

beta_0 0.95 0.05 6.04e-04 0.85 1.05

beta_1 1.48 0.03 4.30e-04 1.43 1.54

epsilon 0.47 0.03 4.63e-04 0.41 0.54

As we can see, our model is capable of recovering the correct values (check the
values used to generate the synthetic data).

In the following sections, we are going to focus on some precautions we should
take when analyzing the results of a multiple regression model, especially the
interpretation of the slopes. One important message to take home is that in a
multiple linear regression, each parameter only makes sense in the context of the
other parameters.

Confounding variables and redundant
variables
Imagine the following situation. We have a variable z correlated with the predictor
variable x and, at the same time, with the predicted variable y . Suppose that the
variable z is the one responsible for causing x and y . For example, z could be the
industrial revolution (a really complex variable!), x the number of pirates, and y
the concentration of CO2; this example should be familiar to the Pastafarian reader.
If we omit z from our analysis, we might end up with a nice linear relation between
x and y and we may even be able to predict y from x . However, if our interest

lies in understating global warming, we could totally miss what is really going
on and we will be missing the mechanism. Remember, we already discussed that
correlation does not imply causation. One reason this relationship is not necessarily
true is that we may be omitting the variable z from our analysis. When this happens,
z is named as a confounding variable or confounding factor. The problem is that
in many real scenarios z is easy to miss. Maybe we did not measure it or it was
not present in the dataset that was sent to us, or we we did not even think it could
possibly be related to our problem. Not taking into account confounding variables in
an analysis could lead us to establish spurious correlations. This is always a problem
when we try to explain things and could also be problematic when we predict
something (and we do not care about understanding the underlying mechanism).
Understanding the mechanism helps us translate what we have learned to new
situations; blind predictions do not always transfer well. For example, the number of
sneakers produced in one country could be used as an easy-to-measure indicator of
the strength of its economy but this could be a terrible predictor for other countries
with a different production matrix or cultural background.

Understanding and Predicting Data with Linear Regression Models

[136]

We are going to use synthetic data to explore the confounding variable issue. In the
following code we are simulating a confounding variable as x_1. Notice how this
variable has influences on x_2 and y.

N = 100
x_1 = np.random.normal(size=N)
x_2 = x_1 + np.random.normal(size=N, scale=1)
y = x_1 + np.random.normal(size=N)
X = np.vstack((x_1, x_2))

Notice that by virtue of the way we create these variables, they are already centered,
as we can easily check with the convenient function we wrote early. Therefore, we do
not need to center the data to speed-up the inference process. In fact for this example
the data is even standardized.

scatter_plot(X, y)

Chapter 4

[137]

We will now use PyMC3 to create the model and sample from it. At this point, this
model should look pretty familiar to you.

with pm.Model() as model_red:
 alpha = pm.Normal('alpha', mu=0, sd=10)
 beta = pm.Normal('beta', mu=0, sd=10, shape=2)
 epsilon = pm.HalfCauchy('epsilon', 5)

 mu = alpha + pm.math.dot(beta, X)

 y_pred = pm.Normal('y_pred', mu=mu, sd=epsilon, observed=y)

 start = pm.find_MAP()
 step = pm.NUTS(scaling=start)
 trace_red = pm.sample(5000, step=step, start=start)

Now let's print the summary for the results as a nice pandas dataframe. We will
focus on the mean value of the beta parameters.

pm.df_summary(trace_red)

mean sd mc_error hpd_2.5 hpd_97.5
alpha 0.01 0.10 1.59e-03 -0.20 0.19

beta_0 0.96 0.16 3.13e-03 0.67 1.29

beta_1 -0.05 0.10 2.06e-03 -0.24 0.14

epsilon 1.00e+00 0.07 1.15e-03 0.87 1.15

Understanding and Predicting Data with Linear Regression Models

[138]

As we can see, beta_1 is close to zero, indicating an almost null contribution of the
x_2 variable to explain y. This is interesting because we already know (check the
synthetic data) that the real important variable is x_1. Anyway, the most interesting
part of this example is yet to come.

Now I need you to do a couple of tests while I rest a little bit. I need you to rerun
the model twice, once including just x_1 (and not x_2) and then including x_2 (and
not x_1). If you check the accompanying code you will see I have included a couple
of commented lines of code to make the thing easier for you. The question is, how
different are the means for the beta coefficients for the three cases?

If you did the experiment, you may have noticed that, besides the exact values you
get for the beta coefficients, 2β is lower for the multiple linear regression than for
the simple linear regression. In other words, the ability of x_2 to explain y is lower
(maybe even null) when x_1 is included in the model.

Multicollinearity or when the correlation is
too high
In the previous example, we saw how a multiple linear regression model reacts to
redundant variables and we saw the importance of considering possible confounding
variables. Now we will take the previous example to an extreme and see what
happens when two variables are highly correlated. To study this problem and its
consequences for our inference, we will use the same synthetic data and model as
before, but now we will increase the degree of correlation between x_1 and x_2 by
decreasing the scale of the random noise we add to x_1 to obtain x_2, that is:

x_2 = x_1 + np.random.normal(size=N, scale=0.01)

This change in the data-generating code is practically equivalent to sum zero to
x_1 and hence both variables are for all practical purposes equal. You can then try
varying the values of the scale and using less extreme values, but for now we want
to make things crystal clear. After generating the new data, check what the scatter
plot looks like; you should see that now the scatter plot for x_1 and x_2 is virtually a
straight line with a slope around 1. Run the model and check the results. In the code
that comes with the book, you will find a few lines to plot a 2D KDE plot for the beta
coefficients. You should see something similar to the following figure:

Chapter 4

[139]

The HPD for beta coefficients is really wide; in fact they are more or less as wide as
the priors allow.

Understanding and Predicting Data with Linear Regression Models

[140]

As we can see, the posterior for beta is a really narrow diagonal. When one beta
coefficient goes up the other must go down. Both are effectively correlated. This
is just a consequence of the model and the data. According to our model the
mean µ is:

1 1 1 2µ α β β= + +x x

If we assume 1x and 2x are not just practically equivalent, but identical, we can
re-write the model as:

()1 2µ α β β= + + x

It turns out that it is the sum of 1β and 2β , and not their separated values, that effects
µ and then the model is indeterminate (or equivalently the data is unable to affects
it). In our example, there are two reason why beta is not free to move between [],−∞ ∞ .
First, both variables are almost the same, but they are not exactly equal; second,
and most important, we have a prior restricting the plausible values that the beta
coefficients can take.

There are a couple of things to notice from this example. First of all, the posterior
is just the logical consequence of our data and model, and hence there is nothing
wrong with obtaining such a wide distribution for beta; it is what it is. Second,
we can rely on this model to make predictions. Try for example making posterior
predictive checks; the values predicted by the model are in agreement with the data.
Once again the model is capturing the data very well. Third, this may be not a very
good model to understand our problem. It may be smarter just to remove one of the
variables from the model. We will end up having a model that predicts the data as
well as before but with an easier (and simpler) interpretation.

Chapter 4

[141]

In any real dataset, correlations are going to exist to some degree. How strongly
should two or more variables be correlated to become a problem? Well 0.9845. No,
just kidding. There is no such magic number. It is possible to do a correlation matrix
before running any Bayesian model and check for variables with a high correlation
of, let's say above 0.9 or so. Nevertheless, the problem with this approach is that
what really matters is not the pairwise correlations we can observe in a correlation
matrix, but the correlation of the variables inside a model; as we already saw,
variables behave differently in isolation than when they are put together in a model.
Two or more variables can increase or decrease their correlation when put in the
context of other variables in a multiple regression model. As always, diagnostic tools,
such as checking the autocorrelation and careful inspection of the posterior, together
with an iterative-critical approach to model building, are highly recommended and
can help us to spot problems and understand the data and models.

What should we do if we find highly correlated variables?

• If the correlation is really high we can eliminate one of the variables from
the analysis; given that both variables have similar information, which one
we eliminate is often irrelevant. We can eliminate variables based on pure
convenience, such as removing the least known variable in our discipline or
one that is harder to interpret or measure.

• Another possibility is to create a new variable averaging the redundant
variables. A more sophisticated version is to use a variable reduction
algorithm such as a principal component analysis. The problem with PCA
is that the resulting variables are linear combinations of the original ones,
obfuscating, in general, the interpretability of the results.

• Yet another solution is to put stronger priors in order to restrict the plausible
values the coefficient can take. In Chapter 6, Model Comparison, we briefly
discuss some choices for such priors, known as regularizing priors.

Understanding and Predicting Data with Linear Regression Models

[142]

Masking effect variables
Another similar situation to the one we saw previously occurs when one of the
predicted variables is positively correlated while the other is negatively correlated
with the predicted variable. Let us create toy data for such a case:

N = 100
r = 0.8
x_0 = np.random.normal(size=N)
x_1 = np.random.normal(loc=x_0 * r, scale=(1 – r ** 2) ** 0.5)
y = np.random.normal(loc=x_0 - x_1)
X = np.vstack((x_0, x_1))
scatter_plot(X, y)

Chapter 4

[143]

with pm.Model() as model_ma:
 alpha = pm.Normal('alpha', mu=0, sd=10)
 beta = pm.Normal('beta', mu=0, sd=10, shape=2)
 epsilon = pm.HalfCauchy('epsilon', 5)

 mu = alpha + pm.math.dot(beta, X)

 y_pred = pm.Normal('y_pred', mu=mu, sd=epsilon, observed=y)

 start = pm.find_MAP()
 step = pm.NUTS(scaling=start)
 trace_ma = pm.sample(5000, step=step, start=start)
pm.traceplot(trace_ma)

Understanding and Predicting Data with Linear Regression Models

[144]

pm.forestplot(trace_ma, varnames=['beta'])

According to the posterior the values of beta are close to 1 and -1. That is, x_1 is
positively correlated with y and x_2 is negatively correlated. Now we are going to
repeat the analysis, but this time (probably you already guess) we are going to do so
for each separated variable.

For each separated variable, we saw that β is close to zero. In isolation, each x
variable is not good for predicting y. Instead, when we combine them they can be
used to predict y! When x_1 increases x_2 also increases and when x_2 increases
y decreases. Thus, if we just look at x_1 omitting x_2 we will declare that y barely
increases when x_1 increases and that y barely decreases when x_2 increases.
Each dependent variable has an opposite effect on the dependent variable and the
dependent variables are correlated, thus omitting one of them from the analysis will
result in an underestimation of the real effects.

Adding interactions
So far in the definition of the multiple regression model it is declared (implicitly) that
a change in 1x results in a constant change in y while keeping fixed the values for
the rest of the predictor variables. But of course this is not necessarily true. It could
happen that changes in 2x affect y modulated by changes in 1x . A classic example
of this behavior is the interaction between drugs. For example, increasing the dose
of drug A results in a positive effect on a patient. This is true in the absence of drug
B (or for low doses of B) while the effect of A is negative (even lethal) for increasing
doses of B.

Chapter 4

[145]

In all the examples we have seen so far, the dependent variables contribute
additively to the predicted variable; we just add variables (each one multiplied
by a coefficient). If we wish to capture effects, like in the drug example, we need
to include terms in our model that are not additive and one option is to multiply
variables, for example:

1 1 2 2 3 1 2µ α β β β= + + +x x x x

Notice that the 3β coefficient is multiplying a third variable that is the result of
multiplying 1x and 2x . This non-additive term is an example of what is know in
statistics as interactions, because they model the interactions between variables
(drugs in our example). There are different functional forms for modeling
interactions; multiplication is a pretty common one.

In a multiple regression model without interactions we get a hyperplane, that is, a
flat hypersurface. An interaction term introduces a curvature in such a hypersurface.

The GLM module
Linear models are widely used in statistics and machine learning. For that reason,
PyMC3 includes a module named glm, which stand for generalized linear model, the
name will become clear in the next chapter. The glm module simplifies writing linear
models. For example, a simple linear regression will be:

with Model() as model:
 glm.glm('y ~ x', data)
 trace = sample(2000)

The second line of the preceding code takes care of adding default flat priors for the
intercept and for the slope and a Gaussian likelihood. These are OK if you just want
to run a default linear regression. Note that the MAP of this model will be essentially
equivalent to the one obtained using the (frequentist) ordinary least square method.
If you need to, you can also use the glm module and change priors and likelihoods.
If you are not familiar with R's syntax, 'y ~ x' specifies that we have an output
variable y that we want to estimate as a linear function of x . The glm module also
includes a function to make posterior predictive plots.

Understanding and Predicting Data with Linear Regression Models

[146]

Summary
We learned that linear regression is one of the most widely used models in
statistics and machine learning and it is also the building block of several more
complex methods. This is a widely used model and different people tend to give
different names to the same concept or object. Thus, we first introduced some
commonly used vocabulary in statistics and machine learning. We studied the
core of the linear model, an expression to connect an input variable to an output
variable. In this chapter, we performed that connection using Gaussian and
Student's t-distributions and in future chapters we will extend this model to other
distributions. We dealt with computational problems and how to fix them by
centering and/or standardizing the data and we had the opportunity to clearly see
the advantages of using NUTS over Metropolis sampler. We adapted the hierarchical
model introduced in the past chapter to simple linear regression. We also explored
polynomial regression to fit curved lines and we discussed some of the problems
with these models; we anticipate the main topic of Chapter 6, Model Comparison. We
also discussed how to perform linear regression with more than one input variable
and took some time to discuss precautions that we should take when interpreting
linear models. In the next chapter, we will see how to extend the linear regression
model to classify data.

Keep reading
• Statistical Rethinking by Richard McElreath. Chapter 4 and 5
• Doing Bayesian Data Analysis, Second Edition by John Kruschke. Chapter 17

and 18
• An Introduction to Statistical Learning. Gareth James and others (second

edition). Chapter 4
• Bayesian Data Analysis, Third Edition by Andrew Gelman and others.

Chapter 14-17
• Machine Learning: A probabilistic Probabilistic Perspective by Kevin P. Murphy.

Chapter 7
• Data Analysis Using Regression and Multilevel/Hierarchical Models by Andrew

Gelman and Jeniffer Hill

Chapter 4

[147]

Exercises
1. Choose a dataset that you find interesting and use it with the simple linear

regression model. Re-run the plots and also compute the Pearson correlation
coefficient with the different methods. If you do not have one, try searching
online, for example at http://data.worldbank.org/ or http://www.stat.
ufl.edu/~winner/datasets.html.

2. Read and run the following example from PyMC3's documentation
https://pymc-devs.github.io/pymc3/notebooks/LKJ.html.

3. For the unpooled model change the value of the sd of the beta prior; try
values of 1 and 100. Explore how the estimated slopes change for each group.
Which group is the more affected by this change?

4. See in the accompanying code the model_t2 (and the data associated with it).
Experiment with priors for nu. Like the non-shifted exponential and gamma
priors (they are commented in the code). Plot the prior distributions to be
sure do you understand them; an easy way to do this is to just comment the
likelihood in the model and check the traceplot.

5. Read and run the following example http://pymc-devs.github.io/
pymc3/notebooks/NUTS_scaling_using_ADVI.html.

6. Reduce the number of iterations of ADVI (currently at 100000), for example
to 10000. What is the effect on the number of iterations per second of NUTS?
Check also the traceplot to see the effect on the sampled values and plot
the values of elbo. Replace ADVI in other models where we previously used
find_MAP(). Did you always observe a benefit?

7. Run the model_mlr example, but without centering the data. Compare the
uncertainty in the alpha parameter for one case and the other. Can you
explain these results? Tip: remember the definition of the alpha parameter
(the intercept).

8. Read and run the following notebooks from PyMC3's documentation:
 ° https://pymc-devs.github.io/pymc3/notebooks/GLM-linear.

html

 ° https://pymc-devs.github.io/pymc3/notebooks/GLM-robust.
html

 ° https://pymc-devs.github.io/pymc3/notebooks/GLM-
hierarchical.html

9. Remember to actually run the exercises proposed for the multiple linear
regression models.

[149]

Classifying Outcomes
with Logistic Regression

In the last chapter, we learned the core of the linear regression model; in such a
model we assume the predicted variable is quantitative (or metric). In this chapter,
we will learn how to deal with qualitative (or categorical) variables, such as colors,
gender, biological species, political party/affiliation, just to name a few examples.
Notice that some variables can be codified as quantitative or as qualitative; for
example, we can talk about the categorical variables red and green if we are talking
about color names or the quantitative 650 nm and 510 nm if we are talking about
wavelengths. One of the problems when dealing with categorical variables is
assigning a class to a given observation; this problem is known as classification
and is a supervised problem since we have a sample of already classified instances
and the task is basically about predicting the correct class for new instances and/
or learning about the parameters of the model that describe the mapping between
classes and features.

In the present chapter, we will explore:

• Logistic regression and inverse link functions
• Simple logistic regression
• Multiple logistic regression
• The softmax function and the multinomial logistic regression

Classifying Outcomes with Logistic Regression

[150]

Logistic regression
My mother prepares a delicious dish called sopa seca, which is basically a spaghetti-
based recipe and which translates literally from Spanish as dry soup. While it may
sound like a misnomer or even an oxymoron, the name of the dish makes more sense
when we learn how it is cooked. Something similar happens with the logistic regression,
a model that despite its name is used to solve classification problems rather than
regression ones. The logistic regression model is an extension of the linear regression
models we saw in the previous chapter, and thus its name. To understand how we can
use a regression model to classify, let us began by rewriting the core of the linear model
but this time including a small twist as follows:

()fµ α β= + X

Where, f is some function known to us as the inverse link function. Why do we
call f the inverse link function instead of just the link function? The reason is that
traditionally people thought about these kinds of functions as functions linking the
output variable to the linear model, but as you will see, when building Bayesian
models it may be easier to think the link goes the other way around, from the linear
model to the output variable. Thus, to avoid confusion we are going to talk about the
inverse link function. All the linear models from the previous chapter also included
an inverse link function, but we omitted writing it since it was the identity function.
That is, a function that returns the same value used as its argument. The identity
function may not be very useful on its own, but it allows us to think of several
different models in a more unified way. In principle, many functions can work as an
inverse link function, but given the name of the chapter, we are going to focus on the
logistic function, which we write as:

() ()
1

1
logistic z

exp z
=

+ −

The key property of the logistic function, from the classification perspective, is that
irrespective of the values of its argument, z, the logistic function always returns
a value between 0 and 1. So this function compresses the whole real line into the
interval [0, 1]. This function is also known as the sigmoid function, because of its
characteristic S-shaped aspect, as we can see by executing the next few lines:

z = np.linspace(-10, 10, 100)
logistic = 1 / (1 + np.exp(-z))
plt.plot(z, logistic)
plt.xlabel('z', fontsize=18)
plt.ylabel('$logistic(z)$', fontsize=18)

Chapter 5

[151]

The logistic model
Now that we know how the logistic function looks, we will continue by learning how
it can help us to classify outcomes. Let us begin with a simple case when we have
only two classes or instances, for example, ham-spam, safe-unsafe, cloudy-sunny,
healthy-ill, and so on. First we codify these classes, saying that the predicted variable
y can only take two values 0 or 1, that is, { }0,1y∈ . Stated in this way, the problem

begins to sound similar to the coin-flipping problem from the first two chapters, and
we may remember that we used the Bernoulli distribution as the likelihood. The
difference is that now θ is not going to be generated from a beta distribution; instead
θ is going to be defined by a linear model. A linear model could potentially return
any value from the real line, but the Bernoulli distribution is expecting values limited
to the interval [0, 1]. So we use the inverse link function to put the values returned
by the linear model in a range suitable to the Bernoulli distribution, effectively
transforming a linear regression model into a classification model:

()
()

log istic

y Bern

θ α β

θ

= +

∼

X

Classifying Outcomes with Logistic Regression

[152]

The following Kruschke diagram shows the logistic regression model including,
as it should be, the priors. Notice that the main difference with the simple linear
regression is the use of a Bernoulli distribution instead of a Gaussian distribution (or
Student's t-distribution) and the use of the logistic function that allows us to generate
a θ parameter in the range [0, 1], suitable for feeding the Bernoulli distribution:

�
�

�
�

�
�

normal normal
�

logistic X()���

� �

�

�

Bernouli

y

=

The iris dataset
We are going to apply the logistic regression to the iris dataset. So before working
on the model, we are going to explore the data. The iris dataset is a classic dataset
containing information about the flowers of three species from the genus iris:
these are setosa, virginica, and versicolor. These are going to be our dependent
variables, the classes we want to predict. We have 50 individuals of each species
and for each individual the dataset contains four variables (or features, as it is more
common to say in a machine learning setting). These four variables are going to be
our independent variables and they are the petal length, the petal width, the sepal
length, and the sepal width. Sepals are modified leaves, whose function is generally
related to protecting the flowers in bud. The iris dataset is distributed with seaborn
and we can put it into a Pandas dataframe by doing the following:

iris = sns.load_dataset("iris")
iris.head()

sepal_length sepal_width petal_length petal_width species
0 5.1 3.5 1.4 0.2 setosa

1 4.9 3.0 1.4 0.2 setosa

Chapter 5

[153]

sepal_length sepal_width petal_length petal_width species
2 4.7 3.2 1.3 0.2 setosa

3 4.6 3.1 1.5 0.2 setosa

Now we will plot the three species versus the sepal_length using the stripplot
function from seaborn:

sns.stripplot(x="species", y="sepal_length", data=iris,
 jitter=True)

Notice in the stripplot figure that the y axis is continuous while the x axis is
categorical; the dispersion (or jitter) of the points along the x axis has no meaning
at all, and is just a trick we add, using the jitter argument, to avoid having all the
points collapsed onto a single line. Try setting the jitter argument to False to see
what I mean. The only thing that matters when reading the x axis is the membership
of the points to the classes setosa, versicolor, or virginica. You may also try
other plots for this data, such as violin plots, which are also available as one-liners
with seaborn.

Classifying Outcomes with Logistic Regression

[154]

Another way to inspect the data is by doing a scatter matrix with pairplot. We have
a scatter plot arranged in a 4x4 grid, since we have four features in the iris dataset.
The grid is symmetrical, with the upper and lower triangles showing the same
information. Since the diagonal scatter plot should correspond to the variable against
itself, we have replaced those scatter plots with a kde plot for each feature. Inside
each subplot, we have the three species (or classes) represented with a different
color, the same used in the previous plot:

sns.pairplot(iris, hue='species', diag_kind='kde')

Before continuing, take some time to study the previous plots and to try to get
familiar with the dataset and how the variables and classes are related.

Chapter 5

[155]

The logistic model applied to the iris dataset
We are going to begin with the simplest possible classification problem: two classes,
setosa and versicolor, and just one independent variable or feature, the sepal
length. As is usually done, we are going to encode the categorical variables setosa
and versicolor (with the numbers 0 and 1). Using Pandas, we can do:

df = iris.query(species == ('setosa', 'versicolor'))
y_0 = pd.Categorical(df['species']).codes
x_n = 'sepal_length'
x_0 = df[x_n].values

Now that we have the data in the proper format, we can finally build the model
with PyMC3. Notice how the first part of the following model resembles a linear
regression model. Also pay attention to the two deterministic variables; theta and
bd. theta is the result of applying the logistic function to the variable mu and bd is
the boundary decision, the value used to separate between classes; we will discuss
it later in detail. Another point worth mentioning is that instead of explicitly writing
the logistic function as follows, we could have called the Theano function sigmoid.
This function is aliased in PyMC3 as pm.math.sigmoid.

As with other linear models, centering and/or standardizing the data can help with
the sampling. Nevertheless, for this example we are going to proceed without further
modification of the data:

with pm.Model() as model_0:
 alpha = pm.Normal('alpha', mu=0, sd=10)
 beta = pm.Normal('beta', mu=0, sd=10)

 mu = alpha + pm.dot(x_0, beta)
 theta = pm.Deterministic('theta', 1 / (1 + pm.math.exp(-mu)))
 bd = pm.Deterministic('bd', -alpha/beta)

 yl = pm.Bernoulli('yl', theta, observed=y_0)
 start = pm.find_MAP()
 step = pm.NUTS()
 trace_0 = pm.sample(5000, step, start)
chain_0 = trace_0[1000:]
varnames = ['alpha', 'beta', 'bd']
pm.traceplot(chain_0, varnames)

Classifying Outcomes with Logistic Regression

[156]

As usual, we also print the summary of the posterior. Later we will compare the value
we get for the boundary decision with a value computed using another method.

pm.df_summary(trace_0, varnames)

mean sd mc_error hpd_2.5 hpd_97.5
alpha -23.49 4.07 1.77e-01 -31.38 -15.72

beta 4.34 0.75 3.28e-02 2.88 5.75

bd 5.42 0.07 1.09e-03 5.27 5.55

Now we are going to plot the data together with the fitted sigmoid (S-shaped) curve:

theta = trace_0['theta'].mean(axis=0)
idx = np.argsort(x_0)
plt.plot(x_0[idx], theta[idx], color='b', lw=3);
plt.axvline(trace_0['bd'].mean(), ymax=1, color=''r'')
bd_hpd = pm.hpd(trace_0['bd'])
plt.fill_betweenx([0, 1], bd_hpd[0], bd_hpd[1], color='r',
 alpha=0.5)

plt.plot(x_0, y_0, 'o', color='k')
theta_hpd = pm.hpd(trace_0['theta'])[idx]
plt.fill_between(x_0[idx], theta_hpd[:,0], theta_hpd[:,1],
 color='b', alpha=0.5)

plt.xlabel(x_n, fontsize=16)
plt.ylabel(r'θ', rotation=0, fontsize=16)

Chapter 5

[157]

The preceding figure shows the sepal length versus the flower species
(setosa = 0, versicolor =1). A blue S-shaped line is the mean value of theta. This line
can be interpreted as the probability of a flower being versicolor given that we
know the value of the sepal length or, in general, p(y = 1|x). The semi-transparent
blue band is the 95% HPD interval. Notice that in this sense, logistic regression is
actually a regression since we are regressing the probability that a data point belongs
to class 1, given a feature (or a linear combination of features, as we will see soon).
Nevertheless we should keep present that we are observing only a dichotomous
variable and inferring the continuous probability. Then we introduce a rule to turn
that continuous probability into a class 0-1 response. The boundary decision is
represented as a red line in the plot together with its corresponding 95% HPD as a
red band. According to the boundary decision, the x values (sepal length in this
case) to the left corresponds to the class 0 (setosa), and the values to the right to the
class 1 (versicolor). This decision boundary is defined as the value of ix , for which
y = 0.5. And it turns out to be α

β
− , as we can derive as follows:

From the definition of the model we have the relationship:

()logisticθ α β= + X

And from the definition of the logistic function, we have that 0.5θ = , when the
argument of the logistic regression is 0, that is:

()0.5 0i ilogistic x xα β α β= + ⇔ = +

Classifying Outcomes with Logistic Regression

[158]

Reordering the preceding equation, we find that the value ix , for which, 0.5θ =
corresponds to the expression:

ix
α
β

= −

It is worth mentioning that the boundary decision is a scalar, that is, a single number.
This makes sense since we are working with unidimensional data. Therefore, we
just need a scalar to divide the data into two groups or classes. It is very important
to remark that while this boundary decision may sound reasonable, there is nothing
special about the value 0.5, other than that it is just the number in the middle
between 0 and 1. We may argue this boundary is only reasonable if we are OK about
making a mistake either in one direction or the other, in other words, if it is the same
for us to misclassify a setosa as a versicolor or a versicolor as a setosa. It turns out
that this is not always the case, and the cost associated to the misclassification does
not need to be symmetrical.

Making predictions
Once we have the α and β parameters we can use them to classify new data. We can
create a function that, given the sepal length, returns the probability of a flower being
versicolor instead of setosa. A very rudimentary function, just as a proof of concept, is:

def classify(n, threshold):
 """
 A simple classifying function
 """
 n = np.array(n)
 mu = trace_0['alpha'].mean() + trace_0['beta'].mean() * n
 prob = 1 / (1 + np.exp(-mu))
 return prob, prob > threshold
classify([5, 5.5, 6], 0.4)

It is clear from the previous example that it is not possible to unambiguously classify
the classes setosa and versicolor based on the sepal length feature alone. This is
not surprising; in fact it becomes evident if we paid attention to the joinplot we did
previously. Observe that according to our data, versicolor flowers can have sepals as
short as ~4.9 and setosa flowers as large as ~5.8. In other words, there is an overlap
of the sepal length values for setosa and versicolor in the range ~4.9 to ~5.8.

What will happen if we use one of the other variables? Check exercise 1 to explore
this question.

Chapter 5

[159]

Multiple logistic regression
In a similar fashion as with the multiple linear regression, the multiple logistic
regression is about using more than one independent variable. Let us try combining
the sepal length and the sepal width. Remember that we need to pre-process the data
a little bit:

df = iris.query(species == ('setosa', 'versicolor'))
y_1 = pd.Categorical(df['species']).codes
x_n = ['sepal_length', 'sepal_width']
x_1 = df[x_n].values

The boundary decision
Feel free to skip this section and jump to the model implementation if you are not
much interested in how we can derive the boundary decision.

From the model, we have the following:

()0 0 1 1logisticθ α β β= + +x x

And from the definition of the logistic function, we have 0.5θ = , when the argument
of the logistic regression is zero, that is:

()0 0 1 1 0 0 1 10.5 0logistic α β β α β β= + + ⇔ = + +x x x x

Reordering, we find the value of 1x for which 0.5θ = corresponds to the following
expression:

0
1 0

1 1

βα
β β

= − + −

x x

This expression for the boundary decision has the same mathematical form as
a line equation, with the first term being the intercept and the second the slope.
The parentheses are used for clarity and we can omit them if we wish. The
boundary being a line is totally reasonable, isn't it? If we have one feature, we have
uni-dimensional data and we can split it into two groups using a point; if we have
two features, we have a two-dimensional data-space and we can separate it using a
line; for three dimensions, the boundary will be a plane, and for higher dimensions,
we will talk generically about hyperplanes. In fact, a hyperplane is a general concept
defined roughly as the subspace of dimension n-1 of an n-dimensional space, so we
can always talk about hyperplanes!

Classifying Outcomes with Logistic Regression

[160]

Implementing the model
To write the multiple logistic regression model using PyMC3, we take advantage of
its vectorization capabilities, allowing us to introduce only minor modifications to
the previous simple logistic model:

with pm.Model() as model_1:
 alpha = pm.Normal('alpha', mu=0, sd=10)
 beta = pm.Normal('beta', mu=0, sd=2, shape=len(x_n))

 mu = alpha + pm.math.dot(x_1, beta)
 theta = 1 / (1 + pm.math.exp(-mu))
 bd = pm.Deterministic('bd', -alpha/beta[1] -
 beta[0]/beta[1] * x_1[:,0])

 yl = pm.Bernoulli('yl', p=theta, observed=y_1)

 trace_1 = pm.sample(5000)
chain_1 = trace_1[100:]
varnames = ['alpha', 'beta']
pm.traceplot(chain_1)

Notice in the preceding figure that now we do not get a single curve for the
boundary decision as we did in the previous example. Now we get 100 curves,
one for each data point.

Chapter 5

[161]

As we did for a single predictor variable, we are going to plot the data and the
decision boundary. In the following code we are going to omit plotting the sigmoid
curve (that is now a 2D curve). If you want, go ahead and make a 3D plot with the
sigmoid curve embedded:

idx = np.argsort(x_1[:,0])
bd = chain_1['bd'].mean(0)[idx]
plt.scatter(x_1[:,0], x_1[:,1], c=y_0)
plt.plot(x_1[:,0][idx], bd, color='r');

bd_hpd = pm.hpd(chain_1['bd'])[idx]
plt.fill_between(x_1[:,0][idx], bd_hpd[:,0], bd_hpd[:,1],
 color='r', alpha=0.5);

plt.xlabel(x_n[0], fontsize=16)
plt.ylabel(x_n[1], fontsize=16)

Classifying Outcomes with Logistic Regression

[162]

The boundary decision is a straight line, as we have already seen. Do not get
confused by the curved aspect of the 95% HPD band. The apparent curvature is the
result of having multiple lines pivoting around a central region, which is roughly
the narrower part of the HPD band. Remember we saw something similar in the
previous chapter, although probably less obvious.

Dealing with correlated variables
We know from the previous chapter that tricky things await us when we deal with
(highly) correlated variables. For example, what will be the result of running the
previous model but this time using the variables petal width and petal length?

If you did the previous exercise, you may have noticed the beta coefficients are
broader now than before and also the 95% HPD (red band in the previous plot)
is now much wider. The following heat map shows that for the sepal length and
sepal width variables (used in the first example), the correlation is not as high as the
correlation between the petal length and petal width variables (used in the second
example). As we saw, correlated variables translate into wider combinations of
coefficients that are able to explain the data, or from the complementary point of
view, correlated data has less power to restrict the model. A similar problem occurs
when the classes become perfectly separable, that is, when there is no overlap
between classes given the linear combination of variables in our model. As we
saw, one solution is to avoid using correlated variables, but this solution may not
be adequate. Another option is to put more information into the prior; this can be
archived using informative priors if we have useful information, or more generally,
using weakly informative priors. Andrew Gelman and the Stan Team recommend
using the following prior when performing logistic regression:

()0, ,Student t v sβ ∼

Here s should be chosen in order to weakly inform about the expected values for
the scale. The normality parameter ν is suggested to be around 3-7. What this prior
is saying is that we expect the coefficient to be small, but we put fat tails because
this leads us to a more robust model than using a Gaussian distribution. Remember
our discussion about robust models in Chapter 3, Juggling with Multi-Parametric
and Hierarchical Models and Chapter 4, Understanding and Predicting Data with Linear
Regression Models:

corr = iris[iris['species'] != 'virginica'].corr()
mask = np.tri(*corr.shape).T
sns.heatmap(corr.abs(), mask=mask, annot=True)

Chapter 5

[163]

In the preceding plot, we have used a mask to remove the upper triangle and the
diagonal elements of the heat map, because these are uninformative or redundant.
Also notice that we have plotted the absolute value of the correlation, since at this
moment we do not care about the sign of the correlation between variables, only
about its strength.

Dealing with unbalanced classes
One of the nice features of the iris dataset is that it is completely balanced, in the
sense that each category has exactly the same number of subjects (or instances). We
have 50 setosas, 50 versicolors, and 50 virginicas. This is something to thank Fisher
for, unlike his dedication to popularizing the use of p-values ;-). In practice, many
datasets consist of unbalanced data, that is, there are many more data points from
one class than from the other. When this happens, logistic regression can run into
trouble, namely, the boundary cannot be determined as accurately as when the
dataset is more balanced.

Classifying Outcomes with Logistic Regression

[164]

To see an example of this behavior, we are going to use the iris dataset and we are
going to arbitrarily remove some data points from the setosa class:

df = iris.query(species == ('setosa', 'versicolor'))
df = df[45:]
y_3 = pd.Categorical(df['species']).codes
x_n = ['sepal_length', 'sepal_width']
x_3 = df[x_n].values

And then we are going to run a multiple logistic regression just as before. You can
actually do it with your computer. Instead I am just going to plot the results here:

idx = np.argsort(x_3[:,0])
bd = trace_3['bd'].mean(0)[idx]
plt.scatter(x_3[:,0], x_3[:,1], c=y_3)
plt.plot(x_3[:,0][idx], bd, color='r');

bd_hpd = pm.hpd(trace_3['bd'])[idx]
plt.fill_between(x_3[:,0][idx], bd_hpd[:,0], bd_hpd[:,1], color='r',
alpha=0.5);

plt.xlabel(x_n[0], fontsize=16)
plt.ylabel(x_n[1], fontsize=16)

Chapter 5

[165]

The boundary decision is now shifted toward the less abundant class and the
uncertainty is larger than before. This is the typical behavior of a logistic model for
unbalanced data. It can be even worse when the classes do not have a nice gap like
in this example and there is more overlap between them. But wait a minute! You
may argue that I am cheating here since the wider uncertainty could be the product
of having less total data and not just less setosas than versicolors! That could be
a valid point; try doing exercise two to verify that what explains this plot is the
unbalanced data.

How do we solve this problem?
Well, the obvious solution is to get a dataset with roughly the same number of data
points per class. So this can be important to have in mind if you are collecting or
generating the data. If you have no control over the dataset, then be careful when
interpreting the result for unbalanced data. Check the uncertainty of the model and
run some posterior predictive checks to see if the results are useful to you. Another
option will be to put more prior information, if available, and/or run an alternative
model as explained later in this chapter.

Interpreting the coefficients of a logistic
regression
We must be careful when interpreting the coefficient of a logistic regression because
the logistic inverse link function introduce non-linearities.

()logisticθ α β= + X

The inverse of the logistic is the logit function, which is:

()
1
zlogit z log
z

 = −

Thus, if we take the first equation in this section and apply the logit function to both
terms, we get:

()logit θ α β= + X

Classifying Outcomes with Logistic Regression

[166]

Or equivalently:

1
log θ α β

θ
 = + −

X

Remember that θ in our model was the probability of y=1, thus:

()
()
1

1 1
p y

log
p y

α β
 =

= + − =
X

The quantity
()
()
1

1 1
p y
p y

=
− = is known as the odds. The odds are an alternative way to

represent probabilities. While the probability of getting 2 by rolling a fair die is
1/6, the odds for the same event are 1 to 5 (or equivalently 0.2), that is, we have
one favorable event and five unfavorable events. Besides, odds are often used by
gamblers because odds provide a more intuitive tool than raw probabilities when
thinking about the proper way to bet.

Going back to the logistic regression, we can see the coefficient β indicates the
increase in the log odds by unit increase of the x variable. It is important to remark
that β does not indicate how much p(y=1) will change with an increase of x since
the relationship between x and p(y=1) is not linear. If β is positive, increasing x will
increase p(y=1) by some amount, but the amount will depend on the current value of
x. This is reflected by the S-shaped line in the first plot we did; the slope of y versus
x changes with x, while the slope of log odds versus x is a linear function.

Generalized linear models
So let's summarize what we have done in this chapter so far and how it is related to
the linear regression model we saw in the previous chapter. What we have done is
extend the model to deal with categorical data instead of quantitative data. We have
done this by introducing the concept of the inverse link function and by replacing
the Gaussian distribution with another one (the Bernoulli distribution). In summary,
we have adapted the simple linear model from the previous chapter to a different
data/problem by introducing changes into the likelihood, priors, and the inverse link
function connecting both.

Chapter 5

[167]

The logistic model is not the only possible extension of the linear regression model.
In fact, there is a whole family of models that can be considered generalizations of
the linear model and these are known as generalized linear models (GLMs). Some
GLMs very commonly used in statistics are:

• The softmax regression (that we will see next), an extension of the logistic
regression for more than two classes.

• The ANalysis Of VAriance (ANOVA), where we have a quantitative
predicted variable and more than two categorical predictors. The ANOVA
is a model used to compare between groups in a similar fashion as what we
saw in Chapter 3, Juggling with Multi-Parametric and Hierarchical Models, but
using a model framed as a linear regression.

• The Poisson regression and other models for counting data. We will see a
variation of the Poisson regression model in Chapter 7, Mixture Models.

If you want to learn more about this, specially the ANOVA model, which we will
not cover in this book, I highly recommend the book Doing Bayesian Data Analysis by
John Kruschke, where he does an excellent job describing how to build many Bayesian
models from the GLM family.

Softmax regression or multinomial logistic
regression
We saw how to classify outcomes when we have two classes, and now we are going
to generalize what we learned to more than two classes. One way of doing it is
by creating a multinomial (instead of binomial) logistic regression. This model is
also known as softmax regression, since we use the softmax function instead of the
logistic. The softmax function is as follows:

() ()
()
i

i
k

exp
softmax

exp
µ

µ
µ

=
∑

Classifying Outcomes with Logistic Regression

[168]

Notice that to obtain the output of the softmax function for the i-esim element of a
vector µ , we take the exponential of the i-esim value divided by the sum of all the
exponentiated values in the µ vector. The softmax guarantees that we will get positive
values that sum up to 1. The softmax function is reduced to the logistic function
when k=2. As a side note, the softmax function has the same form as the Boltzmann
distribution used in statistical mechanics, a very powerful branch of physics dealing
with the probabilistic description of molecular systems. The Boltzmann distribution
(and the softmax in some fields) has a parameter call temperature (T) dividing µ in
the preceding equation; when T →∞ the probability distribution becomes flat and all
states are equally likely, and when 0T → only the most probable state gets populated,
and hence the softmax behaves like a max function, which clarifies its name.

The other difference between the softmax regression model and logistic regression
is that we replace the Bernoulli distribution with the categorical distribution. The
categorical distribution is the generalization of the Bernoulli to more than two
outcomes. Also, as the Bernoulli distribution (single coin flip) is a special case of the
Binomial (N coin flips), the categorical (single roll of a die) is a special case of the
multinomial distribution (N rolls of a die). You may try this brain teaser with your
nieces and nephews!

�
�

�
�

�
�

normal normal
�

softmax X()���

� �

�

�

y

=

categorical

Chapter 5

[169]

We are going to continue working with the iris dataset, only this time we are
going to use its three classes (setosa, versicolor, and virginica) and its four
features (sepal length, sepal width, petal length, and petal width). We are also going
to standardize the data, since this will help the sampler to run more efficiently (we
could have also just centered the data):

iris = sns.load_dataset('iris')
y_s = pd.Categorical(iris['species']).codes
x_n = iris.columns[:-1]
x_s = iris[x_n].values
x_s = (x_s – x_s.mean(axis=0))/x_s.std(axis=0)

The PyMC3 code reflects the few changes between the logistic and softmax model.
Notice the shapes of the alpha and beta coefficients. Here we have used the softmax
function from Theano; we have used the idiom import theano.tensor as tt,
which is the convention used by the PyMC3 developers:

with pm.Model() as model_s:
 alpha = pm.Normal('alpha', mu=0, sd=2, shape=3)
 beta = pm.Normal('beta', mu=0, sd=2, shape=(4,3))

 mu = alpha + pm.dot(x_s, beta)

 theta = tt.nnet.softmax(mu)

 yl = pm.Categorical('yl', p=theta, observed=y_s)
 start = pm.find_MAP()
 step = pm.NUTS()
 trace_s = pm.sample(2000, step, start)
pm.traceplot(trace_s)

Classifying Outcomes with Logistic Regression

[170]

How well does our model perform? Let us find out by checking how many cases we
can predict correctly. In the following code, we just use the mean of the parameters to
compute the probability of each data point to belong to each of the three classes, then
we assign the class by using the argmax function. And we compare the result with
the observed values:

data_pred = trace_s['alpha'].mean(axis=0) + np.dot(x_s,
 trace_s['beta'].mean(axis=0))
y_pred = []
for point in data_pred:
 y_pred.append(np.exp(point)/np.sum(np.exp(point), axis=0))
np.sum(y_s == np.argmax(y_pred, axis=1))/len(y_s)

The result is that we classify correctly ~98% of the data points, that is, we miss only
three cases. That is really a very good job. Nevertheless, a true test to evaluate the
performance of our model will be to test it on data not fed to the model. Otherwise,
we will be most probably overestimate its abilities to generalize to other data. We
will discuss this subject in detail in the next chapter. For now we will leave this just
as an auto-consistency test indicating that the model runs OK.

You may have noticed that the posterior, or more properly, the marginal distributions
of each parameter, are very wide; in fact they are as wide as indicated by the priors.
Even when we were able to make correct predictions, this does not look OK. This
is the same non-identifiability problem we have already encountered for correlated
data in linear/logistic regression or with perfectly separable classes. In this case, the
wide posterior is due to the condition that all probabilities must sum to 1. Given this
condition, we are using more parameters than we need to fully specify the model.
In simple terms, if you have 10 numbers that sum to 1, you just need to give me 9 of
them; the other I can compute. One solution is to fix the extra parameters to some
value, for example, zero. The following code shows how to achieve this using PyMC3:

with pm.Model() as model_sf:
 alpha = pm.Normal('alpha', mu=0, sd=2, shape=2)
 beta = pm.Normal('beta', mu=0, sd=2, shape=(4,2))

 alpha_f = tt.concatenate([[0] , alpha])
 beta_f = tt.concatenate([np.zeros((4,1)) , beta], axis=1)

 mu = alpha_f + pm.math.dot(x_s, beta_f)
 theta = tt.nnet.softmax(mu)

 yl = pm.Categorical('yl', p=theta, observed=y_s)
 start = pm.find_MAP()
 step = pm.NUTS()
 trace_sf = pm.sample(5000, step, start)

Chapter 5

[171]

Discriminative and generative models
So far we have discussed logistic regression and a few extensions of it. In all cases,
we tried to directly compute p(x | y), that is, the probability of a given class
knowing x , which is some feature we measured to members of that class. In other
words, we try to directly model the mapping from the independent variables to
the dependent ones and then use a threshold to turn the (continuous) computed
probability into a boundary that allows us to assign classes.

This approach is not unique. One alternative is to model first p(x | y), that is, the
distribution of x for each class, and then assign the classes. This kind of model is
called a generative classifier because we are creating a model from which we can
generate samples from each class. On the contrary, logistic regression is a type of
discriminative classifier since it tries to classify by discriminating classes but we
cannot generate examples from each class.

We are not going to go into much detail here about generative models for
classification, but we are going to see one example that illustrates the core of this
type of model for classification. We are going to do it for two classes and only one
feature, exactly as the first model we built in this chapter, using the same data.

Following is a PyMC3 implementation of a generative classifier. From the code,
you can see that now the boundary decision is defined as the average between
both estimated Gaussian means. This is the correct boundary decision when the
distributions are normal and their standard deviations are equal. These are the
assumptions made by a model known as linear discriminant analysis (LDA).
Despite its name, the LDA model is generative:

with pm.Model() as lda:

 mus = pm.Normal('mus', mu=0, sd=10, shape=2)

Classifying Outcomes with Logistic Regression

[172]

 sigmas = pm.Uniform('sigmas', 0, 10)

 setosa = pm.Normal('setosa', mu=mus[0], sd=sigmas[0],
 observed=x_0[:50])
 versicolor = pm.Normal('setosa', mu=mus[1], sd=sigmas[1],
 observed=x_0[50:])

 bd = pm.Deterministic('bd', (mus[0]+mus[1])/2)

 start = pm.find_MAP()
 step = pm.NUTS()
 trace = pm.sample(5000, step, start)

Now we are going to plot a figure showing the two classes (setosa = 0 and
versicolor = 1) against the values for sepal length, and also the boundary decision
as a red line and the 95% HPD interval for it as a semitransparent red band.

Chapter 5

[173]

As you may have noticed, the preceding figure is pretty similar to the one we plotted
at the beginning of this chapter. Also check the values of the boundary decision in
the following summary:

pm.df_summary(trace_lda)

mean sd mc_error hpd_2.5 hpd_97.5
mus__0 5.01 0.06 8.16e-04 4.88 5.13

mus__1 5.93 0.06 6.28e-04 5.81 6.06

sigma 0.45 0.03 1.52e-03 0.38 0.51

bd 5.47 0.05 5.36e-04 5.38 5.56

Both the LDA model and the logistic regression gave similar results.

The linear discriminant model can be extended to more than one feature by modeling
the classes as multivariate Gaussians. Also, it is possible to relax the assumption
of the classes sharing a common variance (or common covariance matrices when
working with more than one feature). This leads to a model known as quadratic linear
discriminant (QDA), since now the decision boundary is not linear but quadratic.

Classifying Outcomes with Logistic Regression

[174]

In general, an LDA or QDA model will work better than a logistic regression
when the features we are using are more or less Gaussian distributed and the
logistic regression will perform better in the opposite case. One advantage of the
discriminative model for classification is that it may be easier or more natural to
incorporate prior information; for example, we may have information about the
mean and variance of the data to incorporate in the model.

It is important to note that the boundary decisions of LDA and QDA are known
in closed-form and hence they are usually used in such a way. To use an LDA for
two classes and one feature, we just need to compute the mean of each distribution
and average those two values, and we get the boundary decision. Notice that in
the preceding model we just did that but in a more Bayesian way. We estimate the
parameters of the two Gaussians and then we plug those estimates into a formula.
Where do such formulae come from? Well, without entering into details, to obtain
that formula we must assume that the data is Gaussian distributed, and hence such
a formula will only work if the data does not deviate drastically from normality. Of
course, we may hit a problem where we want to relax the normality assumption,
such as, for example using a Student's t-distribution (or a multivariate Student's
t-distribution, or something else). In such a case, we can no longer use the closed
form for the LDA (or QDA); nevertheless, we can still compute a decision boundary
numerically using PyMC3.

Summary
In this chapter, we learned how to extend the simple linear regression model to deal
with categorical predicted data and how to perform Bayesian classification using
either logistic regression when we have two classes or softmax regression for more
than two classes. We learned what an inverse link function is and how it is used to
build Generalized Linear Models (GLM), which extends the range of problems that
can be solved by linear models. We also learned about some precautions we have to
take, for example, when dealing with correlated variables, perfectly separable classes
or unbalanced classes. While we focused on discriminative models for classification,
we also learned about generative models and some of the main differences between
both types of models.

Keep reading
• Doing Bayesian Data Analysis, Second Edition by John Kruschke. Chapters 21

and 22.
• Statistical Rethinking by Richard McElreath. Chapter 10.
• Bayesian Data Analysis, Third Edition by Andrew Gelman and others. Chapter 16.

Chapter 5

[175]

• An Introduction to Statistical Learning by Gareth James and others (second
edition). Chapter 4.

• Check the PyMC3 example of logistic regression at https://pymc-devs.
github.io/pymc3/notebooks/GLM-logistic.html. This example also
includes model comparison techniques—a topic we will see in the next chapter.

Exercises
1. Rerun the first model using the variables petal length and then petal width.

What are the main differences in the results? How wide or narrow is the 95%
HPD interval in each case?

2. Repeat exercise 1, this time using a Student's t-distribution as weakly
informative prior. Try different value of ν .

3. Go back to the first example, the logistic regression for classifying setosa or
versicolor given sepal length. Try to solve the same problem using a simple
linear regression model as we saw in the previous chapter. How useful is
a linear regression compared to the logistic regression? Can the result be
interpreted as a probability? Hint: check if the values of y are restricted to
the [0, 1] interval.

4. Suppose instead of a softmax regression we use a simple linear model by
coding setosa =0, versicolor =1, and virginica = 2. Under the simple
linear regression model, what will happen if we switch the coding? Will we
get the same, or different, results?

5. In the example for dealing with unbalanced data, change df = df[45:] to
df[22:78]. This will keep roughly the same number of data points, but now
the classes will be balanced. Compare the new result with the previous ones.
Which one is more similar to the example using the complete dataset?

6. Compare the likelihood of the logistic model versus the likelihood of the
LDA model. Use the function sample_ppc to generate predicted data and
compare the type of data you get for both cases. Be sure to understand the
difference between the types of data the model predicts.

[177]

Model Comparison
"All models are wrong, but some are useful."

 — George Box

We have already discussed the idea that models are wrong in the sense that they are
just approximations used in an attempt to understand a problem through data and
not a verbatim copy of the real world. While every model is wrong, not every model
is equally wrong; some models will be worse than others at describing the same data.
In the previous chapters, we focused our attention on the inference problem, that is,
how to learn the value of parameters from the data. In this chapter, we are going to
focus on a different problem: how to compare two or more models used to explain
the same data. As we will learn, this is not a simple problem to solve and at the same
time is a central problem in data analysis.

In the present chapter, we will explore the following topics:

• Occam's razor, simplicity and accuracy overfitting, and underfitting
• Regularizing priors
• Information criteria
• Bayes factors

Model Comparison

[178]

Occam's razor – simplicity and accuracy
Suppose we have two models for the same data/problem and both seem to explain
the data equally as well. Which model should we choose? There is a guiding
principle or heuristic known as Occam's razor that loosely states that if we have
two or more equivalent explanations for the same phenomenon, we should choose
the simpler one. There are many justifications for this heuristic; one of them is
related to the falsifiability criterion introduced by Popper, another takes a pragmatic
perspective since simpler models are easier to understand than more complex
models, and another justification is based on Bayesian statistics. Without getting into
the details of these justifications, we are going to accept this criterion as a useful rule
of thumb for the moment, something that sounds reasonable.

Another factor we generally should take into account when comparing models
is their accuracy, that is, how well the model fits the data. We have already seen
some measures of accuracy, such as the coefficient of determination R2, that we can
interpret as the proportion of explained variance in a linear regression. If you do not
remember very well what the coefficient of determination is, go back to Chapter 4,
Understanding and Predicting Data with Linear Regression Models. Continuing with our
discussion, if we have two models and one of them explains the data better than the
other, we should prefer that model, that is, we want the model with higher accuracy,
right? Well, maybe; remember that we also said, in the previous paragraph, that we
tend to prefer simpler models.

Intuitively, it seems that when comparing models, we tend to like those that have
high accuracy and those that are simple. During the rest of this chapter, we are going
to discuss this idea of balancing between these two features.

This chapter is more theoretical than previous chapters (even when we are just
scratching the surface of this topic), so to make things easier, let us introduce an
example that will help us move from this (correct) intuition of balancing accuracy
versus complexity to a more theoretical (or at least empirical) grounded justification.

In this example, we are going to fit increasingly complex polynomials to a very
simple dataset. Instead of using the Bayesian machinery, we are going to use the
least square approximation for fitting linear models. Remember that the latter can
be interpreted from a Bayesian perspective as a model with flat priors. So, in a sense,
we are still being Bayesian here, only we are taking a shortcut:

x = np.array([4.,5.,6.,9.,12, 14.])
y = np.array([4.2, 6., 6., 9., 10, 10.])
order = [0, 1, 2, 5]
plt.plot(x, y, 'o')
for i in order:
 x_n = np.linspace(x.min(), x.max(), 100)

Chapter 6

[179]

 coeffs = np.polyfit(x, y, deg=i)
 ffit = np.polyval(coeffs, x_n)
 p = np.poly1d(coeffs)
 yhat = p(x)
 ybar = np.mean(y)
 ssreg = np.sum((yhat-ybar)**2)
 sstot = np.sum((y - ybar)**2)
 r2 = ssreg / sstot
plt.plot(x_n, ffit, label='order {}, R^2= {:.2f}'.format(i,
 r2))
plt.legend(loc=2, fontsize=14)
plt.xlabel('x', fontsize=16)
plt.ylabel('y', fontsize=16, rotation=0)

Too many parameters leads to overfitting
From the preceding figure, we can see that increasing the complexity of the model is
accompanied by an increasing accuracy reflected in the coefficient of determination
R2; in fact, we can see that the polynomial of order 5 fits the data perfectly! You
may remember we briefly discussed this behavior of polynomials in Chapter 4,
Understanding and Predicting Data with Linear Regression Models and we also discussed
that, in general, it is not a very good idea to use polynomials for real problems.

Model Comparison

[180]

Why is the polynomial of degree 5 able to capture the data without missing a single
data point? The reason is that we have the same number of parameters, 6, as the
number of data points, also 6, and hence the model is just encoding the data in a
different way. The model is not really learning something from the data, it is just
memorizing stuff! Another hint indicating that we are not really learning anything
comes from the predictions of the model between the data points. The model predicts
what seems to be a very weird behavior of the data. Notice that the best line according
to the model of order 5 first goes up, then stays more or less at constant values (or
may go slightly downward), then up again and finally down. Compare this wiggly
behavior against the predictions of the model of order 1 or 2. They predict a line and
a parabola respectively, together with some Gaussian noise. Intuitively, this seems to
be a much more simple and plausible explanation than a line fitting every single data
point but wiggling between data points. From this example, we can see that a model
with higher accuracy is not always what we really want.

The next example will lead us to another important insight. Imagine that we
get more money or time and hence we collect more data points to include in the
previous dataset. For example, we collect the points [(10, 9), (7,7)] (see the following
figure). How well does the order 5 model explain those points compared to the order
1 or 2 models? Not very well indeed. The order 5 model did not learn any interesting
pattern in the data; instead it just memorized stuff (sorry for persisting with this
idea) and hence the order 5 model does a very bad job at generalizing to future,
unobserved but potentially observable, data.

Chapter 6

[181]

The lack of generalization is due to the fact that we have a very flexible model, one
with so many parameters that it has overfitted the data. Overfitting is a general
problem in statistics and machine learning and occurs when a model starts learning
the noise in the data, effectively hiding the interesting pattern. We are of course
assuming there is an interesting pattern in the first place. In general, a model with
more parameters has more ways to accommodate the data, and hence it has a
tendency to overfit the data. This is a practical concern with overly complex models
and a practical justification for Occam's razor.

This example shows us that focusing only on how well the model explains the data
used to fit the model can be misleading. The reason is that, at least in principle, we
can always improve the accuracy by adding more parameters to the model. Let's
introduce some vocabulary to help clarify this discussion. The accuracy measured
with the data used to fit a model is referred as the within-sample accuracy. But a
more informative and useful measure of the behavior of our model is the predictive
accuracy of the model measured on data not used for fitting the model; this is usually
referred to as out-of-sample accuracy.

Too few parameters leads to underfitting
Continuing with the same example but on the other extreme of complexity, we have
the model of order 0. In this model, all the beta parameters are set exactly to zero
and hence we have reduced the linear model relating two variables to a simpler
Gaussian model of the dependent variable alone. Notice that for the order 0 model,
the independent variable does not matter and the model can only capture the
average of the dependent variable. In other words, this model is saying the data can
be explained by the mean of the dependent variable and some Gaussian noise. We
say this model has underfitted the data; it is so simple that it is unable to capture the
interesting pattern in the data, it can only capture a very simplified version of what
is really going on. In general, a model with too few parameters will tend to underfit
the data.

Model Comparison

[182]

The balance between simplicity and accuracy
Things should be as simple as possible but not simpler is a quote often attributed to
Einstein and is like the Occam's razor with a twist. Like in a healthy diet, when
modeling we have to keep a balance. Ideally, we would like to have a model that
neither overfits nor underfits the data. So, in general, we will face a trade-off and
somehow we have to optimize or tune our models. There are different ways of
thinking about this idea of balance. For example, we may think that the purpose
of fitting a model (or learning models) is to obtain a compressed representation
of the data; we want to simplify the data in order to understand it and/or make
predictions. If the model represents the data in a very compressed way, we lose
important details and we end up getting very simple summaries such as a mean
value; on the contrary, we get too much noise, or we can push things to the extreme
and get the data encoded in a different way with no compression at all.

The overfitting/underfitting balance can also be discussed in terms of the bias-
variance trade-off. Let me introduce this concept using an example. Suppose we have
a model able to exactly pass through every point in our dataset, just like the order
5 model. Imagine that we refit the model with a new sample of six points and then
with another and we keep doing this for several different sets of six points. Each
time, we will obtain different curves that will accommodate the new six data points
exactly. We could get a wiggly line, then a straight line, another time a parabola, and
so on. Because the model can adapt to every single detail in the data our predictions
will have a lot of variation and we would say the model has high variance. On the
contrary, if we have a more restricted model, like a straight line, we have a more
biased model in the sense that it will always try to accommodate a straight line.
A model with high bias is a model with more prejudices (if you will excuse the
anthropomorphization) or more inertia.

The order 1 model, from our example, has higher bias and lower variance than the
order 2 model . The second can produce different curved lines including a straight
line as a special case. In summary, we find that:

• High bias is the result of a model with low ability to accommodate the data.
High bias can cause a model to miss the relevant pattern and thus can lead to
underfitting.

• High variance is the result of a model with high sensitivity to details in the
data. High variance can cause a model to capture the noise in the data and
thus can lead to overfitting.

Chapter 6

[183]

In general, when we increase one of these terms we decrease the other and that is
why people talk about the bias-variance trade-off. Once again, the main idea is that
we want a balanced model.

Regularizing priors
Using informative and weakly informative priors is a way of introducing bias in
a model and, if done properly, can be a good thing because it helps to prevent
overfitting.

The regularization idea is so powerful and useful that it has been discovered several
times, including outside the Bayesian framework. In some fields, this idea is known
as the Tikhonov regularization. In non-Bayesian statistics, this regularization idea
takes the form of two modifications on the least square method, known as ridge
regression and Lasso regression. From the Bayesian point of view, a ridge regression
can be interpreted as using normal distributions for the beta coefficients (of a linear
model), with small standard deviation that pushes the coefficients towards zero,
while the Lasso regression can be interpreted from a Bayesian point of view as using
Laplace priors instead of Gaussian for the beta coefficients. The standard versions
of ridge and lasso regressions corresponds to single point estimates; we do not get a
posterior like when we perform a fully Bayesian analysis.

Before moving on, let us take a moment to discuss the Laplace distribution. This
distribution is similar to the Gaussian distribution, but its first derivate is undefined
at zero because it has a very sharp peak at zero (see the following figure). The
Laplace distribution concentrates its probability mass much closer to zero compared
to the normal distribution; the resulting effect when we use it as a prior is that it has
the tendency to make some parameters zero. Thus it is said that lasso (or its Bayesian
analog) can be used to regularize and also to perform variable selection (removing
some terms or variables from a model).

The following code generates a figure showing the Laplace distribution centered on
zero and with four different values for its scale parameter. A Gaussian with a mean
zero and a standard deviation one is also shown for comparison.

plt.figure(figsize=(8, 6))
x_values = np.linspace(-10, 10, 300)
for df in [1, 2, 5, 15]:
 distri = stats.laplace(scale=df)
 x_pdf = distri.pdf(x_values)
 plt.plot(x_values, x_pdf, label='b = {}'.format(df))

x_pdf = stats.norm.pdf(x_values)

Model Comparison

[184]

plt.plot(x_values, x_pdf, label='Gaussian')
plt.xlabel('x')
plt.ylabel('p(x)', rotation=0)
plt.legend(loc=0, fontsize=14)
plt.xlim(-7, 7);
plt.savefig('B04958_06_03.png', dpi=300, figsize=[5.5, 5.5])

It is something very remarkable that these widely accepted ideas of regularization
fit so naturally in the Bayesian paradigm. Some people may even say that because
everyone agrees on regularization being a honking great idea (and we should do more
of those!) everyone is at least a bit Bayesian, even when they do not know it or reject
that label.

Regularizing priors and hierarchical models
In the light of what we have been discussing, hierarchical models can also be thought
of as a regularization method. Think of hierarchical models as a way of learning the
prior from the data, by means of introducing hyper-priors, of course. So, in a sense,
because we are learning the prior from the data, we are performing regularization
and letting the data tell us the strength of the regularization. This is another and
probably insightful way of thinking about hierarchical models and shrinkage. Think
about how the concept of regularization can be used to interpret the result from
Chapter 4, Understanding and Predicting Data with Linear Regression Models, when we
use a hierarchical model to fit a line to a single data point.

Chapter 6

[185]

Predictive accuracy measures
In the previous example, it is more or less easy to see that the order 0 model is very
simple and the order 5 model is too complex, but what about the other two? How we
can distinguish between those options? We need a more principled way of taking into
account the accuracy on one side and the simplicity on the other. Two methods to
estimate the out-of-sample predictive accuracy using only the within-sample data are:

• Cross-validation: This is an empirical strategy based on dividing the
available data into subsets that are used for fitting and evaluation in an
alternated way

• Information criteria: This is an umbrella term for several relatively simple
expressions that can be considered as ways to approximate the results that
we could have obtained by performing cross-validation

Cross-validation
On average, the accuracy of a model will be higher for the within-sample than for
the out-of-sample accuracy. As we need data to fit the model and data to test it, one
simple solution is to split our data into two parts:

• The training set which we use to fit a model
• The test set which we use to measure how well the model fits the data

This is a very good solution if we have a lot of data; for example, crystallographers
have been doing this to solve and validate the structures of molecules for decades.
Otherwise, the aforementioned procedure will be detrimental since we are reducing
the information available to fit the model and also to assess its accuracy.

To circumvent this problem of lack of data, a simple and in most cases effective
solution is to do cross-validation. We take our data and we partition it into K portions,
for example, five portions. We try to keep the portions more or less equal (in size and
sometimes also in other features, such as, for example, an equal number of classes).
Then we use K-1 on them to train the model (four portions in this example) and the
remaining to validate it. Then we repeat this procedure systematically by leaving a
different portion out of the training set and using that portion as the validation set
until we have done K rounds. The results are then averaged along the K runs. This
is known as K-fold cross-validation, where K is the number of partitions; in this
example, we would say five-fold cross-validation. When K is equal to the number
of data points, we get what is known as leave-one-out cross-validation (LOOCV).
Sometimes when doing LOOCV, the number of rounds can be less than the total
number of data points if we have a prohibitive number of them.

Model Comparison

[186]

Cross-validation is a very simple and useful idea, but for some models or for large
amounts of data, the computational cost of cross-validation can be beyond our
possibilities. Many people have tried to come up with simpler-to-compute quantities
that approximate the results obtained with cross-validation or that work in scenarios
where cross-validation can be not that straightforward to perform. And that is the
subject of the next section.

Information criteria
Information criteria are a collection of different and somehow related tools used to
compare models in terms of how well they fit the data while taking into account
their complexity through a penalization term. In others words, information criteria
formalize the intuition we developed at the beginning of the chapter. We need a
proper way to balance how well a model explains the data on the one hand and how
complex the model is on the other hand.

The exact way these quantities are derived has to do with a field known as
Information Theory, something that is out of the scope of this book, so we are going
to limit ourselves to understand them from a practical point of view.

The log-likelihood and the deviance
An intuitive way of measuring how well a model fits the data is to compute the
quadratic mean error between the data and the predictions made by the model:

()()21 |i iy E y
n

θ−∑

()|iE y θ is just the predicted value given the estimated parameters. Notice this is
essentially the average of the difference between observed and predicted data.
Squaring the errors ensures that the differences do not cancel out and emphasizes
large errors relative to other ways of computing similar quantities such as using the
absolute value.

This is a very simple-to-compute quantity and is useful under certain constraints,
such as data being normally distributed. Instead, a more general measure is to
compute the log-likelihood:

()|log p y θ

Under certain circumstances, this turns out to be proportional to the quadratic mean
error, for example, in the simple linear regression case.

Chapter 6

[187]

In practice and for historical reasons, people usually do not use the log-likelihood
directly; instead, they use a quantity known as deviance, which is:

()2 |log p y θ−

The deviance is used for Bayesians and non-Bayesians alike; the difference is that
under a Bayesian framework, θ is estimated from the posterior and, like any quantity
derived from a posterior, it has a distribution. On the contrary, in non-Bayesian
settings, θ is a point estimate. To learn how to use the deviance we should note two
key aspects of this quantity:

• The lower the deviance, the higher the log-likelihood and the higher
the agreement of the model predictions and the data. So we want low
deviance values.

• The deviance is measuring the within-sample accuracy of the model and hence
complex models will generally have a lower deviance than simpler ones. Thus
we need to somehow include a penalization term for complex models.

In the following sections, we will learn about different information criteria. They
share in common the use of the deviance and a penalization term. And what makes
them different is how the deviance and the penalization term are computed.

Akaike information criterion
This is a very well-known and widely used information criterion, especially for non-
Bayesians, and is defined as:

()ˆ2 | 2mle AICAIC log p y pθ= − +

Here, AICp is the number of parameters and m̂leθ is the maximum likelihood
estimation of θ . Maximum likelihood estimation is common practice for non-
Bayesians and, in general, is equivalent to the Bayesian maximum a posteriori
(MAP) estimation when using flat priors. Notice that the m̂leθ is a point estimation
and not a distribution.

Alternatively, we can represent the previous formula as:

()()ˆ2 log | mle AICAIC p y pθ= − −

Model Comparison

[188]

Once again, the -2 is there for historical reasons. The important observation, from a
practical point of view, is that the first term takes into account how well the model
fits the data and the second term penalizes complex models. Hence, if two models
explain the data equally well, but one has more parameters than the other, AIC tells
us we should choose the one with the fewer parameters.

AIC works for non-Bayesian approaches but is problematic for Bayesian ones. One
reason is that it does not use the posterior, and hence it is discarding information
about the uncertainty in the estimation; it is also assuming flat priors and hence this
measure is incompatible with a model using non-flat priors. When using non-flat
priors, we cannot simply count the number of parameters in the model. Properly
used non-flat priors have the property for regularizing the model, that is they
reduce the tendency to overfit. It is the same as saying that the effective number
of parameters of a model with regularizing priors is lower than the real number of
parameters. Something similar occurs when we have a hierarchical model; after all,
hierarchical models can be thought of as effective ways to learn the strength of the
prior from the data (without cheating).

Deviance information criterion
A way to get a Bayesian version of AIC is to include information from the posterior
and also estimate the number of parameters from the model and the data. This is
exactly what the deviance information criterion (DIC) does:

()ˆ2 | 2post diclog p y pθ− × +

We can see that DIC and AIC are analogous, the difference being that now we are
computing the deviance from ˆpostθ , that is, the posterior mean of θ , and we are
using dicp as the effective number of parameters. dicp is obtained as:

() ()ˆD̂ Dθ θ−

That is, the mean deviance minus the deviance at the mean. If we have a peaked
posterior, that is, a posterior for θ concentrated around θ̂ , both terms in the
preceding equation will be similar and dicp will be small. Instead, if we have a broad
posterior, we will have more values of θ away from θ̂ and hence ()D̂ θ will be large
and dicp will be larger.

Chapter 6

[189]

So far so good; we can say that DIC is a more Bayesian version of AIC. Nevertheless,
the story does not end here. DIC does not use the whole posterior and the way the
effective number of parameters are computed for DIC has some problems for weak
priors. Alternatives for this second problem have been suggested. Nevertheless, this
is the one implemented in PyMC3 and is enough for our current discussion.

Widely available information criterion
This is similar to DIC but is more Bayesian because it uses the whole posterior
distribution. Like with AIC and DIC, we can see that the widely available
information criterion (WAIC) has two terms, one that measures how well the data
fits the model and one penalizing complex models:

2 2 waicWAIC lppd p= +

Here, lppd is the log point-wise predictive density and can be approximated as:

()1log | s
ilppd p y

S
θ =

∑ ∑

First we compute the average of the likelihood along S samples from the posterior.
We do that for every data point and then we sum over the N data points. And the
effective number of parameters is computed as:

()()1 |s s
waic s ip log p yν θ==∑

That is, we compute the variance of the log-likelihood along S samples from the
posterior. We do that for every data point and then we sum over the N data points.
The intuition for this way of computing the effective number of parameters is similar
to the one used for DIC. A more flexible model will tend to result in a more broad or
diffusive posterior, as we already discussed at the end of the AIC section.

Model Comparison

[190]

Pareto smoothed importance sampling
leave-one-out cross-validation
This is a method to approximate the LOOCV results but without actually performing
LOOCV. Without going into too much detail, the main idea is that is possible to
approximate LOOCV by re-weighting the likelihoods appropriately. This can be
done using a technique known as importance sampling. The problem is that the
results are instable. To fix this instability issue, a new method was introduced. This
method uses a technique known as Pareto smoothed importance sampling (PSIS),
which can be used to compute more reliable estimates of LOOCV. The interpretation
is similar to the other measures we have seen; the lower the value, the higher the
estimated predictive accuracy of the model.

Bayesian information criterion
Just like the logistic regression and my mother's sopa seca, this name can be
misleading. The Bayesian information criterion (BIC) was proposed as a way
to correct some of the problems with AIC and the author proposed a Bayesian
justification for it. But BIC is not really Bayesian, and in fact is pretty like AIC. It also
assumes flat priors and uses a maximum likelihood estimate.

Even more importantly, BIC is different to the other information criteria we have
seen and is more related to the Bayes factors that we will discuss later in this chapter.
For the previous reasons and following Gelman's recommendations, we are not
going to further discuss or use BIC.

Computing information criteria with PyMC3
Information criteria can be easily computed with PyMC3. We just need to call a
function. To exemplify their use, we are going to build a simple example. First we
define some data and we standardize it:

real_alpha = 4.25
real_beta = [8.7, -1.2]
data_size = 20
noise = np.random.normal(0, 2, size=data_size)
x_1 = np.linspace(0, 5, data_size)
y_1 = real_alpha + real_beta[0] * x_1 + real_beta[1] * x_1**2 +
 noise
order = 2
x_1p = np.vstack([x_1**i for i in range(1, order+1)])
x_1s = (x_1p - x_1p.mean(axis=1, keepdims=True))/x_1p.std(axis=1,
 keepdims=True)
y_1s = (y_1 - y_1.mean())/y_1.std()

Chapter 6

[191]

plt.scatter(x_1s[0], y_1s)
plt.xlabel('x', fontsize=14)
plt.ylabel('y', fontsize=14, rotation=0);

As we can see from the code, and a little bit less clearly from the plot, we have data
that can be fitted using a polynomial of order 2. But suppose we have reasons to
think a simple linear regression is also a good model. We are going to fit both models
and then use the information criteria to compare them. We are going to start with the
linear one:

with pm.Model() as model_l:
 alpha = pm.Normal('alpha', mu=0, sd=10)
 beta = pm.Normal('beta', mu=0, sd=10)
 epsilon = pm.HalfCauchy('epsilon', 5)
 mu = alpha + beta * x_1s[0]
 y_pred = pm.Normal('y_pred', mu=mu, sd=epsilon, observed=y_1s)
 trace_l = pm.sample(2000)
chain_l = trace_l[100:]

To save space, we are going to omit the traceplot and other plot tests. And we are
going to continue with the second order polynomial model. You should not omit
those tests and plots:

with pm.Model() as model_p:
 alpha = pm.Normal('alpha', mu=0, sd=10)
 beta = pm.Normal('beta', mu=0, sd=10, shape=x_1s.shape[0])
 epsilon = pm.HalfCauchy(''epsilon', 5)

Model Comparison

[192]

 mu = alpha + pm.math.dot(beta, x_1s)
 y_pred = pm.Normal('y_pred', mu=mu, sd=epsilon, observed=y_1s)
 trace_p = pm.sample(1000)
chain_p = trace_p[100:]

Now we are going to plot the results as the best-fitted lines, using the following code:

alpha_l_post = chain_l['alpha'].mean()
betas_l_post = chain_l['beta'].mean(axis=0)
idx = np.argsort(x_1s[0])
y_l_post = alpha_l_post + betas_l_post * x_1s[0]
plt.plot(x_1s[0][idx], y_l_post[idx], label='Linear')
alpha_p_post = chain_p['alpha'].mean()
betas_p_post = chain_p['beta'].mean(axis=0)
y_p_post = alpha_p_post + np.dot(betas_p_post, x_1s)
plt.plot(x_1s[0][idx], y_p_post[idx], label='Pol order
 {}'.format(order))
plt.scatter(x_1s[0], y_1s)
plt.legend()

To get the value of DIC using PyMC3, we need to call a function with a trace as an
argument; the model will be guessed from the context if we are inside a proper with
statement, or we can just pass the model as an additional argument:

pm.dic(trace=trace_l, model=model_l)

Chapter 6

[193]

The same goes for the calculation of WAIC using the function pm.waic() and for LOO
using the function pm.loo(). For WAIC and LOO PyMC3 reports a point estimate
together with an estimation of their respective standard errors. We can use a standard
error to assess the uncertainty of the WAIC (or LOO) estimates. Nevertheless, caution
needs to be taken because the estimation of the standard error assumes normality and
hence it may not be very reliable when the sample size is low.

plt.figure(figsize=(8, 4))
plt.subplot(121)
for idx, ic in enumerate((waic_l, waic_p)):
 plt.errorbar(ic[0], idx, xerr=ic[1], fmt='bo')
plt.title('WAIC')
plt.yticks([0, 1], ['linear', 'cuadratic'])
plt.ylim(-1, 2)

plt.subplot(122)
for idx, ic in enumerate((loo_l, loo_p)):
 plt.errorbar(ic[0], idx, xerr=ic[1], fmt='go')
plt.title('LOO')
plt.yticks([0, 1], ['linear', 'cuadratic'])
plt.ylim(-1, 2)
plt.tight_layout()

Model Comparison

[194]

A note on the reliability of WAIC and LOO
computations
When computing WAIC or LOO, you may get a warning message indicating that
the result of either computation could be unreliable. This warning is raised based
on a cut-off value that was determined empirically (see the Keep reading section for a
reference). While it is not necessarily problematic, it could be indicating a problem
with the computation of these measures. WAIC and LOO are relative newcomers
and we probably still need to develop better ways to access their reliability. Anyway,
if this happens to you, first make sure you have enough samples, that you have a
well-mixed chain, and that you have used a proper burn-in value. If you still get
those messages, the authors of the LOO method recommend using a more robust
model, such as using a Student's t-distribution instead of a Gaussian one. If none of
these recommendations work then you may think about using another method such
as directly performing K-fold cross-validation.

Interpreting and using information criteria
measures
The simpler way to use information criteria is to perform model selection. Simply
choose the model with the lower Information Criterion (IC) value and forget about
the other models. Thus we can interpret these plots as saying that the two methods
agree that the best model is the order 2 model.

Model selection is appealing for its simplicity, but we are discarding information
about the uncertainty in our models. This is somehow similar to computing the
full posterior and then only keeping the mean of the posterior; we may become
overconfident of what we really know.

One possible alternative is to perform a model selection but report and discuss the
different models together with the computed information criteria values and also
posterior predictive checks. It is important to put all these numbers and tests in the
context of our problem so that we and our audience can have a better feel of the
possible limitations and shortcomings of our methods. If you are in the academic
world you can use this approach to add elements to the discussion section of a paper,
presentation, thesis, and so on.

Chapter 6

[195]

Yet another approach is to perform model averaging. The idea now is to generate a
meta-model (and meta-predictions) using a weighted average of each model. One
way to compute these weights is to apply this formula:

()
()

exp 1/ 2

exp 1/ 2
i

i M
jj

dIC
w

dIC
−

=
−∑

Where idIC is the difference between the i-esim information criterion value and the
lowest one.

We can use any information criterion we want to compute a set of weights, but, of
course, we cannot mix them. This formula is a heuristic way to compute the relative
probability of each model (given a fixed set of models) from the information criteria
values. Look how the denominator is just a normalization term to ensure that the
weights sum up to one.

There are other ways to average models such as, for example, explicitly building a
super-model that includes all the models we have. We then perform parameter
inference while jumping between the models. Later, in the Bayes factor section, we
will discuss a form of this.

Besides averaging discrete models we can sometimes think of continuous versions
of them. A toy example is to imagine we have the coin-flipping problem and we
have two different models, one with a prior biased towards heads and one towards
tails. We could fit both separate models and then average them using, for example,
IC-derived weights. As an alternative, we could build a hierarchical model to
estimate the prior distribution, and notice that instead of contemplating two discrete
models we will be computing a continuous model that includes these two both
discrete models as particular cases. Which approach is better? Once again, that
depends on our concrete problem. Do we have good reasons to think about two
discrete models, or is our problem better represented with a continuous model?

Model Comparison

[196]

Posterior predictive checks
In past chapters, we introduced the concept of posterior predictive checks as a way
to evaluate how well a model explains the same data used to fit the model. This was
a kind of consistency check, we said. The purpose of posterior predictive checks was
not to say that the model is wrong; we already know that. The idea was to try to
understand which parts of the data do not get very well modeled in order to have a
better grasp of the limitations of a model or to try to improve it. We will revisit this
topic here, as a reminder that posterior predictive checks can be used to compare
models and get a better grasp of how they are different:

plt.subplot(121)
plt.scatter(x_1s[0], y_1s, c='r');
plt.ylim(-3, 3)
plt.xlabel('x')
plt.ylabel('y', rotation=0)
plt.title('Linear')
for i in range(0, len(chain_l['alpha']), 50):
 plt.scatter(x_1s[0], chain_l['alpha'][i] + chain_l['beta']
[i]*x_1s[0], c='g', edgecolors='g', alpha=0.05);
plt.plot(x_1s[0], chain_l['alpha'].mean() + chain_l['beta'].
mean()*x_1s[0], c='g', alpha=1)

plt.subplot(122)
plt.scatter(x_1s[0], y_1s, c='r');
plt.ylim(-3, 3)
plt.xlabel('x')
plt.ylabel('y', rotation=0)
plt.title('Order {}'.format(order))
for i in range(0, len(chain_p['alpha']), 50):
 plt.scatter(x_1s[0], chain_p['alpha'][i] + np.dot(chain_p['beta']
[i], x_1s), c='g', edgecolors='g', alpha=0.1)
idx = np.argsort(x_1)
plt.plot(x_1s[0][idx], alpha_p_post + np.dot(betas_p_post,
 x_1s)[idx], c='g', alpha=1)

Chapter 6

[197]

Bayes factors
A common alternative to evaluate and compare models in the Bayesian world
(at least in some of its countries) are the Bayes factors.

One problem with Bayes factors is that their computation can be highly sensitive
to aspects of the priors that have no practical effect on the posterior distribution of
individual models. You may have noticed in previous examples that, in general,
having a normal prior with a standard deviation of 100 is the same as having one
with a standard deviation of 1,000, Instead, Bayes factors will be generally affected
by these kind of changes in the model. Another problem with Bayes factors is that
their computations can be more difficult than inference. One final criticism is that
Bayes factors can be used as a Bayesian way of doing hypothesis testing; there is
nothing wrong in this per se, but many authors have pointed out that an inference
or modeling approach, similar to the one used in this book, is better suited to
most problems than the generally taught approach of hypothesis testing (whether
Bayesian or not Bayesian). Having said all this, let's see what Bayes factors are and
how to compute them. To understand what Bayes factors are, let us write Bayes
theorem one more time (we have not done so for a while!):

() () ()
()
|

|
p y p

p y
p y
θ θ

θ =

Model Comparison

[198]

Where, y represents the data and θ the parameters. Alternatively, we could write it
like this:

() () ()
()

| , |
| ,

|
p y M p M

p y M
p y M
θ θ

θ =

The only difference is that now we are making explicit the dependency of the
inference on a given model M. The term in the denominator is known as the evidence
or marginal likelihood, as you may remember from the first chapter. So far, we have
omitted this term from our computations, thanks to our inference engines such as
Metropolis and NUTS. We can write the evidence as:

() () (), | , | mp y M p y M p M dθ θ θ= ∫

That is, to compute the evidence p(y|M), we need to marginalize (by summation or
integration) over all the possible values of ()|p Mθ , that is, over all the prior values
of θ for a given model.

The quantity p(y|M) does not tell us too much on its own; like with the information
criteria, what matters are the relative values. So when we want to compare two
models, we take the ratio of their evidence, and that is a Bayes factor:

()
()

0

1

|
|

p y M
BF

p y M
=

Then when BF > 1, model 0 explains data better than model 1.

Some authors have proposed tables with ranges to ease BF interpretation like the
following, indicating how much evidence favors model 0 against model 1:

• 1-3: anecdotal
• 3-10: moderate
• 10-30: strong
• 30-100: very strong
• > 100: extreme

Chapter 6

[199]

Remember, these rules are just conventions, simple guides at best. But results should
always be put into context and should be accompanied with enough details that
others could potentially check if they agree with our conclusions. The evidence
necessary to make a claim is not the same in particle physics, or a court, or to
evacuate a town to prevent hundreds of deaths.

Analogy with information criteria
Notice that if we take the logarithm of Bayes factors, we can turn the ratio of the
marginal likelihood into a difference, and comparing differences in marginal
likelihoods is similar to comparing differences in information criteria. But where
is the fitting term and where the penalizing term? Well, the term indicating how
well the model fits the data is the likelihood part and the penalization part comes
from averaging over the prior. The larger the number of parameters, the larger the
prior volume compared to the likelihood volume and hence we will end up taking
averages from zones where the likelihood has very low values. The more parameters,
the more diluted or diffuse the prior and hence the greater the penalty when
computing the evidence. This is the reason people say the Bayesian theorem leads
to a natural penalization of complex models or that the Bayes theorem comes with a
built-in Occam's razor.

Computing Bayes factors
The computation of Bayes factors can be framed as a hierarchical model, where
the high-level parameter is an index assigned to each model and sampled from a
categorical distribution. In other words, we perform inference of the two (or more)
competing models at the same time and we use a discrete variable that jumps
between models. How much time we spend sampling each model is proportional to
()|xp M y . To compute the Bayes factors, we do:

()
()

() ()
() ()

0 0 1

1 1 0

| |
| |

p y M p M y p M
p y M p M y p M

=

The first term to the right of the equality is known as the posterior odds and the
second is the prior odds. Remember, we already talked about the definition of odds
in Chapter 5, Classifying Outcomes with Logistic Regression. If you are wondering where
this equation comes from, it is just the consequence of writing the Bayes theorem for
the ratio of ()0|p y M and ()1|p y M .

Model Comparison

[200]

To exemplify the computation of the Bayes factors, we are going to flip coins one
more time:

coins = 30
heads = 9
y = np.repeat([0, 1], [coins-heads, heads])

A Kruschke diagram of the model we are going to use is illustrated as follows. In this
example, we are choosing between two beta priors: one biased towards 1 and the
other towards 0:

Notice that now while we are computing Bayes factors between models that differ
only on the prior, the models could differ on the likelihood or even both. The idea
is the same.

Chapter 6

[201]

Now the PyMC3 model. To switch between priors, we are using the pm.switch()
function. If the first argument of this function evaluates to True, then the second
argument is returned, otherwise the third argument is returned. Notice we are also
using the pm.math.eq() function to check if the model_index variable is equal to 0:

with pm.Model() as model_BF:
 p = np.array([0.5, 0.5])
 model_index = pm.Categorical('model_index', p=p)
 m_0 = (4, 8)
 m_1 = (8, 4)
 m = pm.switch(pm.math.eq(model_index, 0), m_0, m_1)

 theta = pm.Beta('theta', m[0], m[1])
 y = pm.Bernoulli('y', theta, observed=y)
 trace_BF = pm.sample(5000)
chain_BF = trace_BF[500:]
pm.traceplot(chain_BF)

And now we compute the Bayes factor by counting the variable model_index.
Notice that we have included the values of the priors for each model:

pM1 = chain_BF['model_index'].mean()
pM0 = 1 - pM1
BF = (pM0/pM1)*(p[1]/p[0])

As a result, we get a value of ~11, that is, according to the Bayes factor we compute,
model 0 is favored over model 1. This makes total sense since the data has fewer
values of heads than expected for 5θ = and the only difference between both
models is that the prior of model 0 is more compatible with 0.5θ < (more tails than
heads) and model 1 is more compatible with 0.5θ > (more heads than tails).

Model Comparison

[202]

Common problems computing Bayes factors
Some common problems when computing Bayes factors the way we did is that if one
model is better than the other, by definition, we will spend more time sampling from
it than from the other model. And this could be problematic because we can under-
sample one of the models. Another problem is that the values of the parameters get
updated even when the parameters are not used to fit that model. That is, when
model 0 is chosen, parameters in model 1 are updated but since they are not used to
explain the data, they only get restricted by the prior. If the prior is too vague, it is
possible that when we choose model 1, the parameter values are too far away from
the previous accepted values and hence the step is rejected. Therefore we end up
having a problem with sampling.

In case we find these problems, we can do two modifications to our model to
improve sampling:

• Ideally, we can get a better sampling of both models if they are visited
equally, so we can adjust the prior for each model (the p variable in the
previous model) in such a way to favor the less favorable model and disfavor
the most favorable model. This will not affect the computation of the Bayes
factor because we are including the priors in the computation.

• Use pseudo priors, as suggested by Kruschke and others. The idea is simple:
if the problem is that the parameters drift away unrestricted, when the
model they belong to is not selected, then one solution is to try to restrict
them artificially, but only when not used! You can find an example of using
pseudo priors in a model used by Kruschke in his book and ported by me to
Python/PyMC3 at https://github.com/aloctavodia/Doing_bayesian_
data_analysis

Bayes factors and information criteria
We have already said that Bayes factors are more sensitive to priors than many
people like. It is like having differences that are practically irrelevant when doing
inference but that turn out to be important when computing Bayes factors. And this
is one of the reasons many Bayesians do not like Bayes factors.

Now we are going to see an example that will help clarify what Bayes factors are doing
and what information criteria are doing. Go back to the definition of the data for the
coin flip example and now set 300 coins and 90 heads; this is the same proportion as
before but we have 10 times more data. Then run each model separately:

with pm.Model() as model_BF_0:
 theta = pm.Beta('theta', 4, 8)

Chapter 6

[203]

 y = pm.Bernoulli('y', theta, observed=y)

 trace_BF_0 = pm.sample(5000)
chain_BF_0 = trace_BF_0[500:]
pm.traceplot(trace_BF_0);

with pm.Model() as model_BF_1:
 theta = pm.Beta('theta', 8, 4)
 y = pm.Bernoulli('y', theta, observed=y)
 trace_BF_1 = pm.sample(5000)
pm.traceplot(trace_BF_1);

If you check the posterior, you will see that both models make similar predictions,
even when having different priors; the reason is that we have so much data that the
effect of the prior, while still there, has been reduced. So now we are going to compute
the Bayes factor; we get a value of ~25 (of course you can compute it by yourself).
The Bayes factor is saying that model 0 is favored over model 1 even more than when
we had 30 coins and 9 heads. We increase the data and the decision between models
becomes more clear. This makes total sense because now we are more certain that
model 1 has a prior that does not agree with the data. But notice that as we increase
the amount of data, both models will tend to agree on the value of θ ; in fact, we get
~0.3 with both models. And hence if we decide to use θ to predict new outcomes, it
will hardly make any difference if we choose the value of θ estimated with one model
or the value estimated with the other model. So in this example, the Bayes factor is
telling us that one model is better than the other, so in some sense it is helping us to
detect something like the true model, while the predictions made with the parameters
estimated from both models are more or less the same.

Model Comparison

[204]

Compare now what WAIC and LOO are telling us (see the following figure); WAIC
is ~368.4 for model zero and ~368.6 for model one and LOO is ~366.4 and ~366.7.
This intuitively sounds like a small difference. And what is more important than the
actual difference is that if you compute the information criteria again for the data,
30 coins and 9 heads, you will get something like ~38.1 for model zero and ~39.4
for model one with WAIC and ~36.6 for model zero and ~38.0 for model one with
LOO. That is, the relative difference when increasing the data becomes smaller,
the more similar the estimation of θ , the most similar the values for the predictive
accuracy estimated by the information criteria. This example should help to clarify
the differences between Bayes factors and information criteria.

The following figure shows the values for WAIC and LOO and their standard errors
for the coin-flipping example using 30 tosses and 9 heads for the first row and 300
tosses and 90 heads for the second row.

Chapter 6

[205]

Summary
We began this chapter with the intuition that a good model is one that effectively
explains the data and is also simple. Using this intuition, we discussed the problem
of overfitting and underfitting that pervades statistical and machine learning
practices. We then formalized our intuitions by introducing the concept of deviance
and information criteria. We started with the rather unsophisticated AIC, and its
more Bayesian cousin known as DIC. Then we learned about an improved version
of both, WAIC. We also discussed briefly the empirical cross-validation method and
a way to approximate its results using the LOO method. We briefly discussed priors
and hierarchical models in the light of the new ideas exposed in this chapter. Finally,
we ended with a discussion of Bayes factors, how to compute them, and how to solve
some usual sampling problems associated with them. We finished with an example
to clarify the different aims of Bayes factors and information criteria.

Keep reading
• Chapter 6, Statistical Rethinking, Richard McElreath.
• Chapter 10, Doing Bayesian Data Analysis, Second Edition, John Kruschke.
• Chapter 7, Bayesian Data Analysis, Third Edition, Gelman and others.
• A nice post by Jake VanderPlas about model selection (part of a series):

http://jakevdp.github.io/blog/2015/08/07/frequentism-and-
bayesianism-5-model-selection/

• Practical Bayesian model evaluation using leave-one-out cross-validation and
WAIC: http://arxiv.org/abs/1507.04544.

Exercises
1. This exercise is about regularization priors. In the code that generates the

data, change order=2 to another value, such as, order=5. Then fit model_p and
plot the resulting curve. Repeat but now using a prior for beta with sd=100
instead of sd=1 and plot the resulting curve. How are both curves different?
Try it also with sd=np.array([10, 0.1, 0.1, 0.1, 0.1]).

2. Repeat the previous exercise but increase the amount of data to 500
data points.

3. Fit a cubic model (order 3), compute WAIC and LOO, plot the results, and
compare them with the linear and quadratic models.

Model Comparison

[206]

4. Use pm.sample_ppc() to re-run the PPC example, but this time plot the
values of y instead of the values of the mean.

5. Read and run the posterior predictive example from PyMC3's documentation
at https://pymc-devs.github.io/pymc3/notebooks/posterior_
predictive.html. Pay special attention to the use of the Theano shared
variables.

6. Compute the Bayes factor for the coin problem using a uniform prior
beta(1, 1) and priors such as beta(0.5, 0.5). Set 15 heads and 30 coins. Compare
this result with the inference we get in the first chapter.

7. Repeat the last example where we compare Bayes factors and IC but now
reducing the sample size.

[207]

Mixture Models
One common approach to model building is about combining or mixing simpler
models to obtain more complex ones. In statistic, this type of models are generically
known as mixture models. Mixture models are used for different purposes such
as directly modeling subpopulations or as a useful trick to handle complicated
distributions that cannot be described with simpler distributions. In this chapter we
are going to learn how to build them. We are are also going to find that some models
from previous chapters were mixture models in disguise, now we are going to
uncover them using a mixture-model perspective.

In this chapter, we will learn:

• Finite mixture models,
• Zero-Inflated Poisson distribution
• Zero-Inflated Poisson regression
• Robust logistic regression
• Model-based clustering
• Continuous mixture models

Mixture models
Sometimes a process or phenomenon under study cannot be properly described
using a single distribution like a Gaussian or a binomial, or any other canonical/pure
distribution, but it can be described as a mixture of such distributions. Models that
assume the data comes from a mixture of distributions are know as mixture models.

Mixture Models

[208]

One kind of situation where mixture models arise naturally is when we have
a dataset that is better described as a combination of real subpopulations. For
example, it makes perfect sense to describe the distribution of heights, in an adult
human population, as a mixture of female and male subpopulations. Even more,
if we have to deal also with non-adults, we may find it useful to include a third
group describing children, probably without needing to make a gender distinction
inside this group. Another classical example of a mixture model approach is used to
describe a group of handwritten digits. In this case, it also makes perfect sense to use
10 subpopulation to model the data, at least in a base 10 system!

In other cases, we may choose to use a mixture model out of mathematical/
computational convenience and not because we are really trying to describe
subpopulations in the data. Take for example the Gaussian distribution. We can use
it as a reasonable approximation for many unimodal and more or less symmetrical
distributions. But what about multi-modal or skewed distribution? Can we use
Gaussian distributions to model them? We can, if we use a mixture of Gaussians. In
this Gaussian mixture model, each component will be a Gaussian with a different
mean and the same or different standard deviation. By combining Gaussians
we can add flexibility to our model in order to fit complex data distributions. In
fact, we can approximate any distribution we want, no matter how complex or
weird they are, by using a proper combination of Gaussians. The exact number of
distributions will depend on the accuracy of the approximation and the details of
the data. This idea taken to an extreme (and performed in a non-Bayesian way) gives
the kernel density estimation (KDE) technique we have being using to plot data
(instead of using histograms). This non-Bayesian method puts a distribution (the
SciPy implementation uses Gaussians) at each data point and then it sums all the
individual Gaussians to approximate the empirical distribution of the data. A KDE
is a non-parametric method. We will discuss non-parametric methods in Chapter
8, Gaussian Processes. For now, what we care about is that we have already seen
examples of mixing Gaussians to approximate arbitrary distributions.

Whether we really believe in subpopulations or we use them for mathematical
convenience (or even something in the middle), mixture models are a useful way to
add flexibility to our models by using a mixture of distributions to describe the data.

Chapter 7

[209]

How to build mixture models
The general idea when building a finite mixture model is that we have a certain
number of subpopulations, each one represented by some distribution, and we
have data points that belong to those distribution but we do not know to which
distribution each point belongs. Thus we need to assign the points properly. We
can do that by building a hierarchical model. At the top level of the model, we
have a random variable, often referred as a latent variable, which is a variable that
is not really observable. The function of this latent variable is to specify to which
component distribution a particular observation is assigned to. That is, the latent
variable decides which component distribution we are going to use to model a given
data point. In the literature, people often use the letter z to indicate latent variables.

Let us start building mixture models with a very simple example. We have a dataset
that we want to describe as being composed of three Gaussians.

clusters = 3
n_cluster = [90, 50, 75]
n_total = sum(n_cluster)
means = [9, 21, 35]
std_devs = [2, 2, 2]

mix = np.random.normal(np.repeat(means, n_cluster),
 np.repeat(std_devs, n_cluster))

sns.kdeplot(np.array(mix))
plt.xlabel('x', fontsize=14)

Mixture Models

[210]

In many real situations, when we wish to build models, it is often more easy, effective
and productive to begin with simpler models and then add complexity, even if we know
from the beginning that we need something more complex. This approach has several
advantages, such as getting familiar with the data and problem, developing intuition,
and avoiding choking us with complex models/codes that are difficult to debug.

So, we are going to begin by supposing that we know that our data can be described
using three Gaussians (or in general, k-Gaussians), maybe because we have enough
previous experimental or theoretical knowledge to reasonably assume this, or maybe
we come to that conclusion by eyeballing the data. We are also going to assume we
know the mean and standard deviation of each Gaussian.

Given this assumptions the problem is reduced to assigning each point to one of
the three possible known Gaussians. There are many methods to solve this task.
We of course are going to take the Bayesian track and we are going to build a
probabilistic model.

To develop our model, we can get ideas from the coin-flipping problem. Remember
that we have had two possible outcomes and we used the Bernoulli distribution to
describe them. Since we did not know the probability of getting heads or tails, we
use a beta prior distribution. Our current problem with the Gaussians mixtures is
similar, except that we now have k-Gaussian outcomes.

The generalization of the Bernoulli distribution to k-outcomes is the categorical
distribution and the generalization of the beta distribution is the Dirichlet
distribution. This distribution may look a little bit weird at first because it lives in
the simplex, which is like an n-dimensional triangle; a 1-simplex is a line, a 2-simplex
is a triangle, a 3-simplex a tetrahedron, and so on. Why a simplex? Intuitively,
because the output of this distribution is a k-length vector, whose elements are
restricted to be positive and sum up to one. To understand how the Dirichlet
generalize the beta, let us first refresh a couple of features of the beta distribution. We
use the beta for 2-outcome problems, one with probability p and the other 1-p. In this
sense we can think that the beta returns a two-element vector, [p, 1-p]. Of course, in
practice, we omit 1-p because it is fully determined by p. Another feature of the beta
distribution is that it is parameterized using two scalars α and β . How does these
features compare to the Dirichlet distribution? Let us think of the simplest Dirichlet
distribution, one we could use to model a three-outcome problem. We get a Dirichlet
distribution that returns a three element vector [p, q , r], where r=1 – (p+q). We could
use three scalars to parameterize such Dirichlet and we may call them α , β , and γ ;
however, it does not scale well to higher dimensions, so we just use a vector named
α with lenght k, where k is the number of outcomes. Note that we can think of
the beta and Dirichlet as distributions over probabilities. To get an idea about this
distribution pay attention to the following figure and try to relate each triangular
subplot to a beta distribution with similar parameters.

Chapter 7

[211]

The preceding figure is the output of the code written by Thomas Boggs with just a
few minor tweaks. You can find the code in the accompanying text; also check the
Keep reading sections for details.

Now that we have a better grasp of the Dirichlet distribution we have all the
elements to build our mixture model. One way to visualize it, is as a k-side coin flip
model on top of a Gaussian estimation model. Of course, instead of k-sided coins
you may prefer to think in terms of a k-side dice. Using Kruschke-style diagrams,
we can visualize this model as:

normal

�
�

half-Cauchy

�

�

�

�
�

p

�
k

�
k

normal

y

categorical

�
Dirichlet

�

Mixture Models

[212]

The rounded-corner box is indicating that we have k-Gaussian likelihoods (with their
corresponding priors) and the categorical variables decide which of them we use to
describe a given data point.

Remember, we are assuming we know the means and standard deviations of the
Gaussians; we just need to assign each data point to one Gaussian. One detail
of the following model is that we have used two samplers, Metropolis and
ElemwiseCategorical, which is specially designed to sample discrete variables.

with pm.Model() as model_kg:
 p = pm.Dirichlet('p', a=np.ones(clusters))
 category = pm.Categorical('category', p=p, shape=n_total)

 means = pm.math.constant([10, 20, 35])

 y = pm.Normal('y', mu=means[category], sd=2, observed=mix)

 step1 = pm.ElemwiseCategorical(vars=[category],
values=range(clusters))
 step2 = pm.Metropolis(vars=[p])
 trace_kg = pm.sample(10000, step=[step1, step2])
 chain_kg = trace_kg[1000:]
 varnames_kg = ['p']
 pm.traceplot(chain_kg, varnames_kg)

Now that we know the skeleton of a Gaussian mixture model, we are going to add a
complexity layer and we are going to estimate the parameters of the Gaussians. We
are going to assume three different means and a single shared standard deviation.

Chapter 7

[213]

As usual, the model translates easily to the PyMC3 syntax.

with pm.Model() as model_ug:
 p = pm.Dirichlet('p', a=np.ones(clusters))
 category = pm.Categorical('category', p=p, shape=n_total)

 means = pm.Normal('means', mu=[10, 20, 35], sd=2, shape=clusters)
 sd = pm.HalfCauchy('sd', 5)

 y = pm.Normal('y', mu=means[category], sd=sd, observed=mix)

 step1 = pm.ElemwiseCategorical(vars=[category],
values=range(clusters))
 step2 = pm.Metropolis(vars=[means, sd, p])
 trace_ug = pm.sample(10000, step=[step1, step2])

Now we explore the trace we got:

chain = trace[1000:]
varnames = ['means', 'sd', 'p']
pm.traceplot(chain, varnames)

Mixture Models

[214]

And a tabulated summary of the inference:

pm.df_summary(chain, varnames)

mean sd mc_error hpd_2.5 hpd_97.5
means__0 21.053935 0.310447 0.012280 20.495889 21.735211

means__1 35.291631 0.246817 0.008159 34.831048 35.781825

means__2 8.956950 0.235121 0.005993 8.516094 9.429345

sd 2.156459 0.107277 0.002710 1.948067 2.368482

p__0 0.235553 0.030201 0.000793 0.179247 0.297747

p__1 0.349896 0.033905 0.000957 0.281977 0.412592

p__2 0.347436 0.032414 0.000942 0.286669 0.410189

Now we are going to do a predictive posterior check to see what our model learned
from the data:

ppc = pm.sample_ppc(chain, 50, model)
for i in ppc['y']:
 sns.kdeplot(i, alpha=0.1, color='b')

sns.kdeplot(np.array(mix), lw=2, color='k')
plt.xlabel('x', fontsize=14)

Chapter 7

[215]

Notice how the uncertainty, represented by the lighter blue lines, is smaller for the
smaller and larger values of x and is higher around the central Gaussian. This
makes intuitive sense since the regions of higher uncertainty correspond to the
regions where the Gaussian overlaps and hence it is harder to tell if a point belongs
to one or the other Gaussian. I agree that this is a very simple problem and not that
much of a challenge, but it is a problem that contributes to our intuition and a model
that can be easily applied or extended to more complex problems.

Marginalized Gaussian mixture model
In the preceding models, we have explicitly included the latent variable z in the
model. One problem with this model is that sampling the discrete latent variable
z usually leads to slow mixing and ineffective exploration of the tails of the
distribution. Using a specific tailored sampler for the discrete latent variable can
help improve the sampling. An alternative is to write an equivalent model but using
a different parametrization. Note that in a mixture model the observed variable y is
modeled conditionally on the latent variable z. That is:

()| ,p y z θ

We may think of the z latent variable as a nuisance variable that we can marginalize
and get:

()|p y θ

Luckily for us, PyMC3 includes a distribution that effectively does this, without us
needing to explicitly do the math. So we can write a Gaussian mixture model in the
following way.

with pm.Model() as model_mg:
 p = pm.Dirichlet('p', a=np.ones(clusters))

 means = pm.Normal('means', mu=[10, 20, 35], sd=2, shape=clusters)
 sd = pm.HalfCauchy('sd', 5, shape=clusters)

 y = pm.NormalMixture('y', w=p, mu=means, sd=sd, observed=mix)

 step = pm.Metropolis()
 trace_mg = pm.sample(2000, step)

It is left as an exercise for the reader to run this model and made all the necessary
plots to explore the results.

Mixture Models

[216]

Mixture models and count data
Sometimes we use data that results from counting things, such as the decay of a
radioactive nucleus, the number of children per couple, or the number of Twitter
followers. What all these examples have in common is that we usually model them
using discrete non-negative numbers {0, 1, 2, 3…}. This type of variable receives
the name of count data and one common distribution used to model it is the Poisson
distribution.

The Poisson distribution
Imagine we are counting the number of red cars passing through an avenue per
hour. We could use the Poisson distribution to describe this data. The Poisson
distribution is generally used to describe the probability of a given number of events
occurring on a fixed time/space interval. Thus the Poisson distribution assumes
that the events occur independently of each other and at a fixed interval of time
and/or space. This discrete distribution is parametrized using only one value, λ
(the rate) that corresponds to the mean and also the variance of the distribution.
The probability mass function is:

()
!

kepmf k
k

λλ −

=

where:

• λ is the average number of events per unit of time/space
• k is a positive integer value 0, 1, 2, …
• k! is the factorial of k, () ()! 1 2 2 1k k k k= × − × − × × ×…

In the following plot, we can see some examples of the Poisson distribution family,
for different values of λ .

lam_params = [0.5, 1.5, 3, 8]
k = np.arange(0, max(lam_params) * 3)
for lam in lam_params:
 y = stats.poisson(lam).pmf(k)
 plt.plot(k, y, 'o-', label="$\\lambda$ = {:3.1f}".format(lam))
plt.legend()
plt.xlabel('k', fontsize=14)
plt.ylabel('$pmf(k)$', fontsize=14)

Chapter 7

[217]

Note that λ can be a float, but the output of the distribution is always an integer.
In the previous plot the dots represent the values of the distribution, while the
continuous lines are a visual aid to help us easily grasp the shape of the distribution.
Remember, the Poisson distribution is a discrete distribution.

The Poisson distribution can be seen as a special case of the binomial distribution
when the number of trials n is very large but the probability of success p is very low.
Without going into too much mathematical detail let's try to clarify the preceding
statement. Since we either see the red car or we do not, we can use a binomial
distribution to model the number of red cars. In that case we have:

(),x Bin n p∼

Then, the mean of the binomial distribution is:

[]E x np=

Mixture Models

[218]

And the variance is given by:

[] ()1Var x np p= −

But notice that even if you are in a very busy avenue, the chance of seeing a red car
compared to the total number of cars in a city is very small and therefore we have:

()1n p np np p⇒ −� �

So, we can make the following approximation:

[]Var x np=

Now the mean and the variance are represented by the same number and we can
confidently state that our variable is distributed as a Poisson distribution:

()x Pois npλ =∼

The Zero-Inflated Poisson model
When we are counting things, it often happens that the number zero occurs for more
than one reason; we either have zero because we were counting red cars and a red
car did not pass through the avenue or because we missed it (maybe we did not see
that tiny red car behind that large truck). So if we use a Poisson distribution we will
notice, for example, when performing a posterior predictive check, that we do not
get a nice fit especially because we are seeing more zeros than expected if the data
was really Poisson-distributed.

How do we fix that? We may try to address the exact cause of our model predicting
less zeros than observed and include that factor in the model. But as is often the case,
it is enough (and easier) for our purposes, just to assume that we have a mixture
model composed of a number coming from a Poisson distribution with probability ψ
and extra zeros with probability 1 ψ− . If we opt for the mixture model, we get what
is known as a Zero-Inflated Poisson (ZIP) model. In some texts, you will find that ψ
represents the extra zeros and 1 ψ− the probability of the Poisson. This is not a big
deal; just pay attention to which is which in a concrete example.

Chapter 7

[219]

Basically a ZIP distribution tells us that:

() ()0 1jp y e λψ ψ −= = − +

()
!

ik

j i
i

ep y k
k

λλψ
−

= =

Where 1 ψ− is the probability of extra zeros.

We could implement these equations into a PyMC3 model. However, PyMC3 is
equipped with a ZIP distribution, so we can write the model with more ease. Since
Python has already call dibs on lambda, we instead use the variable name lam. Using
PyMC3, we can express the ZIP model as:

with pm.Model() as ZIP:
 psi = pm.Beta('p', 1, 1)
 lam = pm.Gamma('lam', 2, 0.1)

 y = pm.ZeroInflatedPoisson('y', lam, psi, observed=counts)
 trace = pm.sample(1000)
pm.traceplot(trace[:]);

Mixture Models

[220]

Poisson regression and ZIP regression
The ZIP model may look a little dull, but sometimes we need to estimate simple
distributions like this or even ones like the Poisson or Gaussian distributions. Besides,
we can use the Poisson or ZIP distributions as part of a linear model. As we saw in
Chapter 4, Understanding and Predicting Data with Linear Regression Models, a simple linear
regression model can be built by using a linear model (with the identity inverse link
function) and a Gaussian distribution (or Student's t) as a noise or error distribution. In
Chapter 5, Classifying Outcomes with Logistic Regression, we saw how to adapt this model
to perform classification. We used the logistic or softmax as the inverse link function
and the Bernoulli or categorical, respectively, to model the output variable. Following
the same idea, we can now perform a regression analysis when the output variable is
a count variable using a Poisson or a ZIP distribution. In the following figure, we see
one possible implementation of a ZIP regression. The Poisson regression will be similar,
but without the need to include ψ because we will not be modeling an excess of zeros.
Notice that now we use the exponential function as an inverse link function. This choice
guarantees the values returned by the linear model are positive.

beta

�
�

�
�

�
�

�
�

normal normal

�

� �

�

��

Zero-Inflated Poisson

y

exp (+)� � X

���

�

To exemplify a ZIP-regression model implementation, we are going to work with a
data set taken from http://www.ats.ucla.edu/stat/data/fish.csv. The data is
also distributed with the accompanying code.

Chapter 7

[221]

The problem is as follows: We work at a park administration and we want to
improve the experience for the visitors. Thus we decide to take a short survey to 250
groups visiting the park. Part of the data we collected (at the group-level) consists of:

• The number of fish they caught (count)
• How many children were in the group (child)
• Whether or not they brought a camper to the park (camper).

Using this data we are now going to build a model that predicts the number of
catched fishes as a function of the variables child and camper. We can use Pandas
to load the data:

fish_data = pd.read_csv('fish.csv')

I leave as an exercise for you to explore the dataset using plots and/or a Pandas
function, such as describe(). For now we are going to continue by translating the
above Kruschke diagram to PyMC3:

with pm.Model() as ZIP_reg:
 psi = pm.Beta('psi', 1, 1)

 alpha = pm.Normal('alpha', 0, 10)
 beta = pm.Normal('beta', 0, 10, shape=2)
 lam = pm.math.exp(alpha + beta[0] * fish_data['child'] + beta[1] *
fish_data['camper'])

 y = pm.ZeroInflatedPoisson('y', lam, psi, observed=fish_
data['count'])
 trace_ZIP_reg = pm.sample(1000)
chain_ZIP_reg = trace_ZIP_reg[100:]
pm.traceplot(chain_ZIP_reg)

Mixture Models

[222]

As usual, your duty is to do a sanity-check for the sampling process. To better
understand the results of our inference, let's do a plot.

children = [0, 1, 2, 3, 4]
fish_count_pred_0 = []
fish_count_pred_1 = []
thin = 5
for n in children:
 without_camper = chain_ZIP_reg['alpha'][::thin] + chain_ZIP_
reg['beta'][:,0][::thin] * n
 with_camper = without_camper + chain_ZIP_reg['beta'][:,1][::thin]
 fish_count_pred_0.append(np.exp(without_camper))
 fish_count_pred_1.append(np.exp(with_camper))

Chapter 7

[223]

Robust logistic regression
We just saw how to fix an excess of zeros without directly modeling the factor that
generates them. A similar approach, suggested by Kruschke, can be used to perform
a more robust version of logistic regression. Remember that in logistic regression we
model the data as binomial, that is, zeros and ones. So it may happen that we find a
dataset with unusual zeros and/or ones. Take as an example the iris dataset that we
have already seen, but with some intruders added:

iris = sns.load_dataset("iris")
df = iris.query("species == ('setosa', 'versicolor')")
y_0 = pd.Categorical(df['species']).codes
x_n = 'sepal_length'
x_0 = df[x_n].values
y_0 = np.concatenate((y_0, np.ones(6)))
x_0 = np.concatenate((x_0, [4.2, 4.5, 4.0, 4.3, 4.2, 4.4]))
x_0_m = x_0 - x_0.mean()
plt.plot(x_0, y_0, 'o', color='k')

Here we have some versicolors (1s) with an unusually short sepal length. We can
fix this with a mixture model. We are going to say that the output variable comes
with probability π by random guessing or with probability 1 π− from a logistic
regression model. Mathematically, we have:

() ()0.5 1p logisticπ π α β= + − + X

Mixture Models

[224]

Notice that when 1π = we get 0.5p = , and when 2π = we recover the expression
for logistic regression.

Implementing this model is a straightforward modification of the one we used in
Chapter 5, Classifying Outcomes with Logistic Regression.

with pm.Model() as model_rlg:
 alpha_tmp = pm.Normal('alpha_tmp', mu=0, sd=100)
 beta = pm.Normal('beta', mu=0, sd=10)

 mu = alpha_tmp + beta * x_0_m
 theta = pm.Deterministic('theta', 1 / (1 + pm.math.exp(-mu)))

 pi = pm.Beta('pi', 1, 1)
 p = pi * 0.5 + (1 - pi) * theta

 alpha = pm.Deterministic('alpha', alpha_tmp - beta *
 x_0.mean())
 bd = pm.Deterministic('bd', -alpha/beta)

 yl = pm.Bernoulli('yl', p=p, observed=y_0)

 trace_rlg = pm.sample(2000, start=pm.find_MAP())
varnames = ['alpha', 'beta', 'bd', 'pi']
pm.traceplot(trace_rlg, varnames)

Chapter 7

[225]

If we compare these results we will see that we get more or less the same outcome as
in Chapter 5, Classifying Outcomes with Logistic Regression:

pm.df_summary(trace_rlg, varnames)

mean sd mc_error hpd_2.5 hpd_97.5

alpha -88.04 32.06 1.99 -151.35 -32.68

beta 16.15 5.87 0.36 6.21 27.95

bd 5.45 0.05 0.00 5.34 5.55

pi 0.30 0.07 0.00 0.15 0.45

Model-based clustering
Clustering is part of the unsupervised family of statistical/machine learning tasks
and is similar to classification, but a little bit more difficult since we do not know the
correct labels!

Mixture Models

[226]

If we do not know the correct labels we can try grouping data points together.
Loosely speaking, points that are closer between themselves, under some metric,
are defined as belonging to the same group and separated from the other groups.
Clustering has many, many applications; for example, phylogenetics, a branch of
biology studying the evolutionary relationships among biological entities, can be
framed as clustering techniques applied to and guided by an evolutionary question.
A more capitalist-driven application of clustering is determining which movie/
book/song/you-name-the-product we may be interested in. We can try to guess
this based on our consumption-record and how this record clusters with those of
other users. As with other unsupervised learning tasks, we may be interested in
performing clustering by itself or we may want to use it as part of an exploratory
data analysis. Now that we have a general idea of what clustering is, let us continue
by checking some criteria used to define if two data points need to be grouped
together or not.

Often we define how close or similar two data points are by measuring the Euclidean
distance between them. The Euclidean distance is, roughly speaking, the straight line
between two points. It is important to realize that even when we are not measuring
an actual physical distance, let's say in meters or light years, we can define a
Euclidean distance. For every two data points iq and ip in an n-dimensional
feature/variable space, we can compute the Euclidean distance as:

() () ()2, , i id p q d q p q p= = −∑

An algorithm that, in its more general incarnation, uses the Euclidean distance is
k-means clustering. We are not going to see it now, but I recommend you to read
about it because it is a nice introductory example to the clustering problem and one
that is easy to understand, interpret, and implement by yourself. You can find more
about it in the book, Python Machine Learning by Sebastian Raschka.

Computing Euclidean distances or some other measure of closeness is not the only
way to cluster data. An alternative is to take a probabilistic approach and assume the
observed data was generated from some probability distribution, and then build a
fully probabilistic model . This approach is often known as model-based clustering.

Chapter 7

[227]

A mixture model is a natural candidate when it comes to solving the clustering
problem under the Bayesian framework. Indeed, the first example in this chapter
was about using a mixture model as a way to model (unlabeled/unobserved)
subpopulations that combine to give the larger observed population. Using
a probabilistic model allows us to compute the probability of each data point
belonging to each one of the clusters. This is known as soft-clustering as opposed
to hard-clustering where each data point belongs to a cluster with probability 0 or
1. Of course, it is possible to turn soft-clustering into hard-clustering by introducing
some rule or boundary, like we did with logistics regression. A reasonable choice is
to compute for each point the probability of belonging to each cluster and assign it to
the cluster with the highest probability.

Fixed component clustering
The first example in this chapter was an example of a mixture model applied to a
clustering problem. We had an empirical distribution of data points and we used
three Gaussians to describe subpopulations in the data. Notice that instead of
thinking on a similarity/dissimilarity metric we performed inference on our data,
assuming a mixture of Gaussians.

Non-fixed component clustering
 For some problems, such as trying to clusterize handwritten digits, it is easy to
justify the number of clusters we should find in the data. For other problems we
can have good guesses; for example, for a dataset similar to the iris one we may
know that the samples were taken from a region where only three Iris species grow.
For other problems, choosing a priori the number of clusters can be a shortcoming.
One Bayesian solution to this type of problem is using a non-parametric method
to estimate the number of clusters. We can do this using a Dirichlet Process. In
Chapter 8, Gaussian Processes, we are going to learn about non-parametric statistics;
nevertheless, we are not covering the Dirichlet process in this book. I recommend
that after reading Chapter 8, Gaussian Processes, you read and run the following
notebook (https://pymc-devs.github.io/pymc3/notebooks/dp_mix.html).
This great introduction to Dirichlet Processes was written by Austin Rochford (PyMC3
contributor and reviewer of this book).

Mixture Models

[228]

Continuous mixtures
This chapter was focused on discrete mixture models but we can also have
continuous mixture models. And indeed we already know some of them. One
example of a continuous mixture model is the robust logistic regression model that
we saw earlier. This is a mixture of two components: a logistic on one hand and a
random guessing on the other. Note that the parameter π is not an on/off switch,
but instead is more like a mix-knob controlling how much random guessing and how
much logistic regression we have in the mix. Only for extreme values of π do we
have a pure random-guessing or pure logistic regression.

Hierarchical models can be also be interpreted as continuous mixture models where
the parameters in each group come from a continuous distribution in the upper
level. To make it more concrete, think about performing linear regression for several
groups. We can assume that each group has it own slope or that all the groups
share the same slope. Alternatively, instead of framing our problem as two extreme
discrete options, when we build a hierarchical model, we are effectively modeling
a continuous mixture of these extreme options. So the extreme options are just
particular cases of this larger hierarchical model.

Beta-binomial and negative binomial
The beta-binomial is a discrete distribution generally used to describe the number of
success y in an n number of Bernoulli trials when the probability of success p at each
trial is unknown and assumed to follow a beta distribution with parameters α and β .

() () ()
1

0
| , , | , | ,BetaBinonial y n Bin y p n Beta p dpα β α β= ∫

That is, to find the probability of observing the outcome y, we average over all
the possible (and continuous) values of p. And hence the beta-binomial can be
considered as a continuous mixture model.

If the beta-binomial model sounds familiar to you, it is because you have being
paying attention to the first two chapters of the book! This is the model we use
for the coin flipping problem, although we explicitly use a beta and a binomial
distribution, instead of using the already mixed beta-binomal distribution.

Chapter 7

[229]

In a similar fashion, we have the negative-binomial distribution, which can be
understood as a gamma-Poisson mixture continuous model, that is, by averaging
(integrating) a Poisson probability over continuous values of rates coming from
a gamma distribution. This distribution is often used to circumvent a common
problem encountered when dealing with count data. This problem is known as
over-dispersion. Suppose you are using a Poisson distribution to model count data,
and then you realize that the variance in your data exceeds that of the model; the
problem with using a Poisson distribution is that mean and variance are linked (in
fact they are described by the same parameter). So one way to solve this problem
is to model the data as a (continuous) mixture of Poisson distributions with rates
coming from a gamma distribution, which gives us the rationale to use the negative-
binomial distribution. Since we are now considering a mixture of distributions, our
model has more flexibility and can better accommodate the observed mean and
variance of the data.

Both the beta-binomial and the negative-binomial can be used as part of linear
models and both also have Zero-Inflated versions of them. And also, both are
implemented on PyMC3 as ready-to-use distributions.

The Student's t-distribution
We introduce the Student's t-distribution as a robust alternative to the Gaussian
distribution. It turns out that the Student's t-distribution can also be thought of as a
continuous mixture. In this case we have:

() () ()2

0
| , | , |vt y N y Inv v dµ σ µ σ χ σ ν

∞
= ∫

Notice this is similar to the previous expression for the negative-binomial except
that now we have a Normal distribution with the parameters µ and σ and the

2Invχ distribution with the parameter ν from which we sample the values of σ is
the parameter known as a degree of freedom, or as we prefer to call it, the normality
parameter. The parameter ν , as well as p for the beta-binomial, is the equivalent
of the z latent variable for finite mixture models. For some finite mixture models, it
is also possible to marginalize the distribution respect to the latent variable before
doing inference, winch may lead to an easier to sample model, as we already saw
with the marginalized mixture model example.

Mixture Models

[230]

Summary
In this chapter, we learned about mixture models, a type of hybrid model useful
to solve a large collection of problems. Creating a finite mixture model is a
relatively easy task given what we have learned from previous chapters. A very
handy application of this type of model is dealing with an excess of zeros in count
data or for example to expand a Poisson model if we observe over-dispersion.
Another application we explored was about extending logistic regression to handle
outliers. We also briefly discussed the central elements of performing Bayesian (or
model-based) clustering. Lastly, we presented a more theoretical discussion about
continuous mixture models and how these types of models are connected to concepts
we already learned in previous chapters, such as hierarchical models and the
Student's t-distribution for robust models.

Keep reading
• Chapter 11, Statistical Rethinking, Richard McElreath
• Chapter 21, Doing Bayesian Data Analysis, Second Edition. John Kruschke
• Chapter 22, Bayesian Data Analysis, Third Edition Gelman et al

Exercises
1. For the first example, modify the synthetic data to make it harder for the

model to recover the true parameters; try increasing the overlap of the 3
Gaussians by changing the means and standard deviations. Try changing the
number of points per cluster, and think of ways to improve the model for the
harder data you come up with.

2. Using the fish data, extend the model in the book to include the persons
variable as part of a linear model. Include this variable to model the
number of extra zeros. You should get a model with two linear models, one
connecting the number of children and the presence/absence of a camper
to the Poisson rate (as in the example we saw) and another connecting the
number of persons to the ψ variable. For the second case you will need a
logistic inverse link!

Chapter 7

[231]

3. Use the data for the robust logistic example to feed a non-robust logistic
regression model and to check that the outliers actually affected the results.
You may want to add or remove outliers to better understand the effect
of the estimation on a logistic regression and the robustness on the model
introduced in this chapter.

4. Read and run all the PyMC3 notebook examples about Mixture models
(https://pymc-devs.github.io/pymc3/examples.html#mixture-models).

5. Use a mixture model to cluster the three iris species, using two features.
Assume for a moment that you do not know the correct species/labels. You
will need to define three multivariate Gaussians, each one with six means.
As a first approach, use a single shared covariance matrix.

[233]

Gaussian Processes
All models that we have seen so far were parametric models. These are models with
a fixed number of parameters that we are interested in estimating. Another type of
models are those known as non-parametric models. Non-parametric models are
models where the number of parameters increases with the data, in other words,
models with a potentially infinite number of parameters that we somehow manage
to reduce to a finite number, just those necessary to describe the data. We will began
the chapter, by learning about the concept of a kernel, and how to rethink problems
in terms of kernels. Gaussians are the workhorse of statistics and this is not only true
for classical methods, but also Bayesian statistics and machine learning. We are going
to see a clear example of this as we explore how to extend the notion of Gaussian
distribution to infinitely large dimensions and how to learn distributions over
functions. Even though this will seem really weird at first, it will allow us to infer
functions through the use of parameterized kernels.

In this chapter, we will learn about:

• Non-parametric statistics
• Kernels
• Kernelized regression
• Gaussian processes and prior over functions

Gaussian Processes

[234]

Non-parametric statistics
Non-parametric statistics is often described as the set of statistical tools/models
that do not rely on parameterized families of probability distributions. From this
definition, it may sound as if Bayesian non-parametric is not possible since we
have learned that the first step in doing Bayesian statistics is precisely combining
probability distributions in a full probabilistic model. We said in Chapter 1,
Thinking Probabilistically - A Bayesian Inference Primer, that probability distributions
are the building blocks of probabilistic models. Under the Bayesian paradigm,
non-parametric models refer to models with an infinite number of parameters.
So, we will define parametric models as those models for which the number of
parameters is allowed to grow with the size of the data. For these models, the
theoretical numbers of parameters is infinite and we use the data to collapse it to
a finite number, thus we allow the data to effectively determine the number
of parameters.

Kernel-based models
The study of kernel-based methods is a very productive and active area of research,
with entire books dedicated to the subject. Their popularity relies on some interesting
mathematical properties of kernels. For the sake of our current introduction to
kernels, we are just going to say that we can use kernels as the basis of flexible non-
linear models that also are relatively easy to compute. Two popular kernel-based
methods are the support vector machine (SVM) and the Gaussian processes. The
later is a probabilistic method and is the topic of this chapter while the former is a
non-probabilistic method that we are not going to discuss it here, you can read more
about it in the following books Python Data Science Handbook, Jake Vanderplas and
Python Machine Learning, Sebastian Raschka. Before discussing Gaussian Processes,
let's explore what kernels are and how we can use them.

You may find more than one definition of kernel in the statistical literature, and
according to those definitions kernels will have slightly different mathematical
properties. For the purpose of our discussion, we are going to say that a kernel is
basically a symmetric function that takes two inputs and returns a value that is
always positive. If these conditions are met, we can interpret the output of a kernel
function as a measure of similarity between the two inputs.

Chapter 8

[235]

There are several useful kernels, some of them are specifically tailored to problems
such as image recognition or document analysis, others are better suited to modeling
periodic functions, and so on. A popular kernel used in many statistical and
machine-learning methods is the Gaussian Kernel, also known as the Gaussian radial
basis function.

The Gaussian kernel
The Gaussian kernel is defined as:

()
2

, expK x x
w

 ′−
′ = −

x x

Where 2′−x x is the squared Euclidean distance (SED). For an n-dimensional space
we have:

() () ()2 2 2 2
1 1 2 2 n nx x x x x x′ ′ ′ ′− = − + − + + −…x x

Notice that if we were computing the Euclidean distance we should have taken the
square distance. The SED does not satisfy the triangle inequality and thus is not a
true distance. Nevertheless, it is commonly used in many problems in which we
only need to compare SED: for example, finding the minimum Euclidean distance
between a set of points is the same as finding the minimum SED.

It may not be obvious at first sight, but the Gaussian kernel has the a similar formula
as the Gaussian distribution (see Chapter 4, Understanding and Predicting Data with
Linear Regression Models) where we have dropped the normalization constant and we
have defined 22w σ= . Thus, the term w is proportional to the variance and controls
the width of the kernel, and is sometimes known as the bandwidth.

Kernelized linear regression
We have learned that the basic motif of the linear regression model has the form:

()y f= +∈x

Gaussian Processes

[236]

Where ∈ is the error or noise and is generally Gaussian distributed.

() n

i
f = =∑x xµ γ

Here we are using f(.) to represent the linear function (without noise) with the
identity link function. If we are using other inverse link functions, as we did, for
example, in Chapter 5, Classifying Outcomes with Logistic Regression, we will include it
inside this f(.). The vector γ is the vector of coefficients, in general, an intercept and
one or more slopes.

In Chapter 4, Understanding and Predicting Data with Linear Regression Models, we
introduced the concept of polynomial regression and we warned that probably
the only practical use of polynomial regression (at least of order greater than two
or three) is to introduce statistical concepts in books. We saw how polynomial
regression can be used to model non-linear data using a linear model.

Notice we can write the polynomial regression as:

()i i xµ γ φ=∑

Where the φ function represents a series of polynomials of increasing order. By
transforming our input vector x into a matrix where each column is a power of that
vector, we are effectively projecting our data into a higher dimensional space. And
we are finding a straight line in that higher dimensional space that fits the data.
When projected back to the original lower dimensional space, that straight line is
not necessarily a straight line, but a curve. This is usually referred as projecting the
inputs into the feature space.

The function φ does not need to be a polynomial, there are other functions we can
use φ to map the input vector into a (higher dimensional) feature space. It turns out
that under certain conditions, instead of using the φ function, we can replace it by
a kernel. While being mathematically equivalent it is often more computationally
convenient to use kernels, this is known as the kernel trick. And this is the main
reason why the kernel is the central object in many statistical and machine learning
methods and the feature space concept is less important in practice, although it is a
useful concept for intuitive insights when learning about kernel-based methods.

Chapter 8

[237]

Continuing with our discussion, and without getting into the mathematical details,
we are going to replace φ with a kernel K. We are going to use let K be the Gaussian
kernel . We get the following:

(),N
ii
K ′= ∑ i x xµ γ

Notice that now we have our data x and also a new vector named ′x . The later is
a vector of points, usually referred to as knots or centroids which are distributed
somehow, for example, uniformly on the range of the data. As a special case we
could have ′=x x ; in other words nothing prevents us from choosing the data points
as the knots.

Why are we adding these extra points? Instead of answering that question directly,
let's see how we are going to use the knots. Notice that the closer the knots are to
a data point, the larger the value returned by the kernel function. To simplify the
analysis, assume 1w = , then if we have i j′=x x we will have (), 1i jk x x′ = and if ix and
jx′ are far away from each other we will have (), 0i jk x x′ ≈ . In other words, since the

output of the Gaussian kernel is a measure of similarity, we are saying thats if ix and
jx′ are similar, the mean value of the function at those points should also be similar,
i jµ µ∼ . If we vary ix a little bit we expect µ to vary a little bit, if we take a larger step

on x we expect a larger change on µ . If we think about this for a moment, we will
recognize this as a reasonable feature of our model, our experience tells us that many
functions behave this way; in fact, we have a name for this type of function, we call
them smooth functions. Exceptions arise, of course, but a whole array of problems
can be approximated using smooth functions.

OK, keep going with yet another interpretation of what we are doing. We are
effectively trying to approximate a smooth unknown function by using the grid
approach we saw in Chapter 1, Thinking Probabilistically - A Bayesian Inference Primer
and Chapter 2, Programming Probabilistically – A PyMC3 Primer. The grid points are
the ′x points. At each knot we are placing a Gaussian function and weighting up
or down (through γ) each of those Gaussians according to the data points. If we
sum up the Gaussians, we will obtain a smooth curve that approximates the value
of µ . This interpretation is known as the Weight-space view. Later in the Gaussian
processes section we are going to take a look at an alternative way of formulating the
problem (and getting the same results) known as the Function-space view.

Gaussian Processes

[238]

Let's put all these ideas in action by using a simple synthetic dataset, where the
dependent variable is a sin function and the independent variable is just a set of
points from a uniform distribution:

np.random.seed(1)
x = np.random.uniform(0, 10, size=20)
y = np.sin(x)
plt.plot(x, y, 'o')
plt.xlabel('x', fontsize=16)
plt.ylabel('$f(x)$', fontsize=16, rotation=0)

Now we are going to write a convenient simple function to compute a Gaussian
kernel in our model:

def gauss_kernel(x, n_knots=5, w=2):
 """
 Simple Gaussian radial kernel
 """
 knots = np.linspace(np.floor(x.min()), np.ceil(x.max()),
 n_knots)
 return np.array([np.exp(-(x-k)**2/w) for k in knots])

Chapter 8

[239]

All that is left is determining the γ coefficients. We will need as many coefficients as
knots. Remember that the coefficients indicate if the curve we are estimating should
increase or decrease at the knots.

Sometimes it makes sense to write the model as in a linear regression, something like
the following:

(),N
ii
Kα β ′= + +∑ ix x xµ γ

But now we are going to omit specifying an intercept α and the slope β and we are
just going to use the last term. As priors we are using a Cauchy distribution, later
we are going to discuss some important points about choosing priors when working
with kernel methods, but now let's and run some computations:

with pm.Model() as kernel_model:
 gamma = pm.Cauchy('gamma', alpha=0, beta=1, shape=n_knots)
 sd = pm.Uniform('sd',0, 10)
 mu = pm.math.dot(gamma, gauss_kernel(x, n_knots))
 yl = pm.Normal('yl', mu=mu, sd=sd, observed=y)
 kernel_trace = pm.sample(10000, step=pm.Metropolis())
chain = kernel_trace[5000:]
pm.traceplot(chain);

Gaussian Processes

[240]

As you may have noticed, the models runs as smooth as a sin function. We are now
going to perform a posterior check to see what the model has learned:

ppc = pm.sample_ppc(chain, model=kernel_model, samples=100)

plt.plot(x, ppc['yl'].T, 'ro', alpha=0.1)

plt.plot(x, y, 'bo')
plt.xlabel('x', fontsize=16)
plt.ylabel('$f(x)$', fontsize=16, rotation=0)

The model seems to track the data points very well, let's now check how the model
performs for points other than the ones we have observed:

new_x = np.linspace(np.floor(x.min()), np.ceil(x.max()), 100)
k = gauss_kernel(new_x, n_knots)
gamma_pred = chain['gamma']
for i in range(100):
 idx = np.random.randint(0, len(gamma_pred))
 y_pred = np.math.dot(gamma_pred[idx], k)
 plt.plot(new_x, y_pred, 'r-', alpha=0.1)
plt.xlabel('x', fontsize=16)
plt.ylabel('$f(x)$', fontsize=16, rotation=0)
plt.plot(x, y, 'bo');

Chapter 8

[241]

We use blue dots for the data and red lines for the fitted curves. Now you may want
to explore the effect of changing the bandwidth and changing the number of knots.
See Exercise 1 for this, and to also explore the effect of fitting another type of function
see Exercise 2.

Overfitting and priors
An obvious concern when working with kernelized models is how to choose the
number of knots and the location. One alternative is using the datapoints as the
knots, that is, to place a Gaussian on top of each data point. You may remember that
we have already mentioned that this is how KDE plots are done.

Another option is to let the number and location of knots be determined during the
modeling. This may require some special computational methods that do not generalize
well, or at least are not easy to work with. Another option is to use variable selection;
the idea is to introduce a model index variable. The size of the vector should be the
same as the number of γ coefficient, the elements of this vector can take only two
values, either zero or one. In such a way, we can turn the coefficient off and on in
our model. One problem with this approach is that it only works for low dimensional
problems since the number of possible combinations of indexes grows as 2H, where H is
the number of coefficients. One alternative is to use regularizing priors. We want priors
concentrated around zero in order to push the γ coefficients towards zero and with
long tails to avoid pushing too much. One such prior is the Cauchy distribution another
option is the Laplace. Remember that we have already discussed this in Chapter 6, Model
Comparison in the context of Regularization priors, Ridge and Lasso regression.

Gaussian Processes

[242]

Gaussian processes
We just saw a brief introduction on how to use kernels to build statistical models
to describe arbitrary functions. Maybe the kernelized regression sounds a little bit
like ad hoc trickery and the idea of having to somehow specify the number and
distribution of a set of knots is a little problematic. Now we are going to see an
alternative way to use kernels by doing inference directly in the function space. This
alternative is mathematically and computationally more appealing and is based on
using Gaussian processes.

Before introducing Gaussian processes let's think about what a function is? We may
think of a function as mapping from a set of inputs to a set of outputs. One way to
learn this mapping is by restricting it to a line, as we did in Chapter 4, Understanding
and Predicting Data with Linear Regression Models, and then to use the Bayesian
machinery to infer the plausible values of the parameters controlling that line.
But suppose we do not want to restrict our model to a line, we want to infer any
possible function. As usual in Bayesian statistics, when we do not know a quantity
we put a prior over it. So if we do not know which function could be a good model
for our data, we need to find a prior over functions. Interestingly, such a prior is a
Multivariate Gaussian, well in fact it is something similar, but play along with me
for a moment. We can use a Multivariate Gaussian to describe a function in a very
broad (but useful) way. We are going to say that for every ix value there is a iy
value that is Gaussian distributed with an unknown mean and unknown standard
deviation. In this way, if our x vector has length n we will have a n-multivariate
Gaussian distribution.

For a real valued function these sets of inputs x and outputs y are indeed infinite;
the reason is that between two points there is an infinite number of other points.
So, at least in principle we should need an infinite-multivariate Gaussian. And that
mathematical object is known as Gaussian Process (GP) and is parameterized with a
mean function and a covariance function:

() () ()(), ,f GP Kµ ′∼x x x x

A formal definition says that for a GP, every point in a continuous space has
associated a normally distributed variable, and the GP is the joint distribution of
those infinitely many random variables. The mean function is an infinite vector of
mean values. A covariance function is an infinite covariance matrix and as we will
see it is a way to effectively model how a change in x is related to a change in y .

Chapter 8

[243]

To summarize, in previous chapters, we learned how to estimate ()|p y x , for example,
in linear regression we assume ()y f= +∈x , where f is a linear model and we proceed
to estimate parameters of that linear model, that is, we end up estimating ()|p θ x .
Using a GP we can instead estimate ()|p f x . Later we will see that we still need to
estimate parameters, but conceptually it is a very good idea to think we are working
directly with functions.

Building the covariance matrix
In practice, and although it is not really necessary, the mean function of the GP
is usually set to zero, and hence the entire behavior of the GP is controlled by the
covariance function. So let's focus on how to build the covariance function.

Sampling from a GP prior
The GP concept is like a mental scaffold, in practice we do not really directly use
this infinite object; instead we collapse the infinite GP prior to a finite multivariate
Gaussian. Mathematically, this is done by marginalizing over the infinitely
unobserved dimensions that are left out of our model. If we do so, we will end
up with a multivariate Gaussian distribution. This follows from the definition of
Gaussian processes as a collection of random variables of which any finite subset
have a joint Gaussian distribution. Thus in practice, we only evaluate the GP at the
points where we have data, so we end up working with a Multivariate Gaussian
distribution with as many dimensions as data points! Hence, for a zero mean
function, we will obtain:

() [] ()()0 0 , ,f MvNormal Kµ ′=∼ …x x x

Now that we have tamed the infinitely headed creature, let's continue with the
definition of the covariance matrix, notice that we have written the covariance matrix
as (),K ′x x . This is intentionally the same notation used for the kernelized regression
example since we are in fact using a kernel to build the covariance function. The
covariance function is going to describe how we expected y to vary when x
varies. As we already saw for the kernelized regression, using a Gaussian kernel is
a reasonable assumption and it is equivalent to saying that a small variation of ix
will give (on average) a small variation of iy and a large variation of ix will give (on
average) a large variation of iy .

Gaussian Processes

[244]

To gain intuition into what a GP prior is, we are going to sample from it. In the
following figure, we have plotted six arbitrary functions (or realizations) from the
GP prior. Notice that while we have plotted the realizations as continuous functions,
in fact we only have values of ()f ∗x at a given set of ∗x test points. Of course, given
our smooth assumption and the impossibility of actually computing an infinite set
of values, it makes total sense to connect the dots of the individual realizations into a
continuous function. We just need to provide enough test points to accurately reflect
the shape of the function. I hope you find this natural; after all, this is the same old trick
we always use in practice to compute and plot functions using computers.

np.random.seed(1)
test_points = np.linspace(0, 10, 100)
cov = np.exp(-squared_distance(test_points, test_points))
 plt.plot(test_points, stats.multivariate_normal.rvs(cov=cov,
size=6).T)

plt.xlabel('x', fontsize=16)
plt.ylabel('$f(x)$', fontsize=16, rotation=0)

As you can see in the preceding figure our GP prior, with a Gaussian kernel, implies
a wide variety of smooth functions centered around 0. See Exercise 3.

Chapter 8

[245]

Using a parameterized kernel
In order to learn about our unknown function from our data, we define the
covariance matrix in terms of a parameterized kernel. We will call the parameters of
the kernel, hyper-parameters. The reason is two-fold:

• They are parameters for the GP prior
• The name helps to emphasize that we are working with a non-parametric

method

By learning the hyper-parameters of the GP prior we hope to approximate the
unknown function.

As we have already mentioned, there are many options for kernels, a pretty common
one is the Gaussian kernel. Earlier in this chapter we saw a version of it that was
parameterized using one parameter, the bandwidth. Now, we are going to introduce
a version with two more parameters. We can write this kernel as follows:

()exp
ij

D if i j
K

if i j
η ρ

η σ
 − ≠

=
+ =

Where D is the SED, that is, the quantity 2x x′− . η is a parameter controlling the
vertical scale, that is, it allows the covariance matrix to model larger or smaller
values of ()f x . The next parameter is ρ and it is just the bandwidth. As we have
already seen, ρ is in charge of controlling the smoothness of the function. Finally, we
have σ , which captures the noise in the data.

Let's talk a little bit about σ and why we are using a different expression whether i
and j are equal or not.

In some settings, like when performing interpolation, we want a model that for each
observed ix point returns the observed value of ()if x without any uncertainty. In
other settings, like in all the examples through this book, we instead want to get an
estimation of the uncertainty for ()if x , and thus we want a value that is somewhat
close to our output observed values, but not exactly equal to them. As we have
already written several times, we have the following:

()y f= +∈x

Where the error term is modeled as ()0,N σ∈∼

Gaussian Processes

[246]

Thus the covariance matrix should be constructed in order to properly take into
account noisy data. In such a case, we will have the following:

()cov , ,i j i j ijy y k x x σδ = +

Where:

0
1ij

if i j
if i j

δ
≠

= =

ijδ is known as the Kronecker delta. That is, we model the noise in the data by
allowing the diagonal of the covariance matrix to not be exactly 1. Instead, we
estimate the diagonal values from the data. This allows us to add a jitter term to the
model, we need to add this term because the assumption conveyed by the kernel is
that, the closer two inputs are the closer the outputs will be, at the extreme of two
points being equal, their outputs should be equal. Adding a jitter term allows us to
capture the uncertainty we have around the observed data points.

To get a better feeling for the meaning of each hyper-parameter, let's do a plot using
the expanded version of the Gaussian kernel. Feel free to experiment with different
values for the hyper-parameters:

np.random.seed(1)
eta = 1.5
rho = 0.2
sigma = 0.007

D = squared_distance(test_points, test_points)

cov = eta * np.exp(-rho * D)
diag = eta + sigma

np.fill_diagonal(cov, diag)

for i in range(6):
 plt.plot(test_points, stats.multivariate_normal.rvs(cov=cov))
plt.xlabel('x', fontsize=16)
plt.ylabel('$f(x)$', fontsize=16, rotation=0)

Chapter 8

[247]

Making predictions from a GP
The next step is to be able to make predictions from the GP. One of the advantages
of GP is that it is analytically tractable. If we combine a GP prior with a Gaussian
likelihood we get a GP posterior. That is, if we apply the rules for conditioning
Gaussians at a set of test points we obtain the following expression for the posterior
predictive density:

()() ()
1

1

| , , ,
T

T

p f N

y
∗ ∗ ∗ ∗

−
∗

−
∗∗ ∗ ∗

=

= −

∼X X X y

K K
K K K K

µ

µ

∑

∑

Gaussian Processes

[248]

We are computing the values of the unknown function at a (yet) unseen point ()f ∗x ,
given our data X and y , and a set of test points ∗x . Notice we are using the
symbol ∗ to indicate the computations that are over the test points, where:

()
()
()

,

,

,

K

K

K
∗∗ ∗ ∗

∗ ∗

=

=

=

K X X

K X X

K X X

At first, this expression can be a little bit intimidating; in a moment we will see how
to code this expression and things will become, hopefully, clearer. But now let's try
to get some intuition out of this expression.

K∗∗ is the covariance of ∗x to itself, so it is just the variance of ∗x . That is, the variance
of the test points or equivalently the variance of the prior. Notice that Σ is equal to
K∗∗ minus a quantity. This expression tells us that using data we are able to reduce the
prior variance by this exact quantity . Besides the exact value of this quantity we can see
the following, that for a ∗x test point far away from a data point ix , the kernel returns
a value close to zero, and thus this quantity will be close to zero; as a consequence we
will not be able to reduce the prior variance too much. In other words, evaluating the
function far away from the data does not help us to reduce the uncertainty. Thus, the
inference is based on local features of the data around the test points.

If you want to know more about the mathematical properties of Multivariate
Gaussians and how the previous expression are derived, please refer to the Keep
reading section at the end of this chapter. There, I have added some references to
more advanced material that you will certainly find interesting. For our current
discussion, we take the previous expression for the posterior predictive as given.
The important take-home message is that we can use it to get samples from the GP
posterior. Notice that having this analytical expression to describe the unknown
function (once we have learned the correct parameters) is very valuable. One
problem is that the computation involves inverting a matrix and inverting matrices
are ()3O n . If you are not familiar with this expression, we can loosely say that this
type of operation is a slow one, thus in practice we cannot use GPs for more than a
few thousand data points. Anyway, for those cases approximations exist to speed
up computations, but we are not going to explore them here. Also, in practice,
directly inverting matrices can lead to numerical problems and instabilities and thus
alternatives are preferred, such as using the Cholesky decomposition to compute
the mean and covariance posterior functions. A Cholesky decomposition is like the
square root for scalars, which we are all familiar with, but for matrices.

Chapter 8

[249]

Before moving on to the examples using both the Cholesky decomposition and
directly inverting the matrices, we have to make an observation. If inverting matrices
is problematic, why do we define GP in terms of covariance matrices and not in
terms of the inverse of the covariance matrices? Well, when using a covariance
matrix we are saying that the computation of a subset of it is independent of the
computation of the rest and is also independent of the computation of yet unseen
points. But for the inverse covariance matrix the computation of a subset of points
will depend on whether we observed those other points or not. Only the use of the
covariance matrix (and not of its inverse)will lead us to the definition of Gaussian
processes as a consistent collection of random variables.

To summarize, in order to use a GP in a fully Bayesian setting to approximate a
function, we need to:

• Choose a kernel to build the covariance matrix of a multivariate distribution
• Use Bayesian statistics to infer the values of the parameters in the kernel
• Compute (analytically) the mean and standard deviation at each test point

Notice, that in fact we never compute an actual GP; we just use the mathematical
concepts as a guide to be sure we are doing something reasonable. But in practice, all
the computations are done using Multivariate Gaussians.

After this lengthy theoretical dissertation comes the moment everyone was
expecting, when we put all these ideas into code. First we are going to assume we
know the values of the kernel's parameters and we are going to put in code the
analytical expression for the posterior. The values of the hyper-parameters and the
values of the test_points are the same as the ones defined earlier. And the data is
the same as we used for the kernelized regression example:

np.random.seed(1)

K_oo = eta * np.exp(-rho * D)

D_x = squared_distance(x, x)
K = eta * np.exp(-rho * D_x)
diag_x = eta + sigma
np.fill_diagonal(K, diag_x)

D_off_diag = squared_distance(x, test_points)
K_o = eta * np.exp(-rho * D_off_diag)

mu_post = np.math.dot(np.math.dot(K_o, np.linalg.inv(K)), y)

Gaussian Processes

[250]

SIGMA_post = K_oo – np.math.dot(np.math.dot(K_o, np.linalg.inv(K)),
K_o.T)

for i in range(100):
 fx = stats.multivariate_normal.rvs(mean=mu_post, cov=SIGMA_post)
 plt.plot(test_points, fx, 'r-', alpha=0.1)

plt.plot(x, y, 'o')

plt.xlabel('x', fontsize=16)
plt.ylabel('$f(x)$', fontsize=16, rotation=0)

We have modeled the uncertainty by superimposing several realizations from the
GP posterior using red lines. Notice how the uncertainty is smaller closer to the data
points, and larger between the last two points, and even larger at the right extreme
where there are no more points after ~9.

Chapter 8

[251]

Now we are going to re-implement the preceding computations, but this time using
the Cholesky decomposition. The following code was adapted from one created by
Nando de Freitas, to teach his Machine Learning course (goo.gl/byM3SE). In the code,
N is the number of data points, and n is the number of test points:

np.random.seed(1)
eta = 1
rho = 0.5
sigma = 0.03

f = lambda x: np.sin(x).flatten()

def kernel(a, b):
 """ GP squared exponential kernel """
 sqdist = np.sum(a**2,1).reshape(-1,1) + np.sum(b**2,1) - 2*np.
dot(a, b.T)
 return eta * np.exp(- rho * sqdist)

N = 20
n = 100

X = np.random.uniform(0, 10, size=(N,1))
y = f(X) + sigma * np.random.randn(N)

K = kernel(X, X)
L = np.linalg.cholesky(K + sigma * np.eye(N))

test_points = np.linspace(0, 10, n).reshape(-1,1)

Lk = np.linalg.solve(L, kernel(X, test_points))
mu = np.dot(Lk.T, np.linalg.solve(L, y))

K_ = kernel(Xtest, Xtest)
sd_pred = (np.diag(K_) - np.sum(Lk**2, axis=0))**0.5

plt.fill_between(test_points.flat, mu-2*s, mu+2*s, color="r",
alpha=0.2)

Gaussian Processes

[252]

plt.plot(test_points, mu, 'r', lw=2)
plt.plot(x, y, 'o')
plt.xlabel('x', fontsize=16)
plt.ylabel('$f(x)$', fontsize=16, rotation=0)

Now we have plotted the data as blue dots, the mean function as a red line, and the
uncertainty as a semi-transparent red band. The uncertainty is represented as two
standard deviations from the mean.

Implementing a GP using PyMC3
To summarize, we have a GP prior:

() [] ()()0 0 , ,f x GP k x xµ ′=∼ …

A Gaussian likelihood:

()() ()2| , ,p y x f x N Iσ∼ f

And finally, a GP posterior:

()() ()| ,post postp f , GP µ Σ∼x x y

Chapter 8

[253]

Remember that, in practice, we use multivariate Gaussians, since a GP is a
multivariate Gaussian when evaluated at a finite set of points.

We are going to use the Bayesian machinery to learn the hyper-parameters of the
covariance matrix. At this point, you will see that, while this is really simple using
PyMC3, there is a little overhead in the coding right now. You will see that at this
point we have to manually invert matrices (or compute Cholesky decomposition).
Chances are high that in the near future PyMC3 will come with a specialized GP
module to make building GP models easier. Maybe as you are reading this such GP
module is already available!

The following model was adapted from the Stan repository by Chris Fonnesbeck
(BDFL of PyMC3):

with pm.Model() as GP:
 mu = np.zeros(N)
 eta = pm.HalfCauchy('eta', 5)
 rho = pm.HalfCauchy('rho', 5)
 sigma = pm.HalfCauchy('sigma', 5)

 D = squared_distance(x, x)

 K = tt.fill_diagonal(eta * pm.math.exp(-rho * D), eta + sigma)

 obs = pm.MvNormal('obs', mu, tt.nlinalg.matrix_inverse(K),
observed=y)

 test_points = np.linspace(0, 10, 100)
 D_pred = squared_distance(test_points, test_points)
 D_off_diag = squared_distance(x, test_points)

 K_oo = eta * pm.math.exp(-rho * D_pred)
 K_o = eta * pm.math.exp(-rho * D_off_diag)

 mu_post = pm.Deterministic('mu_post', pm.math.dot(pm.math.dot(K_o,
tt.nlinalg.matrix_inverse(K)), y))
 SIGMA_post = pm.Deterministic('SIGMA_post', K_oo – pm.math.dot(pm.
math.dot(K_o, tt.nlinalg.matrix_inverse(K)), K_o.T))

 start = pm.find_MAP()
 trace = pm.sample(1000, start=start)

Gaussian Processes

[254]

varnames = ['eta', 'rho', 'sigma']
chain = trace[100:]
pm.traceplot(chain, varnames)

If you pay attention, you will notice that the mean of the estimated parameters,
eta, rho, and sigma, were the ones we were using in the previous examples. And
that explains why we were getting such a good fit; the hyper-parameters for those
examples were not taken out of my head!

pm.df_summary(chain, varnames).round(4)

mean sd mc_
error

hpd_2.5 hpd_97.5

eta 2.5798 2.5296 0.1587 0.1757 6.3445

rho 0.1288 0.0485 0.0027 0.0589 0.2290

sigma 0.0006 0.0003 0.0000 0.0002 0.0012

Posterior predictive checks
Now we are going to plot the data together with realizations taken from the
GP posterior with the estimated hyper-parameters. Notice we are including the
uncertainty in the hyper-parameters and not just their mean values:

y_pred = [np.random.multivariate_normal(m, S) for m,S in
zip(chain['mu_post'][::5], chain['SIGMA_post'][::5])]

for yp in y_pred:

Chapter 8

[255]

 plt.plot(test_points, yp, 'r-', alpha=0.1)

plt.plot(x, y, 'bo')
plt.xlabel('x', fontsize=16)
plt.ylabel('$f(x)$', fontsize=16, rotation=0)

Periodic kernel
In the previous figure you may have noticed that we were able to closely match the
underlying sin function, but the model shows great uncertainty between ~9 and
~10, where there is no more data to constrain it. One problem of our model is that
our data was generated by a periodic function but our kernel makes no assumption
of periodicity. When we know/suspect our data could be periodic we should instead
use a periodic kernel. One example of such a periodic kernel is:

()
2sin

2, expKp
w

′ −
 ′ = −

x x

x x

Notice that the main difference with respect to the Gaussian kernel is the inclusion of
the sin function.

Gaussian Processes

[256]

We can use the exact same code as before. The only difference is that now we have to
define a periodic function instead of the squared_distance, that is:

periodic = lambda x, y: np.array([[np.sin((x[i] - y[j])/2)**2 for i in
range(len(x))] for j in range(len(y))])

and in the model we need to replace squared_distance with the periodic function.

After running the model you should get something like:

Chapter 8

[257]

Summary
We began this chapter by learning about non-parametric statistics in a Bayesian
setting and how we can represent statistical problems through the use of kernel
functions, as an example, we used a kernelized version of linear regression to model
non-linear responses. Then we moved on to an alternative way of building and
conceptualizing kernel methods using Gaussian processes.

A Gaussian process is a generalization of the multivariate Gaussian distribution
to infinitively many dimensions and is fully specified by a mean function and a
covariance function. Since we can conceptually think of functions as infinitively long
vectors, we can use Gaussian processes as priors for functions. In practice, we work
with multivariate Gaussian distributions with as many dimensions as data points.
To define their corresponding covariance function, we used properly parameterized
kernels; and by learning about those hyper-parameters, we ended up learning about
arbitrary complex and unknown functions.

In this chapter we have just seen a short introduction to GPs. There are many topics
related to this type of model that remain to learn, such as building a semi-parametric
model by using for example, a linear model as a mean function. Or combining two
or more kernels to better describe our unknown function or how a GP can be used
also for classification tasks, or how GP are related to many other models in statistics
and machine learning. Nevertheless, I hope this introduction to GP as well as all the
other topics we have covered in the book have served to motivate you to keep using,
reading and learning about Bayesian statistics.

Keep reading
• Gaussian Processes for Machine Learning by Carl Edward Rasmussen and

Christopher K. I. Williams
• Chapter 4 and 15 Machine Learning a Probabilistic Perspective by Kevin Murhpy
• Chapter 11 Statistical Rethinking, Richard McElreath.
• Chapter 22 Bayesian Data Analysis, Third Edition Gelman et al

Gaussian Processes

[258]

Exercises
1. In the kernelized regression example, try changing the number of knots and

the bandwidth (one at a time). What is the effect of those changes? Try also
using a single knot; what do you observe?

2. Experiment with fitting other functions using kernelized regression. For
example y = np.sin(x) + x**0.7 or y = x. Using these functions changes the
number of data points and parameters like in Exercise 1

3. In the example where we sample from the GP prior increase the number or
realizations, by replacing:
plt.plot(test_points, stats.multivariate_normal.rvs(cov=cov,
size=6).T)

with
plt.plot(test_points, stats.multivariate_normal.rvs(cov=cov,
size=1000).T, alpha=0.05, color='b')

How does the GP prior look? Do you see that f(x) is distributed as a Gaussian
centered at 0 and standard deviation 1?

4. For the GP posterior using the Gaussian kernel, try defining test_points
outside the interval [0, 10]. What happened outside the data interval?
What does this tell us about extrapolating results (especially for non-linear
functions)?

5. Repeat Exercise 4 this time using the Periodic kernel. What are your
conclusions now?

[259]

Index
A
ANalysis Of VAriance (ANOVA) 167
automatic differentiation variational

inference (ADVI) 36

B
bandwidth 235
Bayes factors

about 197, 198
analogy, with information criteria 199
and information criteria 202-204
common problems, when computing 202
computing 199-201

Bayesian analysis
communicating 23

Bayesian information criterion (BIC) 190
Bayesian maximum a posteriori (MAP)

estimation 187
Bayes theorem

and statistical inference 10-12
beta-binomial 228, 229

C
central limit theorem (CLT) 64
centroids 237
Cholesky decomposition 248
Cohen's d

about 78-80
reference link 80

coin-flipping problem
about 13, 14
general model 14
likelihood, selecting 14-16

posterior, computing 18-21
posterior, getting 18
posterior, plotting 18-21
prior, influence 21-23
prior, selecting 16, 17

confounding variables 135-141
continuous mixtures

about 228
beta-binomial 228, 229
negative binomial 228, 229
Student's t-distribution 229

continuous variables 9
correlated variables

reference link 124
count data

modeling, with Poisson
distribution 216-218

modeling, with Zero-Inflated Poisson (ZIP)
model 218, 219

Poisson regression 220-222
ZIP regression 220-222

covariance function 242
covariance matrix

about 110
building 243
parameterized kernel, using 245, 246
sampling, from GP prior 243, 244

cross-validation 185, 186

D
degree of freedom 229
detailed balance condition 39
deviance 187
deviance information criterion (DIC) 188
Dirichlet distribution 210

[260]

Dirichlet process
reference link 227

discrete variables 9
discriminative model 171-174

E
effect size 75
Evidence Lower Bound (ELBO) 36
experimental design 2
Exploratory Data Analysis (EDA) 3

F
fixed component clustering

about 227
non-fixed component clustering 227

Function-space view 237

G
gamma-Poisson mixture

continuous model 229
Gaussian inferences 64-69
Gaussian kernel 235
Gaussian mixture model 208
Gaussian Process (GP)

about 242
covariance matrix, building 243
implementing, with PyMC3 252-254
periodic kernel 255
posterior predictive checks, performing 254
predictions, determining 247-252

Gaussians 64
Gedanken experiment 45
generalized linear model (GLM) 145, 167
generative classifier 171
generative model 171-174
GLM module 145
grid computing 33, 34
groups

Cohen's d 80
comparing 75
probability of superiority 81
tips dataset 76-79

H
Hamiltonian Monte Carlo/NUTS 44
hard-clustering 227
hierarchical linear regression

about 117-123
causation, predicting 124, 125
correlation, predicting 124, 125

hierarchical models
about 81-184
shrinkage 84-87

Highest Posterior Density (HPD) 24-27, 105
Hybrid Monte Carlo (HMC) 44
hyper-parameters 82, 245
hyper-priors 82

I
inference button

pushing 48
inference engines

about 33
Markovian methods 36
Non-Markovian methods 33

inferential statistics 3
information criteria

about 186
Akaike information criterion 187, 188
Bayesian information criterion (BIC) 190
computing, PyMC3 used 190-192
deviance 186
deviance information

criterion (DIC) 188, 189
log-likelihood 186
Pareto smoothed importance sampling

(PSIS) 190
widely available information criterion

(WAIC) 189
Information Theory 186
iris dataset 152-154

K
kernel-based models

about 234
Gaussian kernel 235

[261]

kernelized linear regression 235-241
overfitting 241
priors 241

kernel density estimation (KDE) 49, 208
kernelized linear regression 235-241
K-fold cross-validation 185
knots 237
Kronecker delta 246

L
Laplace method 35
Large Hadron Collider (LHC) 2
latent variable 209
leave-one-out cross-validation

(LOOCV) 185
linear discriminant analysis (LDA) 171
logistic model 151, 152
logistic regression

about 150
iris dataset 152-154
logistic model 151, 152
logistic model, applied to

iris dataset 155-158
predictions, making 158

M
machine learning (ML)

and simple linear regression 92
magnetic resonance imaging (MRI) 62
marginalized distributions 62
marginalized Gaussian mixture model 215
Markov Chain Monte Carlo (MCMC)

methods 33
Markovian methods

about 36, 37
Hamiltonian Monte Carlo/NUTS 44, 45
Markov Chain 39
Metropolis- Hastings 39-43
Monte Carlo 37, 39
other MCMC methods 45

mean function 242
Metropolis Coupled MCMC 45
mixture models

about 207, 208
building 209-215

count data 216
marginalized Gaussian mixture model 215
robust logistic regression 223-225

model averaging 195
model-based clustering

about 225-227
fixed component clustering 227

model notation 23, 24
model selection 194
model visualization 23, 24
multiple linear regression

about 131-135
confounding variables 135-141
effect variables, masking 142-144
interactions, adding 144
redundant variables 135-141

multiple logistic regression
about 159
boundary decision 159
coefficients, interpreting 165, 166
correlated variables, dealing with 162, 163
generalized linear models 166, 167
model, implementing 160, 162
multinomial logistic regression 167-170
problem, solving 165
softmax regression 167-170
unbalanced classes, dealing with 163-165

multivariate Gaussian
about 242
Pearson correlation coefficient,

computing 110-113

N
negative binomial 228, 229
non-fixed component clustering 227
Non-Markovian methods

about 33
grid computing 33, 34
quadratic method 35
variational methods 35, 36

non-parametric models 233
non-parametric statistics 234
Normal distribution 229
normality parameter 229
No-U-Turn Sampler (NUTS) 45
nuisance parameters 62-64

[262]

O
Occam's razor

about 178
accuracy 178
simplicity 178
simplicity and accuracy, balancing 182
too few parameters, leading to

underfitting 181
too many parameters, leading to

overfitting 179-181
odds 166
out-of-sample accuracy 181
over-dispersion 229
overfitting 130, 241

P
parallel tempering 45
parameterized kernel

using 245, 246
Pareto smoothed importance sampling

(PSIS) 190
Pearson correlation coefficient

about 107
computing, from multivariate

Gaussian 110-113
reference link 107

periodic kernel 255
phylogenetics 226
Poisson distribution 216-218
Poisson regression 220-222
polynomial regression

about 126-128
comparison 130
parameters, interpreting 129

posterior
Loss functions 57
posterior-based decisions 55
predictive checks 27
Region Of Practical Equivalence

(ROPE) 56, 57
summarizing 24, 55

posterior distribution 12
posterior predictive checks 196
predictive accuracy measures

about 185
cross-validation 185, 186

information criteria 185, 186
information criteria, computing with

PyMC3 190-192
information criteria measures,

interpreting 194
information criteria measures, using 195
posterior predictive checks 196

priors
about 241
regularizing 183, 184

probabilistic models 4
probabilistic programming 31, 32
probabilistic programming

languages (PPL) 32
probabilities

and uncertainty 5-7
distributions 7, 9

probability of superiority 78, 81
PyMC3

about 46
autocorrelation 53, 54
coin-flipping problem 46
convergence 49-53
Gaussian Process (GP),

implementing 252-254
inference button, pushing 48
model specification 47
samples, diagnosing 48, 49
size 54

Python packages
installing 28

Q
quadratic linear discriminant (QDA) 173
quadratic method 35

R
random variable 9
redundant variables 135-141
Region Of Practical Equivalence

(ROPE) 56, 57
regularizing priors 141
ridge regression 183
robust estimation 74
robust inferences 69
robust linear regression 113-117

[263]

robust logistic regression 223-225

S
shrinkage 85-87
sigmoid function 150
simple linear regression

about 92
autocorrelation 100, 101
building 93-99
data, modifying before execution 101, 102
linear models 100, 101
machine learning (ML) 92
Pearson correlation coefficient 107
posterior, interpreting 103-106
posterior, visualizing 103-106
sampling method, modifying 103

single parameter inference
about 13
coin-flipping problem 13, 14

smooth functions 237
soft-clustering 227
softmax function 167
softmax regression 167
sopa seca 150
squared Euclidean distance (SED) 235
statistical inference 10, 11
statistics

about 2
exploratory data analysis 2
inferential statistics 3, 4

Student's t-distribution 69-74, 229
support vector machine (SVM) 234

T
Theano tutorial

URL 46
Tikhonov regularization 183

V
variational methods 35, 36

W
WAIC and LOO computations

reliability 194
Weight-space view 237
widely available information criterion

(WAIC) 189
within-sample accuracy 181

Z
Zero-Inflated Poisson (ZIP) model 218, 219
ZIP regression 220-222

	Cover
	Copyright
	Credits
	About the Author
	About the Reviewer
	www.PacktPub.com
	Table of Contents
	Preface
	Chapter 1: Thinking Probabilistically -
A Bayesian Inference Primer
	Statistics as a form of modeling
	Exploratory data analysis
	Inferential statistics

	Probabilities and uncertainty
	Probability distributions
	Bayes' theorem and statistical inference

	Single parameter inference
	The coin-flipping problem
	The general model
	Choosing the likelihood
	Choosing the prior
	Getting the posterior
	Computing and plotting the posterior
	Influence of the prior and how to choose one

	Communicating a Bayesian analysis
	Model notation and visualization
	Summarizing the posterior
	Highest posterior density

	Posterior predictive checks
	Installing the necessary Python packages
	Summary
	Exercises

	Chapter 2: Programming Probabilistically – A PyMC3 Primer
	Probabilistic programming
	Inference engines
	Non-Markovian methods
	Markovian methods

	PyMC3 introduction
	Coin-flipping, the computational approach
	Model specification
	Pushing the inference button
	Diagnosing the sampling process

	Summarizing the posterior
	Posterior-based decisions
	ROPE
	Loss functions

	Summary
	Keep reading
	Exercises

	Chapter 3: Juggling with Multi-Parametric and Hierarchical Models
	Nuisance parameters and marginalized distributions
	Gaussians, Gaussians, Gaussians everywhere
	Gaussian inferences
	Robust inferences
	Student's t-distribution

	Comparing groups
	The tips dataset
	Cohen's d
	Probability of superiority

	Hierarchical models
	Shrinkage

	Summary
	Keep reading
	Exercises

	Chapter 4: Understanding and
Predicting Data with
Linear Regression Models
	Simple linear regression
	The machine learning connection
	The core of linear regression models
	Linear models and high autocorrelation
	Modifying the data before running
	Changing the sampling method

	Interpreting and visualizing the posterior
	Pearson correlation coefficient
	Pearson coefficient from a multivariate Gaussian

	Robust linear regression
	Hierarchical linear regression
	Correlation, causation, and the messiness
of life

	Polynomial regression
	Interpreting the parameters of a polynomial regression
	Polynomial regression – the ultimate model?

	Multiple linear regression
	Confounding variables and redundant variables
	Multicollinearity or when the correlation is
too high
	Masking effect variables
	Adding interactions

	The GLM module
	Summary
	Keep reading
	Exercises

	Chapter 5: Classifying Outcomes
with Logistic Regression
	Logistic regression
	The logistic model
	The iris dataset
	The logistic model applied to the iris dataset
	Making predictions

	Multiple logistic regression
	The boundary decision
	Implementing the model
	Dealing with correlated variables
	Dealing with unbalanced classes
	How do we solve this problem?
	Interpreting the coefficients of a logistic regression
	Generalized linear models
	Softmax regression or multinomial logistic regression

	Discriminative and generative models
	Summary
	Keep reading
	Exercises

	Chapter 6: Model Comparison
	Occam's razor – simplicity and accuracy
	Too many parameters leads to overfitting
	Too few parameters leads to underfitting
	The balance between simplicity and accuracy

	Regularizing priors
	Regularizing priors and hierarchical models

	Predictive accuracy measures
	Cross-validation
	Information criteria
	The log-likelihood and the deviance
	Akaike information criterion
	Deviance information criterion
	Widely available information criterion
	Pareto smoothed importance sampling
leave-one-out cross-validation
	Bayesian information criterion

	Computing information criteria with PyMC3
	A note on the reliability of WAIC and LOO computations

	Interpreting and using information criteria measures
	Posterior predictive checks

	Bayes factors
	Analogy with information criteria
	Computing Bayes factors
	Common problems computing Bayes factors

	Bayes factors and information criteria
	Summary
	Keep reading
	Exercises

	Chapter 7: Mixture Models
	Mixture models
	How to build mixture models
	Marginalized Gaussian mixture model
	Mixture models and count data
	The Poisson distribution
	The Zero-Inflated Poisson model
	Poisson regression and ZIP regression

	Robust logistic regression

	Model-based clustering
	Fixed component clustering
	Non-fixed component clustering

	Continuous mixtures
	Beta-binomial and negative binomial
	The Student's t-distribution

	Summary
	Keep reading
	Exercises

	Chapter 8: Gaussian Processes
	Non-parametric statistics
	Kernel-based models
	The Gaussian kernel
	Kernelized linear regression
	Overfitting and priors

	Gaussian processes
	Building the covariance matrix
	Sampling from a GP prior
	Using a parameterized kernel

	Making predictions from a GP
	Implementing a GP using PyMC3
	Posterior predictive checks
	Periodic kernel

	Summary
	Keep reading
	Exercises

	Index

