

ffi rs.indd 07:0:25:PM 05/12/2016 Page i

Exploring Raspberry Pi®

Interfacing to the Real World with

Embedded Linux®

Derek Molloy

ffi rs.indd 07:0:25:PM 05/12/2016 Page ii

Exploring Raspberry Pi®

Published by

John Wiley & Sons, Inc.
10475 Crosspoint Boulevard

Indianapolis, IN 46256

www.wiley.com

Copyright © 2016 by John Wiley & Sons, Inc., Indianapolis, Indiana

Published simultaneously in Canada

ISBN: 978-1-119-18868-1

ISBN: 978-1-119-18870-4 (ebk)

ISBN: 978-1-119-18869-8 (ebk)

Manufactured in the United States of America

10 9 8 7 6 5 4 3 2 1

No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or

by any means, electronic, mechanical, photocopying, recording, scanning or otherwise, except as permitted

under Sections 107 or 108 of the 1976 United States Copyright Act, without either the prior written permis-

sion of the Publisher, or authorization through payment of the appropriate per-copy fee to the Copyright

Clearance Center, 222 Rosewood Drive, Danvers, MA 01923, (978) 750-8400, fax (978) 646-8600. Requests to

the Publisher for permission should be addressed to the Permissions Department, John Wiley & Sons, Inc.,

111 River Street, Hoboken, NJ 07030, (201) 748-6011, fax (201) 748-6008, or online at http://www.wiley
.com/go/permissions.

Limit of Liability/Disclaimer of Warranty: The publisher and the author make no representations or war-

ranties with respect to the accuracy or completeness of the contents of this work and specifi cally disclaim

all warranties, including without limitation warranties of fi tness for a particular purpose. No warranty may

be created or extended by sales or promotional materials. The advice and strategies contained herein may

not be suitable for every situation. If improperly wired, circuits described in this work may possibly cause

damage to the device or physical injury. This work is sold with the understanding that the publisher is not

engaged in rendering legal, accounting, or other professional services. If professional assistance is required,

the services of a competent professional person should be sought. Neither the publisher nor the author shall

be liable for damages arising herefrom. The fact that an organization or website is referred to in this work

as a citation and/or a potential source of further information does not mean that the author or the publisher

endorses the information the organization or website may provide or recommendations it may make. Further,

readers should be aware that Internet websites listed in this work may have changed or disappeared between

when this work was written and when it is read.

For general information on our other products and services please contact our Customer Care Department

within the United States at (877) 762-2974, outside the United States at (317) 572-3993 or fax (317) 572-4002.

Wiley publishes in a variety of print and electronic formats and by print-on-demand. Some material included

with standard print versions of this book may not be included in e-books or in print-on-demand. If this book

refers to media such as a CD or DVD that is not included in the version you purchased, you may download

this material at http://booksupport.wiley.com. For more information about Wiley products, visit

www.wiley.com.

Library of Congress Control Number: 2016933853

Trademarks: Wiley and the Wiley logo are trademarks or registered trademarks of John Wiley & Sons, Inc.

and/or its affi liates, in the United States and other countries, and may not be used without written permission.

Raspberry Pi is a registered trademark of Raspberry Pi Foundation. All other trademarks are the property

of their respective owners. John Wiley & Sons, Inc. is not associated with any product or vendor mentioned

in this book.

http://www.wiley.com
http://www.wiley
http://booksupport.wiley.com
http://www.wiley.com
http://www.wiley.com/go/permissions

ffi rs.indd 07:0:25:PM 05/12/2016 Page iii

To Sally, Daragh, Eoghan, Aidan, and Sarah

(still in order of age, not preference!)

iv

ffi rs.indd 07:0:25:PM 05/12/2016 Page iv

About the Author

Dr. Derek Molloy is a senior lecturer in the School of Electronic Engineering,

Faculty of Engineering and Computing, Dublin City University, Ireland. He

lectures at undergraduate and postgraduate levels in object-oriented program-

ming with embedded systems, digital and analog electronics, and the Internet

of Things. His research contributions have largely been in the fi elds of computer

and machine vision, 3D graphics/visualization, and e-Learning.

Derek produces a popular YouTube video series that has introduced millions

of people to embedded Linux and digital electronics topics. In 2013, he launched

a personal web/blog site that is visited by thousands of people every day, and

which integrates his YouTube videos with support materials, source code,

and user discussion. In 2015, he published a book on the BeagleBone platform,

Exploring BeagleBone: Tools and Techniques for Building with Embedded Linux, which

has been very well received.

Derek has received several awards for teaching and learning. He was the

winner of the 2012 Irish Learning Technology Association (ILTA) national

award for Innovation in Teaching and Learning. The award recognizes his

learning-by-doing approach to undergraduate engineering education, which

utilizes electronic kits and online video content. In 2012, as a result of fervent

nominations from his students and peers, he was also awarded the Dublin City

University President’s Award for Excellence in Teaching and Learning.

You can learn more about Derek, his work, and his other publications at his

personal website: www.derekmolloy.ie.

http://www.derekmolloy.ie

v

ffi rs.indd 07:0:25:PM 05/12/2016 Page v

About the Technical Editor

Dr. Tom Betka came to the world of embedded systems development by way

of a previous career in the aviation industry, and then as a physician practicing

clinical medicine for well over a decade. During this time his love of computers

and software development evolved toward the fi eld of embedded systems, and

his training in computer science culminated in a second undergraduate-level

degree. After leaving clinical medicine, Dr. Betka began working in the world

of software development and has served as a subject-matter expert in both

medicine and embedded systems for various companies in the industry. His

recent work has included projects at the NASA Kennedy Space Center and the

Sierra Nevada Corporation. Tom’s fi rst love is the C-family of programming

languages and using these languages to program 8-bit microcontrollers. As a

Linux user for the past decade, he has also been working with the BeagleBone,

BeagleBone Black, and Raspberry Pi devices for the last several years as well.

His hobbies include advanced mathematics, aviation, high-powered model

rocketry, and robotics. Also, he can often be found building prototype devices in

his home-based machine shop. In a previous life, Tom worked for several years

as a professional drummer—and was one of the fi rst in his area to embrace the

use of electronic percussion devices in live music scenarios.

vi

ffi rs.indd 07:0:25:PM 05/12/2016 Page vi

Credits

Senior Acquisitions Editor
Aaron Black

Project Editor
Adaobi Obi Tulton

Technical Editor
Tom Betka

Production Editor
Barath Kumar Rajasekaran

Copy Editors
Keith Cline

Marylouise Wiack

Production Manager
Kathleen Wisor

Manager of Content Development
and Assembly
Mary Beth Wakefi eld

Marketing Manager
Carrie Sherrill

Professional Technology &
Strategy Director
Barry Pruett

Business Manager
Amy Knies

Executive Editor
Jody Lefevere

Project Coordinator, Cover
Brent Savage

Proofreader
Nancy Bell

Indexer
Nancy Guenther

Cover Designer
Wiley

Cover Image
Courtesy of Derek Molloy

vii

ffi rs.indd 07:0:25:PM 05/12/2016 Page vii

Acknowledgments

Many thanks to everyone at Wiley Publishing once again for their outstanding

work on this project: to Jim Minatel for encouraging me to take this book con-

cept forward and for yet again supporting the realization of a book that engages

in deeper learning; to Aaron Black and Jody Lefevere, for guiding the project

 forward, and for their support and help throughout the development of this

book; to Jennifer Lynn, for keeping me on schedule and for always being avail-

able to answer my questions; to Adaobi Obi Tulton, the project editor, for driv-

ing this project to completion in the most effi cient way possible—it was a real

pleasure to work with such an accomplished and adept editor once again; to

Keith Cline and Marylouise Wiack the copy editors, for translating this book

into readable U.S. English; to Barath Kumar Rajasekaran, the production editor,

and Nancy Bell, the proofreader, for bringing everything together to create a

fi nal, polished product.

Sincere thanks to Tom Betka, the technical editor, for the incredible amount

of work and personal time he selfl essly put into ensuring that the content in

this book can be utilized seamlessly by readers. Following the publication of

my book on the BeagleBone, Tom of this own volition provided valuable com-

ment and feedback via the book website that further strengthened the title.

I immediately thought of Tom when I took on this project, and I was delighted

when he agreed to take on the role of technical editor. Tom is a scholar, a poly-

math, and indeed an inspiration, who was always available when I needed to

talk through technical issues. This book has benefi ted hugely from his technical

knowledge, world experience, and immense capabilities—I believe there could

be no better technical editor for this topic!

Thanks to the thousands of people who take the time to comment on my

YouTube videos, blog, and website articles. I truly appreciate all of the feedback,

viii Acknowledgments

ffi rs.indd 07:0:25:PM 05/12/2016 Page viii

advice, and comments—it has really helped in the development of the topics

in my books.

The School of Electronic Engineering, Dublin City University, is a great place

to work, largely because of its esprit de corps, and its commitment to rigorous,

innovative, and accessible engineering education. Thanks again to all of my

colleagues in the School for supporting, encouraging, and tolerating me in the

development of this book. Thanks in particular must go to Noel Murphy and

Conor Brennan for sharing the workload of the School Executive with me while

I was so absorbed in the writing of this book. Thanks again to (my brother)

David Molloy for his expert software advice and support. Thanks to Jennifer

Bruton for her meticulous and expert review of circuits, software, and content

that is used in this book. Thanks also to Martin Collier, Pascal Landais, Michele

Pringle, Robert Sadleir, Ronan Scaife, and John Whelan for their ongoing exper-

tise, support, and advice.

The biggest Thank You must of course go to my own family. This book was

written over six months, predominantly at night and on weekends. Thanks to

my wife Sally and our children Daragh, Eoghan, Aidan, and Sarah for putting

up with me (again) while I was writing this book. Thank you Mam, Dad, David,

and Catriona for your continued lifelong inspiration, support, and encourage-

ment. Finally, thank you to my extended family for graciously excusing my

absence at family events for another six months—I defi nitely have no excuses

now (unless I write another book!).

ix

ffi rs.indd 07:0:25:PM 05/12/2016 Page ix

Introduction xix

Part I Raspberry Pi Basics C H A P T E R 1

Chapter 1 Raspberry Pi Hardware 3

Chapter 2 Raspberry Pi Software 23

Chapter 3 Exploring Embedded Linux Systems 55

Chapter 4 Interfacing Electronics 113

Chapter 5 Programming on the Raspberry Pi 159

Part II Interfacing, Controlling, and Communicating 217

Chapter 6 Interfacing to the Raspberry Pi Input/Outputs 219

Chapter 7 Cross-Compilation and the Eclipse IDE 275

Chapter 8 Interfacing to the Raspberry Pi Buses 309

Chapter 9 Enhancing the Input/Output Interfaces on the RPi 363

Chapter 10 Interacting with the Physical Environment 405

Chapter 11 Real-Time Interfacing Using the Arduino 453

Part III Advanced Interfacing and Interaction 481

Chapter 12 The Internet of Things 483

Chapter 13 Wireless Communication and Control 535

Contents at a Glance

ffi rs.indd 07:0:25:PM 05/12/2016 Page x

x Contents at a Glance

Chapter 14 Raspberry Pi with a Rich User Interface 577

Chapter 15 Images, Video, and Audio 615

Chapter 16 Kernel Programming 647

Index 677

xi

ftoc.indd 11:4:18:AM 05/12/2016 Page xi

Introduction xix

Part I Raspberry Pi Basics C H A P T E R 1

Chapter 1 Raspberry Pi Hardware 3

Introduction to the Platform 3
Who Should Use the RPi 5

When to Use the RPi 5

When to Not Use the RPi 6

RPi Documentation 7
The RPi Hardware 8

Raspberry Pi Versions 9

The Raspberry Pi Hardware 10

Raspberry Pi Accessories 12
Important Accessories 13

Recommended Accessories 14

Optional Accessories 16

HATs 19
How to Destroy Your RPi! 20
Summary 21
Support 21

Chapter 2 Raspberry Pi Software 23

Linux on the Raspberry Pi 24
Linux Distributions for the RPi 24

Create a Linux SD Card Image for the RPi 25

Connecting to a Network 26
Regular Ethernet 27

Ethernet Crossover Cable 29

Communicating with the RPi 31

Contents

xii Contents

ftoc.indd 11:4:18:AM 05/12/2016 Page xii

Serial Connection with the USB-to-TTL 3.3V Cable 31

Connecting through Secure Shell (SSH) 33

Transferring Files Using PuTTY/psftp over SSH 35

Controlling the Raspberry Pi 36
Basic Linux Commands 36

Basic File Editing 41

What Time Is It? 43

Package Management 44

Confi guring the Raspberry Pi 46
The Raspberry Pi Confi guration Tool 46

Updating the RPi Software 48

Video Output 49

Interacting with the Onboard LEDs 50
Shutdown and Reboot 53
Summary 54

Chapter 3 Exploring Embedded Linux Systems 55

Introducing Embedded Linux 56
Advantages and Disadvantages of Embedded Linux 57

Is Linux Open Source and Free? 58

Booting the Raspberry Pi 58

Managing Linux Systems 69
The Super User 69

System Administration 70

Linux Commands 89

Linux Processes 96

Other Linux Topics 99

Using Git for Version Control 99
A Practice-Based Introduction 101

Git Branching 105

Common Git Commands 107

Using Desktop Virtualization 108
Code for This Book 110
Summary 111
Further Reading 111
Bibliography 111

Chapter 4 Interfacing Electronics 113

Analyzing Your Circuits 114
Digital Multimeter 114

Oscilloscopes 115

Basic Circuit Principles 117
Voltage, Current, Resistance, and Ohm’s Law 117

Voltage Division 119

Current Division 120

Implementing RPi Circuits on a Breadboard 121

 Contents xiii

ftoc.indd 11:4:18:AM 05/12/2016 Page xiii

Digital Multimeters (DMMs) and Breadboards 123

Example Circuit: Voltage Regulation 124

Discrete Components 126
Diodes 126

Light-Emitting Diodes (LEDs) 128

Smoothing and Decoupling Capacitors 130

Transistors 132

Optocouplers/Opto-isolators 138

Switches and Buttons 140

Logic Gates 143
Analog-to-Digital Conversion 150

Sampling Rate 151

Quantization 151

Operational Amplifi ers 152

Concluding Advice 155
Summary 156
Further Reading 157

Chapter 5 Programming on the Raspberry Pi 159

Introduction 160
Performance of Languages on the RPi 160

Setting the RPi CPU Frequency 165

A First Circuit for Physical Computing 166

Scripting Languages 168
Scripting Language Options 168

Bash 169

Lua 171

Perl 173

Python 173

Dynamically Compiled Languages 176
JavaScript and Node.js on the RPi 176

Java on the RPi 178

C and C++ on the RPi 180
C and C++ Language Overview 182

LED Control in C 194

The C of C++ 196

Overview of Object-Oriented Programming 199
Object-Oriented LED Control in C++ 203

Interfacing to the Linux OS 206
Glibc and Syscall 206

Improving the Performance of Python 208
Cython 208

Extending Python with C/C++ 211

Summary 215
Further Reading 216
Bibliography 216

xiv Contents

ftoc.indd 11:4:18:AM 05/12/2016 Page xiv

Part II Interfacing, Controlling, and Communicating 217

Chapter 6 Interfacing to the Raspberry Pi Input/Outputs 219

Introduction 220
General-Purpose Input/Outputs 221

GPIO Digital Output 222

GPIO Digital Input 225

Internal Pull-Up and Pull-Down Resistors 226

Interfacing to Powered DC Circuits 227

C++ Control of GPIOs Using sysfs 229
More C++ Programming 237

An Enhanced GPIO Class 242

Memory-Based GPIO Control 245
GPIO Control Using devmem2 246

GPIO Control Using C and /dev/mem 248

Changing the Internal Resistor Confi guration 250

WiringPi 252
Installing wiringPi 252

The gpio Command 253

Programming with wiringPi 254

Toggling an LED Using wiringPi 255

Button Press—LED Response 257

Communicating to One-Wire Sensors 260

PWM and General-Purpose Clocks 263

GPIOs and Permissions 270
Writing udev Rules 270

Permissions and wiringPi 272

Summary 273

Chapter 7 Cross-Compilation and the Eclipse IDE 275

Setting Up a Cross-Compilation Toolchain 276
The Linaro Toolchain for Raspbian 277

Debian Cross-Toolchains 279

Cross-Compilation Using Eclipse 282
Installing Eclipse on Desktop Linux 282

Confi guring Eclipse for Cross-Compilation 283

Remote System Explorer 286

Integrating GitHub into Eclipse 289

Remote Debugging 289

Automatic Documentation (Doxygen) 294

Building Linux 297
Downloading the Kernel Source 298

Building the Linux Kernel 299

Deploying the Linux Kernel 303

Building a Linux Distribution (Advanced) 305

Summary 307
Further Reading 308

 Contents xv

ftoc.indd 11:4:18:AM 05/12/2016 Page xv

Chapter 8 Interfacing to the Raspberry Pi Buses 309

Introduction to Bus Communication 310
I2C 310

I2C Hardware 311

An I2C Test Circuit 315

Using Linux I2C-Tools 318

I2C Communication in C 325

Wrapping I2C Devices with C++ Classes 328

SPI 330
SPI Hardware 330

SPI on the RPi 332

A First SPI Application (74HC595) 334

Bidirectional SPI Communication in C/C++ 339

Multiple SPI Slave Devices on the RPi 346

UART 347
The RPi UART 348

UART Examples in C 352

UART Applications - GPS 357

Logic-Level Translation 359
Summary 361
Further Reading 361

Chapter 9 Enhancing the Input/Output Interfaces on the RPi 363

Introduction 364
Analog-to-Digital Conversion 364

SPI Analog-to-Digital Converters (ADCs) 365

ADC Application: An Analog Light Meter 368

Testing the SPI ADC Performance 370

The C Library for BCM2835 (Advanced) 373

Digital-to-Analog Conversion 376
An I2C Digital-to-Analog Converter 376

An SPI Digital-to-Analog Converter 379

Adding PWM Outputs to the RPi 381
Extending the RPi GPIOs 387

The MCP23017 and the I2C Bus 389

The MCP23S17 and the SPI Bus 393

A C++ Class for the MCP23x17 Devices 394

Adding UARTs to the RPi 397
Summary 403

Chapter 10 Interacting with the Physical Environment 405

Interfacing to Actuators 406
DC Motors 407

Stepper Motors 414

Relays 418

Interfacing to Analog Sensors 420
Linear Analog Sensors 422

xvi Contents

ftoc.indd 11:4:18:AM 05/12/2016 Page xvi

Nonlinear Analog Sensors 423

Analog Sensor Signal Conditioning 428

Interfacing to an Analog Accelerometer 431

Interfacing to Local Displays 433
MAX7219 Display Modules 433

Character LCD Modules 436

OLED Dot-Matrix Display 440

Building C/C++ Libraries 444
Makefi les 444

CMake 446

Summary 452

Chapter 11 Real-Time Interfacing Using the Arduino 453

The Arduino 454
An Arduino Serial Slave 457

A UART Echo Test Example 457

UART Command Control of an Arduino 461

An Arduino I2C Slave 464
An I2C Test Circuit 464

I2C Register Echo Example 465

I2C Temperature Sensor Example 467

I2C Temperature Sensor with a Warning LED 469

Arduino Slave Communication Using C/C++ 471

An I2C Ultrasonic Sensor Application 473

An Arduino SPI Slave 476
Programming the Arduino from the RPi Command Line 478
Summary 480

Part III Advanced Interfacing and Interaction 481

Chapter 12 The Internet of Things 483

The Internet of Things (IoT) 484
The RPi as an IoT Sensor 485
The RPi as a Sensor Web Server 487

Nginx 488

GNU Cgicc Applications (Advanced) 494

A C/C++ Web Client 498
Network Communications Primer 499

A C/C++ Web Client 500

Secure Communication Using OpenSSL 502

The RPi as a “Thing” 503
ThingSpeak 504

The Linux Cron Scheduler 506

Sending E-mail from the RPi 510

If This Then That (IFTTT) 512

Large-Scale IoT Frameworks 513
MQ Telemetry Transport (MQTT) 514

IBM Bluemix Internet of Things 515

 Contents xvii

ftoc.indd 11:4:18:AM 05/12/2016 Page xvii

An IBM IoT MQTT Node.js Publish Example 518

An IBM IoT MQTT C++ Publish Example 520

Visualize Data Using IBM Quickstart 521

The C++ Client/Server 523
IoT Device Management 526

Remote Monitoring of the RPi 527

RPi Watchdog Timers 528

Static IP Addresses 529

Power over Ethernet (PoE) 530

Summary 533

Chapter 13 Wireless Communication and Control 535

Introduction to Wireless Communications 536
Bluetooth Communications 537

Installing a Bluetooth Adapter 537

Android App Development with Bluetooth 543

Wi-Fi Communications 544
Installing a Wi-Fi Adapter 544

The NodeMCU Wi-Fi Slave Processor 547

ZigBee Communications 559
Introduction to XBee Devices 559

XBee Confi guration 561

An XBee AT Mode Example 563

An XBee API Mode Example 568

Near Field Communication 572
Summary 575

Chapter 14 Raspberry Pi with a Rich User Interface 577

Rich UI RPi Architectures 578
The RPi as a General-Purpose Computer 579

RPi with an LCD Touchscreen 582

Virtual Network Computing (VNC) 583

Fat-Client Applications 585

Rich UI Application Development 586
Introduction to GTK+ on the RPi 586

Introduction to Qt on the RPi 590

Qt Primer 592
Qt Concepts 592

Qt Development Tools 596

A First Qt Creator Example 597

A Qt Weather GUI Application 598

Remote UI Application Development 602
Fat-Client Qt GUI Application 603

Multithreaded Server Applications 606

The Multithreaded Weather Server 609

Summary 612
Further Reading 613

xviii Contents

ftoc.indd 11:4:18:AM 05/12/2016 Page xviii

Chapter 15 Images, Video, and Audio 615

Capturing Images and Video 616
The RPi Camera 616

USB Webcams 619

Video4Linux2 (V4L2) 621

Streaming Video 627
Image Processing and Computer Vision 628

Image Processing with OpenCV 628

Computer Vision with OpenCV 631

Boost 633

Raspberry Pi Audio 634
Core Audio Software Tools 635

Audio Devices for the RPi 635

Text-to-Speech 643

Summary 644
Further Reading 645

Chapter 16 Kernel Programming 647

Introduction 648
Why Write Kernel Modules? 648

Loadable Kernel Module (LKM) Basics 649

A First LKM Example 650
The LKM Makefi le 652

Building the LKM on a Linux Desktop Machine 653

Building the LKM on the RPi 654

Testing the First LKM Example 657

An Embedded LKM Example 659
Interrupt Service Routines (ISRs) 661

Performance 665

Enhanced Button GPIO Driver LKM 665
The kobject Interface 666

Enhanced LED GPIO Driver LKM 673
Kernel Threads 674

Conclusions 675
Summary 676

Index 677

xix

fl ast.indd 11:3:39:AM 05/12/2016 Page xix

 Introduction

The core idea behind the Raspberry Pi (RPi) project was the development of a

small and affordable computing platform that could be used to stimulate the

interest of children in core information and communications technology (ICT)

education. The rapid evolution of low-cost system on a chip (SoC) devices for

mobile applications made it possible to widely deliver the affordable RPi plat-

form in early 2012. The impact was immediate; by February 2015, more than fi ve

million Raspberry Pi boards were sold. Given the proliferation of smartphones,

the idea of holding in one hand computers that are capable of performing

billions of instructions per second is easy to take for granted, but the fact that you

can modify the hardware and software of such small yet powerful devices and

adapt them to suit your own needs and create your own inventions is nothing

short of amazing. Even better, you can now purchase a Raspberry Pi Zero for

as little as $5 (the price of a large cup of coffee)!

The Raspberry Pi boards on their own are too complex to be used by a general

audience; it is the ability of the boards to run embedded Linux in particular that

makes the resulting platform accessible, adaptable, and powerful. Together, Linux

and embedded systems enable ease of development for devices that can meet

future challenges in smart buildings, the Internet of Things (IoT), robotics, smart

energy, smart cities, human-computer interaction (HCI), cyber-physical systems,

3D printing, advanced vehicular systems, and many, many more applications.

The integration of high-level Linux software and low-level electronics repre-

sents a paradigm shift in embedded systems development. It is revolutionary

that you can build a low-level electronics circuit and then install a Linux web

server, using only a few short commands, so that the circuit can be controlled

over the Internet. You can easily use the Raspberry Pi as a general-purpose Linux

computer, but it is vastly more challenging and interesting to get underneath

xx Introduction

fl ast.indd 11:3:39:AM 05/12/2016 Page xx

the hood and fully interface it to electronic circuits of your own design—and

that is where this book comes in!

This book should have widespread appeal for inventors, makers, students,

entrepreneurs, hackers, artists, dreamers—in short, anybody who wants to bring

the power of embedded Linux to their products, inventions, creations, or projects

and truly understand the RPi platform in detail. This is not a recipe book; with

few exceptions, everything demonstrated here is explained at a level that will

enable you to design, build, and debug your own extensions of the concepts

presented. Nor does this book include any grand design project for which you

must purchase a prescribed set of components and peripherals to achieve a

very specifi c outcome. Rather, this book is about providing you with enough

background knowledge and “under-the-hood” technical details to enable and

motivate your own explorations.

I strongly believe in learning by doing, so I present low-cost, widely available

hardware examples so that you can follow along. Using these hands-on examples,

I describe what each step means in detail, so that when you substitute your own

hardware components, modules, and peripherals you will be able to adapt the

content in this book to suit your needs. As for that grand design project, that is

up to you and your imagination!

In late 2014, I released a well-received book on the BeagleBone platform titled

Exploring BeagleBone: Tools and Techniques for Building with Embedded Linux. Given

the focus of this book on embedded Linux and the emphasis on introducing the

core principles, there are some similarities between the introductory content in

that book and this book. However, this book has been written from fi rst principles

purely for the RPi platform, focusing on its strengths and addressing several of its

weaknesses. I also took the opportunity to extend the coverage of the material to

cover topics such as Linux kernel development, the Arduino as a service proces-

sor, Wi-Fi sensor nodes, XBee communication, MQTT messaging, the Internet of

Things (IoT), platform as a service (PaaS), and much more. If you have a copy of

Exploring BeagleBone, you should visit this book’s website (www.exploringrpi.com)

to compare the content in both books before you make your purchasing decision.

When writing this book, I had the following aims and objectives:

 ■ To explain embedded Linux and its interaction with electronic circuits—

taking you through the topics and challenges on the popular RPi platform.

 ■ To provide in-depth information and instruction on the Linux, electron-

ics, and programming skills that are required to master a pretty wide and

comprehensive variety of topics in this domain.

 ■ To create a collection of practical Hello World hardware and software

examples on each and every topic in the book, from low-level interfacing,

general-purpose input/outputs (GPIOs), buses, bus-attached analog-to-digital

converters (ADCs), and universal asynchronous receiver/transmitters

(UARTs) to high-level libraries such as OpenCV and the Qt Framework.

http://www.exploringrpi.com

 Introduction xxi

fl ast.indd 11:3:39:AM 05/12/2016 Page xxi

The book also covers more advanced topics such as low-level register

manipulation and Linux loadable kernel module (LKM) development.

 ■ To enhance and extend the interfacing capability of the RPi platform by

developing frameworks for connecting it to circuits (e.g., SPI-based ADCs),

to service processors (e.g., Arduino and NodeMCU), and to cloud-based

IoT platforms and services.

 ■ To ensure that each circuit and segment of code has a broad pedagogical

reach and is specifi cally designed to work on the Raspberry Pi. Every

single circuit and code example in this book was built and tested on the

RPi platform (most on multiple board versions).

 ■ To use the Hello World examples to build a library of code that you can

use and adapt for your own Raspberry Pi projects.

 ■ To make all the code available on GitHub in an easy-to-use form.

 ■ To support this book with strong digital content, such as the videos on

the DerekMolloyDCU YouTube channel, and the www.exploringrpi.com

custom website that was developed specifi cally to support this book.

 ■ To ensure that by the end of this book you have everything you need to

imagine, create, and build advanced Raspberry Pi projects.

How This Book Is Structured

There is no doubt that some of the topics in this book are quite complex. After

all, Raspberry Pi boards are complex devices! However, everything that you

need to master them is present in this book within three major parts:

 ■ Part I: Raspberry Pi Basics

 ■ Part II: Interfacing, Controlling, and Communicating

 ■ Part III: Advanced Interfacing and Interaction

In the fi rst part of the book, I introduce the hardware and software of the RPi

platforms in Chapters 1 and 2, and subsequently provide three primer chapters:

 ■ Chapter 3, “Exploring Embedded Linux Systems”

 ■ Chapter 4, “Interfacing Electronics”

 ■ Chapter 5, “Programming on the Raspberry Pi”

If you are a Linux expert, electronics wizard, and/or software guru, feel free

to skip these primers. However, for everyone else, I have put in place a concise

but detailed set of materials to ensure that you gain all the knowledge required

to effectively and safely interface to the Raspberry Pi. The remaining chapters

refer to these primers often.

http://www.exploringrpi.com

xxii Introduction

fl ast.indd 11:3:39:AM 05/12/2016 Page xxii

The second part of the book, Chapters 6–11, provides detailed information on

interfacing to the Raspberry Pi GPIOs, buses (I2C, SPI), UART devices, and USB

peripherals. You learn how to confi gure a cross-compilation environment so that

you can build large-scale software applications for the Raspberry Pi. Part II also

describes how to combine hardware and software to provide the Raspberry Pi

with the capability to interact effectively with its physical environment. In addi-

tion, Chapter 11, “Real-Time Interfacing Using the Arduino,” shows you how to

use the Arduino as a slave processor with the Raspberry Pi, which helps you to

overcome some of the real-time constraints of working with embedded Linux.

The third and fi nal part of the book, Chapters 12–16, describes how to use the

Raspberry Pi for advanced interfacing and interaction applications such as IoT;

wireless communication and control, rich user interfaces; images, video, and

audio; and Linux kernel programming. Along the way, you encounter many

technologies, including TCP/IP, ThingSpeak, IBM Bluemix, MQTT, Cgicc, Power

over Ethernet (PoE), Wi-Fi, NodeMCUs, Bluetooth, NFC/RFID, ZigBee, XBee, cron,

Nginx, PHP, e-mail, IFTTT, GPS, VNC, GTK+, Qt, XML, JSON, multithreading,

client/server programming, V4L2, video streaming, OpenCV, Boost, USB audio,

Bluetooth A2DP, text-to-speech, LKMs, kobjects, and kthreads!

Conventions Used in This Book

This book is fi lled with source code examples and snippets that you can use to

build your own applications. Code and commands are shown as follows:

This is what source code looks like.

When presenting work performed in a Linux terminal, it is often necessary

to display both input and output in a single example. A bold type is used to

distinguish the user input from the output. For example:

pi@erpi ~ $ ping www.raspberrypi.org
PING lb.raspberrypi.org (93.93.128.211) 56(84) bytes of data.
64 bytes from 93.93.128.211: icmp_seq=1 ttl=53 time=23.1 ms
64 bytes from 93.93.128.211: icmp_seq=2 ttl=53 time=22.6 ms
...

The $ prompt indicates that a regular Linux user is executing a command,

and a # prompt indicates that a Linux superuser is executing a command. The

ellipsis symbol (...) is used whenever code or output not vital to understanding

a topic has been cut. Editing the output like this enables you to focus on only the

most useful information. In addition, an arrow symbol on a line entry indicates

that the command spans multiple lines in the book but should be entered on a

single line. For example:

pi@erpi /tmp $ echo "this is a long command that spans two lines in the →
 book but must be entered on a single line" >> test.txt

 Introduction xxiii

fl ast.indd 11:3:39:AM 05/12/2016 Page xxiii

You are encouraged to repeat the steps in this book yourself, whereupon

you will see the full output. In addition, the full source code for all examples

is provided along with the book using a GitHub repository.

You’ll also fi nd some additional styles in the text. For example:

 ■ New terms and important words appear in italics when introduced.

 ■ Keyboard strokes appear like this: Ctrl+C.

 ■ All URLs in the book refer to HTTP/S addresses and appear like this:

www.exploringrpi.com.

 ■ A URL shortening service is used to create aliases for long URLs that are

presented in the book. These aliases have the form tiny.cc/erpi102 (e.g.,

link two in Chapter 1). Should the link address change after this book is

published, the alias will be updated.

There are several features used in this book to identify when content is of

particular importance or when additional information is available:

W A R N I N G This type of feature contains important information that can help you

avoid damaging your Raspberry Pi board.

N O T E This type of feature contains useful additional information, such as links to

 digital resources and useful tips, which can make it easier to understand the task at hand.

FEATURE TITLE

This type of feature goes into detail about the current topic or a related topic.

EXAMPLE: EXAMPLE TITLE

This type of feature typically provides an example use case, or an important task that

you may need to refer to in the future.

What You’ll Need

Ideally, you should have a Raspberry Pi board before you begin reading this

book so that you can follow along with the numerous examples. If you have

not already purchased a Raspberry Pi board, I recommend the Raspberry Pi 3

Model B. Although it is presently the most expensive board ($35–$40), it is also

the most powerful. This board has a 64-bit quad-core processor, a wired network

adapter, wireless Ethernet, and onboard Bluetooth; therefore, it has all the fea-

tures required to run any example in this book. You can purchase a Raspberry

http://www.exploringrpi.com

xxiv Introduction

fl ast.indd 11:3:39:AM 05/12/2016 Page xxiv

Pi board in the United States from online stores such as Adafruit Industries,

Digi-Key, SparkFun, and Jameco Electronics. They are available internationally

from stores such as Farnell, Radionics, and Watterott.

A full list of recommended and optional accessories for the Raspberry Pi is

provided in Chapter 1. If you do not yet have a Raspberry Pi, you should read

that chapter before purchasing one. In addition, the fi rst page of each chapter

contains a list of the electronics components and modules required if you want

to follow along. The book website (www.exploringrpi.com) provides details

about how to acquire these components.

I purposefully focus the examples in this book on the lowest-cost and most

widely available components, breakout boards, and modules that I could identify

that meet the needs of the examples. This should help you follow along with

many examples, rather than focusing your budget on a small few. Indicative prices

are listed throughout the book to give you a feel for the price of the components

before you embark on a project. They are the actual prices for which I purchased

the items on websites such as ebay.com, amazon.com, and aliexpress.com.

N O T E No products, vendors, or manufacturers listed in this book are the result

of any type of placement deal. I have chosen and purchased all the products myself

based on their price, functionality, and worldwide availability. Listed prices are indica-

tive only and are subject to change. Please do your own research before purchasing

any item that is listed in this book to ensure that it truly meets your needs.

Errata

We have worked really hard to ensure that this book is error free; however, it

is always possible that some were overlooked. A full list of errata is available

on each chapter’s web page at the companion website (www.exploringrpi.com).

If you fi nd any errors in the text or in the source code examples, I would be

grateful if you could please use the companion website to send them to me so

that I can update the web page errata list and the source code examples in the

code repository.

Digital Content and Source Code

The primary companion site for this book is www.exploringrpi.com. It is main-

tained by the book’s author and contains videos, source code examples, and

links to further reading. Each chapter has its own web page. In the unlikely

event that the website is unavailable, you can fi nd the code at www.wiley.com/

go/exploringrpi.

http://www.exploringrpi.com
http://www.exploringrpi.com
http://www.exploringrpi.com
http://www.wiley.com
http://www.wiley.com/go/exploringrpi
http://www.exploringrpi.com

 Introduction xxv

fl ast.indd 11:3:39:AM 05/12/2016 Page xxv

I have provided all the source code through GitHub, which allows you to

download the code to your Raspberry Pi with one command. You can also eas-

ily view the code online at tiny.cc/erpi001. Downloading the source code to

your Raspberry Pi is as straightforward as typing the following at the Linux

shell prompt:

pi@erpi ~ $ git clone https://github.com/derekmolloy/exploringrpi.git

 If you have never used Git before, don’t worry; it is explained in detail in

Chapter 3.

Now, on with even more adventures!

c01.indd 10:40:52:AM 05/12/2016 Page 1

Par t

I
Raspberry Pi Basics

In This Part

Chapter 1: Raspberry Pi Hardware

Chapter 2: Raspberry Pi Software

Chapter 3: Exploring Embedded Linux Systems

Chapter 4: Interfacing Electronics

Chapter 5: Programming on the Raspberry Pi

c01.indd 10:40:52:AM 05/12/2016 Page 2

3

c01.indd 10:40:52:AM 05/12/2016 Page 3

In this chapter, you are introduced to the Raspberry Pi (RPi) platform hard-

ware. The chapter focuses on recently released Raspberry Pi models and

describes the various subsystems and physical inputs/outputs of the boards.

In addition, the chapter lists accessories that can prove helpful in developing

your own Raspberry Pi–based projects. By the end of this chapter, you should

have an appreciation of the power and complexity of this physical-computing

platform. You should also be aware of the fi rst steps to take to protect your

board from physical damage.

Introduction to the Platform

The RPi models are capable general-purpose computing devices, and for that

reason they have found favor for introducing learners to general computing

and computer programming. The RPi models, some of which are illustrated

in Figure 1-1, are also capable physical computing devices that can be used for

embedded systems applications—and for Internet-attached embedded applica-

tions in particular.

C H A P T E R

1

Raspberry Pi Hardware

4 Part I ■ Raspberry Pi Basics

c01.indd 10:40:52:AM 05/12/2016 Page 4

Figure 1-1: Raspberry Pi platform board examples (to relative scale)

Some general characteristics of RPi devices include the following:

 ■ They are low cost, available for as little as $5–$35.

 ■ They are powerful computing devices. For example, the RPi 3 contains

a 1.2 GHz ARM Cortex-A53 processor that can perform more than 700

million Whetstone instructions per second (MWIPS).1

 ■ They are available in a range of models that are suitable for different

applications (e.g., the larger-format RPi 3 for prototyping and the tiny-

format RPi Zero or Compute Module for deployment).

 ■ They support many standard interfaces for electronic devices.

 ■ They use little power, running at between approximately 0.5 W (RPi Zero

when idle) and approximately 5.5 W (RPi 3 under load).

 ■ They are expandable through the use of Hardware Attached on Top (HAT)

daughter boards and USB devices.

 ■ They are supported by a huge community of innovators and enthusiasts,

who generously give of their time to help the RPi Foundation with their

educational mission.

The RPi platform can run the Linux operating system, which means that

you can use many open source software libraries and applications directly

1 www.roylongbottom.org.uk/Raspberry%20Pi%20Benchmarks.htm

http://www.roylongbottom.org.uk/Raspberry%20Pi%20Benchmarks.htm

 Chapter 1 ■ Raspberry Pi Hardware 5

c01.indd 10:40:52:AM 05/12/2016 Page 5

with it. Open source software driver availability also enables you to interface

devices such as USB cameras, keyboards, and Wi-Fi adapters with your project,

without having to source proprietary alternatives. Therefore, you have access to

comprehensive libraries of code that have been built by a talented open source

community; however, it is important to remember that the code typically comes

without any type of warranty or guarantee. If there are problems, you have to

rely on the good nature of the community to resolve them. Of course, you could

also fi x the problems yourself and make the solutions publicly available.

One impressive feature of recent RPi models is that their functionality can

be extended with daughter boards, called HATs (Hardware Attached on Top), that

connect to the GPIO header (the 40-pin double-pin connector row on the boards

in Figure 1-1). You can design your own HATs and attach them securely to your

RPi using this header. In addition, many HATs are available for purchase that

can be used to expand the functionality of your RPi platform. Some examples

of these are described toward the end of this chapter.

Who Should Use the RPi

Anybody who wants to transform an engineering concept into a real interactive

electronics project, prototype, or work of art should consider using the RPi. That

said, integrating high-level software and low-level electronics is not an easy

task. However, the diffi culty involved in an implementation depends on the

level of sophistication that the project demands. The RPi community is work-

ing hard to ensure that the platform is accessible by everyone who is interested

in integrating it into their projects, whether they are students, makers, artists,

or hobbyists. For example, the availability of the Scratch visual programming

tool on the RPi (tiny.cc/erpi101) is an excellent way to engage children with

both computer programming and the RPi.

For more advanced users with electronics or computing knowledge, the RPi

platform enables additional development and customization to meet specifi c

project needs. Again, such customization is not trivial: You may be an electron-

ics expert, but high-level software programming and/or the Linux operating

system might cause you diffi culty. Or you may be a programming guru but

you have never wired an LED! This book aims to cater to all types of users who

are interested in interfacing with the RPi, providing each type of reader with

enough Linux, electronics, and software exposure to ensure that you can be

productive, regardless of your previous experience level.

When to Use the RPi

The RPi is perfectly placed for the integration of high-level software and low-

level electronics in any type of project. Whether you are planning to build an

automated home management system, robot, multimedia display, Internet of

6 Part I ■ Raspberry Pi Basics

c01.indd 10:40:52:AM 05/12/2016 Page 6

Things (IoT) application, vending machine, or Internet-connected work of inter-

active art, the RPi has the processing power to do whatever you can imagine

of an embedded device.

The major advantage the RPi and other embedded Linux devices have over

more traditional embedded systems, such as the Arduino, PIC, and AVR micro-

controllers, is apparent when you leverage the Linux OS for your projects. For

example, if you build a home automation system using the RPi and you then

decide that you want to make certain information available on the Internet, you

can simply install the Nginx web server. You could then use server-side scripting

or your favorite programming language to interface with your home automa-

tion system to capture and share information. Alternatively, your project might

require secure remote shell access. In that case, you could install a Secure Shell

(SSH) server simply by using the Linux command sudo apt install sshd (as

covered in Chapter 2). This could potentially save you weeks of development

work. In addition, you have the comfort of knowing that the same software is

running securely on millions of machines around the world.

Linux also provides you with device driver support for many USB peripherals

and adapters, making it possible for you to connect cameras, Wi-Fi adapters, and

other low-cost consumer peripherals directly to your platform without the need

for complex/expensive software driver development.

The RPi is also an excellent device for playing high-defi nition video. The RPi

has this capability because its Broadcom BCM2835/6/7 processor was designed

for multimedia applications, and it has a hardware implementation of H.264/

MPG-4 and MPG-2/VC-1 (via additional license) decoders and encoders. The

RPi has found popular use for multimedia applications such as running the

Kodi home media center2 (www.kodi.tv) for playing full-HD video content.

When to Not Use the RPi

The Linux OS was not designed for real-time or predictable processing. This

would be problematic if, for example, you want to sample a sensor precisely

every one millionth of a second. If the precise time arises to take a sample and

the kernel is busy with a different task, it cannot be easily interrupted. Therefore,

in its default state, the RPi is not an ideal platform for real-time systems applica-

tions. Real-time versions of Linux are available, but they are currently targeted

at very experienced Linux developers, and there are limits to their real-time

capabilities. However, the RPi can be combined with real-time service processors,

and the RPi can be used as the “central intelligence.” You can interconnect such

real-time microcontrollers to the RPi via electrical buses (e.g., I2C, UART) and

2 Formerly known as XBMC.

http://www.kodi.tv

 Chapter 1 ■ Raspberry Pi Hardware 7

c01.indd 10:40:52:AM 05/12/2016 Page 7

Ethernet, and have the RPi act as the central processor for a distributed control

system. This concept is described in Chapters 11, 12, and 13.

 The RPi platform is not ideal for project developments that are likely to be

commercialized. The Raspberry Pi platform largely utilizes open source soft-

ware (there are some closed-source blobs used with the GPU), but it is not open

source hardware. Schematics are available for RPi boards (e.g., tiny.cc/erpi102),

but there is a lack of documentation on the hardware used. In addition, the

Broadcom bootloader license3 explicitly states that its redistribution in binary

form is only permitted if it will “… only be used for the purposes of developing for,
running or using a Raspberry Pi device.” It is unlikely that such a license would

transfer to a product of your own design.

As described earlier in this chapter, the focus of the RPi Foundation is on edu-

cation, and product commercialization is far from that brief. If you are planning

to build an embedded Linux project that is to be commercialized, you should

examine the BeagleBone platform, which is entirely open source and is sup-

ported by strong Texas Instruments documentation. In addition, you should of

course purchase my book Exploring BeagleBone from the same Wiley mini-series.

RPi Documentation

This book integrates my experiences in developing with the RPi platform along

with supporting background materials on embedded Linux, software devel-

opment, and general electronics, to create an in-depth guide to building with

this platform. However, it is simply not possible to cover everything in just one

book, so I have avoided restating information that is listed in the key documents

and websites described in this section. The fi rst starting point for supporting

documentation is the following website:

 ■ The Raspberry Pi Foundation website: This provides the main support

for the RPi platform, with blogs, software guides, community links, and

downloads to support your development. See www.raspberrypi.org.

A huge amount of documentation is available on the RPi platform, but the

most important documents for this book are as follows:

 ■ The Raspberry Pi Documentation: This is the offi cial documentation for

the RPi that is written by the Raspberry Pi Foundation. It includes guides

on getting started, confi guration, guides to Linux distributions, and more.

See www.raspberrypi.org/documentation/.

3 github.com/raspberrypi/firmware/blob/master/boot/LICENCE.broadcom

http://www.raspberrypi.org
http://www.raspberrypi.org/documentation

8 Part I ■ Raspberry Pi Basics

c01.indd 10:40:52:AM 05/12/2016 Page 8

 ■ Broadcom BCM2835 ARM Peripherals Datasheet: This is the core docu-

ment that describes the processor on most RPi models (except the RPi 2/3).

It is 200 pages long and provides a technical description of the functionality

and capabilities of the processor on the RPi. See tiny.cc/erpi103. There

is also an important errata document at tiny.cc/erpi104.

 ■ The BCM2836 Document: This document describes features of the pro-

cessor on the RPi 2, and related features on the RPi 3. It should be read

in association with the previous Broadcom document for the BCM2835.

See tiny.cc/erpi105.

Key websites are also available to support your learning on this platform,

with combinations of tutorials, discussion forums, sample code libraries, Linux

distributions, and project ideas to stimulate your creative side. Here is a selec-

tion of important websites:

 ■ The website for this book: www.exploringrpi.com

 ■ My personal blog site: www.derekmolloy.ie

 ■ The eLinux.org website: www.elinux.org

Getting started with the RPi platform software is described in Chapter 2. The

remainder of this chapter discusses the RPi hardware platform, explaining the

functionality that is available, summarizing the technical specifi cations, and

providing some examples of the types of peripherals and HATs that you might

like to connect to the RPi.

The RPi Hardware

At their heart, the RPi boards use the Broadcom BCM2835, BCM2836, and

BCM2837 system on a chip (SoC). Several different RPi models are currently

available, and the content in this book is perfectly applicable to all of them.

However, the book focuses on more recent versions of the RPi that have a 40-pin

GPIO header (for example, the RPi A+, B+, 2, 3, and Zero). If you have yet to

purchase an RPi model, it is recommended that you purchase the RPi 3. It sup-

ports wired and wireless networking, and has a multicore processor, which

means that it supports the superset of all the concepts described in this book.

The RPi A+ and Zero do not have a wired network interface, and the RPi B+

does not have a multicore processor, but the majority of examples in this book

http://www.exploringrpi.com
http://www.derekmolloy.ie
http://www.elinux.org

 Chapter 1 ■ Raspberry Pi Hardware 9

c01.indd 10:40:52:AM 05/12/2016 Page 9

also work perfectly well with them. If you are to use the RPi A+ or RPi Zero, it

is recommended that you skip forward to the beginning of Chapter 13 so that

you can read about confi guring a USB wireless network adapter.

Raspberry Pi Versions

Figure 1-2 provides a summary feature comparison of the different RPi models

that are presently available. Here is a quick summary of this table:

 ■ If you need an RPi for general-purpose computing, consider the RPi 3.

The 1 GB of memory and 1.2 GHz quad-core processor provide the best

performance out of all the boards.

 ■ For applications that interface electronics circuits to the Internet on a

wired network, consider the RPi 3, RPi 2, or RPi B+, with cost being the

deciding factor.

 ■ If you need a small-footprint device with wireless connectivity, consider

the RPi Zero. The RPi A+ could be used to develop the initial prototype.

 ■ If you want to design your own PCB that uses the RPi (or multiple RPi

boards), investigate the Compute module.

Figure 1-2: A summary comparison of commonly available RPi models

10 Part I ■ Raspberry Pi Basics

c01.indd 10:40:52:AM 05/12/2016 Page 10

The Raspberry Pi Hardware

Figure 1-3 and Figure 1-4 detail the core systems of typical RPi models. Figure

1-3(a) illustrates the RPi Zero, and the key systems identifi ed by the callouts 1–11

are described in more detail in Figure 1-4. Similarly, Figure 1-3(b) illustrates

the equivalent key systems on the RPi 3, and the callouts 1–15 are described in

more detail in Figure 1-4.

(a)

(b)

Figure 1-3: The inputs/outputs and subsystems on two RPi models (to relative scale): (a) The RPi

Zero; and (b) The RPi 3

Figure 1-4 details the various inputs and outputs that are available on the

GPIO header. On recent RPi models (A+, B+, 2, 3, and Zero), there are 40 pins in

total on this header (2 × 20); however, not all are available for general-purpose

input/outputs (GPIOs). Several of the connections have a fi xed confi guration:

 ■ 8 pins are connected to ground.

 Chapter 1 ■ Raspberry Pi Hardware 11

c01.indd 10:40:52:AM 05/12/2016 Page 11

 ■ 4 pins are allocated to voltage supplies: 3.3 V (up to 50 mA) and to 5 V

(up to 300 mA).

 ■ 2 pins are reserved for HATs (discussed later in this chapter) but they can

be re-tasked (see Chapter 8).

The remaining 26 connectors are available to be multiplexed to many differ-

ent functions, several of which are listed in Figure 1-4 (under the GPIOs head-

ing). The function of each of these input/output types is described in detail in

Chapter 6 and Chapter 8.

Figure 1-4: Table of general RPi subsystems and connectors

12 Part I ■ Raspberry Pi Basics

c01.indd 10:40:52:AM 05/12/2016 Page 12

A RESET BUTTON FOR THE RASPBERRY Pi

The RPi does not have a power or a reset button, which means that if a system lock-

up occurs you must unplug and replug the micro-USB power supply. This task can be

awkward and can lead to physical damage of the RPi. (On older models, a common

issue is that a large 220 μF capacitor is often used for physical leverage when unplug-

ging the USB power input and it tends to fall off !) A low-cost leaded PC power/reset

switch, such as that in Figure 1-5(a), can be used to provide a solution. A two-pin male

header can be soldered to the unpopulated RUN header on RPi models, as illustrated

in Figure 1-5(b), and the switch attached as in Figure 1-5(c). One advantage of the

leaded switch is that it can be attached to the outside of a case that contains the RPi.

(a) (b) (c)

Figure 1-5: A power/reset button for the RPi: (a) A PC power/reset button; (b) A two-pin male

header that is soldered to the board; and (c) Attachment of the PC power/reset button

Should you attach such a button to the RPi, it should not be used to routinely reset

the RPi; rather, software commands should be issued, as described in Chapter 2.

Raspberry Pi Accessories

The RPi has minimal external requirements to use the board, typically as follows:

 ■ A USB 2.0 cable (usually a micro-USB plug to USB-A plug) that is used

to connect the RPi to a power supply, such as a desktop computer or USB

mains supply (e.g., a cell phone charger)

 ■ A micro-SD card that is used to contain the operating system, which is

used to boot the board

 ■ A CAT 5 network patch cable to connect your RPi to the network using

its RJ-45 10/100 Ethernet connector

The RPi can be connected to a display using a HDMI cable (a mini-HDMI

cable for the RPi Zero), but most of the examples in this book assume that the

RPi is used in headless mode—that is, not connected directly to a display; rather,

 Chapter 1 ■ Raspberry Pi Hardware 13

c01.indd 10:40:52:AM 05/12/2016 Page 13

the RPi is used as a networked device that interfaces to electronic circuits, USB

modules, and wireless sensors.

Important Accessories

The following accessories are important for purchase along with your RPi board.

External 5 V Power Supply (for Powering the RPi)

The RPi is best powered using a micro-USB cable that is connected to a good-

quality 5 V power supply (±5%) that is rated to deliver a current of at least 1.1

A (1,100 mA) for older boards, and 2.5 A (2,500 mA) for the RPi 3. RPi boards

typically require 500 mA–700 mA, but some USB peripherals (e.g., Wi-Fi adapt-

ers and webcams) have signifi cant power requirements. The micro-USB input

on the RPi boards has a Polyfuse, which limits current input to approximately

1,100 mA (with 700 mA hold current; see Chapter 4) on most RPi models, and

2,500 mA on the RPi 3. You can connect a USB power supply that is capable

of supplying current of greater than 2,500 mA, but do not connect one that sup-

plies voltage outside the range 4.75 V–5.25 V (i.e., 5 V ± 5%).

If you are having stability problems such as random reboots, random crashes,

or keyboard problems, the power supply is the likely culprit. The power supply

may not be able to deliver adequate current or it (or the connecting USB cable) may

be of a poor quality and operating outside of tolerance. For example, some poor-

quality “generic” 5 V power supplies may be advertised by vendors as suitable

for a 1 A current supply (possibly referring to a short-circuit current limit), but

their output voltage level may drop to unacceptable levels as the current drawn

increases. Should you suspect such a problem, you should measure the voltage

level on the RPi. On newer models, you use PP1 or PP2 and GND (or any of the

metal shielded components), as illustrated in Figure 1-6(a). On older models use

TP1 and TP2.

(a) (b)

Figure 1-6: (a) Testing that the RPi supply voltage level is in the range 4.75 V to 5.25 V (i.e., 5 V ±

5%); (b) The RPi Zero and its associated connectors

14 Part I ■ Raspberry Pi Basics

c01.indd 10:40:52:AM 05/12/2016 Page 14

Micro-SD Card (for Booting an Operating System)

Purchase a genuine, branded micro-SD card of at least 8 GB capacity. You may

also require a micro-SD-to-SD adapter so that it can be used in your computer’s

card reader. Older RPi boards (e.g., A, B) require full-size SD cards, and such

an adapter can be used with them. Many micro-SD cards are bundled with an

adapter, which is a cheaper option than purchasing them separately.

The micro-SD card should be of Class 10 or greater, because the faster read/

write speed will save you time in writing images in particular. Ideally, you

should use an 8 GB to 32 GB micro-SD card with wear-leveling functionality

because it will extend the lifespan of the card, particularly if you format but do

not consume the full capacity. Larger micro-SD cards also work, but they may

be cost prohibitive. (Alternative approaches to increasing the storage capacity

of the RPi using USB storage devices are shortly discussed.)

Ethernet Cable (for Network Connection)

The RPi B/B+/2/3 can be connected to the Internet using a wired network con-

nection. The RPi A/A+/Zero can be connected to the Internet using a USB wire-

less adapter. If you are connecting an RPi to your wired network, don’t forget

to purchase a CAT 5 network patch cable to connect your RPi to the network

using its RJ-45 10/100 Ethernet connector. If you plan to use more than one RPi

simultaneously, you could invest in a low-cost four-port switch, which can be

placed close to your desktop computer.

Recommended Accessories

The following accessories are recommended for purchase along with your RPi

board. If you are planning to carry out development work with the RPi, you

should probably have all of them.

HDMI Cable (for Connection to Monitors/Televisions)

The RPi can be easily connected to a monitor or television that has a HDMI or

DVI connector. The majority of RPi models have a full-size HDMI connector.

However, the RPi Zero has a mini-HDMI socket (HDMI-C), so be careful to match

that to your monitor/television type (usually HDMI-A or DVI-D). The cable that

you are likely to need for the RPi Zero is an HDMI-Mini-C plug to HDMI-A

male plug. A 1.8 M (6 ft.) cable should cost no more than $10. Be careful with

your purchase; an HDMI-D (micro-HDMI) connector will not fi t the RPi Zero.

Alternatively, you can purchase a low-cost ($3) mini-HDMI (HDMI-C) plug

to regular HDMI (HDMI-A) socket adapter or mini-HDMI (HDMI-C) plug to

DVI-D socket adapter cable. These enable you to use regular-size HDMI-A or

to connect to DVI-D devices, respectively (see Figure 1-6(b)).

 Chapter 1 ■ Raspberry Pi Hardware 15

c01.indd 10:40:52:AM 05/12/2016 Page 15

RPi ZERO USB ONTHE GO OTG

The RPi Zero uses USB On-The-Go (OTG) to connect to USB peripherals. USB OTG

is often used for devices that switch between the roles of USB client and host. For

example, USB OTG connectors are often used to allow cell phones or tablet comput-

ers to connect to external USB storage devices. The USB OTG connector allows the RPi

host to connect to a slave device such as a Wi-Fi or Bluetooth adapter, as illustrated in

Figure 1-6(b).

USB to Serial UART TTL 3.3 V (for Finding Problems)

The USB-to-TTL UART serial cable, as illustrated in Figure 1-7(a), is one accessory

that proves really useful when there are problems with the Linux installation

on your board. It can provide you with a console interface to the RPi without

the need for connection to an external display and keyboard.

Ensure that you purchase the 3.3 V level version and ideally purchase a ver-

sion with 0.1” female headers pre-attached. This cable contains a chipset and

requires that you install drivers on your desktop computer, creating a new COM

port. The FTDI TTL-232R-3V3 cable works well and provides a very stable con-

nection (~$20). See tiny.cc/erpi106 for the datasheet and the VCP link to the

software drivers for this adapter cable.

(a) (b)

Figure 1-7: (a) The USB-to-TTL 3.3 V serial cable and, (b) its connection to the RPi

The cable connects to the serial UART on the RPi, which is available via the

GPIO header. With the RPi powered using a regular USB 5 V supply, connect

the cable to the RPi in the following way (as illustrated in Figure 1-7(b)):

 ■ The black ground (GND) wire to Pin 6 on the GPIO header, which is the

RPi GND pin

 ■ The yellow receive (RXD) wire to Pin 8 (GPIO14) on the GPIO header,

which is the UART transmit pin (TXD0)

 ■ The orange transmit (TXD) wire to Pin 10 (GPIO15) on the GPIO header,

which is the UART receive pin (RXD0)

16 Part I ■ Raspberry Pi Basics

c01.indd 10:40:52:AM 05/12/2016 Page 16

Note that the 40-pin GPIO header is described in detail in Chapter 6. The

exact use of this cable is described in Chapters 2, 3, and 8.

This cable is also used to test the UART connection on the RPi in Chapter 8

and to program the Arduino Pro devices in Chapter 11.

W A R N I N G The RPi is 3.3 V tolerant but makes a 5 V supply available on the GPIO

header pins 2 and 4. The easiest way to destroy the RPi is to accidentally connect these

pins to a circuit that requires 3.3 V logic levels, or to accidentally short these pins with

other pins on the GPIO header. To help prevent accidental contact, you can bridge

these pins with an insulated jumper connector, as illustrated in Figure 1-7(b). The plas-

tic cover insulates the pins from contact and prevents you from mistakenly connecting

a 5 V supply to your circuit.

Optional Accessories

The following sections describe optional accessories that you may need, depend-

ing on the applications that you are developing.

USB Hub (to Connect to Many USB Devices)

Most RPi models have a built-in USB hub that allows several devices to be con-

nected to the RPi simultaneously. If you plan to connect many devices to the

RPi, you will need an external USB hub. USB hubs are either bus powered or

externally powered. Externally powered hubs are more expensive; however, if

you are using several power-hungry adapters (Wi-Fi in particular), you may

need a powered hub.

One issue that you have to be aware of with powered USB hubs is that many

are back feeding. Back feeding (back powering) is where a USB hub connected

to the RPi hub (not the micro-USB power) supplies power back into the RPi

through the RPi hub. It can cause diffi culties if you have two separate power

supplies competing to power the RPi. In addition, there is no protection on

the RPi hub to prevent excessive current from being drawn.

This is not an issue on more-recent RPi models (e.g., the RPi 2/3) because

circuitry is present to prevent back powering. However, it can also be useful to

use a single power supply for your project. The easy way to do this is to attach

a cable from the powered USB hub to the RPi micro-USB power input.

Micro-HDMI to VGA adapters (for VGA Video and Sound)

Several low-cost HDMI-to-VGA adapters are for sale for converting the HDMI

output to a VGA output. As well as providing for VGA video output, many of

these connectors provide a separate 3.5 mm audio line out, which can be used

 Chapter 1 ■ Raspberry Pi Hardware 17

c01.indd 10:40:52:AM 05/12/2016 Page 17

if you want to play audio using your RPi. There are also USB audio adapters

available that can provide high-quality playback and recording functionality.

These adapters and their usage is described in Chapter 15. Many RPi models

also make composite video and stereo audio available via a four-pole 3.5 mm

connector. A standard 3.5 mm four-pole headphone jack (with microphone) can

be used for this task. The tip of the jack is connected to the left audio channel,

followed by the right audio channel, ground connection, and then the video

channel.

Wi-Fi Adapters (for Wireless Networking)

The RPi 3 has on-board Wi-Fi, but this capability can also be added to other

RPi models using the many different Wi-Fi adapters that are available, such as

those in Figure 1-8(a); however, not all adapters will work on the RPi. The Linux

distribution and the chipset inside the adapter will determine the likelihood of

success. Wi-Fi confi guration and applications are discussed in detail in Chapter

13, which tests a range of different low-cost adapters that are widely available.

Be aware that manufacturers can change chipsets within the same product and

that buying an adapter from the list in Chapter 13 does not guarantee that it

will work. You are more likely to succeed if you can confi rm the chipset in the

adapter you are planning to purchase and evaluate that against the list. You can

use a small low-cost USB current meter, such as the one illustrated in Figure

1-8(c) ($3), which enables you to gain some insight into the power utilization of

the RPi and the impact of connecting a Wi-Fi adapter.

(a) (b) (c)

Figure 1-8: USB adapters: (a) Wi-Fi adapters; (b) Memory card reader/writer; and (c) A low-cost

USB current and voltage monitor

USB Storage Devices (for Additional Storage)

USB fl ash drives, USB hard disks, and USB SD card reader/writers can be attached

to the RPi for additional storage. The device can be prepared with a Linux fi le

system and mounted under the RPi fi le system (see Chapter 3). One such device

18 Part I ■ Raspberry Pi Basics

c01.indd 10:40:52:AM 05/12/2016 Page 18

that is particularly useful is a USB card reader/writer, as illustrated in Figure

1-8(b). These devices have similar prices to USB fl ash drives, and they support

“hot swapping” of the micro-SD card. In addition, they prove particularly use-

ful if you need to mount the root fi le system of one RPi on another RPi for fi le

interchange or to correct a confi guration error on the card that is preventing

the other RPi from booting (see Chapter 3). In addition, such a device can be

utilized on a desktop machine to write a new Linux image to a micro-SD card.

USB Webcam (for Capturing Images and Streaming Video)

Attaching an RPi camera, as illustrated in Figure 1-9(a) and Figure 1-9(b), or a

USB webcam, as illustrated in Figure 1-9(c), can be a low-cost way to integrate

image and video capture into your RPi projects. In addition, utilizing Linux

libraries such as Video 4 Linux and Open Source Computer Vision (OpenCV)

enables you to build “seeing” applications. This topic is discussed in detail in

Chapter 15.

(a) (b) (c)

Figure 1-9: (a) RPi NoIR Camera, (b) RPi Camera bracket, and (c) Logitech C920 USB webcam

USB Keyboard and Mouse (for General-Purpose Computing)

It is possible to connect a USB keyboard and mouse to the RPi or to use a 2.4

GHz wireless keyboard and mouse combination. Very small wireless hand-

held combinations are available, such as the Rii 174 Mini, Rii i10, and ESYNiC

mini, all of which include a handheld keyboard with integrated touchpad. A

USB Bluetooth adapter is also useful for connecting peripherals to the RPi.

A similar Bluetooth keyboard/touchpad is utilized in Chapter 14.

Cases (for Protecting the RPi)

Many different cases are available for protecting your RPi, including the one

illustrated in Figure 1-10(a) ($6). Cases are useful for protecting the RPi from

accidental short circuits (e.g., placing the RPi on a metal surface), but they do

 Chapter 1 ■ Raspberry Pi Hardware 19

c01.indd 10:40:52:AM 05/12/2016 Page 19

have an impact on the temperature that the RPi operates at (see Chapter 12). Try

to ensure that you purchase a case with adequate ventilation, but avoid noisy

active-ventilation solutions or ridiculous water-cooled solutions!

HATs

HATs (Hardware Attached on Top) are daughter boards that can be attached to

the GPIO expansion header on the RPi. Add-on boards were available for the

26-pin GPIO header on older RPi models, but the RPi had no formal mechanism

for identifying which daughter board was attached. HATs were introduced in

conjunction with the release of the RPi B+. Some pins on the expanded 40-pin

GPIO header (ID_SD and ID_SC) of newer RPi models are utilized to automati-

cally identify which HAT is attached to the RPi. This allows the Linux OS to

automatically confi gure pins on the GPIO header and to load drivers that make

working with the HATs very easy.

Figure 1-10(b) illustrates the RPi Sense HAT ($35). It contains an: 8 × 8 LED

matrix display, accelerometer, gyroscope, magnetometer, air pressure sensor,

temperature sensor, humidity sensor, and a small joystick. Figure 1-10(d) illus-

trates a low-cost blank prototyping HAT that can be used to design your own

HAT, which includes space on the bottom right for a surface-mounted EEPROM

that can be used to identify the HAT to the RPi.

(a) (b)

(c) (d)

Figure 1-10: RPi Accessories: (a) An example case; (b) The Sense HAT; (c) The T-Cobbler board;

and (d) A prototyping HAT

20 Part I ■ Raspberry Pi Basics

c01.indd 10:40:52:AM 05/12/2016 Page 20

An alternative to designing your own HAT is to use the T-Cobbler board as

illustrated in Figure 1-10(c) to break out the RPi GPIO header to a breadboard

using a 40-pin ribbon cable, which is available with the T-Cobbler. This sits

neatly into a prototyping breadboard (see Chapter 4), providing clear pin labels

for all of the RPi GPIO pins.

How to Destroy Your RPi!

RPi boards are complex and delicate devices that are very easily damaged if

you do not show due care. If you are moving up from boards like the Arduino

to the RPi platform, you have to be especially careful when connecting circuits

that you built for that platform to the RPi. Unlike the Arduino Uno, the micro-

processor on the RPi cannot be replaced. If you damage the microprocessor

SoC, you will have to buy a new board!

Here are some things that you should never do:

 ■ Do not shut the RPi down by pulling out the USB power supply. You

should shut down the board correctly using a software shutdown proce-

dure (see Chapter 2).

 ■ Do not place a powered RPi on metal surfaces (e.g., aluminum-fi nish com-

puters) or on worktops with stray/cut-off wire segments, resistors, etc. If

you short the pins underneath the GPIO header, you can easily destroy

your board. You can buy a case such as that in Figure 1-10(a). Alternatively,

you can attach small self-adhesive rubber feet to the bottom of the RPi.

 ■ Do not connect circuits that source/sink other than very low currents

from/to the GPIO header. The maximum current that you can source

or sink from many of these header pins is approximately 2 mA to 3 mA.

The power rail and ground pins can source and sink larger currents. For

comparison, some Arduino models allow currents of 40 mA on each

input/output. This issue is covered in detail in Chapter 4 and Chapter 6.

 ■ The GPIO pins are 3.3 V tolerant. Do not connect a circuit that is powered at

5 V; otherwise, you will destroy the board. This is discussed in Chapter 4,

Chapter 6, and Chapter 8.

 ■ Do not connect circuits that apply power to the GPIO header while the

RPi is not powered on. Make sure that all self-powered interfacing circuits

are gated by the 3.3 V supply line or using optocouplers. This is covered

in Chapter 6.

 Chapter 1 ■ Raspberry Pi Hardware 21

c01.indd 10:40:52:AM 05/12/2016 Page 21

You should always do the following:

 ■ Carefully check the pin numbers that you are using. There are 40 pins

on the GPIO header, and it is very easy to plug into header connector

21 instead of 19. The T-Cobbler board in Figure 1-10(c) is very useful for

interconnecting the RPi to a breadboard, and it is highly recommended

for prototyping work.

Summary

After completing this chapter, you should be able to do the following:

 ■ Describe the capability of the Raspberry Pi (RPi) and its suitability for

different project types.

 ■ Describe the major hardware systems and subsystems on the RPi boards.

 ■ Identify important accessories that you can buy to enhance the capability

of your RPi.

 ■ Have an appreciation of the power and complexity of the RPi as a physi-

cal computing platform.

 ■ Be aware of the fi rst steps to take in protecting your board from physical

damage.

Support

The key sources of additional support documentation are listed earlier in this

chapter. If you are having diffi culty with the RPi platform and the issues are not

described in the documentation, visit the Raspberry Pi Community Forums at

www.raspberrypi.org/forums/. Please remember that the people on these forums

are community members who volunteer their time to respond to questions.

http://www.raspberrypi.org/forums

23

c02.indd 10:41:42:AM 05/12/2016 Page 23

In this chapter, you are introduced to the Linux operating system and soft-

ware tools that can be used with the Raspberry Pi (RPi). This chapter aims to

ensure that you can connect to your board over a network or serial connec-

tion and control it using basic Linux commands. RPi-specifi c confi guration

tools are examined for customizing and for updating the software on your

board. By the end of this chapter, you should be able to control an onboard

system LED having followed a step-by-step guide that demonstrates how

you can use Linux shell commands in a Linux terminal window. The chapter

fi nishes with a discussion on how to shut down or reset the board safely

and correctly.

Equipment Required for This Chapter:

 ■ Raspberry Pi board (ideally RPi 3, RPi 2, or RPi B+)

 ■ USB power cable and power supply

 ■ Micro-SD card (8 GB or greater; ideally class 10+)

 ■ Network infrastructure and cabling, serial cable, or Wi-Fi adapter

Further details on this chapter are available at

www.exploringrpi.com/chapter2/.

C H A P T E R

2

Raspberry Pi Software

http://www.exploringrpi.com/chapter2

24 Part I ■ Raspberry Pi Basics

c02.indd 10:41:42:AM 05/12/2016 Page 24

Linux on the Raspberry Pi

A Linux distribution is a publicly available version of Linux that is packaged

with a set of software programs and tools. There are many different Linux dis-

tributions, which are typically focused on different applications. For example,

high-end server owners might install Red Hat Enterprise, Debian, or OpenSUSE;

desktop users might install Ubuntu, Debian, Fedora, or Linux Mint. At the core

of all distributions is a common Linux kernel, which was conceived and created

by Linus Torvalds in 1991.

In deciding which Linux distribution to use for your embedded system plat-

form, it would be sensible to choose one for which the following apply:

 ■ The distribution is stable and well supported.

 ■ There is a good package manager.

 ■ The distribution is lean and suited to a low storage footprint.

 ■ There is good community support for your particular device.

 ■ There is device driver support for any desired peripherals.

Linux Distributions for the RPi

At their heart, the many different distributions of Linux for embedded system

platforms all use the mainline Linux kernel, but each distribution contains dif-

ferent tools and confi gurations that result in quite different user experiences.

The main open source Linux distributions used by the community on the RPi

board include Raspbian, Ubuntu, OpenELEC, and Arch Linux.

Raspbian is a version of Debian that is released specifi cally for the RPi. Debian

(contraction of Debbie and Ian) is a community-driven Linux distribution that has

an emphasis on open source development. No commercial organization is involved

in the development of Debian. Raspbian extends Debian with RPi-specifi c tools

and software packages (e.g., Java, Mathematica, Scratch). Presently, three different

versions of Raspbian are available for download from the Raspberry Pi website:

 ■ Raspbian Jessie: An image based on Debian Jessie (Debian version 8.x)

that has full desktop support. (Image size: approximately 1.3 GB com-

pressed, 4 GB extracted)

 ■ Raspbian Jessie Lite: A minimal image that is based on Debian Jessie. It

has limited desktop support, but this can be added easily at a later stage.

(Image size: approximately 375 MB compressed, 1.4 GB extracted)

 ■ Raspbian Wheezy: An older image based on Debian Wheezy (Debian

version 7.x) that is available for compatibility with some software pack-

ages. You should choose the Jessie image if possible, particularly if you

are planning to cross-compile applications.

 Chapter 2 ■ Raspberry Pi Software 25

c02.indd 10:41:42:AM 05/12/2016 Page 25

N O T E Raspbian (Jessie) is used for the practical steps in this book and it is strongly

recommended as the distribution of choice. In addition, Debian is used throughout

this book as the distribution for the Linux desktop computer because it provides

excellent support for cross-platform development through Debian Cross-Toolchains

(www.debian.org).

Ubuntu is closely related to Debian. In fact, it is described on the Ubuntu

website (www.ubuntu.com) as follows: “Debian is the rock upon which Ubuntu is

built.” Ubuntu is one of the most popular desktop Linux distributions, mainly

because of its focus on making Linux more accessible to new users. It is easy to

install, has excellent desktop driver support, and there are binary distributions

available for the RPi. The core strength of the Ubuntu distribution is its desktop

user experience. If you are using the RPi as a general-purpose computing device

(see Chapter 14), you may fi nd that this distribution best suits your needs.

OpenELEC (www.openelec.tv) has a particular focus on multimedia appli-

cations and on Kodi (www.kodi.tv) in particular. If you want to use the RPi

as a home media center, this distribution may provide the best performance.

OpenElec distributions typically use a read-only fi le system (e.g., squashfs) for

performance and reliability. However, such optimizations make prototyping

and development work diffi cult.

Arch Linux (www.archlinuxarm.org) is a lightweight and fl exible Linux dis-

tribution that aims to “keep it simple,” targeting competent Linux users in

particular by giving them complete control and responsibility over the system

confi guration. Prebuilt versions of the Arch Linux distribution are available

for the RPi. However, compared to the other distributions, it currently has less

support for new Linux users with the RPi platform.

The RPi Foundation developed a Linux installer for new users called NOOBS,

which contains Raspbian but provides ease of download and installation of

other Linux distributions. Many RPi hardware bundles include an SD card

that contains NOOBS. However if you have chosen to download and install a

Raspbian image, you should download the image directly using the instruc-

tions in the next section.

Non-Linux solutions, such as Windows 10 IoT Core and RISC OS, have started

to emerge for the RPi. These are interesting and welcome developments. However,

they currently have limited device support and quite specifi c programming

requirements when compared to Linux. Because this book focuses on Linux-

based solutions, such distributions are best avoided if you want to follow along.

Create a Linux SD Card Image for the RPi

The easiest way to set up an SD card so that it can be used to boot the RPi is to

download a Linux distribution image fi le (.IMG fi le in a compressed .zip wrap-

per) from www.raspberrypi.org/downloads and write it to an SD card using

http://www.debian.org
http://www.ubuntu.com
http://www.openelec.tv
http://www.kodi.tv
http://www.archlinuxarm.org
http://www.raspberrypi.org/downloads

26 Part I ■ Raspberry Pi Basics

c02.indd 10:41:42:AM 05/12/2016 Page 26

an image writer utility. The following image writer tools make this process

straightforward.

W A R N I N G When you write a Linux distribution image fi le to an SD card,

all previous content on the card is lost. Double-check that you are writing the

 downloaded image to the correct device when using the following tools.

 ■ Windows: Use Win32DiskImager (available from tiny.cc/erpi202). Insert

the SD card before you start the application—double-check that you chose

the correct drive for your SD card.

 ■ Mac OS and Linux: Use the dd disk cloning tool (carefully). First identify

the device. It should appear as /dev/mmcblkXp1 or /dev/sddX under

Linux, or /dev/rdiskX under Mac OS, where X is a number. You must

be certain that X refers to the SD card to which you want to write the

image—for example, check that the available capacity of the device (e.g.,

use cat /proc/partitions) matches the SD card capacity. Then using a

terminal window use the dd command with root privileges, where if is

the input fi le name and of is the output device name (a block size bs of

1M should work fi ne):

molloyd@desktop:~$ sudo dd bs=1M if=RPi_image_file.img of=/dev/XXX

N O T E The Win32DiskImager and dd command create a partition on the SD card

that is just big enough for the operating system, regardless of the card’s capacity.

That issue is addressed later in this chapter.

Transfer the SD card to the RPi, attach the network cable, and insert the 5 V

micro-USB power supply. You can further attach a USB keyboard, USB mouse,

and HDMI monitor to the RPi to use it as a general-purpose computing device

(see Chapter 14), but for electronics interfacing projects the RPi is typically used

as a standalone embedded device that communicates via a network. Therefore,

the next steps are to connect the RPi to a network and to communicate with it

using the network.

Connecting to a Network

There are two main ways to connect to and communicate with the RPi over the

network: using regular Ethernet or using an Ethernet crossover cable. Connecting

to the RPi over a network can be a stumbling block for beginners. It is usually

straightforward if you are working at home with control of your own network.

However, complex networks, such as those in universities, can have multiple

subnets for wired and wireless communication. In such complex networks,

 Chapter 2 ■ Raspberry Pi Software 27

c02.indd 10:41:42:AM 05/12/2016 Page 27

routing restrictions may make it diffi cult, if not impossible, to connect to the

RPi over regular Ethernet. Both methods are suitable for connecting your RPi

to Windows, Macintosh, and Linux desktop machines.

Regular Ethernet

By “regular” Ethernet, I mean connecting the RPi to a network in the same way

that you would connect your desktop computer using a wired connection. For

the home user and power user, regular Ethernet is probably the best solution

for networking and connecting to the RPi. Table 2-1 lists the advantages and

disadvantages of using this type of connection. The main issue is the com-

plexity of the network. (If you understand your network confi guration and

have access to the router settings, this is by far the best confi guration.) If your

network router is distant from your desktop computer, you could purchase

a small network switch ($10–$20) or a wireless access point with integrated

multiport router ($25–$35). The latter option is useful for wireless RPi applica-

tions involving the use of the RPi 3/Zero/A+ boards and for extending your

wireless network’s range.

N O T E This discussion is also relevant to wireless networking. If you must use a wire-

less connection like the RPi Zero, read the section titled “Wi-Fi Communications” at

the beginning of Chapter 13 and return to this point. To modify the confi guration fi les

for a Wi-Fi adapter, you can use the USB-to-TTL cable (described in the next section).

Alternatively, you could mount the micro-SD card for the target RPi under a desktop

Linux OS (or a second RPi) and modify the confi guration fi les directly.

Table 2-1: Regular RPi Ethernet Advantages and Disadvantages

ADVANTAGES DISADVANTAGES

You have full control over IP address settings

and dynamic/static IP settings.

You might need administrative control or

knowledge of the network infrastructure.

You can connect and interconnect many

RPi boards to a single network (including

wireless devices).

The RPi needs a source of power, which

can be a mains-powered adapter or Power

over Ethernet (PoE)(see Chapter 12).

The RPi can connect to the Internet without

a desktop computer being powered on.

The setup is more complex for beginners

if the network structure is complex.

The fi rst challenge with this confi guration is fi nding your RPi on the net-

work. By default, the RPi is confi gured to request a Dynamic Host Confi guration
Protocol (DHCP) IP address. In a home network environment, this service is

usually provided by a DHCP server that is running on the integrated modem-

fi rewall-router-LAN (or some similar confi guration) that connects the home to

an Internet service provider (ISP).

28 Part I ■ Raspberry Pi Basics

c02.indd 10:41:42:AM 05/12/2016 Page 28

DHCP servers issue IP addresses dynamically from a pool of addresses for a

fi xed time interval, called the lease time, which is specifi ed in your DHCP con-

fi guration. When this lease expires, your RPi is allocated a different IP address

the next time it connects to your network. This change can be frustrating, as you

may have to search for your RPi on the network again. (Chapter 13 describes

how to set the IP address of your RPi to be static, so that it is fi xed at the same

address each time the board connects.)

You can use any of the following methods to identify the RPi’s dynamic IP

address:

 ■ With a web browser: Use a web browser to access your home router

(often address 192.168.1.1, 192.168.0.1, or 10.0.0.1). Log in and look under

a menu such as Status for the DHCP Table. You should see an entry that

details the allocated IP address, the physical MAC address, and the lease

time remaining for a device with hostname raspberrypi. My hostname

is erpi, for example:

DHCP IP Assignment Table

IP Address MAC Address Client Host Name Leased Time

192.168.1.116 B8-27-EB-F3-0E-C6 erpi 12:39:56

 ■ With a port-scanning tool: Use a tool like nmap under Linux or the Zenmap

GUI version, available for Windows (see tiny.cc/erpi203). Issue the com-

mand nmap -T4 -F 192.168.1.* to scan for devices on a subnet. You are

searching for an entry that has an open port 22 for SSH. It should identify

itself with the Raspberry Pi Foundation (see Figure 2-1(a)) as a result of

the range of MAC addresses allocated to the Foundation. You can then

ping test the network connection (see Figure 2-1(b)).

(a) (b)

Figure 2-1: (a) Zenmap scan of the network to locate the RPi; (b) A ping test from the desktop

machine

 ■ With zero-confi guration networking (Zeroconf): Zeroconf is a set of tools for

hostname resolution, automatic address assignment, and service discovery.

By default the RPi Raspbian distribution uses an avahi service to support

Zeroconf on your network, which makes the hostname visible. For example,

my board’s hostname is erpi. It is therefore possible to connect to the RPi by

using the string erpi.local:

 Chapter 2 ■ Raspberry Pi Software 29

c02.indd 10:41:42:AM 05/12/2016 Page 29

pi@erpi:~$ systemctl status avahi-daemon

• avahi-daemon.service - Avahi mDNS/DNS-SD Stack

 Loaded: loaded (/lib/systemd/system/avahi-daemon.service; enabled)

 Active: active (running) since Thu 2015-12-17 21:53:46 GMT; 8h ago

 Main PID: 385 (avahi-daemon)

 Status: "avahi-daemon 0.6.31 starting up."

 CGroup: /system.slice/avahi-daemon.service

 ├─385 avahi-daemon: running [erpi.local]

 └─419 avahi-daemon: chroot helper

N O T E Windows machines do not support Zeroconf by default. You can install the

Bonjour Print Services for Windows (or alternatively iTunes) using the link tiny.cc/

erpi204. If this is successful, you should be able to perform a ping test (by default the

name is raspberrypi.local):

C:\Users\Derek> ping erpi.local

Pinging erpi.local [fe80::9005:94c0:109e:9ecd%6] with 32 bytes of data:

Reply from fe80::9005:94c0:109e:9ecd%6: time=1ms ...

 ■ With a USB-to-TTL serial connection: A fi nal option is to use a USB-to-

TTL serial connection to connect to the RPi and type ifconfig to fi nd the

IP address. The address is the “inet addr” associated with the eth0 adapter.

Ethernet Crossover Cable

An Ethernet crossover cable is a cable that has been modifi ed to enable two

Ethernet devices to be connected directly without the need for an Ethernet

switch. It can be purchased as a cable or as a plug-in adapter. Table 2-2 describes

the advantages and disadvantages of this connection type.

Table 2-2: Crossover Cable Network Advantages and Disadvantages

ADVANTAGES DISADVANTAGES

When you do not have access to network

infrastructure hardware, you can still connect

to the RPi.

If your desktop machine has only one

network adapter, you will lose access to

the Internet. It is best used with a device

that has multiple adapters.

RPi may have Internet access if the desktop has

two network adapters and sharing is enabled.

RPi still needs a source of power (can be

a mains-powered adapter).

Provides a reasonably stable network setup. May require a specialized Ethernet

crossover cable or adapter. However,

your computer likely has Auto-MDIX.

Most modern desktop machines have an automatic crossover detection func-

tion (Auto-MDIX) that enables a regular Ethernet cable to be used. The RPi’s

network interface also supports Auto-MDIX; therefore, this connection type can

be used when you do not have access to network infrastructure. If you have

30 Part I ■ Raspberry Pi Basics

c02.indd 10:41:42:AM 05/12/2016 Page 30

two network adapters on your desktop machine (e.g., a laptop with a wired and

wireless network adapter), you can easily share the connection to the Internet

with your RPi by bridging both adapters. For example, these are the steps nec-

essary when using the Windows OS:

 1. Plug one end of a regular (or crossover) Ethernet cable into the RPi and

the other end into a laptop Ethernet socket.

 2. Power on the RPi by attaching a micro-USB power supply.

 3. Bridge the two network connections. Under Windows, choose Network and

Internet ➪ Network Connections. Select the two network adapters (wired

and wireless) at the same time, right-click, and choose Bridge Connections.

After some time, the two connections should appear with the status Enabled,

Bridged, and a network bridge should appear, as illustrated in Figure 2-2.

 4. Reboot the RPi. Ideally, you should use a USB-to-TTL serial cable to do

this, or the reset button described in Chapter 1. Once the RPi has rebooted,

it should obtain an IP address directly from your network’s DHCP server.

You can then communicate with the RPi directly from anywhere on your

network (including the laptop itself) using the steps described in the next

section. Figure 2-2 provides a confi guration example subsequent to the steps

in the following section taking place. As illustrated in the fi gure, the DHCP

server allocates the laptop the IP address 192.168.1.111 and the RPi the IP

address 192.168.1.115. Therefore, an SSH session from the desktop machine at

IP address 192.168.1.4 to the RPi provides the following interaction:

molloyd@desktop:~$ ssh pi@192.168.1.115

pi@192.168.1.115's password: raspberry

Debian GNU/Linux comes with ABSOLUTELY NO WARRANTY, to the extent

permitted by applicable law.

pi@erpi ~ $ echo $SSH_CLIENT

192.168.1.4 60898 22

pi@erpi ~ $ ping www.google.com

PING www.google.com (213.233.153.230) 56(84) bytes of data.

64 bytes from www.google.com (213.233.153.230):icmp_seq=1 ttl=61 time=13.6ms

Figure 2-2: An Ethernet crossover cable configuration example

Image icons by GNOME icon artists (GNU GPL CC-BY-SA-3.0)

 Chapter 2 ■ Raspberry Pi Software 31

c02.indd 10:41:42:AM 05/12/2016 Page 31

This connection type is particularly useful inside of complex network infra-

structures such as those in universities, because the laptop can connect to the RPi

directly. The RPi can also connect to the Internet, as illustrated by its capability

to ping the Google web server in this example.

Communicating with the RPi

After you have networked the RPi, the next thing you might want to do is

communicate with the RPi. You can connect to the RPi using either a serial

connection over USB-to-TTL or a network connection, as described previously.

The network connection should be your main focus, because that type of con-

nection provides your RPi with full Internet access. The serial connection is

generally used as a fallback connection when problems arise with the network

connection. As such, you may skip the next section, but the information is here

as a reference for when problems arise.

N O T E The default user account for the Raspbian image is username pi with password

raspberry.

Serial Connection with the USB-to-TTL 3.3V Cable

Serial connections are particularly useful when the RPi is close to your desk-

top computer and connected via a USB-to-TTL cable (as shown previously in

Figure 1-7(a) in Chapter 1). It is often a fallback communications method when

something goes wrong with the network confi guration or software services on

the RPi. It can also be used to confi gure wireless networking on an RPi device

that does not have wired network support. You can connect the cable to the RPi

(as shown previously in Figure 1-7(b) in Chapter 1).

To connect to the RPi via the serial connection, you need a terminal program.

Several Windows-compatible third-party applications are available, including

RealTerm (tiny.cc/erpi205) and PuTTY (www.putty.org). Most distributions of

desktop Linux include a terminal program (try Ctrl+Alt+T or Alt+F2 and then

type gnome-terminal under Debian). A terminal emulator is included by default

under Mac OS X (e.g., use a command such as screen /dev/cu.usbserial-XXX

115200) or by installing Z-Term (see dalverson.com/zterm/).

To connect to the RPi over the USB-to-TTL serial connection, you need the

following information:

 ■ Port number: To fi nd this, open the Windows Device Manager (or equiva-

lent) and search under the Ports section. Figure 2-3(a) captures an example

Device Manager, where the device is listed as COM11 in my case. This

differs on different machines.

http://www.putty.org
http://www.putty.org

32 Part I ■ Raspberry Pi Basics

c02.indd 10:41:42:AM 05/12/2016 Page 32

 ■ Connection speed: By default, you need to enter 115,200 baud to connect

to the RPi.

 ■ Other information you may need for other terminal applications: Data

bits = 8; Stop bits = 1; Parity = none; and Flow control = XON/XOFF.

(a) (b) (c)

Figure 2-3: (a) Windows Device Manager device identification; (b) a PuTTY serial connection

configuration; and (c) a low-cost USB-to-TTL adapter

Save the confi guration with a session name (e.g., RPi USB-to-TTL), as

illustrated in Figure 2-3(b), so that it is available each time you want to

connect. Click Open, and then it is important that you press Enter
when the window displays. When connecting to Raspbian, you should see the

following output:

Raspbian GNU/Linux 8 erpi ttyAMA0

erpi login: pi

Password: raspberry

Last login: Fri Dec 18 02:12:32 GMT 2015 from ...

Linux erpi 4.1.13-v7+ #826 SMP PREEMPT Fri Nov 13 20:19:03 GMT 2015 armv7l

Debian GNU/Linux comes with ABSOLUTELY NO WARRANTY, to the extent

permitted by applicable law.

pi@erpi:~$

The connection process enables you to log in with username pi and password

raspberry. Note that when you reboot the board you will also see the full console

output as the RPi boots. This is the ultimate fallback connection because it allows

you to see what is happening during the boot process (described in Chapter 3).

N O T E Low-cost alternatives to the USB-to-TTL 3.3V cable, such as the USB

device shown in Figure 2-3(c), are available for as little as $1, but generally come

without any type of protective casing. Before you purchase the device, however,

be sure that it supports 3.3 V TTL logic levels. The one shown in Figure 2-3(c) has

a switch that facilitates both 3.3 V and 5 V logic levels. These devices are used in

Chapter 9 to extend the number of UART devices that are available on the RPi.

 Chapter 2 ■ Raspberry Pi Software 33

c02.indd 10:41:42:AM 05/12/2016 Page 33

On a Linux desktop computer, you can install the screen program and con-

nect to the USB-to-TTL device with these commands:

molloyd@debian:~$ sudo apt-get install screen

molloyd@debian:~$ screen /dev/cu.usbserial-XXX/ 115200

Connecting through Secure Shell (SSH)

Secure Shell (SSH) is a useful network protocol for secure encrypted communica-

tion between network devices. You can use an SSH terminal client to connect

to the SSH server that is running on port 22 of the RPi, which allows you to do

the following:

 ■ Log in remotely to the RPi and execute commands.

 ■ Transfer fi les to and from the RPi using the SSH File Transfer Protocol (SFTP).

 ■ Forward X11 connections, which allows you to perform virtual network

computing.

By default, the RPi Linux distributions run an SSH server (sshd under Debian)

that is bound to port 22. There are a few advantages in having an SSH server

available as the default method by which you log in remotely to the RPi.

In particular, you can open port 22 of the RPi to the Internet using the port for-

warding functionality of your router. Please ensure that you set a nondefault

password for the pi user account before doing so. You can then remotely log

in to your RPi from anywhere in the world if you know the RPi’s IP address.

A service called dynamic DNS that is supported on most routers enables

your router to register its latest address with an online service. The online service

then maps a domain name of your choice to the latest IP address that your ISP

has given you. The dynamic DNS service usually has an annual cost, for which

it will provide you with an address of the form dereksRPi.servicename.com.

Secure Shell Connections Using PuTTY

PuTTY was mentioned previously as a method for connecting to the RPi using a

serial connection. PuTTY is a free, open source terminal emulator, serial console,

and SSH client that you can also use to connect to the RPi over the network.

PuTTY has a few useful features:

 ■ It supports serial and SSH connections.

 ■ It installs an application called psftp that enables you to transfer fi les to

and from the RPi over the network from your desktop computer.

 ■ It supports SSH X11 forwarding (required in Chapter 14).

Figure 2-4 captures the PuTTY confi guration settings: Choose SSH as the

connection type, enter your RPi’s IP address (or Zeroconf name), accept Port

34 Part I ■ Raspberry Pi Basics

c02.indd 10:41:42:AM 05/12/2016 Page 34

22 (the default), and then save the session with a useful name. Click Open

and log in using your username and password. If you see a security alert that

warns about man-in-the-middle attacks, which may be a concern on insecure

networks, accept the fi ngerprint and continue. Mac OS X users can run the

Terminal application with similar settings (e.g., ssh -XC pi@192.168.1.116 or

ssh -XC pi@raspberrypi.local).

Figure 2-4: PuTTY SSH Configuration settings beside an open SSH terminal connection window

You will see the basic commands that can be issued to the RPi later in this

chapter, but fi rst it is necessary to examine how you can transfer fi les to and

from the RPi.

Chrome Apps: Secure Shell Client

The Chrome web browser has support for Chrome Apps—applications that

behave like locally installed (or native) applications but are written in HTML5,

JavaScript, and CSS. Many of these applications use Google’s Native Client

(NaCl, or Salt!), which is a sandbox for running compiled C/C++ applications

directly in the web browser, regardless of the OS. The benefi t of NaCl is that

applications can achieve near-native performance levels, because they can

contain code that uses low-level instructions.

There is a useful “terminal emulator and SSH client” Chrome App available.

Open a new tab on the Chrome browser and click the Apps icon. Go to the

Chrome Web Store and search the store for “Secure Shell.” Once installed, it

will appear as the Secure Shell App when you click the Apps icon again. When

you start up the Secure Shell App, you will have to set the connection settings

as shown in Figure 2-4, and the application will appear as shown in Figure 2-5.

Figure 2-5: The SSH Chrome App

mailto:pi@192.168.1.116
mailto:pi@raspberrypi.local

 Chapter 2 ■ Raspberry Pi Software 35

c02.indd 10:41:42:AM 05/12/2016 Page 35

Transferring Files Using PuTTY/psftp over SSH

The PuTTY installation also includes fi le transfer protocol (ftp) support that enables

you to transfer fi les to and from the RPi over your network connection. You can

start up the psftp (PuTTY secure fi le transfer protocol) application by typing

psftp in the Windows Start command text fi eld.

At the psftp> prompt, type open pi@raspberrypi.local (or with the IP

address) to connect to the RPi. Your desktop machine is now referred to as the

local machine, and the RPi is referred to as the remote machine. When you

issue a command, you are typically issuing it on the remote machine. After

connecting, you are placed in the home directory of the user account that you

used. Therefore, under the RPi Raspbian distribution, if you connect as pi

you are placed in the /home/pi/ directory.

To transfer a single fi le c:\temp\test.txt from the local desktop computer

to the RPi, you can use the following steps:

psftp: no hostname specified; use "open host.name" to connect

psftp> open pi@erpi.local

Using username "pi".

pi@erpi.local's password: raspberry

Remote working directory is /home/pi

psftp> lcd c:\temp

New local directory is c:\temp

psftp> mkdir test

mkdir /home/pi/test: OK

psftp> cd test

Remote directory is now /home/pi/test

psftp> put test.txt

local:test.txt => remote:/home/pi/test/test.txt

psftp> dir test.*

Listing directory /home/pi/test

-rw-r--r-- 1 pi pi 8 Dec 18 16:45 test.txt

psftp>

Commands that contain the l prefi x are commands issued for the local

machine—for example, lcd (local change directory) or lpwd (local print work-

ing directory). To transfer a single fi le from the local machine to the remote

machine, issue the put command. To transfer a fi le in reverse, use the get com-

mand. To “put” or “get” multiple fi les, use the mput and mget commands. Use

help if you forget a command.

If you are using a Linux client machine, you can use the command sftp instead

of psftp. Almost everything else remains the same. The sftp client application

is also installed on the RPi distribution by default, so you can reverse the order

of communication; that is, you can have the RPi act as the client and another

machine as the server.

mailto:pi@raspberrypi.local
mailto:pi@erpi.local
mailto:pi@erpi.local's

36 Part I ■ Raspberry Pi Basics

c02.indd 10:41:42:AM 05/12/2016 Page 36

Here are some useful hints and tips to use with the psftp/sftp commands:

 ■ mget -r * performs a recursive get of a directory. This is useful if you

want to transfer a folder that has several subfolders. The -r option can

also be used with get, put, and mput commands.

 ■ dir *.txt applies a fi lter to display only the .txt fi les in the current directory.

 ■ mv moves a fi le/directory on the remote machine to a new location on

the remote machine.

 ■ reget resumes a download that was interrupted. The partially downloaded

fi le must exist on the local machine.

The psftp command can be issued as a single line or a local script at the

command prompt. You could create a fi le test.scr that contains a set of psftp

commands to be issued. You can then execute psftp from the command prompt,

passing the password by using -pw and the script fi le by using -b (or -be to

continue on error or -bc to display commands as they are run), as follows:

c:\temp>more test.scr

lcd c:\temp\down

cd /tmp/down

mget *

quit

c:\temp>psftp pi@erpi.local -pw mypassword -b test.scr

Using username "pi".

Remote working directory is /home/pi ...

Controlling the Raspberry Pi

At this point, you should be able to communicate with the RPi using an SSH

client application. This section investigates the commands that you can issue

to interact with the RPi.

Basic Linux Commands

When you fi rst connect to the RPi with SSH, you are prompted to log in. You

can log in with username pi and password raspberry:

login as: pi

pi@erpi.local's password: raspberry

Debian GNU/Linux comes with ABSOLUTELY NO WARRANTY, to the extent

permitted by applicable law.

pi@erpi ~ $

You are now connected to the RPi, and the Linux terminal is ready for

your command. The $ prompt means that you are logged in as a regular user.

mailto:pi@erpi.local
mailto:pi@erpi.local's

 Chapter 2 ■ Raspberry Pi Software 37

c02.indd 10:41:42:AM 05/12/2016 Page 37

A # prompt means that you are logged in to a superuser account (discussed

in Chapter 3). For a new Linux user, this step can be quite daunting because

it is not clear what arsenal of commands is at your disposal. This sec-

tion provides you with sufficient Linux skills to get started. It is writ-

ten as a reference with examples so that you can come back to it when you

need help.

First Steps

The fi rst thing you might do after connecting is determine which version of

Linux you are running. This information can prove useful when you are asking

a question on a forum:

pi@erpi ~ $ uname -a

Linux erpi 4.1.13-v7+ #826 SMP PREEMPT Nov 13 20:19:03 2015 armv7l GNU/Linux

In this case, Linux 4.1.13 is being used, which was built for the ARMv7 archi-

tecture on the date that is listed.

The Linux kernel version is described by numbers in the form X.Y.Z.

The X number changes only rarely (version 2.0 was released in 1996, and

4.0 was released in April 2015). The Y value used to change rarely (every

2 years or so), but for the most recent kernel the value has changed quite

regularly (for example, 4.1 was released in June 2015). The Z value changes

regularly.

Next, you could use the passwd command to set a new password for the pi

user account:

pi@erpi ~ $ passwd

Changing password for pi.

(current) UNIX password: raspberry

Enter new UNIX password: supersecretpasswordthatImayforget

Retype new UNIX password: supersecretpasswordthatImayforget

Table 2-3 lists other useful fi rst-step commands.

Table 2-3: Useful First Commands in Linux

COMMAND DESCRIPTION

more /etc/issue Returns the Linux distribution you are using

ps -p $$ Returns the shell you are currently using (e.g., bash)

whoami Returns who you are currently logged in as

uptime Returns how long the system has been running

top Lists all of the processes and programs executing. Press Ctrl+C

to close the view.

38 Part I ■ Raspberry Pi Basics

c02.indd 10:41:42:AM 05/12/2016 Page 38

Finally, you can fi nd out specifi c information about your RPi using the host-

namectl application, which can be used to query and change some system

settings (e.g., the chassis description and hostname):

pi@erpi ~ $ sudo hostnamectl set-chassis server

pi@erpi ~ $ hostnamectl

 Static hostname: erpi

 Icon name: computer-server

 Chassis: server

 Machine ID: 3882d14b5e8d408bb132425829ac6413

 Boot ID: ea403b96c8984e37820b7d1b0b3fbd6d

 Operating System: Raspbian GNU/Linux 8 (jessie)

 Kernel: Linux 4.1.18-v7+

 Architecture: arm

Basic File System Commands

This section describes the basic commands that enable you to move around on,

and manipulate, a Linux fi le system. When using Raspbian/Debian and Ubuntu

user accounts, you often must prefi x certain commands with the word sudo.

That is because sudo is a program that allows users to run programs with the

security privileges of the superuser. (User accounts are described in Chapter 3.)

Table 2-4 lists the basic fi le system commands.

Table 2-4: Basic File System Commands

NAME COMMAND

OPTIONS AND FURTHER

INFORMATION EXAMPLES

List fi les ls -a shows all (including hidden fi les).

-l displays long format.

-R gives a recursive listing.

-r gives a reverse listing.

-t sorts last modifi ed.

-S sorts by fi le size.

-h gives human readable fi le sizes.

ls -alh

Current

directory

pwd Print the working directory.

-P prints the physical location.

pwd -P

Change

directory

cd Change directory.

cd then Enter or cd ~/ takes you to

the home directory.

cd / takes you to the fi le system root.

cd .. takes you up a level.

cd /home/pi

cd /

 Chapter 2 ■ Raspberry Pi Software 39

c02.indd 10:41:42:AM 05/12/2016 Page 39

NAME COMMAND

OPTIONS AND FURTHER

INFORMATION EXAMPLES

Make a

directory

mkdir Make a directory. mkdir test

Delete a fi le

or directory

rm Delete a fi le.

-r recursive delete (use for directories;

be careful) .

-d remove empty directories.

rm bad.txt

rm -r test

Copy a fi le

or directory

cp -r recursive copy.

-u copy only if the source is newer

than the destination or the destination

is missing.

-v verbose copy (i.e., show output).

cp a.txt
b.txt

cp -r test
testa

Move a fi le

or directory

mv -i prompts before overwrite.

No -r for directory. Moving to the

same directory performs a renaming.

mv a.txt
c.txt

mv test
testb

Create an

empty fi le

touch Create an empty fi le or update the

modifi cation date of an existing fi le.

touch d.txt

View content

of a fi le

more View the contents of a fi le. Use the

Space key for the next page.

more d.txt

Get the

calendar

cal Display a text-based calendar. cal 04 2016

That covers the basics but there is so much more! The next chapter describes

fi le ownership, permissions, searching, I/O redirection, and other topics. The aim

of this section is to get you up and running. Table 2-5 describes a few shortcuts

that make life easier when working with most Linux shells.

Table 2-5: Some Time-Saving Terminal Keyboard Shortcuts

SHORTCUT DESCRIPTION

Up arrow

(repeat)

Gives you the last command you typed, and then the previous commands

on repeated presses.

Tab key Autocompletes the fi le name, the directory name, or even the executable

command name. For example, to change to the Linux /tmp directory, you

can type cd /t and then press Tab, which autocompletes the command to

cd /tmp/. If there are many options, press the Tab key again to see all the

options as a list.

Continues

40 Part I ■ Raspberry Pi Basics

c02.indd 10:41:42:AM 05/12/2016 Page 40

SHORTCUT DESCRIPTION

Ctrl+A Brings you back to the start of the line you are typing.

Ctrl+E Brings you to the end of the line you are typing.

Ctrl+U Clears to the start of the line. Ctrl+E and then Ctrl+U clears the line.

Ctrl+L Clears the screen.

Ctrl+C Kills whatever process is currently running.

Ctrl+Z Puts the current process into the background. Typing bg then leaves it run-

ning in the background, and fg then brings it back to the foreground.

Here is an example that uses several of the commands in Table 2-4 to create

a directory called test in which an empty text fi le hello.txt is created. The

entire test directory is then copied to the /tmp/test2 directory, which is off

the /tmp directory:

pi@erpi ~ $ cd /tmp

pi@erpi /tmp $ pwd

/tmp

pi@erpi /tmp $ mkdir test

pi@erpi /tmp $ cd test

pi@erpi /tmp/test $ touch hello.txt

pi@erpi /tmp/test $ ls -l hello.txt

-rw-r--r-- 1 pi pi 0 Dec 17 04:34 hello.txt

pi@erpi /tmp/test $ cd ..

pi@erpi /tmp $ cp -r test /tmp/test2

pi@erpi /tmp $ cd /tmp/test2

pi@erpi /tmp/test2 $ ls -l

total 0

-rw-r--r-- 1 pi pi 0 Dec 17 04:35 hello.txt

W A R N I N G Linux assumes that you know what you are doing! It will gladly allow

you to do a recursive deletion of your root directory when you are logged in as root

(I won’t list the command). Think before you type when logged in as root!

N O T E Sometimes it is possible to recover fi les that are lost through accidental

deletion if you use the extundelete command immediately after the deletion.

Read the command manual page carefully, and then use steps such as the following:

pi@erpi ~ $ sudo apt install extundelete

pi@erpi ~ $ mkdir ~/undelete

pi@erpi ~ $ cd ~/undelete/

pi@erpi ~/undelete $ sudo extundelete --restore-all --restore-directory

 . /dev/mmcblk0p2

pi@erpi ~/undelete $ ls -l

drwxr-xr-x 6 root root 4096 Dec 17 04:39 RECOVERED_FILES

Table 2-5 (continued)

 Chapter 2 ■ Raspberry Pi Software 41

c02.indd 10:41:42:AM 05/12/2016 Page 41

pi@erpi ~/undelete $ du -sh RECOVERED_FILES/

100M RECOVERED_FILES/

In this example, 100 MB of fi les were recovered—typically temporary fi les that were

deleted as a result of package installations.

Environment Variables

Environment variables are named values that describe the confi guration of your

Linux environment, such as the location of the executable fi les or your default

editor. To get an idea of the environment variables that are set on the RPi, issue

an env call, which provides a list of the environment variables on your account.

Here, env is called on the Raspbian image:

pi@erpi ~ $ env

TERM=xterm

SHELL=/bin/bash

SSH_CLIENT=fe80::50b4:eb95:2d00:ac3f%eth0 2599 22

USER=pi

MAIL=/var/mail/pi

PATH=/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:...

PWD=/home/pi

HOME=/home/pi ...

You can view and modify environment variables according to the follow-

ing example, which adds the /home/pi directory to the PATH environment

variable:

pi@erpi ~ $ echo $PATH

/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/sbin:/bin

pi@erpi ~ $ export PATH=$PATH:/home/pi

pi@erpi ~ $ echo $PATH

/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/sbin:/bin:/home/pi

This change will be lost on reboot. Permanently setting environment variables

requires modifi cations to your .profile fi le when using sh, ksh, or bash shells;

and to your .login fi le when using csh or tcsh shells. To do this, you need to

be able to perform fi le editing in a Linux terminal window.

Basic File Editing

A variety of editors are available, but one of the easiest to use is also one of

the most powerful: the GNU nano editor. You start the editor by typing nano

followed by the name of an existing or new fi lename; for example, typing

nano hello.txt displays the view captured in Figure 2-6 (after the text has

been entered). Typing nano -c hello.txt also displays the current line

number, which is useful for debugging. You can move freely around the fi le

in the window by using the arrow keys and editing or writing text at the

42 Part I ■ Raspberry Pi Basics

c02.indd 10:41:42:AM 05/12/2016 Page 42

cursor location. You can see some of the nano shortcut keys listed on the

bottom bar of the editor window, but there are many more, some of which

are presented in Table 2-6.

Figure 2-6: The GNU nano editor being used to edit an example file in a PuTTY Linux terminal

window

Table 2-6: Nano Shortcut Keys: A Quick Reference

KEYS COMMAND KEYS COMMAND

Ctrl+G Help Ctrl+Y Previous page

Ctrl+C Find out the current line number Ctrl+_ or Ctrl+/ Go to line number

Ctrl+X Exit (prompts save) Alt+/ Go to end of fi le

Ctrl+L Enable long line wrapping Ctrl+6 Start marking text

(then move with

arrows to highlight)

Ctrl+O Save Ctrl+K or Alt+6 Cut marked text

Arrows Move around Ctrl+U Paste text

Ctrl+A Go to start of line Ctrl+R Insert content of

another fi le (prompts

for location of fi le)

Ctrl+E Go to end of line Ctrl+W Search for a string

Ctrl+Space Next word Alt+W Find next

Alt+Space Previous word Ctrl+D Delete character

under cursor

Ctrl+V Next page Ctrl+K Delete entire line

N O T E Ctrl+K appears to delete the entire line but it actually removes the line to

a buff er, which can be pasted using Ctrl+U. This is a quick way of repeating multiple

lines. Also, Mac users may have to set the meta key in the Terminal application to get

the Alt functionality. Select Terminal ➪ Preferences ➪ Settings ➪ Keyboard, and then

choose Use option as meta key.

 Chapter 2 ■ Raspberry Pi Software 43

c02.indd 10:41:42:AM 05/12/2016 Page 43

What Time Is It?

A simple question like “What time is it?” causes more diffi culty than you

can imagine. For example, typing date at the shell prompt might produce

the following:

pi@erpi ~ $ date
Thu 17 Dec 16:26:59 UTC 2015

This result happens to be the correct time in this instance because the board is

connected to a network. If it is wrong, why did the RPi manufacturer not set the

clock time on your board? The answer is that they could not. Unlike a desktop

computer, the RPi has no battery backup to ensure that the BIOS settings are

retained; in fact, there is no BIOS! That topic is examined in detail in the next

chapter, but for the moment, you need a way to set the time, and for that you

can use the Network Time Protocol (NTP). The NTP is a networking protocol

for synchronizing clocks between computers. If your RPi has the correct time,

that is only because your RPi is obtaining it from your network using an NTP

service that is running the board:

pi@erpi ~ $ systemctl status ntp

• ntp.service - LSB: Start NTP daemon

 Loaded: loaded (/etc/init.d/ntp)

 Active: active (running) since Sat 2015-12-19 07:18:04 GMT; 22h ago

 Process: 499 ExecStart=/etc/init.d/ntp start (code=exited, status=0/SUCCESS)

 CGroup: /system.slice/ntp.service

 └─544 /usr/sbin/ntpd -p /var/run/ntpd.pid -g -u 107:112

The NTP service is confi gured using the fi le /etc/ntp.conf, and the

lines beginning with the word server (hence the ^ in the call to grep)

identify the servers to which your RPi is communicating to retrieve the

current time:

pi@erpi ~ $ more /etc/ntp.conf | grep ^server

server 0.debian.pool.ntp.org iburst

server 1.debian.pool.ntp.org iburst

server 2.debian.pool.ntp.org iburst

server 3.debian.pool.ntp.org iburst

To be a good NTP citizen, you should adjust these entries to refer to the

closest NTP server pool by going to www.pool.ntp.org (the closest server to me

is ie.pool.ntp.org for Ireland) and updating the entries accordingly. If you

want to test the settings fi rst, you can install and execute the ntpdate command:

pi@erpi ~ $ sudo apt install ntpdate

pi@erpi ~ $ sudo ntpdate -b -s -u ie.pool.ntp.org

pi@erpi ~ $ date

Sun 20 Dec 16:02:39 GMT 2015

http://www.pool.ntp.org

44 Part I ■ Raspberry Pi Basics

c02.indd 10:41:42:AM 05/12/2016 Page 44

After setting the time, you can set your time zone. Use the following com-

mand, which provides a text-based user interface that allows you to choose your

location. The RPi is set for Irish standard time (IST) in this example:

pi@erpi ~ $ sudo dpkg-reconfigure tzdata

Current default time zone: 'Europe/Dublin'

Local time is now: Sun Dec 20 16:37:48 GMT 2015.

Universal Time is now: Sun Dec 20 16:37:48 UTC 2015.

N O T E If your RPi is not connected to the Internet, you can manually set the date

using the timedatectl tool:

pi@erpi ~ $ sudo timedatectl set-time '2017-1-2 12:13:14'
pi@erpi ~ $ date
Mon 2 Jan 12:13:16 GMT 2017

Unfortunately, this date and time will be lost when the RPi restarts. Chapter 8

describes how a battery-backed real-time clock (RTC) can be connected to the RPi

to solve that problem.

Package Management

At the beginning of this chapter, a good package manager was listed as a key

feature of a suitable Linux distribution. A package manager is a set of software tools

that automate the process of installing, confi guring, upgrading, and removing

software packages from the Linux operating system. Different Linux distribu-

tions use different package managers: Ubuntu and Raspbian/Debian use APT

(Advanced Packaging Tool) over DPKG (Debian Package Management System),

and Arch Linux uses Pacman. Each has its own usage syntax, but their operation

is largely similar. Table 2-7 lists some common package management commands.

Table 2-7: Common Package Management Commands (Using nano as an Example Package)

COMMAND RASPBIAN/DEBIAN/UBUNTU

Install a package. sudo apt install nano

Update the package index. sudo apt update

Upgrade the packages on your system. sudo apt upgrade

Is nano installed? dpkg-query -l | grep nano

Is a package containing the string nano available? apt-cache search nano

Get more information about a package. apt-cache show nano

apt-cache policy nano

Get help. apt help

 Chapter 2 ■ Raspberry Pi Software 45

c02.indd 10:41:42:AM 05/12/2016 Page 45

COMMAND RASPBIAN/DEBIAN/UBUNTU

Download a package to the current directory. apt-get download nano

Remove a package. sudo apt remove nano

Clean up old packages. sudo apt-get autoremove

sudo apt-get clean

N O T E Over time, the apt binary command is slowly integrating the features of

the apt-get and apt-cache commands. This change should reduce the number of

tools required to manage packages. However, older Linux distributions may require

that you use the apt-get command in place of the apt command.

Wavemon is a useful tool that you can use in confi guring Wi-Fi connections

(see Chapter 13). If you execute the following command, you will see that the

package is not installed by default:

pi@erpi ~ $ wavemon

-bash: wavemon: command not found

You can use the platform-specifi c package manager to install the package,

once you determine the package name:

pi@erpi ~ $ apt-cache search wavemon

wavemon - Wireless Device Monitoring Application

pi@erpi ~ $ sudo apt install wavemon

Reading package lists... Done

Building dependency tree ...

Setting up wavemon (0.7.6-2) ...

The wavemon command now executes, but unfortunately it will not do any-

thing until you confi gure a wireless adapter (see Chapter 13):

pi@erpi ~ $ wavemon

wavemon: no supported wireless interfaces found

It is also worth noting that packages can be manually downloaded and installed.

This method can be useful should you want to retain a specifi c version or need

to distribute a package to multiple devices. For example, the Wavemon package

can be removed, manually downloaded as a .deb fi le, and installed:

pi@erpi ~ $ sudo apt remove wavemon

pi@erpi ~ $ wavemon

-bash: /usr/bin/wavemon: No such file or directory

pi@erpi ~ $ apt-get download wavemon

pi@erpi ~ $ ls -l wavemon*

-rw-r--r-- 1 pi pi 48248 Mar 28 2014 wavemon_0.7.6-2_armhf.deb

pi@erpi ~ $ sudo dpkg -i wavemon_0.7.6-2_armhf.deb

pi@erpi ~ $ wavemon

wavemon: no supported wireless interfaces found

46 Part I ■ Raspberry Pi Basics

c02.indd 10:41:42:AM 05/12/2016 Page 46

N O T E Sometimes package installations fail, perhaps because another required pack-

age is missing. There are force options available with the package commands to

override checks. (e.g., --force-yes with the apt-get command). Try to avoid force

options if possible, because having to use them is symptomatic of a diff erent problem.

Typing sudo apt-get autoremove can be useful when packages fail to install.

Confi guring the Raspberry Pi

The RPi community and the Raspberry Pi Foundation have developed RPi-

specifi c tools for confi guring your board. These tools simplify some tasks that

would otherwise be quite tricky, as you see in the following sections.

The Raspberry Pi Confi guration Tool

The Raspberry Pi Confi guration Tool, raspi-config, is useful for getting started

with your RPi. It can be started simply using the following call, whereupon an

interface is presented, as shown in Figure 2-7.

pi@erpi:~$ sudo raspi-config

Figure 2-7: The raspi-config tool

The following are tasks that you should perform almost immediately when

you boot the RPi from a fresh SD-card image:

 ■ Expand the root fi lesystem to fi ll the SD card: This is the fi rst option in

Figure 2-7. When you write an image to an SD card, it is typically smaller

than the capacity of the card. This option allows the root fi le system to be

expanded to use the full capacity of the card. After using this option, you

can check the overall capacity as follows:

pi@erpi ~ $ df -kh

Filesystem Size Used Avail Use% Mounted on

/dev/root 15G 7.7G 6.2G 56% /

...

pi@erpi ~ $ lsblk

 Chapter 2 ■ Raspberry Pi Software 47

c02.indd 10:41:42:AM 05/12/2016 Page 47

NAME MAJ:MIN RM SIZE RO TYPE MOUNTPOINT

mmcblk0 179:0 0 14.9G 0 disk

├─mmcblk0p1 179:1 0 56M 0 part /boot

└─mmcblk0p2 179:2 0 14.8G 0 part /

You can see that the SD card now has a capacity of 15 GiB,1 which is

consistent with the capacity of the SD card.

 ■ Enable the camera: If you have an RPi camera attached to the CSI interface

on the RPi, enable the camera. This topic is described in detail in Chapter 15.

 ■ Overclock: This option allows you to run the processor at a higher clock

frequency than was originally intended by the manufacturer. For example,

the processor on the RPi 2 can run at 1 GHz instead of the listed maximum

of 900 MHz. Note that doing so may reduce the lifespan of your RPi and

possibly lead to instabilities. However, many users overclock the processor,

without ill effects. This option makes changes to the /boot/config.txt fi le.

 ■ Overscan (Advanced Options; see Figure 2-8): Allows you to adjust

the video output to the full screen of your television. This option makes

changes to the /boot/config.txt fi le.

Figure 2-8: The raspi-config tool Advanced Options menu

 ■ Hostname (Advanced Options): This option allows you to adjust the

hostname of the RPi on the network. This option updates the hostname

and hosts fi les and restarts the networking service:

pi@erpi ~ $ cat /etc/hostname

erpi

pi@erpi ~ $ cat /etc/hosts

...

127.0.1.1 erpi

1 SD cards and hard disks are usually sold where 1 gigabyte (GB) = 1,000,000,000 bytes (i.e., 10003

bytes). However, Linux uses gigabyte (technically GiB) to mean 10243 bytes. Therefore there
is a discrepancy when you format an SD card—a 16 GB card will format to a maximum size of
14.901 GiB (i.e., 16 × 109/10243).

48 Part I ■ Raspberry Pi Basics

c02.indd 10:41:42:AM 05/12/2016 Page 48

This entry now means that my RPi board is found at the Zeroconf address

string erpi.local.

 ■ Memory Split (Advanced Options): The CPU and graphics processing

unit (GPU) on the RPi share the DDR memory on the board. This option

allows you to adjust the allocation of memory to the GPU. A good general-

purpose memory allocation for a headful display is 64 MB, but this must

be increased if you are using the RPi CSI camera (typically to 128 MB; see

Chapter 15), or if you are using the GPU for 3D computer graphics. This

value is set at boot time (via /boot/config.txt) and cannot be altered

at runtime.

 ■ SSH (Advanced Options): This allows you to enable or disable the SSH

server on the RPi. Clearly you should not disable the SSH server if your

RPi is in headless mode, especially if you do not have an alternative way

of connecting to the board. This option disables the SSH service, which

runs on the RPi as follows:

pi@erpi ~ $ systemctl status sshd

• ssh.service - OpenBSD Secure Shell server

 Loaded: loaded (/lib/systemd/system/ssh.service; enabled)

 Active: active (running) since Thu 2015-12-17 21:53:47 GMT

 Process: 628 ExecReload=/bin/kill -HUP $MAINPID

 Main PID: 492 (sshd)

 CGroup: /system.slice/ssh.service

 └─492 /usr/sbin/sshd -D

The options that remain in Figure 2-8 typically also modify the /boot/config

.txt fi le and are described throughout Chapter 6 and Chapter 8 in particular.

For many of the options, you have to reboot the RPi for the changes to take effect

because they are initialization settings that are passed to the kernel on startup.

Updating the RPi Software

The Raspbian distribution can be updated on the RPi using a few short steps.

However, be aware that some of these steps (upgrade in particular) can take

quite some time to complete—perhaps even several hours, depending on the

currency of your image and the speed of your network connection.

A call to apt update downloads the package lists from the Internet loca-

tions identifi ed in the fi le /etc/apt/sources.list. This does not install new

versions of the software; rather, it updates the lists of packages and their

interdependencies:

pi@erpi ~ $ sudo apt update

Get:1 http://archive.raspbian.org jessie InRelease [15.0 kB]

Hit http://archive.raspberrypi.org jessie InRelease ...

Building dependency tree Reading state information... Done

 Chapter 2 ■ Raspberry Pi Software 49

c02.indd 10:41:42:AM 05/12/2016 Page 49

When this update is complete, you can automatically download and install

the latest versions of the available software using the apt upgrade command.

Clearly, you should always perform an apt update before an apt upgrade:

pi@erpi ~ $ sudo apt upgrade

Reading package lists... Done Building dependency tree

Reading state information... Done Calculating upgrade... Done ...

After this operation, XXXXX B of additional disk space will be used.

Do you want to continue? [Y/n]

There is an additional RPi-specifi c tool that enables you to update the Linux

kernel, driver modules, and libraries on the RPi. The rpi-update tool can be

called directly with no arguments, but it also has some expert settings, which

are described at github.com/Hexxeh/rpi-update. For example, these settings

permit you to update the fi rmware without replacing the kernel fi le:

pi@erpi ~ $ sudo apt install rpi-update

pi@erpi ~ $ sudo rpi-update

 *** Raspberry Pi firmware updater by Hexxeh, enhanced by AndrewS and Dom

This update bumps to rpi-4.1.y linux tree ...

 *** Updating firmware

 *** Updating kernel modules

 *** depmod 4.1.15-v7+

 *** Updating VideoCore libraries

 *** Using HardFP libraries ...

 *** A reboot is needed to activate the new firmware

pi@erpi ~ $ sudo reboot

After you reboot the board, the current kernel version should be aligned with

the newly installed kernel and fi rmware:

molloyd@desktop:~$ ssh pi@erpi.local

pi@erpi ~ $ uname -a

Linux erpi 4.1.15-v7+ #830 SMP Tue Dec 15 17:02:45 GMT 2015 armv7l GNU/Linux

Video Output

The RPi video output can be confi gured using the tvservice application (/opt/

vc/bin/tvservice). You should plug the HDMI monitor cable into the RPi and

use the tvservice application to list the available modes on the connected CEA

(typically televisions) or DMT (typically computer monitors) display:

pi@erpi ~ $ tvservice --modes CEA

Group CEA has 0 modes:

pi@erpi ~ $ tvservice --modes DMT

Group DMT has 13 modes:

 …

 mode 51: 1600x1200 @ 60Hz 4:3, clock:162MHz progressive

 mode 58: 1680x1050 @ 60Hz 16:10, clock:146MHz progressive

 (prefer) mode 82: 1920x1080 @ 60Hz 16:9, clock:148MHz progressive

pi@erpi ~ $ tvservice --status

state 0x120006 [DVI DMT(82) RGB full 16:9], 1920x1080 @ 60.00Hz, progressive

mailto:pi@erpi.local

50 Part I ■ Raspberry Pi Basics

c02.indd 10:41:42:AM 05/12/2016 Page 50

You can set the RPi output resolution explicitly using the same tool. For

example, to update the output resolution to use the DVI 1600 × 1200 mode that

is available in the list above:

pi@erpi ~ $ tvservice --explicit="DMT 51"

Powering on HDMI with explicit settings (DMT mode 51)

pi@erpi ~ $ tvservice --status

state 0x120006 [DVI DMT (51) RGB full 4:3], 1600x1200 @ 60.00Hz, progressive

pi@erpi ~ $ fbset -depth 8 && fbset -depth 16

The last line forces a refresh of the video frame buffer to update the graphics

display. After you have tested the new resolution, you can explicitly set the

value in the /boot/config.txt fi le (where hdmi_group=1 sets a CEA mode, and

hdmi_group=2 sets a DMT mode):

pi@erpi /boot $ more config.txt | grep ^hdmi

hdmi_group=2

hdmi_mode=51

If you are not using the HDMI output, you can switch it off entirely, which

results in a current saving of approximately 25 mA–30 mA.

pi@erpi ~ $ tvservice --off

Powering off HDMI

There are additional RPi-specifi c tools for capturing image and video data

that are described in detail in Chapter 15.

Interacting with the Onboard LEDs

This section describes how you can alter the behavior of the RPi onboard user

LEDs—the LEDs on the top left corner of the RPi 2 board (see Figure 2-9) and

on the bottom left of the RPi 3 board. There are two LEDs on the RPi 2/3 board,

where each LED provides information about the board’s state:

 ■ The ACT LED (called OK on older models) fl ashes during micro-SD card

activity by default. Within Linux, this LED is called led0.

 ■ The PWR LED lights to indicate that the RPi is powered. Within Linux, this

LED is called led1 on some RPi models (e.g., the RPi 2), but is hardwired

to the power supply on older models.

Figure 2-9: The RPi onboard power and activity LEDs

 Chapter 2 ■ Raspberry Pi Software 51

c02.indd 10:41:42:AM 05/12/2016 Page 51

You can change the behavior of these LEDs to suit your own needs, but you

will temporarily lose this useful activity and power status information.

N O T E Note that the RPi Zero has no physical PWR LED (led1), despite having Linux

fi le entries to the contrary. You can set the trigger for the ACT LED (led0) as described

later. Note that the polarity of the LED is inverted. In trigger mode “none,” a bright-

ness value of 0 turns on the LED and a brightness value of 1 turns off the LED. This

behavior may be adjusted over time.

Sysfs is a virtual fi le system that is available under recent Linux kernels. It

provides you with access to devices and drivers that would otherwise only

be accessible within a restricted kernel space. This topic is discussed in detail

in Chapter 6. However, at this point, it would be useful to briefl y explore the

mechanics of how sysfs can be used to alter the behavior of the onboard LEDs.

Using your SSH client, you can connect to the RPi and browse to the directory

/sys/class/leds/. The output is as follows on the RPi 2:

pi@erpi ~ $ cd /sys/class/leds/

pi@erpi /sys/class/leds $ ls

led0 led1

N O T E Sysfs directory locations can vary somewhat under diff erent versions of the

Linux kernel and diff erent Linux distributions.

You can see the two LED sysfs mappings: led0 and led1. You can change

the directory to alter the properties of one of these LEDs. For example, to

alter the behavior of the ACT LED (led0):

pi@erpi /sys/class/leds $ cd led0

pi@erpi /sys/class/leds/led0 $ ls

brightness device max_brightness subsystem trigger uevent

Here you see various different fi le entries that give you further information and

access to settings. Note that this section uses some commands that are explained

in detail in the next chapter.

You can determine the current status of an LED by typing the following:

pi@erpi /sys/class/leds/led0 $ cat trigger

none [mmc0] timer oneshot heartbeat backlight gpio cpu0 cpu1 cpu2

cpu3 default-on input

where you can see that the ACT LED is confi gured to show activity on the mmc0

device—the micro-SD card. You can turn this trigger off by typing the following:

pi@erpi /sys/class/leds/led0 $ sudo sh -c "echo none > trigger"

pi@erpi /sys/class/leds/led0 $ cat trigger

[none] mmc0 timer oneshot heartbeat backlight gpio cpu0 cpu1 ...

52 Part I ■ Raspberry Pi Basics

c02.indd 10:41:42:AM 05/12/2016 Page 52

You will then see that the LED stops fl ashing completely. You can use cat

trigger to see the new state. Now that the LED trigger is off, you can turn the

ACT LED fully on or off using:

N O T E sudo sh -c is used to execute a shell command from a string command

that requires superuser access. It is not possible to execute the command using sudo

alone because of the use of the redirection (>) of the echo command to a fi le (e.g.,

brightness). This is explained in Chapter 3.

pi@erpi /sys/class/leds/led0 $ sudo sh -c "echo 1 > brightness"

pi@erpi /sys/class/leds/led0 $ sudo sh -c "echo 0 > brightness"

You can even set the LED to fl ash at a time interval of your choosing. If you watch

carefully, you will notice the dynamic nature of sysfs. If you perform an ls com-

mand at this point, the directory will appear as follows, but will shortly change:

pi@erpi /sys/class/leds/led0 $ ls

brightness device max_brightness subsystem trigger uevent

To make the LED fl ash, you need to set the trigger to timer mode by typing

echo timer > trigger. You will see the ACT LED fl ash at a 1-second interval.

Notice that there are new delay_on and delay_off fi le entries in the led0 direc-

tory, as follows:

pi@erpi /sys/class/leds/led0 $ sudo sh -c "echo timer > trigger"

pi@erpi /sys/class/leds/led0 $ ls

brightness delay_off delay_on device max_brightness subsystem

trigger uevent

The LED fl ash timer makes use of these new delay_on time and delay_off

time fi le entries. You can fi nd out more information about these values by using

the concatenate (catenate) command. For example, the following reports the

time delay in milliseconds:

pi@erpi /sys/class/leds/led0 $ cat delay_on

500

pi@erpi /sys/class/leds/led0 $ cat delay_off

500

To make the ACT LED fl ash at 5 Hz (i.e., on for 100 ms and off for 100 ms), you

can use this:

pi@erpi /sys/class/leds/led0 $ sudo sh -c "echo 100 > delay_on"

pi@erpi /sys/class/leds/led0 $ sudo sh -c "echo 100 > delay_off"

Typing echo mmc0 > trigger returns the LED to its default state, which

results in the delay_on and delay_off fi le entries disappearing:

pi@erpi /sys/class/leds/led0 $ sudo sh -c "echo mmc0 > trigger"

pi@erpi /sys/class/leds/led0 $ ls

brightness device max_brightness subsystem trigger uevent

 Chapter 2 ■ Raspberry Pi Software 53

c02.indd 10:41:42:AM 05/12/2016 Page 53

A HEARTBEAT POWER INDICATOR

When it is available, the power indicator (PWR LED) on the RPi can be confi gured to

display a heartbeat pattern instead of the constantly illuminated indicator. You can

test the change using the following:

pi@erpi /sys/class/leds/led1 $ ls
brightness device max_brightness subsystem trigger uevent
pi@erpi /sys/class/leds/led1 $ sudo sh -c "echo heartbeat > trigger"

The PWR LED now fl ashes in a heartbeat pattern, which is a lively indicator that the

board is functioning. The ACT LED fl ashes on SD card activity by default, but you can

also alter its behavior in the same way. Should you want to make this change perma-

nent, you can edit the confi guration fi le /boot/config.txt and add the two lines

that are listed here:

pi@erpi /boot $ ls -l config.txt
-rwxr-xr-x 1 root root 1705 Dec 5 18:02 config.txt
pi@erpi /boot $ sudo nano config.txt
pi@erpi /boot $ tail -n2 config.txt
dtparam=pwr_led_trigger=heartbeat
dtparam=act_led_trigger=mmc0
pi@erpi /boot $ sudo reboot

The tail -n2 command displays the last two lines of the config.txt fi le, which

were added using the nano editor. Once the board reboots, the ACT LED indicates SD

card activity, and the PWR LED displays a heartbeat pattern and will continue to do so

unless the board should lock up.

Shutdown and Reboot

W A R N I N G Physically disconnecting the power without allowing the Linux kernel

to unmount the micro-SD card can cause corruption of your fi le system.

One fi nal issue to discuss in this chapter is the correct shutdown procedure

for your RPi, as improper shutdown can potentially corrupt the ext4 fi le system

and/or lead to increased boot times due to fi le system checks. Here are some

important points on shutting down, rebooting, and starting the RPi:

 ■ Typing sudo shutdown -h now shuts down the board correctly. You can

delay this by fi ve minutes by typing sudo shutdown -h +5.

 ■ Typing sudo reboot will reset and reboot the board correctly.

If your project design is enclosed and you need an external soft power down,

it is possible to wire an external button to an RPi GPIO input and write a shell

script that runs on startup to poll the GPIO for an input. If that input occurs,

/sbin/shutdown -h now can be called directly.

54 Part I ■ Raspberry Pi Basics

c02.indd 10:41:42:AM 05/12/2016 Page 54

Summary

After completing this chapter, you should be able to do the following:

 ■ Communicate with the RPi from your desktop computer using a network

connection.

 ■ Communicate with the RPi using a fallback serial connection with a USB-

to-TTL 3.3 V cable.

 ■ Interact with and control the RPi using simple Linux commands.

 ■ Perform basic fi le editing using a Linux shell terminal.

 ■ Manage Linux packages and set the system time.

 ■ Use RPi-specifi c utilities to further confi gure the RPi.

 ■ Use Linux sysfs to affect the state of the RPi onboard LEDs.

 ■ Safely shut down and reboot the RPi.

55

c03.indd 08:48:0:PM 05/12/2016 Page 55

This chapter exposes you to the core concepts, commands, and tools required

to effectively manage the Raspberry Pi embedded Linux system. The fi rst part

of the chapter is descriptive; it explains the basics of embedded Linux and the

Linux boot process. After that, you learn step by step how to manage Linux

systems. For this exercise, you are strongly encouraged to open a terminal

connection to your Raspberry Pi or a terminal window on the Raspberry Pi

and follow along. Next, the chapter describes the Git source code management

system. This topic is an important one because the source code examples in this

book are distributed via GitHub. Desktop virtualization is also described; it is

useful for cross-platform development in later chapters. The chapter fi nishes

by describing how you can download the source code examples for this book.

Equipment Required for This Chapter:

■ Any Raspberry Pi model with a terminal connection (see Chapter 2,

“Raspberry Pi Software”) or a terminal window, preferably running

Raspbian

Further details on this chapter are available at www.exploringrpi.com/chapter3/.

C H A P T E R

3

Exploring Emmbedded

Linux Systemsx Systems

http://www.exploringrpi.com/chapter3

56 Part I 6 ■ Raspberry Pi Basics

c03.indd 08:48:0:PM 05/12/2016 Page 56

Introducing Embedded Linux

First things fi rst: Even though the term embedded Linux is used in this chapter’s

title, there is no such thing as embedded Linux! There is no special version of

the Linux kernel for embedded systems; it is just the mainline Linux kernel

running on an embedded system. That said, the term embedded Linux has broad

and common use; therefore, it is used here instead of “Linux on an embedded

system,” which is the more accurate phrasing.

The word embedded in the term embedded Linux is used to convey the presence

of an embedded system, a concept that can be loosely explained as some type of

computing hardware with integrated software that was designed to be used for

a specifi c application. This concept is in contrast to the personal computer (PC),

which is a general-purpose computing device designed to be used for many

applications, such as web browsing, word processing, and game play. The line is

blurring between embedded systems and general-purpose computing devices.

For example, the Raspberry Pi (RPi) can be both, and many users will deploy

it solely as a capable general-purpose computing device and/or media player.

However, embedded systems have some distinctive characteristics:

■ They tend to have specifi c and dedicated applications.

■ They often have limited processing power, memory availability, and

storage capabilities.

■ They are generally part of a larger system that may be linked to external

sensors or actuators.

■ They often have a role for which reliability is critical (e.g., controls in cars,

airplanes, and medical equipment).

■ They often work in real time, where their outputs are directly related to

present inputs (e.g., control systems).

Embedded systems are present everywhere in everyday life. Examples include

vending machines, household appliances, phones/smartphones, manufacturing/

assembly lines, TVs, games consoles, cars (e.g., power steering and reversing sen-

sors), network switches, routers, wireless access points, sound systems, medical

monitoring equipment, printers, building access controls, parking meters, smart

energy/water meters, watches, building tools, digital cameras, monitors, tablets,

e-readers, anything robotic, smart card payment/access systems, and more.

The huge proliferation of embedded Linux devices is thanks in part to the

rapid evolution of smartphone technology, which has helped drive down

the unit price of ARM-based processors. ARM Holdings PLC is a UK company that

licenses the intellectual property of the ARMv6 and ARMv7 on the RPi models,

for upfront fees and a royalty of about 1% to 2% of the sale price of the processor.

Avago Technologies Ltd., the owner of Broadcom Corporation since May 2015,

 Chapter 3 ■ Exploring Embedded Linux Systems 57

c03.indd 08:48:0:PM 05/12/2016 Page 57

does not currently sell processors to retail customers directly, but processors that

are similar to the BCM2835/6/7 are for sale in the $5–$10 price bracket.

Advantages and Disadvantages of Embedded Linux

There are many embedded platform types, each with its own advantages and

disadvantages. There are low-cost embedded platforms, with volume prices of

less than $1, such as the (8/16-bit) Atmel AVR, Microchip PIC, and TI Stellaris, to

high-cost specialized platforms that can cost more than $150, such as multicore

digital signal processors (DSPs). These platforms are typically programmed in C

and/or assembly language, requiring that you have knowledge of the underly-

ing systems architecture before you can develop useful applications. Embedded

Linux offers an alternative to these platforms, in that signifi cant knowledge

of the underlying architecture is not required to start building applications.

However, if you want to interface with electronic modules or components, some

such knowledge is required.

Here are some of the reasons why embedded Linux has seen such growth:

■ Linux is an effi cient and scalable operating system (OS), running on

everything from low-cost consumer-oriented devices to expensive large-

scale servers. It has evolved over many years, from when computers

were much less powerful than today, but it has retained many of the

effi ciencies.

■ A huge number of open source programs and tools have already been

developed that can be readily deployed in an embedded application. If

you need a web server for your embedded application, you can install

the same one that you might use on a Linux server.

■ There is excellent open source support for many different peripherals and

devices, from network adapters to displays.

■ It is open source and does not require a fee for its use.

■ The kernel and application code is running worldwide on so many devices

that bugs are infrequent and are detected quickly.

One downside of embedded Linux is that it is not ideal for real-time appli-

cations due to the OS overhead. Therefore, for high-precision, fast-response

applications, such as analog signal processing, embedded Linux may not

be the perfect solution. However, even in real-time applications, it is often used

as the “central intelligence” and control interface for a networked array of

dedicated real-time sensors (see Chapter 12). In addition, there are constant

developments underway in real-time operating systems (RTOS) Linux that aim

to use Linux in a preemptive way, interrupting the OS whenever required to

maintain a real-time process.

58 Part I 8 ■ Raspberry Pi Basics

c03.indd 08:48:0:PM 05/12/2016 Page 58

Is Linux Open Source and Free?

Linux is released under the GNU GPL (General Public License), which grants

users the freedom to use and modify its code in any way; so, free generally refers

to “freedom” rather than to “without cost.” In fact, some of the most expensive

Linux distributions are those for embedded architectures. You can fi nd a quick

guide to the GPLv3 at www.gnu.org that lists the four freedoms that every user

should have (Smith, 2013):

The freedom to use the software for any purpose

The freedom to change the software to suit your needs

The freedom to share the software with your friends and neighbors

And, the freedom to share the changes you make

Even if you are using a distribution that you downloaded “for free,” it can cost

you signifi cant effort to tailor libraries and device drivers to suit the particular

components and modules that you want to use in your product development.

Booting the Raspberry Pi

The fi rst thing you should see when you boot a desktop computer is the Unifi ed
Extensible Firmware Interface (UEFI), which provides legacy support for BIOS (Basic

Input/Output System) services. The boot screen displays system information

and invites you to press a key to alter these settings. UEFI tests the hardware

components, such as the memory, and then loads the OS, typically from the

solid-state drive (SSD)/hard drive. Therefore, when a desktop computer is

powered on, the UEFI/BIOS performs the following steps:

 1. Takes control of the computer’s processor

 2. Initializes and tests the hardware components

 3. Loads the OS off the SSD/hard drive

The UEFI/BIOS provides an abstraction layer for the OS to interact with

the display and other input/output peripherals, such as the mouse/keyboard

and storage devices. Its settings are stored in NAND fl ash and battery-backed

memory—you can see a small coin battery on the PC motherboard that supports

the real-time system clock.

The Raspberry Pi Bootloaders

Like most embedded Linux devices, the RPi does not have a BIOS or battery-

backed memory by default (A battery-backed real-time clock is added to the

http://www.gnu.org

 Chapter 3 ■ Exploring Embedded Linux Systems 59

c03.indd 08:48:0:PM 05/12/2016 Page 59

RPi in Chapter 9). Instead, it uses a combination of bootloaders. Bootloaders are

typically small programs that perform the critical function of linking the specifi c

hardware of your board to the Linux OS:

■ They initialize the controllers (memory, graphics, I/O).

■ They prepare and allocate the system memory for the OS.

■ They locate the OS and provide the facility for loading it.

■ They load the OS and pass control to it.

The bootloader for embedded Linux is a custom program that is tailored for

each and every board type, including the RPi. There are open source Linux

bootloaders available, such as Das U-Boot (“The” Universal Bootloader), that

can be custom built, given detailed knowledge of the hardware description of

the embedded Linux platform, by using board-specifi c software patches (see

tiny.cc/erpi301). The RPi uses a different approach: It uses effi cient but closed-

source bootloaders that were developed specifi cally for the RPi by Broadcom.

These bootloader and confi guration fi les are located in the /boot directory of

the RPi image:

pi@erpi /boot $ ls -l *.bin start.elf *.txt *.img fixup.dat

-rwxr-xr-x 1 root root 17900 Jun 16 01:57 bootcode.bin

-rwxr-xr-x 1 root root 120 May 6 23:23 cmdline.txt

-rwxr-xr-x 1 root root 1581 May 30 14:49 config.txt

-rwxr-xr-x 1 root root 6174 Jun 16 01:57 fixup.dat

-rwxr-xr-x 1 root root 137 May 7 00:31 issue.txt

-rwxr-xr-x 1 root root 3943888 Jun 16 01:57 kernel7.img

-rwxr-xr-x 1 root root 3987132 Jun 16 01:57 kernel.img

-rwxr-xr-x 1 root root 2684312 Jun 16 01:57 start.elf

Figure 3-1 illustrates the boot process on the RPi, where each bootloader stage

is loaded and invoked by the preceding stage bootloader. The bootcode.bin

and start.elf fi les are closed source bootloaders that are in binary form and

execute on the RPi processor’s GPU (graphics processor unit), not its CPU (central

processor unit). The license fi le at github.com/raspberrypi/firmware/tree/

master/boot indicates that redistribution is permitted “in binary form, without

modifi cation” and that it can “only be used for the purposes of developing for,

running or using a Raspberry Pi device.” You can fi nd the compressed Linux

kernel at /boot/kernel.img; it is, of course, open source.

The output that follows is a typical boot sequence that was captured using

the USB to UART TTL 3V3 serial cable that is introduced in Chapter 1. The cable

was attached to pins 6 (GND), 8 (UART_TXD), and 10 (UART_RXD) on the RPi

header, and the data was captured at a baud rate of 115,200. Unlike the open

source U-boot loaders that execute on the CPU, the early stage RPi bootloaders

do not provide output to the console—though they do fl ash the onboard LEDs

with specifi c patterns should boot problems arise. The following is an extract of

60 Part I 0 ■ Raspberry Pi Basics

c03.indd 08:48:0:PM 05/12/2016 Page 60

the console output as an RPi 3 is booting. It displays important system informa-

tion, such as memory mappings:

Figure 3-1: The full boot sequence on the RPi

Uncompressing Linux... done, booting the kernel.

[0.000000] Booting Linux on physical CPU 0x0

...

[0.000000] Linux version 4.1.18-v7+ (dc4@dc4-XPS13-9333) (gcc version

4.9.3 (crosstool-NG crosstool-ng-1.22.0-88-g8460611)) #846 SMP Thu Feb

25 14:22:53 GMT 2016

[0.000000] CPU: ARMv7 Processor [410fd034] revision 4 (ARMv7) ...

[0.000000] Machine model: Raspberry Pi 3 Model B Rev 1.2

[0.000000] cma: Reserved 8 MiB at 0x36400000 ...

[0.000000] Kernel command line: 8250.nr_uarts=1 dma.dmachans=0x7f35

bcm2708_fb.fbwidth=656 bcm2708_fb.fbheight=416 bcm2709.boardrev=0xa02082

bcm2709.serial=0xbbffd b2c smsc95xx.macaddr=B8:27:EB:FF:DB:2C

bcm2708_fb.fbswap=1 bcm2709.uart_clock=48000000 vc_mem.mem_base=0x3dc00000

vc_mem.mem_size=0x3f000000 dwc_otg.lpm_enable=0 console=ttyS0,115200

 Chapter 3 ■ Exploring Embedded Linux Systems 61

c03.indd 08:48:0:PM 05/12/2016 Page 61

root=/dev/mmcblk0p2 rootfstype=ext4 elevator=deadline fsck.repair=yes root-

wait

[0.000000] Memory: 874456K/901120K available (6024K kernel code, 534K

rwdata, 1660K rodata, 448K init, 757K bss, 18472K reserved, 8192K cma-

reserved)

[0.000000] Virtual kernel memory layout:

 vector : 0xffff0000 - 0xffff1000 (4 kB)

 fixmap : 0xffc00000 - 0xfff00000 (3072 kB)

 vmalloc : 0xb7800000 - 0xff000000 (1144 MB)

 lowmem : 0x80000000 - 0xb7000000 (880 MB)

 modules : 0x7f000000 - 0x80000000 (16 MB)

 .text : 0x80008000 - 0x807895a0 (7686 kB)

 .init : 0x8078a000 - 0x807fa000 (448 kB)

 .data : 0x807fa000 - 0x8087fac0 (535 kB)

 .bss : 0x80882000 - 0x8093f79c (758 kB)

...

[0.052103] Brought up 4 CPUs

[0.052201] SMP: Total of 4 processors activated (153.60 BogoMIPS).

[0.052231] CPU: All CPU(s) started in HYP mode. ...

[1.467927] console [ttyS0] enabled

...

[3.307558] systemd[1]: Detected architecture 'arm'.

[3.321650] smsc95xx 1-1.1:1.0 eth0: register 'smsc95xx' at

usb-3f980000.usb-1.1, smsc95xx USB 2.0 Ethernet, b8:27:eb:ff:db:2c

[3.488061] NET: Registered protocol family 10

[3.498204] systemd[1]: Inserted module 'ipv6'

[3.510056] systemd[1]: Set hostname to <erpi> ...

[5.450070] spi spi0.0: setting up native-CS0 as GPIO 8

[5.450453] spi spi0.1: setting up native-CS1 as GPIO 7 ...

...

Raspbian GNU/Linux 8 erpi ttyS0

erpi login:

The same information is available by typing dmesg|more in a terminal win-

dow. You can see that the initial hardware state is set, but most entries will

seem quite mysterious for the moment. There are some important points to note

(as highlighted in the preceding output segment):

■ The Linux kernel is uncompressed into memory and then booted. A slightly

modifi ed kernel image is used for the ARMv7 RPi 2/3, (kernel7.img) than

for the ARMv6 RPi/RPi B+ (kernel.img).

■ The Linux kernel version is identifi ed (e.g., 4.1.18-v7+).

■ The machine model is identifi ed so that the correct device tree binary

can be loaded.

■ The default network MAC address (a usually unique hardware address

that identifi es the device on the physical network) is passed as a kernel

62 Part I ■ Raspberry Pi Basics

c03.indd 08:48:0:PM 05/12/2016 Page 62

command-line argument. The MAC address is automatically set on the

RPi using the last 3 bytes of the CPU’s serial number, which is set at

manufacture. Call cat /proc/cpuinfo to display your board’s serial

number. For this board, the number is 00000000bbffdb2c, where ffdb2c

is utilized to provide the unique MAC address.

■ Several of the remaining kernel arguments can be user confi gured by editing

the cmdline.txt fi le (e.g., by using sudo nano cmdline.txt) as follows:

pi@erpi /boot $ more cmdline.txt

dwc_otg.lpm_enable=0 console=serial0,115200 console=tty1 root=/dev/

mmcblk0p2

rootfstype=ext4 elevator=deadline fsck.repair=yes rootwait

■ The virtual kernel memory layout is presented. The modules entry is

particularly important and is utilized in Chapter 8.

The primary confi guration fi le for the RPi is /boot/config.txt. Changes

that you make using the raspi-config tool are refl ected in this fi le. You can

manually edit this fi le (e.g., sudo nano /boot/config.txt) to enable/disable

bus hardware, overclock the processors, and so on:

pi@erpi /boot $ more config.txt

For more options and information see

http://www.raspberrypi.org/documentation/configuration/config-txt.md ...

Uncomment some or all of these to enable the optional hardware interfaces

dtparam=i2c_arm=on

#dtparam=i2s=on

dtparam=spi=on

...

Additional overlays and parameters are documented /boot/overlays/README

The RPi bootloader uses a board confi guration fi le called a device tree (also

called a device tree binary) that contains the board-specifi c information that the

kernel requires to boot the RPi. This fi le contains all the information needed to

describe the memory size, clock speeds, onboard devices, and so on. This device

tree binary or DTB (the binary) is created from a DTS (the source) fi le using the

Device Tree Compiler (dtc). (This topic is described in detail in Chapter 8.) The

/boot directory contains the device tree binaries for the different RPi models:

pi@erpi /boot $ ls -l *.dtb

-rwxr-xr-x 1 root root 10841 Feb 25 23:22 bcm2708-rpi-b.dtb

-rwxr-xr-x 1 root root 11120 Feb 25 23:22 bcm2708-rpi-b-plus.dtb

-rwxr-xr-x 1 root root 10871 Feb 25 23:22 bcm2708-rpi-cm.dtb

-rwxr-xr-x 1 root root 12108 Feb 25 23:22 bcm2709-rpi-2-b.dtb

-rwxr-xr-x 1 root root 12575 Feb 25 23:22 bcm2710-rpi-3-b.dtb

The source code for these DTBs is publicly available in DTS form. Each of the

RPi model DTS fi les has syntax similar to the following extract, which details

a hardware description of the two onboard LED pins and one of the two I2C

buses on the RPi 2:

&i2c1 {

 pinctrl-names = "default";

 Chapter 3 ■ Exploring Embedded Linux Systems 63

c03.indd 08:48:0:PM 05/12/2016 Page 63

 pinctrl-0 = <&i2c1_pins>;

 clock-frequency = <100000>;

};

&leds {

 act_led: act {

 label = "led0";

 linux,default-trigger = "mmc0";

 gpios = <&gpio 47 0>;

 };

 pwr_led: pwr {

 label = "led1";

 linux,default-trigger = "input";

 gpios = <&gpio 35 0>;

 };

};

The full source code for the DTS fi le for the RPi 2 (bcm2709-rpi-2-b.dts) is

available at: tiny.cc/erpi302. Additional device tree binary fi les for devices,

such as sensors, HATs, and LCD displays, may be attached to the RPi:

pi@erpi /boot/overlays $ ls

ads7846-overlay.dtb i2s-mmap-overlay.dtb pps-gpio-overlay.dtb

...

hifiberry-amp-overlay.dtb mcp2515-can0-overlay.dtb rpi-proto-overlay.dtb

hy28b-overlay.dtb piscreen-overlay.dtb w1-gpio-pullup-overlay.dtb

i2c-rtc-overlay.dtb pitft28-resistive-overlay.dtb

The full description for the device tree source for the RPi distribution is avail-

able with the source code distribution of this book in the /chp03/dts directory.

EXAMPLE: BUILDING DEVICE TREE BINARIES FOR THE RPi

The device tree source fi les for the RPi are available in the chp03/dts directory or

from tiny.cc/erpi302. It is possible to build the DTB fi les yourself using the DTS

fi les—it is even possible (but not recommended) to modify the DTS fi les and build

custom DTBs. Please note that changing these fi les may prevent the RPi from booting,

however, so you need a mechanism in place for mounting and editing the fi le system

should a problem arise (see the examples later in this chapter). The device tree com-

piler (dtc) is fi rst installed and then invoked on the DTS fi le (all steps take place within

/chp03/dts/):

pi@erpi …/dts $ sudo apt install device-tree-compiler

pi@erpi …/dts $ dtc -O dtb -o bcm2709-rpi-2-b.dtb -b 0 -@ bcm2709-rpi-2-b.dts

pi@erpi …/dts $ ls -l *.dtb

-rw-r--r-- 1 pi pi 6108 Jun 16 12:30 bcm2709-rpi-2-b.dtb

pi@erpi …/dts $ ls -l /boot/*rpi-2*

-rwxr-xr-x 1 root root 6108 Jun 16 01:57 /boot/bcm2709-rpi-2-b.dtb

You can see that the DTB fi le sizes are consistent with those already on the board.

64 Part I 4 ■ Raspberry Pi Basics

c03.indd 08:48:0:PM 05/12/2016 Page 64

Kernel Space and User Space

The Linux kernel runs in an area of system memory called the kernel space,

and regular user applications run in an area of system memory called

user space. A hard boundary between these two spaces prevents user applica-

tions from accessing memory and resources required by the Linux kernel. This

helps prevent the Linux kernel from crashing due to badly written user code,

and because it prevents applications that belong to one user from interfering

with applications and resources that belong to another user, it also provides a

degree of security.

The Linux kernel “owns” and has full access to all of the physical memory

and resources on the RPi. Therefore, you have to be careful that only the most

stable and trusted code is permitted to run in kernel space. You can see the

architectures and interfaces illustrated in Figure 3-2, where user applications

use the GNU C Library (glibc) to make calls to the kernel’s system call interface.

The kernel services are then made available to the user space in a controlled

way through the use of system calls.

Figure 3-2: The Linux user space and kernel space architectures

A kernel module is an object fi le that contains binary code, which can be loaded

and unloaded from the kernel on demand. In many cases, the kernel can even

load and unload modules while it is executing, without needing to reboot the

RPi. For example, if you plug a USB Wi-Fi adapter into the RPi, it is possible

for the kernel to use a loadable kernel module (LKM) to utilize the adapter.

Without this modular capability, the Linux kernel would be extremely large,

as it would have to support every driver that would ever be needed on the RPi.

You would also have to rebuild the kernel every time you wanted to add new

 Chapter 3 ■ Exploring Embedded Linux Systems 65

c03.indd 08:48:0:PM 05/12/2016 Page 65

hardware. One downside of LKMs is that driver fi les have to be maintained for

each device. (Interaction with LKMs is described throughout the book, and you

will see how you can write your own LKMs in Chapter 16.)

As described in Figure 3-1, the bootloader stages pass control to the kernel

after it has been decompressed into memory. The kernel then mounts the root

fi le system. The kernel’s last step in the boot process is to call systemd init

(/sbin/init on the RPi with Raspbian Jessie), which is the fi rst user-space

process that is started, and the next topic that is discussed.

The systemd System and Service Manager

A system and service manager starts and stops services (e.g., web servers, Secure

Shell [SSH] server) depending on the current state of the RPi (e.g., starting up,

shutting down). The systemd system and service manager is a recent and some-

what controversial addition to Linux that aims to replace, and remain backward

compatible with System V (SysV) init. One major drawback of SysV init is that

it starts tasks in series, waiting for one task to complete before beginning the

next, which can lead to lengthy boot times. The systemd system is enabled by

default in Debian 8/Raspbian 8 (Jessie). It starts up system services in parallel,

helping to keep boot times short, particularly on multicore processors such as

the RPi 2/3. In fact, you can display the boot time using the following:

pi@erpi ~ $ systemctl --version

systemd 215 +PAM +AUDIT +SELINUX +IMA +SYSVINIT +LIBCRYPTSETUP +GCRYPT

+ACL +XZ -SECCOMP -APPARMOR

pi@erpi ~ $ systemd-analyze time

Startup finished in 2.230s (kernel) + 6.779s (userspace) = 9.009s

W A R N I N G If you see a “command not found” message at this point, you might

be using a Raspbian 7 distribution, which uses SysV init. For more information, check

this chapter’s web page: www.exploringrpi.com/chapter3/.

As well as being a system and service manager, systemd consists of a software

bundle for login management, journal logging, device management, time syn-

chronization, and more. Critics of systemd claim that its development project

has suffered from “mission creep,” and that it has taken on development work

that is outside of its core mission. To some extent, this change in mission has

resulted in systemd becoming core to the future of Linux itself, possibly even

removing choice from users; however, it is clear that systemd is being widely

adopted by many Linux distributions and here to stay.

You can use the systemctl command to inspect and control the state of

 systemd. If called with no arguments, it provides a full list of the services that

are running on the RPi (use the spacebar to page, and Q to quit):

pi@erpi ~ $ systemctl

networking.service loaded active exited LSB: Raise network interfaces

http://www.exploringrpi.com/chapter3

66 Part I 6 ■ Raspberry Pi Basics

c03.indd 08:48:0:PM 05/12/2016 Page 66

ntp.service loaded active running LSB: Start NTP daemon

serial-getty@ttyAMA0 loaded active running Serial Getty on ttyAMA0

ssh.service loaded active running OpenBSD Secure Shell server

getty.target loaded active active Login Prompts ...

systemd uses service fi les, which have a .service extension to confi gure how

the different services should behave on startup, shutdown, reload, and so on;

see the /lib/systemd/system directory.

The Network Time Protocol (NTP) service runs by default upon installa-

tion. The systemd system can be used to manage such services on the RPi. For

example, you can identify the exact service name and get its status using the

following steps:

pi@erpi:~$ systemctl list-units -t service | grep ntp

ntp.service loaded active running LSB: Start NTP daemon

pi@erpi:~$ systemctl status ntp.service

• ntp.service - LSB: Start NTP daemon

 Loaded: loaded (/etc/init.d/ntp)

 Active: active (running) since Mon 2016-01-02 13:00:48 GMT; 2h 21min ago

 Process: 502 ExecStart=/etc/init.d/ntp start (code=exited, status=0/ SUCCESS)

 CGroup: /system.slice/ntp.service

 ├─552 /usr/sbin/ntpd -p /var/run/ntpd.pid -g -u 107:112

 └─559 /usr/sbin/ntpd -p /var/run/ntpd.pid -g -u 107:112

You can stop the ntp service using the systemctl command, whereupon it

will no longer update the clock according to the network time.

pi@erpi:~$ sudo systemctl stop ntp

pi@erpi:~$ systemctl status ntp

• ntp.service - LSB: Start NTP daemon

 Loaded: loaded (/etc/init.d/ntp)

 Active: inactive (dead) since Mon 2017-01-02 17:42:26 GMT; 6s ago

 Process: 1031 ExecStop=/etc/init.d/ntp stop (code=exited, status=0/SUCCESS)

 Process: 502 ExecStart=/etc/init.d/ntp start (code=exited, status=0/SUCCESS)

The service can then be restarted as follows:

pi@erpi ~ $ sudo systemctl start ntp

Table 3-1 provides a summary of systemd commands, using the ntp service

as a syntax example. Many of these commands require elevation to superuser

permissions by the use of the sudo tool, as described in the next section.

Table 3-1: Common systemd Commands

COMMAND DESCRIPTION

systemctl List all running services.

systemctl start ntp Start a service. Does not persist after reboot.

 Chapter 3 ■ Exploring Embedded Linux Systems 67

c03.indd 08:48:0:PM 05/12/2016 Page 67

COMMAND DESCRIPTION

systemctl stop ntp Stop a service. Does not persist after reboot.

systemctl status ntp Display the service status.

systemctl enable ntp Enable a service to start on boot.

systemctl disable ntp Disable a service from starting on boot.

systemctl is-enabled ssh Display if a system service starts on boot.

systemctl restart ntp Restart a service (stop and then start).

systemctl condrestart ntp Restart a service only if it is running.

systemctl reload ntp Reload confi guration fi les for a service without

halting it.

journalctl –f Follow the systemd log fi le. Press Ctrl+C to quit.

hostnamectl --static set-
hostname ERPi

Change the hostname.

timedatectl Display the time and time zone information.

systemd-analyze time Display the boot time.

The runlevel describes the current state of the RPi and can be used to control

which processes or services are started by the init system. Under SysV, there

are different runlevels, identifi ed as 0 (halt), 1 (single-user mode), 2 through

5 (multi-user modes), 6 (reboot), and S (start-up). When the init process

begins, the runlevel starts at N (none). It then enters runlevel S to initialize the

system in single-user mode, and fi nally enters one of the multi-user runlevels

(2 through 5). To determine the current runlevel, type the following:

pi@erpi ~ $ who -r

 run-level 5 2016-01-02 03:23

In this case, the RPi is running at runlevel 5. You can change the runlevel by

typing init followed by the level number. For example, you can reboot your

RPi by typing the following:

pi@erpi ~ $ sudo init 6

As demonstrated, systemd retains some backward compatibility with the

SysV runlevels and their numbers, as the previous SysV commands work cor-

rectly under systemd. However, the use of runlevels in systemd is considered to

be dated practice. Instead, systemd uses named target units, some of which are

listed in Table 3-2, which includes an indicative alignment with SysV runlevels.

You can identify the current default target on the RPi:

pi@erpi ~ $ systemctl get-default

graphical.target

68 Part I 8 ■ Raspberry Pi Basics

c03.indd 08:48:0:PM 05/12/2016 Page 68

This indicates that the current confi guration is for the RPi to have a headful

windowing display. You can also see the list of units that the target loads using

the following:

pi@erpi ~ $ systemctl list-units --type=target

UNIT LOAD ACTIVE SUB DESCRIPTION

basic.target loaded active active Basic System

cryptsetup.target loaded active active Encrypted Volumes

getty.target loaded active active Login Prompts

graphical.target loaded active active Graphical Interface

multi-user.target loaded active active Multi-User System

...

Table 3-2: systemd Targets Aligned with SysV Runlevels

TARGET NAMES SYSV DESCRIPTION AND EXAMPLE USE

poweroff.target 0 Halt the system: shutdown state for all services

rescue.target 1,S Single-user mode: for administrative functions

such as checking the fi le system

multi-user.target 2-4 Regular multi-user modes with no windowing

display

graphical.target 5 Regular multi-user mode with windowing

display

reboot.target 6 Reboot the system: reboot state for all services

emergency.target — Emergency shell only on the main console

If you are using the RPi as a network-attached device that does not have a

display attached (i.e., headless), it is wasteful of CPU/memory resources to have

the windowing services running. You can switch to a headless target using the

following call, whereupon the LXDE windowing interface will no longer be pres-

ent, and the graphical.target entry will no longer appear in the list of units:

pi@erpi ~ $ sudo systemctl isolate multi-user.target

pi@erpi ~ $ systemctl list-units --type=target | grep graphical

And, you can re-enable the headful graphical display using the following:

pi@erpi ~ $ sudo systemctl isolate graphical.target

Finally, to set up the RPi so that it uses a different default runlevel on boot

(e.g., for a headless display), you can use the following:

pi@erpi ~ $ sudo systemctl set-default multi-user.target

Created symlink from /etc/systemd/system/default.target to /lib/systemd/sys

tem/multi-user.target.

pi@erpi ~ $ systemctl get-default

multi-user.target

 Chapter 3 ■ Exploring Embedded Linux Systems 69

c03.indd 08:48:0:PM 05/12/2016 Page 69

After reboot, the windowing services do not start, and the notional equivalent

SysV runlevel is displayed as runlevel 3.

Managing Linux Systems

In this section, you examine the Linux fi le system in more detail, building on

the commands and tools described in Chapter 2, to ensure that you have full

administrative control of the RPi.

The Super User

On Linux systems, the system administrator account has the highest level of

security access to all commands and fi les. Typically, this account is referred

to as the root account or superuser. Under Raspbian/Debian, this user accountrr
has the user name root, but it is typically disabled by default; however, you cant
enable it by typing sudo passwd root from a shell that is logged in with the pi

user account (username: pi, password: raspberry):

pi@erpi ~ $ sudo passwd root

Enter new UNIX password: mySuperSecretPassword

Retype new UNIX password: mySuperSecretPassword

passwd: password updated successfully

N O T E The naming of the user account as “root” is related to the fact that it is the

only user account with permission to alter the top-level root directory (/). For more

information, see www.linfo.org/root.htm.

It is recommended when performing general operations on a Linux system

that you try to avoid being logged in as the superuser; however, it is impor-

tant to also remember that when using the RPi you are typically not running

a server with thousands of user accounts! In many applications, a single root

user account, with a nondefault password, is likely suffi cient. However, using

a non-superuser account for your development work could protect you from

yourself—for example, from accidentally deleting the fi le system. The pi user

account in Raspbian has been carefully confi gured to simplify the interaction

with hardware, enabling it to be used for the majority of tasks that are described

in this book. However, it is important to understand how this custom user

account is confi gured and how it works so well.

Under many Linux distributions, including Raspbian, a special tool called

sudo (su((peruser do) is used whenever you want to perform system administra-

tion commands. Typically, the tool prompts you for the administrator password

and then authorizes you to perform administrator operations for a short time

http://www.linfo.org/root.htm

70 Part I 0 ■ Raspberry Pi Basics

c03.indd 08:48:0:PM 05/12/2016 Page 70

period, also warning you that “with great power comes great responsibility.”

The pi user account in Raspbian has been confi gured so that it does not require

you to enter the root password for superuser elevation.

The next section discusses user accounts management, but if you create a

new user account and want to enable it to use the sudo tool, the account name

must be added to the sudoers fi le, e /etc/sudoers, by using the visudo tool (type

visudo while logged in as root, or sudo visudo if logged in as pi). The last lines

of the /etc/sudoers fi le provide the confi guration for the pi user account, which

explains why no password is required for the user pi to execute the sudo tool:

#User privilege specification

Root ALL=(ALL:ALL) ALL

#username hostnames=(users permitted to run commands as) permitted commands

pi ALL=(ALL) NOPASSWD: ALL

In this confi guration, the user pi is granted privileges on all (fi rst ALL) hostnames

to execute commands as any user (second ALL) and to execute all commands

(third ALL) with no password required. The sudo tool works well; however, it

can make the redirection of the output of a command more complex, which is

apparent later in this chapter.

There is another command in Linux that enables you to run a shell with a

substitute user: su. Typing su - (same as su - root) opens a new shell with full

superuser access, and it can be used as follows, after you have enabled root login:

pi@erpi ~ $ su -

Password: mySuperSecretPassword

root@erpi:~# whoami

root

root@erpi:~# exit

logout

pi@erpi ~ $ whoami

pi

The # prompt indicates that you are logged in to the superuser account. To

re-disable root login to the RPi, you can type sudo passwd -l root.

System Administration

The Linux fi le system is a hierarchy of directories used to organize fi les on a Linux

system. This section examines the ownership of fi les, the use of symbolic links,

and the concept of fi le system permissions.

The Linux File System

Linux uses data structures, called inodes, to represent fi le system objects such

as fi les and directories. When a Linux extended fi le system (e.g., ext3/ext4) is

created on a physical disk, an inode table is created. This table links to an inode

data structure for each fi le and directory on that physical disk. The inode data

 Chapter 3 ■ Exploring Embedded Linux Systems 71

c03.indd 08:48:0:PM 05/12/2016 Page 71

structure for each fi le and directory stores information such as permission

attributes, pointers to raw physical disk block locations, time stamps, and link

counts. You can see this with an example by performing a listing ls -ail of

the root directory, where -i causes ls to display the inode indexes. You will

see the following for the /tmp directory entry:

pi@erpi ~ $ cd /

pi@erpi / $ ls -ail | grep tmp

 269 drwxrwxrwt 7 root root 4096 Jun 18 01:17 tmp

Therefore, 269 is the /tmp directory’s inode index. If you enter the /tmp direc-

tory by using cd, create a temporary fi le (a.txt), and perform ls -ail, you will

see that the current (.) directory has the exact same inode index:

pi@erpi / $ cd tmp

pi@erpi /tmp $ touch a.txt

pi@erpi /tmp $ ls -ail

 269 drwxrwxrwt 7 root root 4096 Jun 18 01:41 .

 2 drwxr-xr-x 22 root root 4096 Jun 16 01:57 ..

 4338 -rw-r--r-- 1 pi pi 0 Jun 18 01:41 a.txt

You can also see that the root directory (..) has the inode index of 2 and that a

text fi le (a.txt) also has an inode index, 4338. Therefore, you cannot cd directlyd

to an inode index, because the inode index might not refer to a directory.

Figure 3-3 illustrates the Linux directory listing and fi le permissions that relate

to working with fi les under Linux. The fi rst letter indicates the fi le type—for

example, whether the listing is a (d) directory, (l) link, or (-) regular fi le. There

are also some more obscure fi le types: (c) character special, (b) block special, (p)

fi fo, and (s) socket. Directories and regular fi les do not need further explanation,

but links need special attention, as described next.

Figure 3-3: Linux directory listing and file permissions

72 Part I ■ Raspberry Pi Basics

c03.indd 08:48:0:PM 05/12/2016 Page 72

Links to Files and Directories

There are two types of links in Linux: soft links and hard links. A soft link (or

symbolic link) is a fi le that refers to the location of another fi le or directory. Hard kk
links, conversely, link directly to the inode index, but they cannot be linked to a

directory. You create a link using ln /path/to/file.txt linkname. You create

a symbolic link by adding -s to the call. To illustrate the usage, the following

example creates a soft link and a hard link to a fi le /tmp/test.txt:

pi@erpi ~ $ cd /tmp

pi@erpi /tmp $ touch test.txt

pi@erpi /tmp $ ln -s /tmp/test.txt softlink

pi@erpi /tmp $ ln /tmp/test.txt hardlink

pi@erpi /tmp $ ls -al

total 8

drwxrwxrwt 2 root root 4096 Jun 18 01:55 .

drwxr-xr-x 22 root root 4096 Jun 16 01:57 ..

-rw-r--r-- 2 pi pi 0 Jun 18 01:55 hardlink

lrwxrwxrwx 1 pi pi 13 Jun 18 01:55 softlink -> /tmp/test.txt

-rw-r--r-- 2 pi pi 0 Jun 18 01:55 test.txt

You can see there is a number 2 in front of the fi le test.txt (after the fi le per-

missions). This is the number of hard links that are associated with the fi le. This

is a count value that was incremented by 1 when the hard link, called hardlink,

was created. If you were to delete the hard link (e.g., using rm hardlink), this

counter would decrement back to 1. To illustrate the difference between soft

links and hard links, some text is added to the test.txt fi le:

pi@erpi /tmp $ echo "testing links on the RPi" >> test.txt

pi@erpi /tmp $ more hardlink

testing links on the RPi

pi@erpi /tmp $ more softlink

testing links on the RPi

pi@erpi /tmp $ mkdir subdirectory

pi@erpi /tmp $ mv test.txt subdirectory/

pi@erpi /tmp $ more hardlink

testing links on the RPi

pi@erpi /tmp $ more softlink

softlink: No such file or directory

You can see that when the test.txt fi le is moved to the subdirectory, the soft

link breaks but the hard link still works perfectly. Therefore, symbolic links are

not updated when the linked fi le is moved, but hard links always refer to the

source, even if moved or removed. To illustrate the last point, the fi le test.txt

can be removed using the following:

pi@erpi /tmp $ rm subdirectory/test.txt

pi@erpi /tmp $ more hardlink

testing links on the RPi

Yet, the fi le still exists! And it will not be deleted until you delete the hard link

called hardlink, thus decrementing the link count to zero. Therefore, if a fi le has

 Chapter 3 ■ Exploring Embedded Linux Systems 73

c03.indd 08:48:0:PM 05/12/2016 Page 73

a hard link count of zero, and it is not being used by a process, it will be deleted.

In effect, the fi lename itself, test.txt, was just a hard link. Note that you cannot

hard link across different fi le systems, because each fi le system will have its own

inode index table that starts at 1. Therefore, inode 269, which is the inode index of

the /tmp directory, is likely describing something quite different on another fi le

system. Type the command man ln to see a particularly useful guide on linking.

N O T E You can type history to list all previous commands that you have typed. You

can also press Ctrl+R to get an interactive search of your history to fi nd a recently used

command. Pressing Enter activates the command, and pressing Tab places it on your

command line, so that it can be modifi ed.

Users and Groups

Linux is a multi-user OS, which uses the following three distinct classes to

manage access permissions:

■ User: You can create different user accounts on your RPi. This is useful

if you want to limit access to processes and areas of the fi le system. The

root user account is the superuser of the RPi and has access to every fi le;

so, for example, it may not be safe to run a public web server from this

account or the pi user account if the server supports local scripting.

■ Group: User accounts may be fl agged as belonging to one or more groups,

whereby each group has different levels of access to different resources

(e.g., UART devices, I2C buses).

■ Others: All users of the RPi besides the fi le’s owner, or a member of the

group listed in the permissions.

You can create users at the Linux terminal. The full list of groups is available

by typing more /etc/group. The following example demonstrates how you can

create a new user account on the RPi and modify the properties of that account

to suit your needs.

EXAMPLE: CREATING A NEW USER ACCOUNT ON THE RPi

This example demonstrates how you can create a user account and then retrospec-

tively change its properties, using the following steps:

 1. The creation of a new user account called molloyd on the RPi

 2. The addition of the account to a new group of your own design

 3. The addition of the user account to the standard RPi interfacing groups

 4. The reset of the password for the new user account

 5. Verification that the account is working correctly

74 Part I 4 ■ Raspberry Pi Basics

c03.indd 08:48:0:PM 05/12/2016 Page 74

Step 1: Create a user molloyd as follows:

pi@erpi ~ $ sudo adduser molloyd

Adding user 'molloyd' ...

Adding new group 'molloyd' (1002) ...

Adding new user 'molloyd' (1001) with group 'molloyd' ...

Creating home directory '/home/molloyd' ...

Copying files from '/etc/skel' ...

Enter new UNIX password: ThePassword

Retype new UNIX password: ThePassword

passwd: password updated successfully

Changing the user information for molloyd

Enter the new value, or press ENTER for the default

 Full Name []: Derek Molloy

 Room Number []: Home

 Work Phone []: XXXX

 Home Phone []: XXXX

 Other []: XXXX

Is the information correct? [Y/n] Y

Step 2: Add the user to a new group of your design:

pi@erpi ~ $ sudo groupadd newgroup

pi@erpi ~ $ sudo adduser molloyd newgroup

Adding user 'molloyd' to group 'newgroup' ...

Adding user molloyd to group newgroup

Done.

pi@erpi ~ $ groups molloyd

molloyd : molloyd newgroup

Step 3: Add the user to the standard RPi user and interface groups:

pi@erpi ~ $ sudo usermod -a -G pi,adm,dialout,cdrom,sudo,audio,video,

plugdev,users,games,netdev,gpio,i2c,spi,input molloyd

pi@erpi ~ $ groups molloyd

molloyd : molloyd adm dialout cdrom sudo audio video plugdev games users pi

 netdev input spi i2c gpio newgroup

Step 4: Reset the password, if required:

pi@erpi ~ $ sudo passwd molloyd

Enter new UNIX password: ABetterPassword

Retype new UNIX password: ABetterPassword

passwd: password updated successfully

pi@erpi ~ $ sudo chage -d 0 molloyd

You can force the password to expire on login by using sudo chage -d 0
molloyd. For security, the encrypted passwords are stored in the restricted fi le

/etc/shadow, not the public readable /etc/passwd fi le.

Step 5: Test the account by typing su molloyd from the pi user account and/or

log in with a new Linux terminal (using pwd to print the working directory):

pi@erpi ~ $ su molloyd

Password: ABetterPassword

 Chapter 3 ■ Exploring Embedded Linux Systems 75

c03.indd 08:48:0:PM 05/12/2016 Page 75

You are required to change your password immediately (root enforced)

Changing password for molloyd.

(current) UNIX password: ABetterPassword

Enter new UNIX password: MyPrivatePassword

Retype new UNIX password: MyPrivatePassword

molloyd@erpi:/home/pi$ whoami

molloyd

molloyd@erpi:/home/pi$ pwd

/home/pi

molloyd@erpi:/home/pi$ cd /home/molloyd

molloyd@erpi:~$ touch test.txt

molloyd@erpi:~$ ls -l test.txt

-rw-r--r-- 1 molloyd molloyd 0 Jun 18 23:26 test.txt

molloyd@erpi:~$ more /etc/group |grep newgroup

newgroup:x:1003:molloyd

The user’s home directory for each user account is represented as ~ at the shell

prompt. You can see that the test.txt fi le is created with the correct user and group

ID. Also, note that the newgroup group only has one member, molloyd. To delete an

account, type sudo deluser --remove-home molloyd, which removes the user

account and its home directory.

To practice with the topics that are introduced earlier in this chapter, the

following examples are performed using the molloyd user account. The fi rst

example demonstrates how to change the ownership of a fi le using the change

ownership chown command and to change the group ownership of the fi le using

the change group chgrp command.

For the sudo tool to be invoked correctly in the example, the user molloyd

must be present in the sudoers fi le, which is achieved by the pi user account

executing the visudo command. The fi le can be modifi ed to include a molloyd

entry, such as the following:

pi@erpi ~ $ sudo visudo

pi@erpi ~ $ sudo tail -n 2 /etc/sudoers

pi ALL=(ALL) NOPASSWD: ALL

molloyd ALL=(ALL) ALL

The molloyd user account can now execute the sudo command, but must

enter their user password to do so.

EXAMPLE: CHANGING THE OWNERSHIP AND GROUP OF A FILE

SSH to the RPi and log in as the molloyd user. Use superuser access to change a fi le

test.txt in the /tmp directory that is owned by the user molloyd with the group

molloyd, to have owner root and group root:

molloyd@erpi:~$ cd /tmp

molloyd@erpi:/tmp$ touch test.txt

76 Part I 6 ■ Raspberry Pi Basics

c03.indd 08:48:0:PM 05/12/2016 Page 76

molloyd@erpi:/tmp$ ls -l test.txt

-rw-r--r-- 1 molloyd molloyd 0 Jun 19 00:06 test.txt

molloyd@erpi:/tmp$ sudo chgrp root test.txt

[sudo] password for molloyd: MyPrivatePassword

molloyd@erpi:/tmp$ sudo chown root test.txt

molloyd@erpi:/tmp$ ls -l test.txt

-rw-r--r-- 1 root root 0 Jun 19 00:06 test.txt

File System Permissions

The fi le system permissions state what levels of access each of the permissions

classes have to a fi le or directory. The change mode command chmod enables a

user to change the access permissions for fi le system objects. You can specify

the permissions in a relative way. For example, chmod a+w test.txt gives all

users write access to a fi le test.txt but leaves all other permissions the same.

You can also apply the permissions in an absolute way. For example, chmod

a=r test.txt sets all users to only have read access to the fi le test.txt. The

next example demonstrates how to modify the fi le system permissions of a fi le

using the chmod command.

EXAMPLE: USING THE CHMOD COMMAND IN DIFFERENT FORMS

Change a fi le test1.txt in the /tmp directory so that users and group members

have read and write access, but others only have read access. Perform this task in

three diff erent ways:

molloyd@erpi:/tmp$ touch test1.txt

molloyd@erpi:/tmp$ ls -l test1.txt

-rw-r--r-- 1 molloyd molloyd 0 Jun 19 00:18 test1.txt

molloyd@erpi:/tmp$ chmod g+w test1.txt

molloyd@erpi:/tmp$ ls -l test1.txt

-rw-rw-r-- 1 molloyd molloyd 0 Jun 19 00:18 test1.txt

molloyd@erpi:/tmp$ chmod 664 test1.txt

molloyd@erpi:/tmp$ ls -l test1.txt

-rw-rw-r-- 1 molloyd molloyd 0 Jun 19 00:18 test1.txt

molloyd@erpi:/tmp$ chmod u=rw,g=rw,o=r test1.txt

molloyd@erpi:/tmp$ ls -l test1.txt

-rw-rw-r-- 1 molloyd molloyd 0 Jun 19 00:18 test1.txt

All three calls to chmod have the exact same outcome.

Table 3-3 provides examples of the command structure for chown and chgrp.

It also lists some example commands for working with users, groups, and

permissions.

 Chapter 3 ■ Exploring Embedded Linux Systems 77

c03.indd 08:48:0:PM 05/12/2016 Page 77

Table 3-3: Commands for Working with Users, Groups, and Permissions

COMMAND DESCRIPTION

chown molloyd a.txt

chown molloyd:users
a.txt

chown -Rh molloyd
/tmp/test

Change fi le owner.

Change owner and group at the same time.

Recursively change ownership of /tmp/test.

-h aff ects symbolic links instead of referenced fi les.

chgrp users a.txt

chgrp -Rh users
/tmp/test

Change group ownership of the fi le.

Recursively change with same -h as chown.

chmod 600 a.txt

chmod ugo+rw a.txt

chmod a-w a.txt

Change permissions (as in Figure 3-3) so that the user has

read/write access to the fi le; group or others have no access.

Give users, group, and others read/write access to a.txt.

Remove write access for all users using a, which describes

all (the set of users, group, and others).l

chmod ugo=rw a.txt Set the permissions for all to be read/write.

umask

umask -S

List the default permissions settings. Using -S displays the

umask in a more readable form.

umask 022

umask u=rwx,g=rx,o=rx

Change the default permissions on all newly created

fi les and directories. The two umask commands here

are equivalent. If you set this mask value and create a fi le

or directory, it will be: drwxr-xr-x for the directory

and -rw-r--r-- for the fi le. You can set a user-specifi c

umask in the account’s .login fi le.

chmod u+s myexe

chmod g+s myexe

Set a special bit called the setuid bit (set user ID on execute)

and setgid bit (set group ID on execute), s, that allows a

program to be executed as if by another logged-in user,

but with the permissions of the fi le’s owner or group. For

example, you could use this to allow a particular program

to execute as if the root user account executed it. If the fi le

is not executable, a capital S appears, instead of a lower-

case s.

chmod 6750 myexe

chmod u=rwxs,g=rxs,o=
myexe

Set the setuid bit in an absolute way. Both examples will

give myexe the permissions -rwsr-s---, where both

the setuid and setgid bits are set (note the space before

myexe).

For security reasons, the setuid bit cannot be applied to

shell scripts.

stat /tmp/test.txt Provides useful fi le system status information for a fi le or

directory, such as its physical device and inode informa-

tion, last access, and modify/change times.

78 Part I 8 ■ Raspberry Pi Basics

c03.indd 08:48:0:PM 05/12/2016 Page 78

Here is an example of the last entry in Table 3-3, the stat command:

molloyd@erpi:/tmp$ stat test.txt

 File: 'test.txt'

 Size: 0 Blocks: 0 IO Block: 4096 regular empty file

Device: b302h/45826d Inode: 6723 Links: 1

Access: (0644/-rw-r--r--) Uid: (0/ root) Gid: (0/ root)

Access: 2015-06-19 00:06:28.551326384 +0000

Modify: 2015-06-19 00:06:28.551326384 +0000

Change: 2015-06-19 00:07:13.151016841 +0000

 Birth: -

Note that each fi le in Linux retains an access, modify, and change time. You

can update the access and modify times artifi cially using touch -a text.txt

and touch -m test.txt, respectively (the change time is affected in both cases).

The change time is also affected by system operations such as chmod; the modify

time is affected by a write to the fi le; and the access time is in theory affected

by a fi le read. However, such operational behavior means that reading a fi le

causes a write! This feature of Linux causes signifi cant wear on the RPi’s SD

card and results in I/O performance defi ciencies. Therefore, the fi le access time

feature is typically disabled on the RPi boot SD card using the mount option

noatime within the /etc/fstab confi guration fi le (covered in the next section).

Note that there is also a similar nodiratime option that can be used to disable

access time updates for directories only; however, the noatime option disables

access time updates for both fi les and directories.

Just to fi nish the discussion of Figure 3-3: The example in the fi gure has 22

hard links to the fi le. For a directory this represents the number of subdirec-

tories, the parent directory (..) and itself (.). The entry is owned by root and

it is in the root group. The next entry of 4096 is the size required to store the

metadata about fi les contained in that directory (the minimum size is one sec-

tor, typically 4,096 bytes).

One fi nal point: If you perform a directory listing ls -ld in the root direc-

tory you will see a t bit in the permissions of the /tmp directory. This is called

the sticky bit, meaning that write permission is not suffi cient to delete fi les.

Therefore, in the /tmp directory any user can create fi les, but no user can delete

another user’s fi les:

molloyd@erpi:/tmp$ cd /

molloyd@erpi:/$ ls -dhl tmp

drwxrwxrwt 7 root root 4.0K Jun 19 00:18 tmp

The ls -dhl command lists (d) directory names (not their contents), with (h)

human-readable fi le sizes, in (l) long format.

The Linux Root Directory

Exploring the Linux fi le system can be daunting for new Linux users. If you go

to the top-level directory using cd / on the RPi and type ls, you will get the

top-level directory structure, of the following form:

 Chapter 3 ■ Exploring Embedded Linux Systems 79

c03.indd 08:48:0:PM 05/12/2016 Page 79

molloyd@erpi:/$ ls

bin boot.bak etc lib media opt root sbin sys usr

boot dev home lost+found mnt proc run srv tmp var

What does it all mean? Well, each of these directories has a role, and if you

understand the roles, you can start to get an idea of where to search for con-

fi guration fi les or the binary fi les that you need. Table 3-4 briefl y describes the

content of each top-level Linux subdirectory.

Table 3-4: The Linux Top-Level Directory

DIRECTORY DESCRIPTION

bin Contains the binary executables used by all of the users and is present in the

PATH environment variable by default. Another directory, /usr/bin, con-

tains executables that are not core to booting or repairing the system.

boot Contains the fi les for booting the RPi.

boot.bak Contains a backup copy of /boot after a system upgrade.

dev Contains the device nodes (linked to device drivers).

etc Confi guration fi les for the local system.

home Contains the user’s home directories (/home/pi is the pi user home).

lib Contains the standard system libraries.

lost+
found

After running fsck (fi le system check and repair) unlinked fi les display here. The

mklost+found command recreates the lost+found directory if it is deleted.

media Used for mounting removable media, such as micro-SD cards.

mnt Used typically for mounting temporary fi le systems.

opt A good place for installing third-party (non-core Linux) optional software.

proc A virtual fi le representation of processes running on the RPi. (For example, if

you cd /proc and type cat iomem you can see some memory mapping m
addresses.)

root The home directory of root account under the Raspbian and Debian Linux

distributions. (This is /home/root on many other distributions.)

run Provides information about the running system since the last boot.

sbin Contains executables for root user (superuser) system management.

srv Stores data related to ftp, web servers, rsync, etc.

sys Contains a virtual fi le system that describes the system.

tmp Contains temporary fi les.

usr Contains programs for all of the users, and many subdirectories such as

/usr/include (C/C++ header fi les), /usr/lib (C/C++ library fi les), /usr/
src (Linux kernel source), /usr/bin (user executables), /usr/local (sim-

ilar to /usr but for local users), and /usr/share (shared fi les and media

between users).

var Contains variable fi les such as system logs.

80 Part I 0 ■ Raspberry Pi Basics

c03.indd 08:48:0:PM 05/12/2016 Page 80

Commands for File Systems

In addition to commands for working with fi les and directories on fi le systems,

there are commands for working with the fi le system itself. The fi rst commands

you should examine are df (remember as disk free) andff mount. The df com-

mand provides an overview of the fi le systems on the RPi. Adding -T lists the

fi le system types:

pi@erpi / $ df -T

Filesystem Type 1K-blocks Used Available Use% Mounted on

/dev/root ext4 15186900 3353712 11165852 24% /

devtmpfs devtmpfs 470400 0 470400 0% /dev

tmpfs tmpfs 474688 0 474688 0% /dev/shm

tmpfs tmpfs 474688 0 474688 0% /sys/fs/cgroup

/dev/mmcblk0p1 vfat 57288 19824 37464 35% /boot

...

The df command is useful for determining whether you are running short

on disk space; you can see that the root fi le system /dev/root is 24% used in

this case, with 11.2 GB (of a 16 GB SD card) available for additional software

installations. Also listed are several temporary fi le system (tmpfs) entries that

actually refer to virtual fi le systems, which are mapped to the RPi’s DDR RAM.

(The /sys/fs/* entries are discussed in detail in Chapter 8.) In addition, the

/dev/mmcblk0p1 entry has a 57 MB vfat (virtual fi le allocation table, which was

introduced in Windows 95) fi le system partition on the SD card. A vfat partition

is required by the bootloaders and for fi rmware updates.

N O T E If you are running out of space on the RPi SD card root fi le system, check the

system logs: /var/log. Excessively large log fi les are symptomatic of system prob-

lems, so review them for any issues. When you have resolved any issues, you can clear

the messages log by typing cat /dev/null > /var/log/messages with root

permission (also check kern.log, dpkg.log, and syslog). For example, to clear the

dpkg.log using the pi account without deleting the fi le or resetting its fi le permis-

sions, use the following:

pi@erpi /var/log $ sudo sh -c "cat /dev/null > dpkg.log"

The shell sh -c call executes the entire command string in quotations with super

user permissions. This is required, because in a call to sudo cat /dev/null >
dpkg.log on its own, sudo does not perform the output redirection >, rather it is

performed as the pi user and therefore will fail due to insuffi cient permissions. This is

the redirection issue with sudo that is alluded to earlier in the chapter.

The list block devices command lsblk provides you with a concise tree-

structure list of the block devices, such as SD cards, USB memory keys, and USB

card readers (if any), that are attached to the RPi. As shown in the following

output, you can see that mmcblk0 (the boot SD card) is split into two partitions:

p1, which is attached to /boot, and p2, which is attached to the root of the fi le

 Chapter 3 ■ Exploring Embedded Linux Systems 81

c03.indd 08:48:0:PM 05/12/2016 Page 81

system: /. In this example, there is a USB micro-SD card reader containing a

32 GB card (see Figure 1-8(b)) that is plugged into one of the USB ports. This

appears as the block device sda with a single partition sda1, as follows:

pi@erpi ~ $ lsblk

NAME MAJ:MIN RM SIZE RO TYPE MOUNTPOINT

sda 8:0 1 29.8G 0 disk

└─sda1 8:1 1 29.8G 0 part

mmcblk0 179:0 0 14.9G 0 disk

├─mmcblk0p1 179:1 0 56M 0 part /boot

└─mmcblk0p2 179:2 0 14.8G 0 part /

Clearly, the USB ports can be used for additional storage, which is useful if

you are capturing video data and there is insuffi cient capacity on the system

SD card. You can test the performance of SD cards to ensure that they meet the

needs of your applications using the example that follows.

EXAMPLE: TESTING SD CARD READ PERFORMANCE

You can test the read performance of your SD cards and controllers using the hdparm
program. For example, on the RPi 2 (and on the RPi B+):

pi@erpi ~ $ sudo apt install hdparm

pi@erpi ~ $ sudo hdparm -tT /dev/mmcblk0 /dev/sda1

/dev/mmcblk0:

 Timing cached reads: 868 MB in 2.00 seconds = 433.95 MB/sec

 Timing buffered disk reads: 56 MB in 3.11 seconds = 18.01 MB/sec

/dev/sda1:

 Timing cached reads: 890 MB in 2.00 seconds = 444.34 MB/sec

 Timing buffered disk reads: 74 MB in 3.09 seconds = 27.24 MB/sec

You can see that the SD card in the USB adapter (sda1) performs slightly better

than the SD card that is attached to the onboard MMC controller (mmcblk0). Both

cards have the same specifi cation (SanDisk Ultra Class 10, 30 MB/sec), so the diff erence

in data read rate appears to be due to the performance of the respective controllers.

You can utilize the dd command to test write performance, but be careful, as incorrect

usage will result in data loss.

Using the mount command with no arguments provides you with further

information about the fi le system on the RPi.

pi@erpi ~ $ mount

/dev/mmcblk0p2 on / type ext4 (rw,noatime,data=ordered)

sysfs on /sys type sysfs (rw,nosuid,nodev,noexec,relatime)

proc on /proc type proc (rw,relatime) ...

As previously discussed, the fi le system is organized as a single tree that is

rooted at the root: /. Typing cd / brings you to the root point. The mount command

can be used to attach a fi le system on a physical disk to this tree. File systems

on separate physical devices can all be attached to named points at arbitrary

82 Part I ■ Raspberry Pi Basics

c03.indd 08:48:0:PM 05/12/2016 Page 82

locations on the single tree. Table 3-5 describes some fi le system commands that

you can use to manage your fi le system, and thereafter follows two examples

that demonstrate how to utilize the mount command for important RPi system

administration tasks.

Table 3-5: Useful Commands for File Systems

COMMAND DESCRIPTION

du -h /opt

du -hs /opt/*

du -hc *.jpg

Disk usage: Find out how much space a directory tree uses.

Options: (-h) human readable form, (-s) summary, (-c) total. The

last command fi nds the total size of the JPG format fi les in the

current directory.

df -h Display system disk space in (-h) human-readable form.

lsblk List block devices.

dd if=test.img
of=/dev/sdX

dd if=/dev/sdX
of=test.img

dd converts and copies a fi le, where if is the input fi le and of is

the output fi le. Use this command under Linux to write an image

to an SD card. This is typically used under desktop Linux with the

following form:

sudo dd if=./RPi*.img of=/dev/sdX

where /dev/sdX is the SD card reader/writer device.

cat /proc/
partitions

List all registered partitions.

mkfs /dev/sdX Make a Linux fi le system. Also mkfs.ext4, mkfs.vfat. This

destroys data on the device. Use carefully!

fdisk -l Note that fdisk can be used to manage disks, create partitions,

delete partitions, etc. fdisk -l displays all existing partitions.

badblocks /dev/
mmcblkX

Check for bad blocks on the SD card. SD cards have wear leveling

controller circuitry. If you get errors, get a new card; don’t record

them using fsck. Run this with root permissions and be aware

that it takes some time to run.

mount /media/
store

Mount a partition if it is listed in /etc/fstab.

umount /media/
store

Unmount a partition. You will be informed if a fi le is open on this

partition.

sudo apt
install tree

tree ~/
exploringrpi

Install the tree command and use it to display the code reposi-

tory for this book as a directory tree structure.

 Chapter 3 ■ Exploring Embedded Linux Systems 83

c03.indd 08:48:0:PM 05/12/2016 Page 83

EXAMPLE: FIXING PROBLEMS ON A SD CARD BOOT IMAGE

Occasionally, you make a change to a Linux confi guration fi le on the RPi Linux boot

image that prevents the image from booting, or causes the failure of network adapt-

ers so that you no longer have access to the device. If you have a RPi-compatible USB

card reader (see Figure 1-8(b), shown in Chapter 1), you can use a second “backup”

Linux SD card boot image to boot the RPi, whereupon you can mount the “damaged”

SD card image as follows:

pi@erpi ~ $ lsblk

NAME MAJ:MIN RM SIZE RO TYPE MOUNTPOINT

sda 8:0 1 14.7G 0 disk

├─sda1 8:1 1 56M 0 part

└─sda2 8:2 1 14.6G 0 part

mmcblk0 179:0 0 14.9G 0 disk

├─mmcblk0p1 179:1 0 56M 0 part /boot

└─mmcblk0p2 179:2 0 14.8G 0 part /

You can create mount points for the vfat and ext4 partitions of the “damaged” SD

card that is present in the USB SD card reader as follows:

pi@erpi ~ $ sudo mkdir /media/fix_vfat

pi@erpi ~ $ sudo mkdir /media/fix_ext

pi@erpi ~ $ sudo mount /dev/sda1 /media/fix_vfat/

pi@erpi ~ $ sudo mount /dev/sda2 /media/fix_ext/

You can then browse the fi le systems on the “damaged” SD card using your RPi and

undo any invalid confi guration settings:

pi@erpi ~ $ cd /media/fix_vfat/

pi@erpi /media/fix_vfat $ ls

... issue.txt start.elf cmdline.txt kernel7.img

start_x.elf config.txt kernel.img ...

pi@erpi /media/fix_vfat $ cd ../fix_ext/

pi@erpi /media/fix_ext $ ls

bin boot.bak etc lib media opt root sbin srv tmp var

boot dev home lost+found mnt proc run selinux sys usr

As above, you can edit fi les on the vfat and ext4 partitions. After completing your

changes, remember to unmount the media before physically ejecting the SD card. You

can then safely remove the mount points:

pi@erpi /media/fix_vfat $ cd ..

pi@erpi /media $ sudo umount /media/fix_vfat

pi@erpi /media $ sudo umount /media/fix_ext

pi@erpi /media $ sudo rmdir fix_vfat fix_ext

84 Part I 4 ■ Raspberry Pi Basics

c03.indd 08:48:0:PM 05/12/2016 Page 84

EXAMPLE: MOUNTING AN SD CARD AS ADDITIONAL STORAGE ON THE RPi

 1. Formatting the secondary SD card to have a Linux ext4 file system

 2. Mounting the secondary SD card as /media/store

 3. Mounting the secondary SD card automatically at boot time

 4. Configuring the card for user write access and displaying its capacity

In this example, the card is a 32 GB micro-SD card that has been placed in a micro-

USB card reader (see Figure 1-8(b), shown in Chapter 1). Ensure that the card is blank,

because this step will destroy its contents; skip to Step 2 if you want to retain the SD

card’s contents.

Step 1: Use lsblk to identify the device:

pi@erpi ~ $ lsblk

NAME MAJ:MIN RM SIZE RO TYPE MOUNTPOINT

sda 8:0 1 29.8G 0 disk

└─sda1 8:1 1 29.8G 0 part

mmcblk0 179:0 0 14.9G 0 disk

├─mmcblk0p1 179:1 0 56M 0 part /boot

└─mmcblk0p2 179:2 0 14.8G 0 part /

The 32 GB card appears as block device /sda1 and can be prepared for a fi le system

of choice (Note that using mmcblk0p1 or mmcblk0p2 for the next step will destroy

the contents of your primary boot SD card.)

Build a fi le system as follows:

pi@erpi ~ $ sudo mkfs.ext4 /dev/sda1

mke2fs 1.42.12 (29-Aug-2014)

/dev/sda1 contains a vfat file system

Proceed anyway? (y,n) y

Creating filesystem with 7814912 4k blocks and 1954064 inodes

Filesystem UUID: e9562aa9-4565-4dfd-b986-4c45d089c7ce

...

Writing superblocks and filesystem accounting information: done

Step 2: A mount point can be created, and the secondary card mounted using the

mount command (-t indicates the fi le type; when omitted, mount attempts to auto-

detect the fi le type):

pi@erpi ~ $ sudo mkdir /media/store

pi@erpi ~ $ sudo mount -t ext4 /dev/sda1 /media/store

pi@erpi ~ $ cd /media/store

pi@erpi /media/store $ ls

lost+found

pi@erpi /media/store $ lsblk

NAME MAJ:MIN RM SIZE RO TYPE MOUNTPOINT

sda 8:0 1 29.8G 0 disk

└─sda1 8:1 1 29.8G 0 part /media/store

...

 Chapter 3 ■ Exploring Embedded Linux Systems 85

c03.indd 08:48:0:PM 05/12/2016 Page 85

Step 3: To confi gure this secondary storage device to be mounted automatically at

boot time involves adding an entry to the /etc/fstab fi le. Add an entry to the last

line of the fi le, as follows:

pi@erpi ~ $ sudo nano /etc/fstab

pi@erpi ~ $ more /etc/fstab

proc /proc proc defaults 0 0

/dev/mmcblk0p1 /boot vfat defaults 0 2

/dev/mmcblk0p2 / ext4 defaults,noatime 0 1

/dev/sda1 /media/store ext4 defaults,nofail,user,auto 0 0

pi@erpi ~ $ sudo reboot

This entry confi gures the /dev/sda1 to be mounted at /media/store, identi-

fi es the fi le system as ext4 format and sets the following mount options: defaults
(use default settings), nofail (mount the device when present but ignore if absent),

user (users have permissions to mount the system), and auto (the card is mounted

on start-up, or if the user types mount -a). The 0 0 values are the dump frequency

(archive schedule) and pass number (order for fi le checking at boot) and should both

be set to 0 by default. After reboot, you will see that the SD card is mounted correctly

at /media/store.

Unfortunately, this approach may not be satisfactory if you have multiple USB SD

card readers, as the /sda1 device could refer to a diff erent SD card, depending on the

order of device initialization. An alternative approach is to use the UUID (universally

unique identifi er) of the SD card itself to confi gure the mounting instruction. The UUID

for this 32 GB card is actually displayed toward the end of Step 1, but to identify it

explicitly at this point, you can use the following:

pi@erpi ~ $ sudo blkid /dev/sda1

/dev/sda1: UUID="e9562aa9-4565-4dfd-b986-4c45d089c7ce" TYPE="ext4"

In the /etc/fstab fi le, you can replace the /dev/sda1 entry with the UUID as fol-

lows (it should all appear on a single line in the fi le):

pi@erpi ~ $ more /etc/fstab

...

UUID=e9562aa9-4565-4dfd-b986-4c45d089c7ce /media/store ext4 defa →

ults,nofail,user,auto 0 0

Again, the RPi boots correctly, regardless of the presence or absence of the micro-

SD card. If an alternative micro-SD card is placed in the USB card reader, it will not be

mounted at /media/store, but you can use its UUID to confi gure an additional

entry in /etc/fstab. In addition, you can hot swap SD cards, whereupon they will

be automatically mounted at their individually defi ned mount points. Ensure that you

execute sudo sync or sudo umount /dev/sda1 before hot swapping any SD

cards. For example, to ready the SD card for removal, use umount; to remount it with-

out physical removal and reinsertion, use mount -a:

pi@erpi ~ $ sudo umount /dev/sda1

pi@erpi ~ $ sudo mount -a

Continues

86 Part I 6 ■ Raspberry Pi Basics

c03.indd 08:48:0:PM 05/12/2016 Page 86

EXAMPLE: MOUNTING AN SD CARD AS ADDITIONAL continued

Step 4: The preceding steps result in a mount point that has root user write access

only. The mount point can be adapted to give permission so that user accounts who

are members of the users group can write to the card:

pi@erpi /media $ ls -l

drwxr-xr-x 3 root root 4096 Jun 20 00:58 store

pi@erpi /media $ sudo chgrp users store

pi@erpi /media $ sudo chmod g+w store

pi@erpi /media $ ls -l

drwxrwxr-x 3 root users 4096 Jun 20 00:58 store

pi@erpi /media $ cd store

pi@erpi /media/store $ df -k | grep /media/store

/dev/sda1 30638016 44992 29013660 1% /media/store

pi@erpi /media/store $ touch test.txt

pi@erpi /media/store $ ls

lost+found test.txt

The df command is used to display the available capacity. Also, the mount point

permissions changes persist through reboot.

find and whereis

The find command is useful for searching a directory structure for a particular

fi le. It is incredibly comprehensive; type man find for a full list of options. For

example, use the following call to fi nd the C++ header fi le iostream somewhere m

on the RPi fi le system (using sudo avoids access permission problems):

pi@erpi / $ sudo find . -name iostream*

./usr/include/c++/4.9/iostream

./usr/include/c++/4.6/iostream

Using -iname instead of -name ignores upper/lowercase letters in the search

name.

The following example fi nds fi les in /home that were modifi ed in the last 24

hours and prior to the last 24 hours, respectively:

pi@erpi ~ $ echo "RPiTest File" >> new.txt

pi@erpi ~ $ sudo find /home -mtime -1

/home/pi

/home/pi/.bash_history

/home/pi/new.txt

pi@erpi ~ $ sudo find /home -mtime +1

/home/pi/.profile

/home/pi/.bashrc ...

Alternatively, you can use access time (-atime), size (-size), owner (-user),

group (-group), and permission (-perm).

N O T E Use the grep command to recursively search a directory for fi les that contain

a specifi c string using, where -r specifi es a recursive search, -n displays the location

line number in an identifi ed fi le, and -e is followed by the search pattern:

 Chapter 3 ■ Exploring Embedded Linux Systems 87

c03.indd 08:48:0:PM 05/12/2016 Page 87

pi@erpi ~ $ sudo grep -rn /home -e "RPiTest"

/home/pi/new.txt:1:RPiTest File

For more options use man grep.

The whereis command is different in that it can be used to search for the

binary executable, source code, and manual page for a program:

pi@erpi ~ $ whereis find

find: /usr/bin/find /usr/share/man/man1/find.1.gz

In this case, the binary command is in /usr/bin and the man page is in

/usr/share/man/man1 (stored in gzip form to save space).

more or less

The more command has been used several times already, and you have likely

gleaned its use. It enables you to view a large fi le or output stream, one page at

a time. Therefore, to view a long fi le you can type more filename. For example,

the log fi le /var/log/dmesg contains all the kernel output messages. You can

view this fi le page by page by typing more /var/log/dmesg. However, if you

want to keep the display concise, use -5 to set the page length to be fi ve rows:

pi@erpi ~ $ more -5 /var/log/dmesg

[0.000000] Booting Linux on physical CPU 0xf00

[0.000000] Initializing cgroup subsys cpu

[0.000000] Initializing cgroup subsys cpuacct

[0.000000] Linux version 3.18.11-v7+ (dc4@dc4-XPS13-9333)(gcc version 4.8.3

 20140303 (prerelease)(crosstool-NG linaro-1.13.1+bzr2650-Linaro GCC 2014.03)

--More--(2%)

You can use the spacebar to page through the content and the Q key to quit.

There is an even more powerful command called less that you can access:

pi@erpi ~ $ less /var/log/dmesg

The less command gives you a fully interactive view using the keyboard.

There are too many options to list here. For example, you can use the arrow

keys to move up and down. Or you can page down using the spacebar, search

for a string by typing / (e.g., type /usb to fi nd messages related to USB devices),

and then press the N key to go to the next match (or Shift+N key to go to the

previous match).

The Reliability of SD Card File Systems

One of the most likely points of failure of the RPi is its SD card, which is more

generally known as a multimedia card (MMC). NAND-based fl ash memory,

such as that in MMCs, has a large capacity and a low cost, but it is prone to

wear, which can result in fi le system errors.

The large capacity of MMCs is largely due to the development of multi-level

cell (MLC) memory. Unlike single-level cell (SLC) memory, more than 1 bit can

be stored in a single memory cell. The high voltage levels required in the process

88 Part I 8 ■ Raspberry Pi Basics

c03.indd 08:48:0:PM 05/12/2016 Page 88

of deleting a memory cell disturbs adjacent cells, so NAND fl ash memory is

erased in blocks of 1 KB to 4 KB. Over time, the process of writing to the NAND

fl ash memory causes electrons to become trapped, reducing the conductivity

difference between the set and erased states. (For a discussion on SLC versus

MLC for high-reliability applications, see tiny.cc/erpi305.) MLCs use different

charge levels and higher voltages to store more states in a single cell. (Commercial

MLC products typically offer 4 to 16 states per cell.) Because SLCs only store a

single state, they have a reliability advantage (typically 60,000–100,000 erase/

write cycles) versus MLC (typically 10,000 cycles). MMCs are perfectly suitable

for daily use in applications such as digital photography; 10,000 cycles should

last over 27 years at one entire card write per day.

However, embedded Linux devices constantly write to their MMCs for tasks

such as logging system events in /var/log. If the RPi writes to a log fi le 20

times per day, the lifespan of the SD card could be as low as 8 months. These

are conservative fi gures, and thanks to wear leveling algorithms, the lifespan may

be much longer. Wear leveling is employed by MMCs during data writes to

ensure that rewrites are evenly distributed over the entire MMC media, thus

avoiding system failure of Linux devices due to concentrated modifi cations,

such as changes to log fi les.

For your RPi, ensure that you purchase a high-quality branded SD card. In

addition, the more unused space you have on the SD card, the better, because it

further enhances the wear leveling performance. Out of interest, other embed-

ded Linux boards such as the BeagleBone Black use eMMC (embedded MMC)

storage—essentially an MMC on a chip. These eMMCs are typically also MLC

based and have the same order of reliability as SD cards. However, one advantage

is that the board manufacturer has control over the quality and specifi cation

of the eMMC device used. Finally, most consumer SSDs are also MLC based,

with the more expensive SLC-based SSDs typically reserved for enterprise-class

applications.

For RPi applications that require extended reliability, a RAM fi le system

(tmpfs) could be used for the /tmp directory, the /var/cache directory, and for

log fi les (particularly /var/log/apt). You can achieve this by editing the /etc/

fstab fi le to mount the desired directories in memory. For example, if you have

processes that require fi le data to be shared between them for the purpose of

data interchange, you could use the /tmp directory as a RAM fi le system (tmpfs)

by editing the /etc/fstab fi le as follows:

pi@erpi /etc $ sudo nano fstab

pi@erpi /etc $ more fstab

proc /proc proc defaults 0 0

/dev/mmcblk0p1 /boot vfat defaults 0 2

/dev/mmcblk0p2 / ext4 defaults,noatime 0 1

tempfs /tmp tmpfs size=100M 0 0

 Chapter 3 ■ Exploring Embedded Linux Systems 89

c03.indd 08:48:0:PM 05/12/2016 Page 89

You can then apply these settings using the mount command:

pi@erpi /etc $ sudo mount -a

And then check that the settings have been applied:

pi@erpi /etc $ mount

...

tempfs on /tmp type tmpfs (rw,relatime,size=102400k)

The root directory is mounted by default with the noatime attribute set, which

dramatically reduces the number of writes and increases I/O performance

(as described earlier in the chapter). You should apply this attribute when possible

to all solid-state storage devices (e.g., USB memory keys), but it is not necessary

for RAM-based storage.

Remember that any data written to a tempfs will be lost on reboot. Therefore,

if you use a tmpfs for /var/log, any system errors that caused your board

to crash will not be visible on reboot. You can test this fact by creating a fi le in

the /tmp directory as confi gured above and rebooting.

The actual RAM allocation grows and shrinks depending on the fi le usage

on the tmpfs disk; therefore, you can be reasonably generous with the memory

allocation. For example, with the 100 MB /tmp tmpfs mounted:

pi@erpi /tmp $ cat /proc/meminfo | grep MemFree:

MemFree: 824368 kB

pi@erpi /tmp $ fallocate -l 75000000 test.txt

pi@erpi /tmp $ ls -l test.txt

-rw-r--r-- 1 pi pi 75000000 Jul 17 00:04 test.txt

pi@erpi /tmp $ cat /proc/meminfo | grep MemFree:

MemFree: 750788 kB

Certain RPi distributions use a read-only fi le system to improve the lifespan of

the SD card and the stability of the fi le system (e.g., OpenElec with the SquashFS

compressed fi le system), but this requires signifi cant effort and is not suitable

for the type of prototype development that takes place in this book. However,

keep it in mind for a fi nal project deployment where system stability is crucial.

Linux Commands

When you are working at the Linux terminal and you type commands such as

date, the output of these commands is sent to the standard output. As a result,

the output is displayed in your terminal window.

Output and Input Redirection (>, >>, and <)

It is possible to redirect the output to a fi le using redirection symbols > and >>.

The >> symbol was used previously in this chapter to add text to temporary

fi les. The > symbol can be used to send the output to a new fi le. For example:

90 Part I 0 ■ Raspberry Pi Basics

c03.indd 08:48:0:PM 05/12/2016 Page 90

pi@erpi ~ $ cd /tmp

pi@erpi /tmp $ date > a.txt

pi@erpi /tmp $ more a.txt

Sat 20 Jun 12:59:43 UTC 2015

pi@erpi /tmp $ date > a.txt

pi@erpi /tmp $ more a.txt

Sat 20 Jun 12:59:57 UTC 2015

The >> symbol indicates that you want to append to the fi le. The following

example illustrates the use of >> with the new fi le a.txt:

pi@erpi /tmp $ date >> a.txt

pi@erpi /tmp $ more a.txt

Sat 20 Jun 12:59:57 UTC 2015

Sat 20 Jun 13:00:17 UTC 2015

Standard input using the < symbol works in much the same way. The inclusion

of -e enables parsing of escape characters, such as the return (\n) characters,

which places each animal type on a new line:

pi@erpi /tmp $ echo -e "dog\ncat\nyak\ncow" > animals.txt

pi@erpi /tmp $ sort < animals.txt

cat

cow

dog

yak

You can combine input and output redirection operations. Using the same

animals.txt fi le, you can perform operations such as the following:

pi@erpi /tmp $ sort < animals.txt > sorted.txt

pi@erpi /tmp $ more sorted.txt

cat

cow

dog

yak

Pipes (| and tee)

Simply put, pipes (|) enable you to connect Linux commands. Just as you redirected

the output to a fi le, you can redirect the output of one command into the input

of another command. For example, to list the root directory (from anywhere

on the system) and send (or “pipe”) the output into the sort command, where

it is listed in reverse (-r) order, use the following:

pi@erpi ~ $ ls / | sort -r

var

usr

...

bin

You can identify which user installations in the /opt directory occupy the

most disk space: du gives you the disk used. Passing the argument -d1 means

 Chapter 3 ■ Exploring Embedded Linux Systems 91

c03.indd 08:48:0:PM 05/12/2016 Page 91

only list the sizes of 1 level below the current directory level, and -h means list

the values in human-readable form. You can pipe this output into the sort fi lter

command to do a numeric sort in reverse order (largest at the top). Therefore,

the command is:

pi@erpi ~ $ du -d1 -h /opt | sort -nr

113M /opt

69M /opt/sonic-pi

41M /opt/vc

4.4M /opt/minecraft-pi

Another useful tool, tee, enables you to both redirect an output to a fi le and

pass it on to the next command in the pipe (e.g., store and view). Using the

previous example, if you want to send the unsorted output of du to a fi le but

display a sorted output, you could enter the following:

pi@erpi ~ $ du -d1 -h /opt | tee /tmp/unsorted.txt | sort -nr

113M /opt

69M /opt/sonic-pi

41M /opt/vc

4.4M /opt/minecraft-pi

pi@erpi ~ $ more /tmp/unsorted.txt

4.4M /opt/minecraft-pi

69M /opt/sonic-pi

41M /opt/vc

113M /opt

You can also use tee to write the output to several fi les simultaneously:

pi@erpi ~ $ du -d1 -h /opt | tee /tmp/1.txt /tmp/2.txt /tmp/3.txt

Filter Commands (from sort to xargs)

Each of the fi ltering commands provides a useful function:

■ sort: This command has several options, including (-r) sorts in reverse;

(-f) ignores case; (-d) uses dictionary sorting, ignoring punctuation; (-n)

numeric sort; (-b) ignores blank space; (-i) ignores control characters;

(-u) displays duplicate lines only once; and (-m) merges multiple inputs

into a single output.

■ wc (word count): Calculates the number of words, lines, or characters in

a stream. For example:

pi@erpi /tmp $ wc < animals.txt

 4 4 16

This command returns that there are 4 lines, 4 words, and 16 characters.

You can select the values independently by using (-l) line count, (-w)

word count, (-m) character count, and (-c) prints out the byte count (which

would also be 16 in this case).

92 Part I ■ Raspberry Pi Basics

c03.indd 08:48:0:PM 05/12/2016 Page 92

■ head: Displays the fi rst lines of the input, which is useful if you have a

long fi le or stream of information and want to examine only the fi rst few

lines. By default, it displays the fi rst 10 lines. You can specify the number

of lines using the -n option. For example, to get the fi rst two lines of out-

put of the dmesg command (display message or driver message), which

displays the message buffer of the kernel, use the following:

pi@erpi ~ $ dmesg | head -n2

[0.000000] Booting Linux on physical CPU 0xf00

[0.000000] Initializing cgroup subsys cpu

■ tail: Works like head except that it displays the last lines of a fi le or stream. d

Using it in combination with dmesg provides useful output, as shown:

pi@erpi ~ $ dmesg | tail -n2

[8.896654] smsc95xx 1-1.1:1.0 eth0:link up,100Mbps,full-duplex...

[9.340019] Adding 102396k swap on /var/swap.

■ grep: Parses lines using text and regular expressions. You can use this

command to filter output with options, including (-i) ignore case;

(-m 5) stop after fi ve matches; (-q) silent, will exit with return status 0 if

any matches are found; (-e) specify a pattern; (-c) print a count of matches;

(-o) print only the matching text; and (-l) list the fi lename of the fi le con-

taining the match. For example, the following examines the dmesg output

for the fi rst three occurrences of the string usb, using -i to ignore case:

pi@erpi ~ $ dmesg | grep -i -m3 usb

[1.280089] usbcore: registered new interface driver usbfs

[1.285762] usbcore: registered new interface driver hub

[1.291220] usbcore: registered new device driver usb

You can combine pipes. For example, you get the exact same output by

using head and displaying only the fi rst three lines of the grep output:

pi@erpi ~ $ dmesg | grep -i usb | head -n3

[1.280089] usbcore: registered new interface driver usbfs

[1.285762] usbcore: registered new interface driver hub

[1.291220] usbcore: registered new device driver usb

■ xargs: Enables you to construct an argument list that you use to call

another command or tool. In the following example, a text fi le args.txt

that contains three strings is used to create three new fi les. The output

of cat is piped to xargs, where it passes the three strings as arguments

to the touch command, creating three new fi les a.txt, b.txt, and c.txt:

pi@erpi /tmp $ echo "a.txt b.txt c.txt" > args.txt

pi@erpi /tmp $ cat args.txt | xargs touch

pi@erpi /tmp $ ls

args.txt a.txt b.txt c.txt

Other useful fi lter commands include awk (to program any type of fi lter), fmt

(to format text), uniq (to fi nd unique lines), and sed (to manipulate a stream).

These commands are beyond the scope of this text; for example, awk is a full

programming language! Table 3-6 describes useful piped commands to give

you some ideas of how to use them.

 Chapter 3 ■ Exploring Embedded Linux Systems 93

c03.indd 08:48:0:PM 05/12/2016 Page 93

Table 3-6: Useful Pipe Examples

COMMAND DESCRIPTION

apt list --installed |
grep camera

List the installed packages and search for one that

contains the search string camera. Each command in

this table is entered on a single line.

ls -lt | head Display the fi les in the current directory in order of age.

cat urls.txt | xargs
wget

Download the fi les, listed in URLs within a text fi le

urls.txt.

dmesg | grep -c usb Count the number of times usb is found in the output

of dmesg.

find . -name "*.mp3" |
grep -vi "effects" >
/tmp/playlist.txt

Search your RPi (e.g., run from/with sudo) for mp3 fi les,

ignoring any sound eff ects fi les, in order to create a

playlist fi le in /tmp.

echo and cat

The echo command simply echoes a string, output of a command, or a value to

the standard output. Here are a few examples:

pi@erpi /tmp $ echo 'hello'

hello

pi@erpi /tmp $ echo "Today's date is $(date)"

Today's date is Sat 20 Jun 14:31:21 UTC 2015

pi@erpi /tmp $ echo $PATH

/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/sbin:/bin

In the fi rst case, a simple string is echoed. In the second case, the " " are pres-

ent as a command is issued within the echo call, and in the fi nal case the PATH

environment variable is echoed.

The echo command also enables you to see the exit status of a command

using $?. For example:

pi@erpi ~ $ ls /tmp

args.txt a.txt b.txt c.txt playlist playlist.txt

pi@erpi ~ $ echo $?

0

pi@erpi ~ $ ls /nosuchdirectory

ls: cannot access /nosuchdirectory: No such file or directory

pi@erpi ~ $ echo $?

2

Clearly, the exit status for ls is 0 for a successful call and 2 for an invalid argu-

ment. This can be useful when you are writing scripts and your own programs

that return a value from the main() function.

The cat command (concatenation) facilitates you in joining two fi les together

at the command line. The following example uses echo to create two fi les a.txt

94 Part I 4 ■ Raspberry Pi Basics

c03.indd 08:48:0:PM 05/12/2016 Page 94

and b.txt; cat concatenates the fi les to create a new fi le c.txt. You need to use

-e if you want to enable the interpretation of escape characters in the string

that is passed to echo.

pi@erpi ~ $ cd /tmp

pi@erpi /tmp $ echo "hello" > a.txt

pi@erpi /tmp $ echo -e "from\nthe\nRPi" > b.txt

pi@erpi /tmp $ cat a.txt b.txt > c.txt

pi@erpi /tmp $ more c.txt

hello

from

the

RPi

diff

The diff command facilitates you in fi nding the differences between two fi les.

It provides basic output:

pi@erpi /tmp $ echo -e "dog\ncat\nbird" > list1.txt

pi@erpi /tmp $ echo -e "dog\ncow\nbird" > list2.txt

pi@erpi /tmp $ diff list1.txt list2.txt

2c2

< cat

> cow

The value 2c2 in the output indicates that line 2 in the fi rst fi le changed to line

2 in the second fi le, and the change is that cat changed to cow. The character a
means appended, and d means deleted. For a side-by-side comparison, you can

use the following:

pi@erpi /tmp $ diff -y -W70 list1.txt list2.txt

dog dog

cat | cow

bird bird

where -y enables the side-by-side view and -W70 sets the width of the display

to 70 character columns.

If you want a more intuitive (but challenging) difference display between two

fi les, you can use the vimdiff command (installed using sudo apt install

vim), which displays a side-by-side comparison of the fi les using the vim (Vi

IMproved) text editor (type vimdiff list1.txt list2.txt and use the VI key

sequence: Escape : q ! twice to quit, or Escape : w q to save the changes and

quit). Vim requires practice to master the key sequences.

tar

The tar command is an archiving utility that enables you to combine fi les and

directories into a single fi le (like an uncompressed zip fi le). This fi le can then

 Chapter 3 ■ Exploring Embedded Linux Systems 95

c03.indd 08:48:0:PM 05/12/2016 Page 95

be compressed to save space. To archive and compress a directory of fi les, such

as /tmp, use the following:

pi@erpi ~ $ tar cvfz tmp_backup.tar.gz /tmp

where (c) means new archive, (v(() means verbosely list fi les, (z) means compress

with gzip, and (f) means archive name follows. You might also see .tar.gz

represented as .tgz. See Table 3-7 for more examples.

Table 3-7: Useful tar Commands

COMMAND DESCRIPTION

tar cvfz name.tar.gz
/tmp

Compress with gzip form.

tar cvfj name.tar.bz2
/tmp

Compress with bzip2 compression (typically a longer

delay, but smaller, fi le). Enter all commands in this table

on a single line.

tar cvfJ name.tar.xz
/tmp

Compress with xz fi le format (used in .deb package fi les)

tar xvf name.tar.* Decompress compressed fi le (x indicates extract). It will

auto-detect the compression type (e.g., gzip, bz2).

tar xvf name.tar.*
/dir/file

Extract a single fi le from an archive. Works for a single

directory too.

tar rvf name.tar
filename

Add another fi le to the archive.

tar cfz name-$(date
+%m%d%y).tar.gz /dir/
filename

Create an archive with the current day’s date; useful for

scripts and cron job backups. Note that there must be a

space between date and +%m%d%y.

md5sum

The md5sum command enables you to check the hash code, to verify that the fi les m

have not been corrupted maliciously or accidentally in transit. In the following

example, the wavemon tool is downloaded as a .deb package, but not installed.

The md5sum command can be used to generate the md5 checksum:

pi@erpi ~ $ sudo apt-get download wavemon

Get:1 http://mirrordirector.raspbian.org/raspbian/ jessie/main

wavemon armhf 0.7.6-2 [48.2 kB] Fetched 48.2 kB in 0s (71.4 kB/s)

pi@erpi ~ $ ls -l *.deb

-rw-r--r-- 1 root root 48248 Mar 28 2014 wavemon_0.7.6-2_armhf.deb

pi@erpi ~ $ md5sum wavemon_0.7.6-2_armhf.deb

1dffa011736e25b63a054f1515d18b3e wavemon_0.7.6-2_armhf.deb

You can now check this checksum against the offi cial checksum to ensure

you have a valid fi le. Unfortunately, it can be diffi cult to fi nd the checksums for

96 Part I 6 ■ Raspberry Pi Basics

c03.indd 08:48:0:PM 05/12/2016 Page 96

individual packages online. If wavemon is installed, the checksums are in /var/

lib/dpkg/info/wavemon.md5sums. You can install a utility under Debian called

debsums to check the integrity of the fi le and its constituent parts:

pi@erpi ~ $ sudo apt install debsums wavemon

pi@erpi ~ $ debsums wavemon_0.7.6-2_armhf.deb

/usr/bin/wavemon OK

/usr/share/doc/wavemon/AUTHORS OK

/usr/share/doc/wavemon/NEWS.gz OK

...

If you are building your own packages that you want to distribute, it would

be useful to also distribute a checksum fi le against which users can verify their

downloaded repository. An alternative to md5sum is sha256sum, which can be

used in the same way.

Linux Processes

A process is an instance of a program that is running on the OS. You need to

be able to manage the processes that are running on your RPi, understand

foreground and background processes, and kill a process that becomes locked.

How to Control Linux Processes

The ps command lists the processes currently running on the RPi. Typing ps

shows that the following RPi is running two user processes, the bash shell with

process ID (PID) 912 and the ps command itself, which is running with PID

25481. The ps PID is different every time you run it because it runs to comple-

tion each time:

pi@erpi ~ $ ps

 PID TTY TIME CMD

 912 pts/0 00:00:05 bash

25481 pts/0 00:00:00 ps

To see all running processes, use ps ax. In the following example, it is fi ltered

to search for the string “ntp” to discover information about the ntp processes

that are running on the RPi:

pi@erpi ~ $ ps ax | grep ntp

 1069 ? Ss 0:00 /usr/sbin/ntpd -p /var/run/ntpd.pid -g -u 107:112

 1077 ? S 0:00 /usr/sbin/ntpd -p /var/run/ntpd.pid -g -u 107:112

 1132 ttyAMA0 S+ 0:00 grep --color=auto ntp

It is clear that three different processes are running for the service, enabling

it to handle multiple simultaneous connections. In this example, all threads are

currently waiting for an event to complete (S), PID 1069 is the session leader

(Ss), 1077 is its clones (S), and the 1132 grep process is in the foreground group

 Chapter 3 ■ Exploring Embedded Linux Systems 97

c03.indd 08:48:0:PM 05/12/2016 Page 97

(S+). As described earlier, a call to systemctl status ntp provides information

about the services running on the RPi—if you execute the call, you will see that

the process PIDs match those displayed by a call to ps.

Foreground and Background Processes

Linux is a multitasking OS that enables you to run processes in the background

while using a program that is running in the foreground. This concept is similar

to the behavior of a windowing system (e.g., Windows, Mac OS X). For example,

the desktop clock continues to update the time while you use a web browser.

The same is true of applications that run in a terminal window. To demonstrate

that, here is a small segment of C code to display “Hello World!” every 5 seconds

in a Linux terminal. Exactly how this works is covered in Chapter 5, but for the

moment, you can enter the code verbatim into a fi le called HelloRPiSleep.c

using the nano fi le editor within the pi user home directory, as follows:

pi@erpi ~ $ cd ~/

pi@erpi ~ $ nano HelloRPiSleep.c

pi@erpi ~ $ more HelloRPiSleep.c

#include<unistd.h>

#include<stdio.h>

int main(){

 int x=0;

 do{

 printf("Hello Raspberry Pi!\n");

 sleep(5);

 }while(x++<50);

 return 0;

}

The program has 50 iterations, displaying a message and sleeping for 5 seconds

on each iteration. After saving the fi le as HelloRPiSleep.c, it can be compiled

to an executable by typing the following (-o specifi es the executable fi le name):

pi@erpi ~ $ gcc HelloRPiSleep.c -o helloRPiSleep

pi@erpi ~ $ ls -l helloRPiSleep

-rwxr-xr-x 1 pi pi 5864 Jun 20 16:40 helloRPiSleep

If this works correctly, you will now have the source fi le and the executable

program called helloRPiSleep (note that the executable x fl ag is set). It can

then be executed:

pi@erpi ~ $./helloRPiSleep

Hello Raspberry Pi!

Hello Raspberry Pi! ...

It will continue to output this message every 5 seconds; it can be killed using

Ctrl+C. However, if you would like to run this in the background, you have

two options.

98 Part I 8 ■ Raspberry Pi Basics

c03.indd 08:48:0:PM 05/12/2016 Page 98

The fi rst way is that, instead of using Ctrl+C to kill the process, use Ctrl+Z,

and then at the prompt type the bg (backgk round) command:

pi@erpi ~ $./helloRPiSleep

Hello Raspberry Pi!

^Z

[1]+ Stopped ./helloRPiSleep

pi@erpi ~ $ bg

[1]+ ./helloRPiSleep &

pi@erpi ~ $ Hello Raspberry Pi!

Hello Raspberry Pi!

Hello Raspberry Pi!

When you type Ctrl+Z, the ^Z displays in the output. When bg is entered, the

process is placed in the background and continues to execute. In fact, you can

continue to use the terminal but it will be frustrating, because “Hello Raspberry

Pi!” displays every 5 seconds. You can bring this process back into the foreground

using the fg command:

pi@erpi ~ $ fg

./helloRPiSleep

Hello Raspberry Pi!

^C

pi@erpi ~ $

The application is killed when Ctrl+C is typed (displays as ^C).

The second way to place this application in the background is to execute the

application with an & symbol after the application name:

pi@erpi ~ $./helloRPiSleep &

[1] 30965

pi@erpi ~ $ Hello Raspberry Pi!

Hello Raspberry Pi!

The process has been placed in the background with PID 30965 in this case. To

stop the process, use ps to fi nd the PID:

pi@erpi ~ $ ps aux|grep hello

pi 30965 0.0 0.0 1612 304 pts/0 S 20:14 0:00 ./helloRPiSleep

pi 30978 0.0 0.1 4208 1828 pts/0 S+ 20:15 0:00 grep hello

To kill the process, use the kill command:

pi@erpi ~ $ kill 30965

[1]+ Terminated ./helloRPiSleep

You can confi rm that a process is dead by using ps again. If a process doesn’t

die, you can use a -9 argument to ensure death! (e.g., kill -9 30965). A separate

command, pkill, will kill a process based on its name, so in this case you can

kill the process as follows:

pi@erpi ~ $ pkill helloRPiSleep

 Chapter 3 ■ Exploring Embedded Linux Systems 99

c03.indd 08:48:0:PM 05/12/2016 Page 99

One more command worth mentioning is watch, which executes a command

at a regular interval and shows the outcome full screen on the terminal. For

example, to watch the kernel message log, use the following:

pi@erpi ~ $ watch dmesg

You can specify the time interval between each execution using -n followed

by the number of seconds. A good way to understand watch is to execute it as

follows:

pi@erpi ~ $ watch -n 1 ps a

Every 1.0s: ps a Sat Jun 20 20:22:39 2015

 PID TTY STAT TIME COMMAND

 912 pts/0 Ss 0:06 -bash

31184 pts/0 S+ 0:01 watch -n 1 ps a

31257 pts/0 S+ 0:00 watch -n 1 ps a

31258 pts/0 S+ 0:00 sh -c ps a

31259 pts/0 R+ 0:00 ps a

You will see the PID of ps, sh, and watch changing every one (1) second, mak-

ing it clear that watch is actually executing the command (ps) by passing it to a

new shell using sh -c. The reason why watch appears twice in the list is that it

spawns itself temporarily at the exact moment that it executes ps a.

Other Linux Topics

At this point of the book, you have covered the core commands for working

with Linux on the RPi; however, there is much more to cover on the topic of

managing Linux systems. For example, how do you confi gure a Wi-Fi adapter?

How do you use cron to schedule jobs with the RPi? These topics and many

others are detailed as you work through the book. For example, cron jobs are

covered in Chapter 12, in the context of the Internet of Things.

Using Git for Version Control

Simply put, Git is a system that enables you to track changes to the content of a

software project as it develops. Git, designed by Linus Torvalds, is used today

for mainline Linux kernel development. Git is an incredibly useful system to

understand for two main reasons: You can use Git when developing your own

software, and you can gain an appreciation of how to work with Linux kernel

source distributions.

Git is a distributed version control system (DVCS) for source control manage-

ment. A version control system (VCS) tracks and manages changes to documents

of any type. Typically, documents that have been changed are marked with

100 Part I 0 ■ Raspberry Pi Basics

c03.indd 08:48:0:PM 05/12/2016 Page 100

revision numbers and time stamps. It is possible to compare revisions and even

revert to older versions of the documents. There are two types of VCSs:

■ Centralized (CVCS): These systems, such as Apache Subversion (SVN),

work on the basis that there is a single “master” copy of the project. The

workfl ow is straightforward: You pull down changes from a central server,

make your changes, and commit them back to the master copy.

■ Distributed(DVCS): Using these systems, such as Git and Selenic Mercurial,

you do not pull down changes; instead, you clone the entire repository,

including its entire history. The clone of the repository is just as complete

as the master copy and can even become the master copy if required.

Thankfully, by today’s standards, text documents and programming source

code do not occupy much disk space. Importantly, the DVCS model does

not prevent you from having a central master repository that everybody

uses; take a look at git.kernel.org.

The main advantage of a DVCS over a CVCS is that you can quickly commit

and test changes locally, on your own system, without ever having to push them

to a master copy; however, changes can be pushed when they reach an appro-

priate level of quality. The only signifi cant disadvantage is the amount of disk

space required to store the project and its entire history, which grows over time.

Git is a DVCS that is focused on programming source control and management.

It enables you to create parallel developments that do not affect the original. You

can even revert to an older version of one of the source code fi les, or an older

version of the entire project. The project, with its associated fi les and history, is

called a repository. This capability is particularly useful in large-scale program-

ming projects for which you may go down a development pathway with the

project that is ultimately unsuccessful. The facility for parallel development is

also important if you have several people working on the same project.

Git is written in C, and although it originated from the need for version control

tools in the development of Linux kernel code, it is used by many other open

source developments such as Eclipse and Android.

The easiest way to understand Git is to go through the steps of actually using

it. Therefore, the next section is structured as a step-by-step guide. If it is not

already, Git is easily installed using sudo apt install git, so you should be

able to follow the steps, directly at the terminal. GitHub is used in this book as

the remote repository for providing the source code examples. Except for push-

ing the source code to the server, you can do everything in this guide without a

GitHub account. GitHub provides free public repository accounts, but charges a

fee for private repositories, such as those that would be required for retaining

intellectual property rights.

 Chapter 3 ■ Exploring Embedded Linux Systems 101

c03.indd 08:48:0:PM 05/12/2016 Page 101

N O T E If you are planning to write a large software project and do not want to make

it publicly available on www.github.com or pay a subscription fee, you can currently

host small-scale private repositories at sites such as bitbucket.org and gitlab

.com. With some work, you can even set up GitLab on your own server, as there is an

open source version of the platform.

A Practice-Based Introduction

In this guide, I create a repository called “test” on GitHub. Initially, it contains

only a README.md fi le with a short description of the “test” project.

As shown in Figure 3-4, nearly all operations are local operations. A checksum

is performed on every fi le in Git before it is stored. The checksum ensures that

Git will be aware if a modifi cation is made outside of Git itself, including fi le

system corruption. Git uses 40-character hash codes for the checksums. This

helps Git to keep track of changes between the local repository and remote

repository, which enables the range of local operations.

Figure 3-4: The basic Git workflow

Cloning a Repository (git clone)

Cloning a repository means making a copy of all the fi les in the repository on

your local fi le system, as well as the history of changes to that project. You do

this operation only once. To clone the repository, issue the command git clone

followed by the fully formed repository name:

pi@erpi / $ cd ~/

pi@erpi ~ $ git clone https://github.com/derekmolloy/test.git

Cloning into 'test'...

remote: Counting objects: 14, done.

remote: Compressing objects: 100% (5/5), done.

http://www.github.com

102 Part I ■ Raspberry Pi Basics

c03.indd 08:48:0:PM 05/12/2016 Page 102

remote: Total 14 (delta 1), reused 0 (delta 0), pack-reused 9

Unpacking objects: 100% (14/14), done.

Checking connectivity... done.

You now have a full copy of the “test” repository in the /test directory. Your

repository is just as complete as the version on the GitHub server; if you were

to deploy it over a network, fi le system, other Git server, or even on a different

GitHub account, it could assume the role as the main version of this repository.

Although there is no need for a central server, it is usually the case, because it

enables multiple users to “check in” source code to a known master repository.

The repository is created in the /test directory, and it currently contains the

following:

pi@erpi ~/test $ ls -al

total 20

drwxr-xr-x 3 pi pi 4096 Jun 20 22:00 .

drwxr-xr-x 6 pi pi 4096 Jun 20 22:00 ..

drwxr-xr-x 8 pi pi 4096 Jun 20 22:00 .git

-rw-r--r-- 1 pi pi 59 Jun 20 22:00 README.md

You can see the README.md that was created when the project was initialized

on GitHub; you can use more to view the contents of this fi le. The directory

also contains a hidden .git subdirectory, which contains the following fi les

and directories:

pi@erpi ~/test/.git $ ls

branches description hooks info objects refs

config HEAD index logs packed-refs

The hidden .git folder contains all the information about the repository,

such as commit messages, logs, and the data objects. For example, the remote

repository location is maintained in the config fi le:

pi@erpi ~/test/.git $ more config | grep url

 url = https://github.com/derekmolloy/test.git

The “Further Reading” section at the end of this chapter directs you to an

excellent book on Git, which is freely available online, that describes the nature

of the .git directory structure in detail. Thankfully, in the following discussion,

you do not have to make changes in the .git directory structure, because you

have Git commands to do that for you.

N O T E This step-by-step guide uses my “test” repository; however, you can easily

create your own repository on GitHub. After you set up a free account on GitHub, go

to Create New, and then New repository. Give the repository a name and a descrip-

tion, make it publicly available, choose to initialize it with a README, and then choose

Create Repository. You can then follow these instructions using your own account,

and as a result you will be able to push back from the RPi to your own repository on

GitHub.

 Chapter 3 ■ Exploring Embedded Linux Systems 103

c03.indd 08:48:0:PM 05/12/2016 Page 103

Getting the Status (git status)

Now that the repository exists, the next step is to add a new text fi le to the

working directory, where it will be it in an untracked state. When you call the

command git status, you can see a message stating that “untracked fi les”

are present:

pi@erpi ~/test $ echo "Just some text" > newfile.txt

pi@erpi ~/test $ git status

On branch master

Your branch is up-to-date with 'origin/master'.

Untracked files:

 (use "git add <file>..." to include in what will be committed)

 newfile.txt

nothing to commit, untracked files present (use "git add" to track)

The next step is to add any untracked fi les to the staging area. However, if

you did not want to add a set of fi les, you could also create a .gitignore fi le to

ignore those fi les. For example, this could be useful if you are building C/C++

projects and you decide that you do not want to add intermediate .o fi les. Here

is an example of creating a .gitignore fi le in order to ignore C/C++ .o fi les:

pi@erpi ~/test $ echo "*.o" > .gitignore

pi@erpi ~/test $ more .gitignore

*.o

pi@erpi ~/test $ touch testobject.o

pi@erpi ~/test $ git status

On branch master

Your branch is up-to-date with 'origin/master'.

Untracked files:

 (use "git add <file>..." to include in what will be committed)

 .gitignore

 newfile.txt

nothing to commit, untracked files present (use "git add" to track)

In this case, two fi les are untracked, but there is no mention of the testobject.o

fi le, as it is being correctly ignored. Note that the .gitignore fi le is itself part

of the repository and so will persist when the repository is cloned, along with

its revision history and so on.

Adding to the Staging Area (git add)

The fi les in the working directory can now be added to the staging area by typing

git add .—this command adds all of the fi les in the working directory, with

the exception of the ignored fi les. In this example, two fi les are added from the

working directory to the staging area, and the status of the repository can then

be displayed using the following:

pi@erpi ~/test $ git add .

pi@erpi ~/test $ git status

104 Part I 4 ■ Raspberry Pi Basics

c03.indd 08:48:0:PM 05/12/2016 Page 104

On branch master

Your branch is up-to-date with 'origin/master'.

Changes to be committed:

 (use "git reset HEAD <file>..." to unstage)

 new file: .gitignore

 new file: newfile.txt

To delete (r((emove) a fi le from the staging area, use git rm somefile.ext.

Committing to the Local Repository (git commit)

After you add fi les to the staging area, you can commit the changes from the

staging area to the local Git repository. First, you may want to add your name

and e-mail address variables, to identify who is committing the changes:

pi@erpi ~/test $ git config --global user.name "Derek Molloy"

pi@erpi ~/test $ git config --global user.email derek@my.email.com

These values are set against your Linux user account, so they will persist when

you next log in. You can see them by typing more ~/.gitconfig.

To permanently commit the fi le additions to the local Git repository, use the

git commit command:

pi@erpi ~/test $ git commit -m "Testing the repository"

[master 3eea9a2] Testing the repository

 2 files changed, 2 insertions(+)

 create mode 100644 .gitignore

 create mode 100644 newfile.txt

The changes are fl agged with the username, and a message is also required.

If you want to detail the message inline, use -m to set the commit message.

N O T E The shortcut git commit -a commits modifi ed fi les directly to the local d

repository, without requiring a call to add. It does not add new fi les. Refer back to

Figure 3-4, shown earlier in this chapter.

Pushing to the Remote Repository (git push)

To perform this step, you must have your own GitHub account. The git push

command pushes any code updates to the remote repository. You must be reg-

istered to make changes to the remote repository for the changes to be applied.

In Git 2.0, a new more conservative approach, called simple, has been taken to e
push to remote repositories. It is chosen by default, but a warning message can

be squelched, and the push can be performed as follows (replace the user details

and repository name with your own account details):

pi@erpi ~/test $ git config --global push.default simple

pi@erpi ~/test $ git push

 Chapter 3 ■ Exploring Embedded Linux Systems 105

c03.indd 08:48:0:PM 05/12/2016 Page 105

Username for 'https://github.com': derekmolloy

Password for 'https://derekmolloy@github.com': mySuperSecretPassword

Counting objects: 4, done.

Delta compression using up to 4 threads.

Compressing objects: 100% (2/2), done.

Writing objects: 100% (4/4), 350 bytes | 0 bytes/s, done.

Total 4 (delta 0), reused 0 (delta 0)

To https://github.com/derekmolloy/test.git

 f5c45f4..3eea9a2 master -> master

After the code has been pushed to the remote repository, you can pull changes

back to a local repository on any machine by issuing a git pull command from

within the local repository directory:

pi@erpi ~/test $ git pull

Already up-to-date.

In this case everything is already up-to-date.

Git Branching

Git supports the concept of branching, which enables you to work on multiple

different versions of the set of fi les within your project. For example, to develop

a new feature in your project (version 2) but maintain the code in the current

version (version 1), you could create a new branch (version 2). New features and

changes that are made to version 2 will not affect the code in version 1. You can

then easily switch between branches.

Creating a Branch (git branch)

Suppose, for example, you want to create a new branch called mybranch; you

can do so using the command git branch mybranch, and then you can switch

to that branch using git checkout mybranch, as shown:

pi@erpi ~/test $ git branch mybranch

pi@erpi ~/test $ git checkout mybranch

Switched to branch 'mybranch'

Now, to demonstrate how this works, suppose that a temporary fi le called

testmybranch.txt is added to the repository. This could be a new code fi le for

your project. You can see that the status of the branch makes it clear that the

working directory contains an untracked fi le:

pi@erpi ~/test $ touch testmybranch.txt

pi@erpi ~/test $ ls

newfile.txt README.md testmybranch.txt testobject.o

pi@erpi ~/test $ git status

On branch mybranch

Untracked files:

 (use "git add <file>..." to include in what will be committed)

106 Part I 6 ■ Raspberry Pi Basics

c03.indd 08:48:0:PM 05/12/2016 Page 106

 testmybranch.txt

nothing to commit, untracked files present (use "git add" to track)

You can then add this new fi le to the staging area of the branch using the

same commands:

pi@erpi ~/test $ git add .

pi@erpi ~/test $ git status

On branch mybranch

Changes to be committed:

 (use "git reset HEAD <file>..." to unstage)

 new file: testmybranch.txt

You can commit this change to the mybranch branch of the local repository.

This change will affect the mybranch branch but have no impact on the master

branch:

pi@erpi ~/test $ git commit -m "Test commit to mybranch"

[mybranch d4cabf3] Test commit to mybranch

 1 file changed, 0 insertions(+), 0 deletions(-)

 create mode 100644 testmybranch.txt

pi@erpi ~/test $ git status

On branch mybranch

nothing to commit, working directory clean

pi@erpi ~/test $ ls

newfile.txt README.md testmybranch.txt testobject.o

You can see from the preceding output that the fi le testmybranch.txt is

committed to the local repository and you can see the fi le in the directory.

If you now switch from the branch mybranch to the master branch using the

call git checkout master, you will see that something interesting happens

when you request the directory listing:

pi@erpi ~/test $ git checkout master

Switched to branch 'master'

Your branch is up-to-date with 'origin/master'.

pi@erpi ~/test $ ls

newfile.txt README.md testobject.o

Yes, the fi le testmybranch.txt has disappeared from the directory! It still exists,

but it is in a blob form inside the .git/objects directory. If you return to the

branch and list the directory, you will see the following:

pi@erpi ~/test $ git checkout mybranch

Switched to branch 'mybranch'

pi@erpi ~/test $ ls

newfile.txt README.md testmybranch.txt testobject.o

The fi le now reappears. Therefore, you can see just how well integrated the

branching system is. At this point, you can go back to the master branch and

make changes to the original code without the changes in the mybranch branch

 Chapter 3 ■ Exploring Embedded Linux Systems 107

c03.indd 08:48:0:PM 05/12/2016 Page 107

having any impact on the master code. Even if you change the code in the same

fi le, it has no effect on the original code in the master branch.

Merging a Branch (git merge)

What if you want to apply the changes that you made in the mybranch branch

to the master project? You can do this by using git merge:

pi@erpi ~/test $ git checkout master

Switched to branch 'master'

Your branch is up-to-date with 'origin/master'.

pi@erpi ~/test $ git merge mybranch

Updating 3eea9a2..d4cabf3

Fast-forward

 testmybranch.txt | 0

 1 file changed, 0 insertions(+), 0 deletions(-)

 create mode 100644 testmybranch.txt

pi@erpi ~/test $ git status

On branch master

Your branch is ahead of 'origin/master' by 1 commit.

 (use "git push" to publish your local commits)

nothing to commit, working directory clean

pi@erpi ~/test $ ls

newfile.txt README.md testmybranch.txt testobject.o

Now the testmybranch.txt fi le is in the master branch and any changes

that were made to other documents in the master have been applied. The local

repository is now one commit ahead of the remote repository and you can use

git push to update the remote repository.

Deleting a Branch (git branch -d)

If you want to delete a branch, use the git branch -d mybranch command:

pi@erpi ~/test $ git branch -d mybranch

Deleted branch mybranch (was d4cabf3).

pi@erpi ~/test $ ls

newfile.txt README.md testmybranch.txt testobject.o

In this case the fi le testmybranch.txt is still present in the master project—

and it should be, because the branch was merged with the master project. If

the branch had been deleted before the merge was performed, the fi le would

have been lost.

Common Git Commands

Table 3-8 provides a summary of the main Git commands. At this point, you

have seen the core use of Git. If you are developing code directly on the RPi,

108 Part I 8 ■ Raspberry Pi Basics

c03.indd 08:48:0:PM 05/12/2016 Page 108

Git can be highly useful, because you can easily push your developments to a

remote repository. That capability can be useful in backing up your code and

redeploying the code to multiple RPis.

Table 3-8: Summary of the Main Git Commands

OPERATION DESCRIPTION OPERATION DESCRIPTION

git clone Clone from the remote

repository.

git rm Delete a fi le or directory

from the staging area.

git init Create a wholly new

repository.

git mv Move or rename a fi le

or folder in the staging

area.

git pull Merge changes from a

master repository.

git log Display a log of commits.

The project history.

git fetch Find what has changed in

a master repository with-

out merging.

git tag Give a commit a name

(e.g., version 2).

git status Show the project’s status. git merge
[name]

Merge the branch.

git add Add a new fi le or edit an

existing fi le.

git show Get details about the cur-

rent or other commit.

git diff Show the diff erences that

are to be committed.

git branch
[name]

Create a new branch.

(Use -d to delete.)

git commit Commit to the repository. git check-
out [name]

Switch to a diff erent

branch.

git push Push changes from the

local repository to a

remote repository.

Using Desktop Virtualization

The RPi is a capable general-purpose computing platform, but if you are planning

to build a Linux kernel or perform cross-platform development (see Chapter 7),

a PC-based Linux installation is highly recommended. You can either use a

single/dual boot Linux PC, or if you are a Windows/Mac native, you should

investigate desktop virtualization.

Desktop virtualization enables a single desktop computer to run multiple OS

instances simultaneously. It uses technology called hypervisors, which consist of

hardware, fi rmware, and software elements, to create and run software-emulated

machines, known as virtual machines (VMs). If you want to run multiple OS

 Chapter 3 ■ Exploring Embedded Linux Systems 109

c03.indd 08:48:0:PM 05/12/2016 Page 109

instances on a single computer, VMs provide an alternative to creating a multi-

boot confi guration.

In virtualization, there are usually two or more distinct OS instances. The host
OS is the one that was fi rst installed on the physical machine. The hypervisor

software is then used to create a guest OS within a VM. Figure 3-5 captures a

host Windows 8.1 desktop computer running a guest Debian 64-bit Linux Jessie

VM within a window. The Debian installation has the Cairo-Dock desktop

interface installed.

Figure 3-5: VirtualBox running Debian (Jessie) as a guest OS on a Windows host machine

Many virtualization products are available, but most have signifi cant costs,

proprietary licenses, and are limited in the type of guest and host OSs that

they support. Two of the most popular Linux desktop virtualization prod-

ucts are VMware Player and VirtualBox. VMware Player (www.vmware.com/((

products/player/) is free for personal use. VirtualBox (www.virtualbox.org(()

is available under a GNU GPLv2 license (some features are available free under

a proprietary license).

Both products use hosted hypervisors (Type 2) for virtualization, meaning that

they run within a regular OS, enabling you to use both machines simultaneously.

VirtualBox is available to run on Windows, Mac OS X, and Linux machines,

and it can be used to host guest OSs such as Linux, Windows, and Mac OS

X. Currently, VMware Player is not available for Mac OS X host installations;

instead, you must purchase a product called VMware Fusion.

http://www.vmware.com/products/player
http://www.vmware.com/products/player
http://www.virtualbox.org

110 Part I 0 ■ Raspberry Pi Basics

c03.indd 08:48:0:PM 05/12/2016 Page 110

Both products are powerful and it is diffi cult to distinguish between them;

however, VirtualBox is released under a GPL, and it supports a useful feature

called snapshots. A user interface makes it possible to take a snapshot of the guest

OS that can be saved for later use. For example, you could take a snapshot before

you make a signifi cant confi guration change to your guest OS, enabling you to

roll back to that confi guration should problems arise. The snapshot stores the

VM settings; changes in the contents of the virtual disks; and the memory state

of the machine at that point in time. Therefore, when a snapshot is restored, the

VM continues running at the exact same point as when the snapshot was taken.

If you install the VirtualBox Guest Additions, you are able to copy and paste

text between your guest and host OSs, share directories, and even resize the win-

dow dynamically. This chapter’s web page (www.exploringrpi.com/chapter3/(()

provides advice on installing a Linux guest OS under a Windows host OS.

All Linux packages and software in this book are built and tested using a

Debian 64-bit desktop distribution that is installed within a VirtualBox VM.

N O T E All Linux packages and software in this book are built and tested using a

Debian 64-bit desktop distribution that is installed within a VirtualBox VM.

Code for This Book

Now that you have your Desktop Linux installation up and running under

VirtualBox, or you are running a regular Linux desktop installation, you can

download all of the source code, scripts, and documentation discussed in this

book by opening a Linux terminal session/window and typing the following

(on the desktop machine and RPi):

pi@erpi ~ $ sudo apt install git

pi@erpi ~ $ git clone https://github.com/derekmolloy/exploringRPi.git

Cloning into 'exploringRPi'...

If you want to download the code from within Windows or Mac OS X, a

graphical user interface for working with GitHub repositories is available from

windows.github.com and mac.github.com.

N O T E If you have your own GitHub account, you can use its web interface to fork

this repository to your own account or you can watch the repository for updates and

changes. A GitHub account without private repositories is currently free of charge. In

addition, students and academics can apply for a free Micro account, which provides

for fi ve private repositories for 2 years.

http://www.exploringrpi.com/chapter3
http://www.exploringrpi.com/chapter3

 Chapter 3 ■ Exploring Embedded Linux Systems 111

c03.indd 08:48:0:PM 05/12/2016 Page 111

Summary

After completing this chapter, you should be able to do the following:

■ Describe the basic concept of an embedded Linux system.

■ Describe how an embedded Linux device, such as the RPi, boots the

Linux OS.

■ Describe important Linux concepts, such as kernel space, user space, and

system initialization using systemd.

■ Perform Linux system administration tasks on the RPi.

■ Use the RPi fi le system effectively.

■ Use a range of Linux commands for fi le and process management.

■ Manage your own software development projects using Git.

■ Install a Linux distribution on your desktop computer host OS using

desktop virtualization tools, such as VirtualBox.

■ Download the source code for this book using Git.

Further Reading

The following texts can help you learn more about embedded Linux, Linux

administration, Git, and virtualization:

■ Christopher Hallinan’s Embedded Linux Primer: A Practical Real-World
Approach, Second Edition (Upper Saddle River, NJ: Prentice Hall, 2011)

■ The Debian Policy Manual: tiny.cc/erpi303

■ To learn more about Git, start with a call to man gittutorial and then if

you need detailed information, see Scott Chacon’s excellent reference Pro
Git, at t tiny.cc/erpi304; also available in paperback (New York: Apress

Media, 2009).

Bibliography

■ ARM Holdings. (2015, February 11). ARM Holdings PLC Reports Results

for the Fourth Quarter and Full Year 2014. Retrieved June 14, 2015, from

www.arm.com/about/newsroom/arm-holdings-plc-reports-results-

for-the-fourth-quarter-and-full-year-2014.php.

http://www.arm.com/about/newsroom/arm-holdings-plc-reports-results-for-the-fourth-quarter-and-full-year-2014.php
http://www.arm.com/about/newsroom/arm-holdings-plc-reports-results-for-the-fourth-quarter-and-full-year-2014.php
http://www.arm.com/about/newsroom/arm-holdings-plc-reports-results-for-the-fourth-quarter-and-full-year-2014.php

112 Part I ■ Raspberry Pi Basics

c03.indd 08:48:0:PM 05/12/2016 Page 112

■ McCracken, J., Sherman, A., & King, I. (2015, May 27). Avago to Buy Broadcom

for $37 Billion in Biggest Tech Deal Ever. Bloomberg Business. Retrieved

June 14, 2015, from www.bloomberg.com/news/articles/2015-05-27/

avago-said-near-deal-to-buy-wireless-chipmaker-broadcom.

■ Git FAQ. (2013, March 9). Retrieved 2 22, 2014, from Git Wiki: git.wiki

.kernel.org/index.php/GitFaq#Why_the_.27git.27_name.3F.

■ Smith, B. (2013, July 29). A Quick Guide to GPLv3. Retrieved June 14,

2015, from www.gnu.org/licenses/quick-guide-gplv3.html .

http://www.bloomberg.com/news/articles/2015-05-27
http://www.gnu.org/licenses/quick-guide-gplv3.html
http://www.bloomberg.com/news/articles/2015-05-27/avago-said-near-deal-to-buy-wireless-chipmaker-broadcom

113

c04.indd 03:13:36:PM 05/20/2016 Page 113

This chapter introduces you to the type of practical electronics that you need to

work correctly and effectively in interfacing electronic circuits with the Raspberry

Pi (RPi) platform. The chapter begins by describing some equipment that can be

very helpful in developing and debugging electronic circuits. It continues with

a practical introductory guide to circuit design and analysis, in which you are

encouraged to build the circuits and utilize the equipment that is described at

the beginning of the chapter. The chapter continues with a discussion on the

typical discrete components that can be interfaced to the general-purpose input/

outputs (GPIOs) on the RPi, including diodes, capacitors, transistors, optocouplers,

switches, and logic gates. Finally, the important principles of analog-to-digital

conversion (ADC) are described, as such knowledge is required in Chapter 9

to build circuits that interface the RPi to analog sensors.

Equipment Required for This Chapter:

 ■ Components for this chapter (if following along): The full list is provided

at the end of this chapter.

 ■ Digilent Analog Discovery (version 1 or 2) or access to a digital multimeter,

signal generator, and oscilloscope.

Further details on this chapter are available at www.exploringrpi.com/chapter4/.

C H A P T E R

4

Interfacing Electronics

http://www.exploringrpi.com/chapter4/

114 Part I ■ Raspberry Pi Basics

c04.indd 03:13:36:PM 05/20/2016 Page 114

N O T E One chapter cannot be a substitute for full textbooks on digital and analog

electronics; however, there are concepts with which you should be comfortable before

connecting electronics to the GPIO interface header on the Raspberry Pi, as incorrect

confi gurations can easily destroy the board. Later chapters depend heavily on the

electronics concepts that are described in this chapter; however, it is not vital that

you assimilate all of the content in this chapter before you move on. Importantly, this

chapter is here as a reference for electronics concepts mentioned in later chapters.

Analyzing Your Circuits

When developing electronics circuits for the RPi platform, it is useful to have

the following tools so that you can analyze a circuit before you connect it to the

RPi inputs/outputs, in order to reduce the chance of damaging your board. In

particular, it is useful to have access to a digital multimeter and a mixed-signal

oscilloscope.

N O T E The tools listed here are for your consideration. Be sure to do your homework

and seek independent advice before choosing any such product. None of the prod-

ucts I include are the result of any type of product placement agreement or request.

All prices are approximate.

Digital Multimeter

A digital multimeter (DMM) is an invaluable tool for measuring the voltage,

current, and resistance/continuity of RPi circuits. If you don’t already have one,

try to purchase one with the following features:

 ■ Auto power off: It is easy to waste batteries.

 ■ Auto range: It is vital that you can select different measurement ranges.

Mid-price meters often have automatic range selection functionality that

can reduce the time required to take measurements.

 ■ Continuity testing: This feature should provide an audible beep unless

there is a break in the conductor (or excessive resistance).

 ■ True RMS readings: Most low-cost meters use averaging to calculate

AC(~) current/voltage. True RMS meters process the readings using

a true root mean square (RMS) calculation, which makes it possible to

account for distortions in waveforms when taking readings. This feature

is useful for analyzing phase controlled equipment, solid-state devices,

motorized devices, etc.

 Chapter 4 ■ Interfacing Electronics 115

c04.indd 03:13:36:PM 05/20/2016 Page 115

 ■ Other useful options: These options are not strictly necessary but are

helpful: backlit display, a measurement hold, large digit displays, a greater

number of signifi cant digits, PC connectivity (ideally opto-isolated), tem-

perature probe, and diode testing.

 ■ Case: Look for a good-quality rubberized plastic case.

Generally, most of the preceding features are available on mid-price DMMs

with a good level of accuracy (1% or better), high input impedances (>10 MΩ),

and good measurement ranges. High-end multimeters mainly offer faster mea-

surement speed and greater levels of measurement accuracy; some may also

offer features such as measuring capacitance, frequency, temperature using an

infrared sensor, humidity, and transistor gain. Some of the best known brands

are Fluke, Tenma, Agilent, Extech, and Klein Tools.

Oscilloscopes

Standard DMMs provide you with a versatile tool that enables you to measure

average voltage, current, and resistance. Oscilloscopes typically only measure

voltage, but they enable you to see how the voltage changes with respect to time.

Typically, you can simultaneously view two or more voltage waveforms that are

captured within a certain bandwidth and number of analog samples (memory).

The bandwidth defi nes the range of signal frequencies that an oscilloscope can

measure accurately (typically to the 3 dB point, i.e., the frequency at which a

sine wave amplitude is ~30% lower than its true amplitude). To achieve accurate

results, the number of analog samples needs to be a multiple of the bandwidth

(you will see why later in this chapter when the Nyquist rate is discussed); and

for modern oscilloscopes, this value is typically four to fi ve times the bandwidth,

so a 25 MHz oscilloscope should have 100 million samples per second or greater.

The bandwidth and number of analog samples have the greatest infl uence on

the cost of an oscilloscope.

Several low-cost two-channel oscilloscopes are available, such as those by

Owon PDS5022S 25 MHz (~$200), feature-rich Siglent SDS1022DL 25 MHz (~$325),

Rigol DS1052 50 MHz (~$325), and Owon SDS6062 60 MHz (~$349). Prices rise

considerably as the bandwidth increases, to around $1,500 for a 300 MHz scope.

Agilent digital storage (DSOX) and mixed-signal (MSOX) series scopes would be

considered to be mid/high range and cost $3,000 (100 MHz) to $16,000 (1 GHz).

Mixed-signal scopes also provide you with digital bus analysis tools.

The Digilent Analog Discovery with Waveforms (see Figure 4-1) is used to test

all of the circuits in this book. The Analog Discovery (and very similar Analog

Discovery 2) is a USB oscilloscope, waveform generator, digital pattern genera-

tor, and logic analyzer for the Windows environment. The recently released

Waveforms 2015 software now has support for Linux (including ARM) and

Mac OS X. The Analog Discovery is generally available for $259–$279. If you

116 Part I ■ Raspberry Pi Basics

c04.indd 03:13:36:PM 05/20/2016 Page 116

are starting out, or refreshing your electronics skills, it is a really great piece of

equipment for the price.

Figure 4-1: The Waveforms application generating a signal and displaying the response from

the physical circuit

N O T E A video I made about the use of the Analog Discovery is available at this

chapter’s web page: www.exploringrpi.com/chapter4. It demonstrates three

diff erent measurement applications of the Analog Discovery: analog analysis of a

rectifi er diode; using the digital pattern generator and logic analyzer to investigate

the behavior of a JK fl ip-fl op; and using the logic analyzer and its I2C interpreter to

connect to the BeagleBone Black I2C bus and analyze how it behaves. The analysis per-

formed would be identical on the RPi platform.

The Analog Discovery is used to generate all of the oscilloscope plots that

are presented in this book, as all examples have been implemented using real

circuits. The scope is limited to two channels at 5 MHz per channel and 50 mil-

lion samples per second, for both the waveform generator and the differential

oscilloscope. As such, the Analog Discovery is mainly focused on students and

learners; however, it can also be useful in deciding upon “must-have” features

for your next, more expensive, equipment.

http://www.exploringrpi.com/chapter4
http://www.exploringrpi.com/chapter4

 Chapter 4 ■ Interfacing Electronics 117

c04.indd 03:13:36:PM 05/20/2016 Page 117

There are alternative mixed-signal USB scopes, such as PicoScopes, which

range from $160 to $10,000 (www.picotech.com), and the BitScope DSO, from

$150 to $1,000 (www.bitscope.com), which has Linux support. However, based

on the feature set that is currently available on USB oscilloscopes, it may be

the case that a bench scope with a USB logic analyzer (to provide mixed-mode

functionality, such as the Saleae logic analyzer, www.saleae.com) provides the

best “bang for your buck.”

N O T E The BitScope Micro (~$145) is a special version of the BitScope that is built

especially for the RPi. Similar to the Analog Discovery, it is a two-channel oscilloscope

(20 MHz), logic analyzer (6 channel), and spectrum analyzer. The BitScope Micro is

designed to be connected directly to the RPi, and it can be used to create a standalone

or network-accessible measurement and data acquisition platform. In addition, it

includes software libraries that you can use to build custom acquisition applications.

For more information, see bitscope.com/pi/.

Basic Circuit Principles

Electronic circuits contain arrangements of components that can be described as

being either passive or active. Active components, such as transistors, are those

that can adaptively control the fl ow of current, whereas passive components

cannot (e.g., resistors, capacitors, diodes). The challenge in building circuits is

designing a suitable arrangement of appropriate components. Fortunately, there

are circuit analysis equations to help you.

Voltage, Current, Resistance, and Ohm’s Law

The most important equation that you need to understand is Ohm’s law. It is

simply stated as follows:

V = I × R

where:

 ■ Voltage (V), measured in volts (V), is the difference in potential energy

that forces electrical current to fl ow in the circuit. A water analogy is very

useful when thinking of voltage; many houses have a buffer tank of water

in the attic that is connected to the taps in the house. Water fl ows when a

tap is turned on, due to the height of the tank and the force of gravity. If

the tap were at the same height as the top of the tank of water, no water

would fl ow, because there would be no potential energy. Voltage behaves

in much the same way; when a voltage on one side of a component, such

as a resistor, is greater than on the other side, electrical current can fl ow

across the component.

http://www.picotech.com
http://www.bitscope.com
http://www.saleae.com
http://www.picotech.com
http://www.bitscope.com

118 Part I ■ Raspberry Pi Basics

c04.indd 03:13:36:PM 05/20/2016 Page 118

 ■ Current (I), measured in amps (A), is the fl ow of electrical charge. To con-

tinue the water analogy, current would be the fl ow of water from the tank

(with a high potential) to the tap (with a lower potential). Remember that

the tap still has potential and water will fl ow out of the drain of the sink,

unless it is at ground level (GND). To put the level of current in context,

when we build circuits to interface with the RPi’s GPIOs, they usually

source or sink only about 3 mA, where a milliamp is one thousandth of

an amp.

 ■ Resistance (R), measured in ohms (Ω), discourages the fl ow of charge.

A resistor is a component that reduces the fl ow of current through the

dissipation of power. It does this in a linear fashion, where the power dis-

sipated in watts (W), is given by P = V × I or, alternatively by integrating

Ohm’s law: P = I2 R = V2 ⁄ R. The power is dissipated in the form of heat,

and all resistors have a maximum dissipated power rating. Common metal

fi lm or carbon resistors typically dissipate 0.125 W to 1 W, and the price

increases dramatically if this value has to exceed 3 W. To fi nish with the

water analogy, resistance is the friction between the water and the pipe,

which results in a heating effect and a reduction in the fl ow of water. This

resistance can be increased by increasing the surface area over which the

water has to pass, while maintaining the pipe’s cross-sectional area (e.g.,

placing small pipes within the main pipe).

As an example, if you had to buy a resistor that limits the fl ow of current to

100 mA when using a 5 V supply, as illustrated in Figure 4-2(a), which resistor

should you buy? The voltage dropped across the resistor, VR, must be 5 V, as

it is the only component in the circuit. Because VR = IR × R, it follows that the

resistor should have the value R = VR ⁄ (IR = 5 V) ⁄ (100 mA) = 50 Ω, and the power

dissipated by this resistor can be calculated using any of the general equations

P = VI = I 2 R = V 2 ⁄ R as 0.5 W.

(a) (b)

Figure 4-2: (a) Ohm’s law circuit example, and (b) a voltage divider example

Buying one through-hole, fi xed-value metal-fi lm resistor with a 1% tolerance

(accuracy) costs about $0.10 for a 0.33 W resistor and $0.45 for a 1 W power rat-

ing. You should be careful with the power rating of the resistors you use in your

 Chapter 4 ■ Interfacing Electronics 119

c04.indd 03:13:36:PM 05/20/2016 Page 119

circuits, as underspecifi ed resistors can blow. A 30 W resistor will cost $2.50 and

can get extremely hot—not all resistors are created equally!

W A R N I N G Why would it be bad practice to connect a voltage supply’s positive

terminal to the negative terminal without a resistor? This is called a short circuit, and

it is the quickest way to damage a sensitive device like the RPi. Connection (hook-up)

wire by its nature is a good conductor, and it has a very small resistance. A 100 M (328‘)

roll of 0.6 mm (0.023”) hook-up wire has a total resistance of about 5 Ω; therefore, con-

necting a 6” length of connection wire between a RPi 3.3 V supply and its GND terminal

would in theory draw 433 A (I=V/R=3.3 V/0.0076 Ω). In practice this will not happen, but

the available maximum current would likely damage your RPi! Also, remember that

LEDs do not include a fi xed internal resistance, so they behave somewhat like a short

circuit when forward biased—LEDs nearly always require current-limiting resistors for

this reason!

Voltage Division

If the circuit in Figure 4-2(a) is modifi ed to add another resistor in series as

illustrated in Figure 4-2(b), what will be the impact on the circuit?

 ■ Because one resistor is after the other (they’re in series), the total resistance

that the current must pass through to circulate in the circuit is the sum of

the two values: RT = R1 + R2 .

 ■ The supply voltage must drop across the two resistors, so you can say that

Vsupply = VR1 + VR2. The voltage that drops across each resistor is inversely

proportional to the resistor’s value. This circuit is called a voltage divider.

Suppose you want to calculate on paper the voltage value at point X in

Figure 4-2(b) if R1 = 25 Ω and R2 = 75 Ω. The total resistance in the circuit is

RT = 25 + 75 = 100 Ω, and the total voltage drop across the resistors must be 5 V;

therefore, by using Ohm’s law, the current fl owing in the circuit is I = V/R =

5 V/100 Ω = 50 mA. If the resistance of R1 is 25 Ω, then the voltage drop across

VR1 = I × R = 0.05 A × 25 Ω = 1.25 V and the voltage drop across VR2 = I × R =

0.05 A × 75 Ω = 3.75 V. You can see that the sum of these voltages is 5 V, thus

obeying Kirchoff’s voltage law, which states that the sum of the voltage drops

in a series circuit equals the total voltage applied.

To answer the question fully: In this circuit, 1.25 V is dropped across R1 and

3.75 V is dropped across R2, so what is the voltage at X? To know that, you have

to measure X with respect to some other point! If you measured X with respect to

the negative terminal of the supply, the voltage drop is VX in Figure 4-2(b), and it is

the same as the voltage drop across R2, so it is 3.75 V. However, it would be equally

as valid to ask the question, “What is the voltage at X with respect to the positive

terminal of the supply?” In that case, it would be the negative of the voltage drop

across R1 (as X is at 3.75 V with respect to the negative terminal and the positive

120 Part I ■ Raspberry Pi Basics

c04.indd 03:13:36:PM 05/20/2016 Page 120

terminal is at +5 V with respect to the negative terminal); therefore, the voltage at

X with respect to the positive terminal of the supply is −1.25 V.

To calculate the value of VX in Figure 4-2(b), the voltage divider rule can be

generalized to the following:

V V R
R RXVV =

2

1 2

You can use this rule to determine a voltage VX, but unfortunately this con-

fi guration is quite limited in practice, because it is very likely that the circuit

to which you connect this voltage supply, VX, will itself have a resistance (or

load). This will alter the characteristic of your voltage divider circuit, changing

the voltage VX. However, most circuits that follow voltage dividers are usually

input circuits that have very high input impedances, and therefore the impact

on VX will be minimal.

Figure 4-3(a) captures a variable resistor, or potentiometer (pot), and an

associated circuit where it is used as a standalone voltage divider. The resis-

tance between pins 1 and 3 is a fi xed value, 10 kΩ in the case of the multiturn

pot; however, the resistance between pins 3 and the wiper pin (pin 2) varies

between 0 Ω and 10 kΩ. Therefore, if the resistance between pins 2 and 3 is 2 kΩ,

then the resistance between pins 1 and 2 will be 10 kΩ − 2 kΩ = 8 kΩ. In such a

case, the output voltage, Vout, will be 1 V and it can be varied between 0 V and

5 V by turning the small screw on the pot, using a trim tool or screwdriver.

(a)(a) (b(b))

Figure 4-3: (a) Potentiometers and using a variable voltage supply, and (b) a current divider

example

Current Division

If the circuit is modifi ed as in Figure 4-3(b) to place the two resistors in paral-

lel, you now have a current divider circuit. Current will follow the path of least

resistance, so if R1 = 100 Ω and R2 = 200 Ω, then a greater proportion of the cur-

rent will travel through R1. So, what is this proportion? In this case the voltage

drop across R1 and R2 is 5 V in both cases. Therefore, the current I1 will be

I = V/R = 5 V/100 Ω = 50 mA and the current I2 will be I = 5 V/200 Ω = 25 mA.

 Chapter 4 ■ Interfacing Electronics 121

c04.indd 03:13:36:PM 05/20/2016 Page 121

Therefore, twice as much current travels through the 100 Ω resistor as the 200 Ω

resistor. Clearly, current favors the path of least resistance.

Kirchoff’s current law states that the sum of currents entering a junction equals

the sum of currents exiting that junction. This means that IS = I1 + I2 = 25 mA +

50 mA = 75 mA. The current divider rule can be stated generally as follows:

I I R
R R1

=
2

1 2
× ⎛
⎝
⎜
⎛⎛
⎝⎝

⎞
⎠
⎟
⎞⎞
⎠⎠
, and I I R

R R2 =
2

1 2
× ⎛
⎝
⎜
⎛⎛
⎝⎝

⎞
⎠
⎟
⎞⎞
⎠⎠

However, this requires that you know the value of the current I (IS in this case)

that is entering the junction. To calculate IS directly, you need to calculate the

equivalent resistance (RT) of the two parallel resistors, which is given as follows:

1
=

1
+

1

21R R RT
, or R R

R RT =
1 2R
1 2

,

This is 66.66 Ω in Figure 4-3(b); therefore IS = V/R = 5 V/66.66 Ω = 75 mA, which

is consistent with the initial calculations.

The power delivered by the supply: P = VI = 5 V × 0.075 A = 0.375 W. This

should be equal to the sum of the power dissipated by R1 = V2/R = 52/100 =

0.25 W and, R2 = V2/R = 52/200 = 0.125 W giving 0.375 W total, confi rming that

the law of conservation of energy applies!

Implementing RPi Circuits on a Breadboard

The breadboard is a great platform for prototyping circuits and it works per-

fectly with the RPi. Figure 4-4 illustrates a breadboard, describing how you

can use the two horizontal power rails for 3.3 V and 5 V power. The RPi GPIO

header consists of male header pins, which means that you typically require

relatively expensive female jumper connectors for wiring circuits. RPi GPIO

extension boards (e.g., the Adafruit Pi T-Cobbler Plus), as illustrated in Figure

4-4, are widely available for interfacing to breadboards. They solve the prob-

lem of connecting to the male headers on the RPi using female jumper cables,

provide a very stable connection, and allow you to use low-cost hook-up wire

for your circuits. Please be especially careful when connecting the RPi end of

a GPIO extension board cable to the RPi, as the connector is not polarized and

therefore can be connected backward.

A good-quality breadboard like that in Figure 4-4 (830 tie points) costs about

$6 to $10. Giant breadboards (3,220 tie points) are available for about $20. Here

are some tips for using breadboards:

 ■ Whenever possible, place Pin 1 of your ICs on the bottom left so that you

can easily debug your circuits. Always line up the pins carefully with the

breadboard holes before applying pressure and “clicking” it home. Also,

ICs need power!

 ■ Leaving a wire disconnected is not the same as connecting it to GND

(discussed later in this chapter).

122 Part I ■ Raspberry Pi Basics

c04.indd 03:13:36:PM 05/20/2016 Page 122

 ■ Use a fl at-head screwdriver to slowly lever ICs out of the breadboard

from both ends to avoid bending the IC’s legs.

 ■ Be careful not to bridge resistors and other components by placing two of

their pins in the same vertical rail. Also, trim resistor leads before placing

them in the board, as long resistor leads can accidentally touch and cause

circuit debugging headaches.

 ■ Momentary push buttons typically have four legs that are connected in

two pairs; make sure that you orient them correctly (use a DMM conti-

nuity test).

 ■ Staples make great bridge connections!

 ■ Some boards have a break in the power rails; bridge this where necessary.

 ■ Breadboards typically have 0.1” spacing (lead pitch) between the tie points,

which is 2.54 mm metric. Try to buy all components and connectors with

that spacing. For ICs, choose the DIP/PDIP (the IC code ends with an N);

and for other components, choose the “through-hole” form.

 ■ Use the color of the hook-up wire to mean something—e.g., use red for

5 V and black for GND; it can really help when debugging circuits. Solid-

core 22AWG wire serves as perfect hook-up wire and is available with

many different insulator colors. Pre-formed jumper wire is available, but

long wires lead to messy circuits. A selection of hook-up wire in differ-

ent colors and a good-quality wire-stripping tool enables the neatest and

most stable breadboard layouts.

Figure 4-4: The breadboard with an RPi GPIO extension board and a 7408 IC (quad two-input

AND gates)

 Chapter 4 ■ Interfacing Electronics 123

c04.indd 03:13:36:PM 05/20/2016 Page 123

EXAMPLE: MAKING CUSTOM CABLES FOR THE RPI GPIO HEADER

As an alternative to using GPIO expansion boards or pre-crimped female jumper
wires, you can make custom cables for the RPi’s DuPont PCB interconnector. Custom
cables allow for deployable stable connections, custom cable lengths, custom break-
out directions, and mixed male/female end connectors. Figure 4-5(a) illustrates a
custom-built connector that is attached to the RPi header. Figure 4-5(b) illustrates a
typical budget-price crimping tool ($20–$35). A video on this topic is available on the
chapter web page and at tiny.cc/erpi401.

(a) (b)

Figure 4-5: (a) The custom-built connector attached to an RPi (model B), and (b) a low-cost

crimping tool

Digital Multimeters (DMMs) and Breadboards

Measuring voltage, current and resistance is fairly straightforward once you

take a few rules into account (with reference to Figure 4-6):

 ■ DC voltage (DCV) is measured in parallel with (i.e., across) the component

that experiences the voltage drop. The meter should have the black probe

in the COM (common) DMM input.

 ■ DC current (DCA) is measured in series, so you will have to “break” the

connection in your circuit and wire the DMM as if it were a component

in series with the conductor in the circuit in which you are measuring

current. Use the black probe lead in COM and the red lead in the μAmA

input (or equivalent). Do not use the 10 A unfused input.

 ■ Resistance cannot usually be measured in-circuit, because other resistors

or components will act as parallel/series loads in your measurement.

Isolate the component and place your DMM red probe in the VΩ input and

set the meter to measure Ω. The continuity test can be reasonably effec-

tively used in-circuit, provided that it is de-energized.

124 Part I ■ Raspberry Pi Basics

c04.indd 03:13:36:PM 05/20/2016 Page 124

Figure 4-6: Measuring voltage, current, and resistance

If your DMM is refusing to function, you may have blown the internal fuse.

Disconnect the DMM probes and open the meter to fi nd the small glass fuse. If

you have a second meter you can perform a continuity test to determine whether

it has blown. Replace it with a like value (or PTC)—not a mains fuse!

W A R N I N G Measuring current directly across a voltage supply (even a 9 V bat-

tery) with no load is the quickest way to blow the DMM fuse, as most are rated at

about 200 mA. Check that the probe is in the VΩ input before measuring voltage.

Example Circuit: Voltage Regulation

Now that you have read the principles, a more complex circuit is discussed in

this section, and then the components are examined in detail in the following

sections. Do not build the circuit in this section; it is intended as an example to

introduce the concept of interconnected components.

A voltage regulator is a complex but easy-to-use device that accepts a varied

input voltage and outputs a constant voltage almost regardless of the attached

load, at a lower level than the input voltage. The voltage regulator maintains the

output voltage within a certain tolerance, preventing voltage variations from

damaging downstream electronics devices.

The RPi B+ and RPi 2/3 models have a dual high-effi ciency PWM step-down

DC-DC converter (PAM2306 on U3, see tiny.cc/erpi402) that can supply

different fi xed voltage levels to on-board devices, along with short-circuit pro-

tection. For example, there is a 5 V, 3.3 V, and a 1.8 V output. You can use these

5 V and 3.3 V outputs as supplies on the RPi GPIO header to drive your cir-

cuits, but only within certain current supply limits. The RPi can supply up to

200 mA–300 mA on the 5 V pins (Pins 2 and 4), and approximately 50 mA on the

3.3 V pins (Pins 1 and 17).

 Chapter 4 ■ Interfacing Electronics 125

c04.indd 03:13:36:PM 05/20/2016 Page 125

If you want to draw larger currents for applications like driving motors, you

may need to use voltage regulators like that in Figure 4-7. You can build this

directly on a breadboard or you can purchase a “breadboard power supply stick

5 V/3.3 V” from SparkFun (www.sparkfun.com) for about $15.

(a)a) (b(b))

Figure 4-7: The KA7805A/LM7805 voltage regulator and an example regulator circuit

As shown in Figure 4-7, the pin on the left of the regulator is the voltage

supply input. When delivering a current of 500 mA, the KA7805/LM7805 volt-

age regulator will accept an input voltage range of 8 V–20 V, and will output a

voltage (on the right) in the range of 4.8 V–5.2 V. The middle pin should be

connected to the ground rail. The aluminum plate at the back of the voltage

regulator is there to dissipate heat. The hole enables you to bolt on a heat sink,

allowing for greater output currents, of up to 1 A.

The minimum input voltage required is about 8 V in order to drive the KA7805/

LM7805 voltage regulator. If your supply voltage is lower than that, then you

could use a low-dropout (LDO) voltage regulator, which can require a supply

as low as 6 V to operate a 5 V regulator. The implementation circuit in Figure

4-7 has the following additional components that enable it to deliver a clean

and steady 5 V, 1 A supply:

 ■ The diode ensures that if the supply is erroneously connected with the

wrong polarity (e.g., 9 V and GND are accidentally swapped), then

the circuit is protected from damage. Diodes like the 1N4001 (1 A supply)

are very low cost, but the downside is that there will be a small forward

voltage drop (approximately 1 V at 1 A) across the diode in advance of

the regulator.

 ■ The switch can be used to power the circuit on or off. A slider switch

enables the circuit to remain continuously powered.

 ■ The Positive Temperature Coeffi cient (PTC) resettable fuse is very use-

ful for preventing damage from overcurrent faults, such as accidental

short circuits or component failure. The PTC enables a holding current

to pass with only a small resistance (about 0.25 Ω); but once a greater trip-

ping current is exceeded, the resistance increases rapidly, behaving like a

http://www.sparkfun.com

126 Part I ■ Raspberry Pi Basics

c04.indd 03:13:36:PM 05/20/2016 Page 126

circuit breaker. When the power is removed, the PTC will cool (for a few

seconds) and it regains its pre-tripped characteristics. In this circuit a 60R110

or equivalent Polyfuse would be appropriate, as it has a holding current

of 1.1 A and a trip current of 2.2 A, at a maximum voltage of 60 V DC.

 ■ The 0.33 μF capacitor is on the supply side of the regulator and the

0.1 μF capacitor is on the output side of the regulator. These are the values

recommended in the datasheet to remove noise (ripple rejection) from the

supply. Capacitors are discussed shortly.

 ■ The LED and appropriate current-limiting resistor provide an indicator

light that makes it clear when the supply is powered.

N O T E There are two main notations to represent current fl ow: The fi rst is electron

current fl ow, and it is the fl ow of negative charge. The second is conventional fl ow

notation, and it is precisely the opposite: It is the fl ow of positive charge, and it is con-

sistent with all semiconductor symbols. This book uses the conventional fl ow notation

to describe current fl ow direction.

Discrete Components

The previous example circuit used a number of discrete components to build a

standalone power supply circuit. In this section, the types of components that

compose the power supply circuit are discussed in more detail. These compo-

nents can be applied to many different circuit designs, and it is important to

discuss them now, as many of them are used in designing circuits that interface

to the RPi input/outputs in Chapter 6.

Diodes

Simply put, a diode is a discrete semiconductor component that allows current to

pass in one direction but not the other. As the name suggests, a “semi” conductor

is neither a conductor nor an insulator. Silicon is a semiconductive material, but

it becomes much more interesting when it is doped with an impurity, such as

phosphorus. Such a negative (n-type) doping results in a weakly bound electron

in the valence band. It can also be positively doped (p-type) to have a hole in

the valence band, using impurities such as boron. When you join a small block

of p-type and n-type doped silicon together, you get a pn-junction—a diode!

The free electrons in the valence band of the n-type silicon fl ow to the p-type

silicon, creating a depletion layer and a voltage potential barrier that must be

overcome before current can fl ow.

 Chapter 4 ■ Interfacing Electronics 127

c04.indd 03:13:36:PM 05/20/2016 Page 127

When a diode is forward biased it allows current to fl ow through it; when it

is reverse-biased, no current can fl ow. A diode is forward-biased when the volt-

age on the anode (+ve) terminal is greater than the voltage on the cathode (−ve)
terminal; however, the biasing must also exceed the depletion layer potential

barrier (knee voltage) before current can fl ow, which is typically between 0.5 V

and 0.7 V for a silicon diode. If the diode is reverse-biased by applying a greater

voltage on the cathode than the anode, then almost no current can fl ow (maybe

1 nA or so). However, if the reverse-biased voltage is increasingly raised, then

eventually the diode will break down and allow current to fl ow in the reverse

direction. If the current is low then this will not damage the diode—in fact, a

special diode called a Zener diode is designed to operate in this breakdown

region, and it can be confi gured to behave just like a voltage regulator.

The 1N4001 is a low-cost silicon diode that can be used in a simple circuit

(see Figure 4-8) to demonstrate the use and behavior of diodes. The 1N4001 has

a peak reverse breakdown voltage of 50 V. In this circuit, a sine wave is applied

that alternates from +5 V to −5 V, using the waveform generator of the Analog

Discovery. When the Vin voltage is positive and exceeds the knee voltage, then

current will fl ow and there will be a voltage drop across the load resistor Vload,

which is slightly less than Vin. There is a small voltage drop across the diode Vd

and you can see from the oscilloscope measurements that this is 0.67 V, which

is within the expected range for a silicon diode.

(a) (b)

Figure 4-8: Circuit and behavior of a 1N4001 diode with a 5 V AC supply and a 1 kΩ load resistor

The diode is used in the circuit in Figure 4-7 as a reverse polarity protector.

It should be clear from the plot in Figure 4-8 why it is effective, as when Vin is

negative, the Vload is zero. This is because current cannot fl ow through the diode

when it is reverse-biased. If the voltage exceeded the breakdown voltage for the

diode then current would fl ow; but since that is 50 V for the 1N4001, it will not

occur in this case. Note that the bottom right-hand corner of Figure 4-8 shows

an XY-plot of output voltage (y-axis) versus input voltage (x-axis). You can see

that for negative input voltage the output voltage is 0, but once the knee voltage

is reached (0.67 V), the output voltage increases linearly with the input voltage.

128 Part I ■ Raspberry Pi Basics

c04.indd 03:13:36:PM 05/20/2016 Page 128

This circuit is called a half-wave rectifi er. It is possible to connect four diodes in

a bridge formation to create a full-wave rectifi er.

Light-Emitting Diodes (LEDs)

A light-emitting diode (LED) is a semiconductor-based light source that is often

used as a state indication light in all types of devices. Today, high-powered LEDs

are being used in car lights, in back lights for televisions, and even in place of

fi lament lights for general-purpose lighting (e.g., home lighting, traffi c lights,

etc.) mainly due to their longevity and extremely high effi ciency in converting

electrical power to light output. LEDs provide very useful status and debug

information about your circuit, often used to indicate whether a state is true

or false.

Like diodes, LEDs are polarized. The symbol for an LED is illustrated in Figure

4-9. To cause an LED to light, the diode needs to be forward biased by connect-

ing the anode (+) to a more positive source than the cathode (−). For example,

the anode could be connected to +3.3 V and the cathode to GND; however, also

remember that the same effect would be achieved by connecting the anode to

0 V and the cathode to −3.3 V.

Figure 4-9 illustrates an LED that has one leg longer than the other. The lon-

ger leg is the anode (+) and the shorter leg is the cathode (−). The plastic LED

surround also has a fl at edge, which indicates the cathode (−) leg of the LED.

This fl at edge indication is particularly useful when the LED is in-circuit and

the legs have been trimmed.

Figure 4-9: An LED example and a circuit to drive an LED with appropriate forward current and

voltage levels

LEDs have certain operating requirements, defi ned by a forward voltage and

a forward current. Every LED is different, and you need to reference the data-

sheet of the LED to determine these values. An LED does not have a signifi cant

 Chapter 4 ■ Interfacing Electronics 129

c04.indd 03:13:36:PM 05/20/2016 Page 129

resistance, so if you were to connect the LED directly across your RPi’s 3.3 V

supply, the LED would act like a short circuit, and you would drive a very large

current through the LED, damaging it—but more important, damaging your

RPi! Therefore, to operate an LED within its limits you need a series resistor,

called a current-limiting resistor. Choose this value carefully to maximize the

light output of the LED and to protect the circuit.

W A R N I N G Do not connect LEDs directly to the GPIOs on the RPi’s GPIO header

without using current-limiting resistors and/or transistor switching, as you will likely

damage your board. The maximum current that the RPi should source from, or sink to

a GPIO pin should be kept at about 2–3 mA.

Referring to Figure 4-9, if you are supplying the LED from the RPi’s 3.3 V sup-

ply and you want to have a forward voltage drop of 1.3 V across the LED, you

need the difference of 2 V to drop across the current-limiting resistor. The LED

specifi cations require you to limit the current to 9 mA, so you need to calculate

a current-limiting resistor value as follows:

As V = IR, then R = V/I = 2 V/0.009 A = 222 Ω

Therefore, a circuit to light an LED would look like that in Figure 4-9. Here

a 220 Ω resistor is placed in series with the LED. The combination of the 3.3 V

supply and the resistor drives a current of 9 mA through the forward-biased

LED; as with this current the resistor has a 2 V drop across it, then accordingly

the LED has a forward voltage drop of 1.3 V across it. Note that this current is

fi ne if you are connecting to the RPi’s 3.3 V output, but it is not fi ne for use with

the RPi’s GPIOs, as the maximum current that the RPi can realistically source

from a GPIO pin is about 2 mA–3 mA. You will see a solution for this shortly,

and again in Chapter 6.

It is also worth mentioning that you should not dim LEDs by reducing the

voltage across the LED. An LED should be thought of as a current-controlled

device, where driving a current through the LED causes the forward voltage

drop. Therefore, trying to control an LED with a variable voltage will not work

as you might expect. To dim an LED you can use a pulse-width modulated

(PWM) signal, essentially rapidly switching the LED on and off. For example,

if a rapid PWM signal is applied to the LED that is off for half of the time and

on for half of the time, then the LED will appear to be only emitting about half

of its regular operating condition light level. Our eyes don’t see the individual

changes if they are fast enough; they average over the light and dark interval

to see a constant, but dimmer illumination.

Figure 4-10 illustrates a PWM square wave signal at different duty cycles. The

duty cycle is the percentage of time that the signal is high versus the time that

the signal is low. In this example, a high is represented by a voltage of 3.3 V and

130 Part I ■ Raspberry Pi Basics

c04.indd 03:13:36:PM 05/20/2016 Page 130

a low by a voltage of 0 V. A duty cycle of 0% means that the signal is constantly

low, and a duty cycle of 100% means that the signal is constantly high.

Figure 4-10: Duty cycles of pulse width modulation (PWM) signals

PWM can be used to control the light level of LEDs, but it can also be used to

control the speed of DC motors, the position of servo motors, and many more

applications. You will see such an example in Chapter 6 when the built-in PWM

functionality of the RPi is used.

The period (T) of a repeating signal (a periodic signal) is the time it takes to

complete a full cycle. In the example in Figure 4-10, the period of the signal in

all three cases is 4 ms. The frequency (f) of a periodic signal describes how often

a signal goes through a full cycle in a given time period. Therefore, for a signal

with a period of 4 ms, it will cycle 250 times per second (1/0.004), which is 250

hertz (Hz). We can state that f (Hz) = 1/T (s) or T (s) = 1/f (Hz). Some high-end

DMMs measure frequency, but generally you use an oscilloscope to measure

frequency. PWM signals need to switch at a frequency to suit the device to be

controlled; typically, the frequency is in the kHz range for motor control.

Smoothing and Decoupling Capacitors

A capacitor is a passive electrical component that can be used to store electrical

energy between two insulated plates when there is a voltage difference between

them. The energy is stored in an electric fi eld between the two plates, with posi-

tive charge building on one plate and negative charge building on the other

plate. When the voltage difference is removed or reduced, then the capacitor

discharges its energy to a connected electrical circuit.

For example, if you modifi ed the diode circuit in Figure 4-8 to add a 10 μF

smoothing capacitor in parallel with the load resistor, the output voltage would

appear as shown in Figure 4-11. When the diode is forward biased there is a

potential across the terminals of the capacitor and it quickly charges (while a

current also fl ows through the load resistor in parallel). When the diode is reverse

biased, there is no external supply generating a potential across the capacitor/

resistor combination, so the potential across the terminals of the capacitor

(because of its charge) causes a current to fl ow through the load resistor, and

the capacitor starts to discharge. The impact of this change is that there is now

 Chapter 4 ■ Interfacing Electronics 131

c04.indd 03:13:36:PM 05/20/2016 Page 131

a more stable voltage across the load resistor that varies between 2.758 V and

4.222 V (the ripple voltage is 1.464 V), rather than between 0 V and 4.34 V.

Figure 4-11: Circuit and behavior of a 1N4001 diode with a 5 V AC supply, 1 kΩ load, and parallel

10 μF capacitor

Capacitors use a dielectric material, such as ceramic, glass, paper, or plastic, to

insulate the two charged plates. Two common capacitor types are ceramic and

electrolytic capacitors. Ceramic capacitors are small and low cost and degrade

over time. Electrolytic capacitors can store much larger amounts of energy, but

also degrade over time. Glass, mica, and tantalum capacitors tend to be more

reliable, but are considerably more expensive.

Figure 4-12 illustrates a 100 nF (0.1 μF) ceramic capacitor and a 47 μF electrolytic

capacitor. Note that the electrolytic capacitor is polarized, with the negative lead

marked on the capacitor surface with a band; like the LED, the negative lead is

shorter than the positive lead.

Figure 4-12: Ceramic (non polarized) and electrolytic (polarized) capacitors and an example

decoupling circuit

The numbering for capacitors is reasonably straightforward; unfortunately,

on ceramic capacitors it can be small and hard to read:

 ■ The fi rst number is the fi rst digit of the capacitor value.

 ■ The second number is the second digit of the capacitor value.

132 Part I ■ Raspberry Pi Basics

c04.indd 03:13:36:PM 05/20/2016 Page 132

 ■ The third number is the number of zeroes, where the capacitor value is

in pF (picofarads).

 ■ Additional letters represent the tolerance and voltage rating of the capaci-

tor but can be ignored for the moment.

Therefore, for example:

 ■ 104 = 100000 pF = 100 nF = 0.1 μF

 ■ 102 = 1,000 pF = 1 nF

 ■ 472 = 4,700 pF = 4.7 nF

The voltage regulator circuit presented earlier (refer to Figure 4-7) used two

capacitors to smooth out the ripples in the supply by charging and discharging

in opposition to those ripples. Capacitors can also be used for a related function

known as decoupling.

Coupling is often an undesirable relationship that occurs between two parts

of a circuit due to the sharing of power supply connections. This relationship

means that if there is a sudden high power demand by one part of the circuit,

then the supply voltage will drop slightly, affecting the supply voltages of other

parts of the circuit. ICs impart a variable load on the power supply lines—in fact,

a load that can change very quickly causes a high-frequency voltage variation

on the supply lines to other ICs. As the number of ICs in the circuit increases,

the problem will be compounded.

Small capacitors, known as decoupling capacitors, can act as a store of energy

that removes the noise signals that may be present on your supply lines as a

result of these IC load variations. An example circuit is illustrated in Figure

4-12, where the larger 47 μF capacitor fi lters out lower-frequency variations and

the 0.1 μF capacitors fi lter out higher-frequency noise. Ideally the leads on the

0.1 μF capacitors should be as short as possible to avoid producing undesirable

effects (relating to inductance) that will limit it from fi ltering the highest-level

frequencies. Even the surface-mounted capacitors used on the RPi to decouple

the ball grid array (BGA) pins on the BCM2835/6/7 SoC produce small induc-

tances (approximately 1 nH – 2 nH).

Transistors

Transistors are one of the core ingredients of the RPi’s microprocessor, and

indeed almost every other electronic system. Simply put, their function can be

to amplify a signal or to turn a signal on or off, whichever is required. The RPi

GPIOs can only handle very modest currents, so we need transistors to help us

when interfacing them to electronic circuits that require larger currents to operate.

Bipolar junction transistors (BJTs), usually just called transistors, are formed

by adding another doped layer to a pn-junction diode to form either a p-n-p

 Chapter 4 ■ Interfacing Electronics 133

c04.indd 03:13:36:PM 05/20/2016 Page 133

or an n-p-n transistor. There are other types of transistors, such as fi eld effect

transistors (FETs), which are discussed shortly. The name bipolar comes from

the fact that the current is carried by both electrons and holes. They have three

terminals, with the third terminal connected to the middle layer in the sandwich,

which is very narrow, as illustrated in Figure 4-13.

Figure 4-13 presents quite an amount of information about transistors, includ-

ing the naming of the terminals as the base (B), collector (C), and emitter (E).

Despite there being two main types of BJT transistor (NPN and PNP), the NPN

transistor is the most commonly used. In fact, any transistor examples in this

chapter use a single BC547 NPN transistor type.

Figure 4-13: Bipolar junction transistors (BJTs)

The BC547 is a 45 V, 100 mA general-purpose transistor that is commonly

available, is low cost, and is provided in a leaded TO-92 package. The identifi -

cation of the legs in the BC547 is provided in Figure 4-13, but please be aware

that this order is not consistent with all transistors—always check the datasheet!

The maximum VCE (a.k.a. VCEO) is 45 V and the maximum collector current (IC)

is 100 mA for the BC547. It has a typical DC current gain (hFE) of between 180

and 520, depending on the group used (e.g., A, B, C). Those characteristics are

explained in the next sections.

Transistors as Switches

N O T E For the remainder of this book, FETs rather than BJTs are used in the RPi

circuits for switching loads. If you become overwhelmed by the detail in this section,

please skip ahead to FETs, which are somewhat easier to apply.

Let’s examine the characteristics for the NPN transistor as illustrated in Figure

4-13 (on the rightmost diagram). If the base-emitter junction is forward biased

134 Part I ■ Raspberry Pi Basics

c04.indd 03:13:36:PM 05/20/2016 Page 134

and a small current is entering the base (IB), the behavior of a transistor is such

that a proportional but much larger current (IC = hFE × IB) will be allowed to fl ow

into the collector terminal, as hFE will be a value of 180 to 520 for a transistor

such as the BC547. Because IB is much smaller than IC, you can also assume that

IE is approximately equal to IC.

Figure 4-14 illustrates the example of a BJT being used as a switch. In part (a)

the voltage levels have been chosen to match those available on the RPi. The

resistor on the base is chosen to have a value of 2.2 kΩ, so that the base current

will be small (I = V/R = (3.3 V − 0.7 V)/2200 Ω which is about 1.2 mA). The resis-

tor on the collector is small, so the collector current will be reasonably large

(I = V/R = (5 V − ~0.2 V)/100 Ω = 48 mA).

Figure 4-14: The BJT as a switch

Figure 4-14(b) illustrates what happens when an input voltage of 3.3 V is applied

to the base terminal. The small base current causes the transistor to behave like

a closed switch (with a very low resistance) between the collector and the emit-

ter. This means that the voltage drop across the collector-emitter will be almost

zero and all of the voltage is dropped across the 100 Ω load resistor, causing a

current to fl ow directly to ground through the emitter. The transistor is saturated

because it cannot pass any further current. Because there is almost no voltage

drop across the collector-emitter, the output voltage, Vout, will be almost 0 V.

Figure 4-14(c) illustrates what happens when the input voltage Vin = 0 V is

applied to the base terminal and there is no base current. The transistor behaves

like an open switch (very large resistance). No current can fl ow through the

 Chapter 4 ■ Interfacing Electronics 135

c04.indd 03:13:36:PM 05/20/2016 Page 135

collector-emitter junction, as this current is always a multiple of the base cur-

rent and the base current is zero; therefore, almost all of the voltage is dropped

across the collector-emitter. In this case the output, Vout, can be up to +5 V (though

as implied by the illustrated fl ow of IC through the output terminal, the exact

value of Vout depends on the size of IC, as any current fl owing through the

100 Ω resistor will cause a voltage drop across it).

Therefore, the switch behaves somewhat like an inverter. If the input voltage

is 0 V, the output voltage is +5 V, and if the input voltage is +3.3 V, the output

voltage will be 0 V. You can see the actual measured values of this circuit in

Figure 4-15, when the input voltage of 3.3 V is applied to the base terminal.

In this case, the Analog Discovery Waveform Generator is used to output a

1 kHz square wave, with an amplitude of 1.65 V and an offset of +1.65 V (form-

ing a 0 V to 3.3 V square wave signal), so it appears like a 3.3 V source turning

on and then off, 1,000 times per second. All the measurements in this fi gure

were captured with the input at 3.3 V. The base-emitter junction is forward

biased, and just like the diode before, this will have a forward voltage of about

0.7 V. The actual voltage drop across the base-emitter is 0.83 V, so the voltage

drop across the base resistor will be 2.440 V. The actual base current is 1.1 mA

(I = V/R = 2.44 V/2,185 Ω). This current turns on the transistor, placing the tran-

sistor in saturation, so the voltage drop across the collector-emitter is very

small (measured at 0.2 V). Therefore, the collector current is 49.8 mA (I = V/R =

(4.93 V − 0.2 V)/96 Ω approx.). To choose an appropriate base resistor to place the

BJT deep in saturation, use the following practical formula:

R
Base

=
()V V

B B
V VV V

E(sat)

()I hC FE(min)
2 ()I(

For the case of a base supply of 3.3 V, with a collector current of 50 mA and a

minimum gain hFE(min) of 100, RBase = (3.27 − 0.83)/(2 × (0.05/100)) = 2,440 Ω.

You can fi nd all of these values in the transistor’s datasheet. VBE(sat) is typi-

cally provided on a plot of VBE versus IC at room temperature, where we require

IC to be 50 mA. The value of VBE(sat) is between 0.6 V and 0.95 V for the BC547,

depending on the collector current and the room temperature. The resistor

value is further divided by two to ensure that the transistor is placed deep in

the saturation region (maximizing IC). Therefore, in this case a 2.2 kΩ resistor is

used, as it is the closest generally available nominal value.

136 Part I ■ Raspberry Pi Basics

c04.indd 03:13:36:PM 05/20/2016 Page 136

Figure 4-15: Realization of the transistor as a switch (saturation) and confirmation that all

relationships hold true1

Why should you care about this with the RPi? Well, because the RPi can only

source or sink very small currents from its GPIO pins, you can connect the RPi

GPIO pin to the base of a transistor so that a very small current entering the

base of the transistor can switch on a much larger current, with a much greater

voltage range. Remember that in the example in Figure 4-15, a current of 1.1 mA

is able to switch on a large current of 49.8 mA (45 times larger, but still lower

than the 100 mA limit of the BC547). Using this transistor arrangement with

the RPi will allow a 5 mA current at 3.3 V from an RPi GPIO to safely drive a

100 mA current at up to 45 V by choosing suitable resistor values.

One constraint in using transistors to drive a circuit is that they have a maxi-

mum switching frequency. If you increase the frequency of the input signal to

the circuit in Figure 4-16 to 500 kHz, the output is distorted, though it is still

switching from low to high. However, increasing this to 1 MHz means that the

controlled circuit never switches off.

Figure 4-16: Frequency response of the BJT circuit (frequency is 500 kHz and 1 MHz)

1 You can use the Analog Discovery’s differential input feature to “measure” current by placing
the probes on either side of a resistor (to measure the voltage across it), and then creating a cus-
tom math channel that divides the waveform by the resistor’s known resistance value. You then
set the units to amps in the channel settings.

 Chapter 4 ■ Interfacing Electronics 137

c04.indd 03:13:36:PM 05/20/2016 Page 137

Field Eff ect Transistors (FETs) as Switches

A simpler alternative to using BJTs as switches is to use fi eld effect transis-

tors (FETs). FETs are different from BJTs in that the fl ow of current in the load

circuit is controlled by the voltage, rather than the current, on the controlling

input. Therefore, it is said that FETs are voltage-controlled devices and BJTs are

current-controlled devices. The controlling input for a FET is called the gate

(G) and the controlled current fl ows between the drain (D) and the source (S).

Figure 4-17 illustrates how you can use an n-channel FET as a switch. Unlike

the BJT, the resistor on the controlling circuit (1 MΩ) is connected from the input

to GND, meaning that a very small current (I = V/R) will fl ow to GND, but the

voltage at the gate will be the same as the Vin voltage. A signifi cant advantage

of FETs is that almost no current fl ows into the gate control input. However, the

voltage on the gate is what turns on and off the controlled current, ID, which

fl ows from the drain to the source in this example.

Figure 4-17: The field effect transistor (FET) as a switch

When the input voltage is high (3.3 V), the drain-source current will fl ow

(ID = 50 mA), so the voltage at the output terminal will be 0.17 V, but when the

input voltage is low (0 V), no drain-source current will fl ow. Just like the BJT, if

you were to measure the voltage at the drain terminal, the output voltage (Vout)

would be high when the input voltage is low, and the output voltage would be

low when the input voltage is high, though again the actual value of the “high”

output voltage depends on the current drawn by the succeeding circuit.

The Fairchild Semiconductor BS270 N-Channel Enhancement Mode FET

is a low-cost device (~$0.10) in a TO-92 package that is capable of supplying a

continuous drain current (ID) of up to 400 mA at a drain-source voltage of up to

60 V. However, at a gate voltage (VG) of 3.3 V the BS270 can switch a maximum

drain current of approximately 130 mA. This makes it ideal for use with the RPi,

138 Part I ■ Raspberry Pi Basics

c04.indd 03:13:36:PM 05/20/2016 Page 138

as the GPIO voltages are in range and the current required to switch on the FET

is about 3 μA–6 μA depending on the gate resistor chosen. One other feature of

using a FET as a switch is that it can cope with much higher switching frequen-

cies, as shown in Figure 4-18. Remember that in Figure 4-16 the BJT switching

waveform is very distorted at 1 MHz. It should be clear from Figure 4-18 that

the FET circuit is capable of dealing with much higher switching frequencies

than the BJT circuit.

Figure 4-18: Frequency response of the FET circuit as the switching frequency is set at 1 MHz

and 5 MHz

The BS270 also has a high-current diode that is used to protect the gate from

the type of reverse inductive voltage surges that could arise if the FET were

driving a DC motor.

As mentioned, one slight disadvantage of the BS270 is that can only switch

a maximum drain current of approximately 130 mA at a gate voltage of 3.3 V.

However, the high input impedance of the gate means that you can use two (or

indeed more) BS270s in parallel to double the maximum current to approximately

260 mA at the same gate voltage. Also, the BS270 can be used as a gate driver

for Power FETs, which can switch much larger currents.

Optocouplers/Opto-isolators

Optocouplers (or opto-isolators) are small, low-cost digital switching devices that

are used to isolate two electrical circuits from each other. This can be important

for your RPi circuits if you have a concern that a design problem with a con-

nected circuit could possibly source or sink a large current from/to your RPi.

They are available in low-cost (~$0.15) four-pin DIP form.

An optocoupler uses an LED emitter that is placed close to a photodetec-

tor transistor, separated by an insulating fi lm within a silicone dome. When

a current (If) fl ows through the LED emitter legs, the light that falls on the

 Chapter 4 ■ Interfacing Electronics 139

c04.indd 03:13:36:PM 05/20/2016 Page 139

photodetector transistor from the LED allows a separate current (Ic) to fl ow

through the collector-emitter legs of the photo detector transistor (see Figure

4-19). When the LED emitter is off, no light falls on the photo detector transistor,

and there will be almost no collector emitter current (Ic). There is no electrical

connection between one side of the package and the other, as the signal is trans-

mitted only by light, providing electrical isolation for up to 5,300 VRMS for an

optocoupler such as the SFH617A. You can even use PWM with optocouplers,

as it is a binary on/off signal.

Figure 4-19 illustrates an example optocoupler circuit and the resulting oscil-

loscope traces for the resistor and voltage values chosen. These values were

chosen to be consistent with those that you might use with the RPi. The resistor

value of 470 Ω was chosen to allow the 3.3 V output to drive a forward current

If of about 4.5 mA through the LED emitter. From Figure 4 in the datasheet2,

this results in a forward voltage of about 1.15 V across the diode); R = V/I =

(3.3 V − 1.15 V)/0.0045 A = 478 Ω. Therefore, the circuit was built using the closest

nominal value of 470 Ω.

Figure 4-19: Optocoupler (617 A) circuit with the captured input and output characteristics

The oscilloscope is displaying current by using the differential inputs of the

Analog Discovery to measure the voltage across the known resistor values, and

using two mathematical channels to divide by the resistance values. In Figure

4-19 you can see that If is 4.571 mA and that Ic is 2.766 mA. The proportionality

of the difference is the current transfer ratio (CTR) and it varies according to

the level of If and the operating temperature. Therefore, the current transfer at

4.571 mA is 60.5% (100 × Ic ⁄ If), which is consistent with the datasheet. The rise

time and fall time are also consistent with the values in the datasheet of tr =

4.6 μs and tf = 15 μs. These values limit the switching frequency. Also, if it is

important to your circuit that you achieve a high CTR, there are optocouplers

2 Vishay Semiconductors (2013, January 14). SFH617A Datasheet. Retrieved April 13, 2014,
from Vishay Semiconductors: www.vishay.com/docs/83740/sfh617a.pdf.

http://www.vishay.com/docs/83740/sfh617a.pdf

140 Part I ■ Raspberry Pi Basics

c04.indd 03:13:36:PM 05/20/2016 Page 140

with built-in Darlington transistor confi gurations that result in CTRs of up to

2,000% (e.g., the 6N138 or HCPL2730). Finally, there are high-linearity analog

optocouplers available (e.g., the HCNR200 from Avago) that can be used to

optically isolate analog signals.

N O T E In Chapter 6, example circuits are provided for how to use an optocoupler to

protect the RPi GPIOs from both an independently powered output circuit (Figure 6-7)

and an independently-powered input circuit (Figure 6-8).

Switches and Buttons

Other components with which you are likely to need to work with are switches

and buttons. They come in many different forms: toggle, push button, selector,

proximity, joystick, reed, pressure, temperature, etc. However, they all work

under the same binary principles of either interrupting the fl ow of current (open)

or enabling the fl ow of current (closed). Figure 4-20 illustrates several different

common switch types and outlines their general connectivity

Momentary push button switches (SPST—single pole, single throw) like the

one illustrated in Figure 4-20 are either normally open (NO) or normally closed

(NC). NO means that you have to activate the switch to allow current to fl ow,

whereas NC means that when you activate the button, current does not fl ow. For

the particular push button illustrated, both pins 1 and both pins 2 are always

connected, and for the duration of time you press the button, all four pins are

connected together. Looking at slider switches (SPDT—single pole, double throw),

the common connection (COM) is connected to either 1 or 2 depending on the

slider position. In the case of microswitches and the high-current push button,

the COM pin is connected to NC if the switch is pressed, and is connected to

NO if the switch is depressed. Finally, the rocker switch illustrated often has

an LED that lights when the switch is closed, connecting the power (VCC) leg

to the circuit (CCT) leg.

Figure 4-20: Various switches and configurations

 Chapter 4 ■ Interfacing Electronics 141

c04.indd 03:13:36:PM 05/20/2016 Page 141

All of these switch types suffer from mechanical switch bounce, which can be

extremely problematic when interfacing to microprocessors like the RPi. Switches

are mechanical devices and when they are pressed, the force of contact causes

the switch to repeatedly bounce from the contact on impact. It only bounces for

a small duration (typically milliseconds), but the duration is suffi cient for the

switch to apply a sequence of inputs to a microprocessor.

Figure 4-21 (a) illustrates the problem in action using the rising/falling-edge

trigger condition of the Analog Discovery Oscilloscope. A momentary push

button is placed in a simple series circuit with a 10 kΩ resistor and the voltage

is measured across the resistor. When the switch hits the contact, the output is

suddenly high, but the switch then bounces back from the contact and the voltage

falls down again. After about 2 ms–3 ms (or longer) it has almost fully settled.

Unfortunately, this small bounce can lead to false inputs to a digital circuit. For

example, if the threshold were 3 V, this may be read in as 101010101, rather than

a more correct value of 000001111.

There are a number of ways to deal with switch bounce in microprocessor

interfacing:

 ■ A low-pass fi lter can be added in the form of a resistor-capacitor circuit

as illustrated in Figure 4-21(c) using a 1 μF capacitor. Unfortunately this

leads to delay in the input. If you examine the time base, it takes about

2 ms before the input reaches 1 V. Also, bounce conditions can delay this

further. These values are chosen using the RC time constant τ = R × C, so

τ (s) = 1,000 Ω × 10−6 F = 1 ms, which is the time taken to charge a capaci-

tor to ~63.2% or discharge it to ~36.8%. This value is marked on Figure

4-21(b) at approximately 1.9 V.

 ■ Software may be written so that after a rising edge occurs, it delays a few

milliseconds and then reads the “real” state.

 ■ For slider switches (SPDT), an SR-latch can be used.

 ■ For momentary push button switches (SPSTs), a Schmitt trigger (74HC14N),

which is discussed in the next section, can be used with an RC low-pass

fi lter as in Figure 4-21(c).

N O T E There are videos on debouncing SPDT and SPST switches on the web page

associated with this chapter: www.exploringrpi.com/chapter4.

Hysteresis

Hysteresis is designed into electronic circuits to avoid rapid switching, which

would wear out circuits. A Schmitt trigger exhibits hysteresis, which means

that its output is dependent on the present input and the history of previous

http://www.exploringrpi.com/chapter4

142 Part I ■ Raspberry Pi Basics

c04.indd 03:13:36:PM 05/20/2016 Page 142

inputs. This can be explained with an example of an oven baking a cake at 350

degrees Fahrenheit:

 ■ Without hysteresis: The element would heat the oven to 350°F. Once 350°F

is achieved the element would switch off. It would cool below 350°F and

the element would switch on again. Rapid switching!

 ■ With hysteresis: The circuit would be designed to heat the oven to 360°F

and at that point the element would switch off. The oven would cool, but

it is not designed to switch back on until it reaches 340°F. The switching

would not be rapid, protecting the oven, but there would be a greater

variation in the baking temperature.

With an oven that is designed to have hysteresis, is the element on or off at

350°F? That depends on the history of inputs—it is on if the oven is heating; it

is off if the oven is cooling.

Figure 4-21: (a) Switch bouncing with no components other than the switch and 10 kΩ resistor;

(b) low-pass filtered output at point B; (c) a Schmitt trigger circuit; and (d) output of the Schmitt

trigger circuit at point C, versus the input at point A

The Schmitt trigger in Figure 4-21(c) exhibits the same type of behavior.

The VT+ for the M74HC14 Schmitt trigger is 2.9 V and the VT− is 0.93 V when

running at a 5 V input, which means that a rising input voltage has to reach

2.9 V before the output changes high, and a falling input voltage has to drop

to 0.93 V before the output changes low. Any bounce in the signal within this

 Chapter 4 ■ Interfacing Electronics 143

c04.indd 03:13:36:PM 05/20/2016 Page 143

range is simply ignored. The low-pass fi lter reduces the possibility of high-

frequency bounces. The response is presented in Figure 4-21(d). Note that the

time base is 1 ms per division, illustrating how “clean” the output signal is. The

confi guration uses a pull-up resistor, the need for which is discussed shortly.

Logic Gates

Boolean algebra functions have only two possible outcomes, either true or false,

which makes them ideal for developing a framework to describe electronic cir-

cuits that are either on or off (high or low). Logic gates perform these Boolean

algebra functions and operations, forming the basis of the functionality inside

modern microprocessors, such as the BCM2835/6/7 SoC on the RPi. Boolean

values are not the same as binary numbers. (Binary numbers are a base 2 rep-

resentation of whole and fractional numbers, whereas Boolean refers to a data

type that has only two possible values, either true or false.)

It is often the case that you will need to interface to different types of logic

gates and systems using the RPi’s GPIOs to perform an operation such as gat-

ing an input or sending data to a shift register. Logic gates fall into two main

categories:

 ■ Combinational logic: The current output is dependent on the current

inputs only (e.g., AND, OR, decoders, multiplexers, etc.).

 ■ Sequential logic: The current output is dependent on the current inputs

and previous inputs. They can be said to have different states, and what

happens with a given input depends on what state they are in (e.g., latches,

fl ip-fl ops, memory, counters, etc.).

BINARY NUMBERS

Simply put, binary numbers are a system for representing numbers (whole or frac-
tional) within a device whereby the only symbols available are 1s and 0s. That is a
strong only, as when you are implementing binary circuits, you don’t have a minus
sign or a decimal point (binary point to be precise). Like decimal numbers, you use a
place-weighted system to represent numbers of the form:

10012 = (1 × 23) + (0 × 22) + (0 × 21) + (1 × 20) = 8 + 0 + 0 + 1 = 910

If you only have four bits to represent your numbers, you can only represent 24 =
16 possible decimal numbers in the range 0 to 15. You can add and subtract numbers,
just as you can in decimal, but you tend to add the negative value of the right-hand
side of the operation, instead of building subtraction circuits. Therefore, to perform
9–5, you would typically perform 9 + (−5).To represent negative numbers, the two’s
complement form is used. Essentially, this involves inverting the symbols in the

Continues

144 Part I ■ Raspberry Pi Basics

c04.indd 03:13:36:PM 05/20/2016 Page 144

binary representation of the positive number and adding 1, so −5 would be +5 (0101),
inverted to (1010) + 1 = 10112. Importantly, you need to know that this number is in
two’s complement form, otherwise it could be mistaken for 1110. Therefore, to perform
9−5 on a 4-bit computer, perform 9 + −5 = 1001 + (1011) = 10100. The four-bit com-
puter ignores the fi fth bit (otherwise it would be a 5-bit computer!), so the answer is
0100, which is 410. See the video at the chapter web page: www.exploringrpi
.com/chapter4.

To multiply by 2, you simply shift the binary digits left (inserting a 0 on the right-
most position), e.g., 410 = 01002. Shift all the digits left, bringing in a 0 on the right-
hand side, giving 10002 = 810. Divide by 2 by shifting to the right.

Finally, understanding binary makes the following infamous joke funny: “There are
10 types of people, those who understand binary and those who don’t!”—well, almost
funny!

Combinational logic circuits will provide the same output for the same set

of inputs, regardless of the order in which the inputs are applied. Figure 4-22

illustrates the core combinational logic gates with their logic symbols, truth

tables, and IC numbers. The truth table provides the output that you will get

from the gate on applying the listed inputs.

N O T E You can fi nd a video on wiring an AND gate at the web page associated with

this chapter: www.exploringrpi.com/chapter4.

ICs have a number that describes their manufacturer, function, logic fam-

ily, and package type. For example, the MM74HC08N in Figure 4-23(a) has a

manufacturer code of MM (Fairchild Semiconductor), is a 7408 (quad two-input

AND gates), is of the HC (CMOS) logic family, and is in an N (plastic dual in-

line package) form.

Figure 4-22: General logic gates

BINARY NUMBERS continued

http://www.exploringrpi.com/chapter4
http://www.exploringrpi.com/chapter4

 Chapter 4 ■ Interfacing Electronics 145

c04.indd 03:13:36:PM 05/20/2016 Page 145

ICs are available in different package types. Figure 4-23(a) shows to scale a

PDIP (plastic dual in-line package) and a small outline package TSSOP (thin

shrink small outline package). There are many types: surface mount, fl at pack-

age, small outline package, chip-scale package, and ball grid array (BGA). You

have to be careful when ordering ICs that you have the capability to use them.

DIP/PDIP ICs have perfect forms for prototyping on breadboards as they have a

0.1” leg spacing. There are adapter boards available for converting small outline

packages to 0.1” leg spacing. Unfortunately, BGA ICs, such as the BCM2835/6/7,

require sophisticated equipment for soldering.

(a) (b)

Figure 4-23: (a) IC package examples (to scale), and (b) the JK flip-flop

The family of currently available ICs is usually transistor-transistor logic (TTL)

(with Low-power Schottky (LS)) or some form of complementary metal-oxide-

semiconductor (CMOS). Table 4-1 compares these two families of 7408 ICs using

their respective datasheets. The propagation delay is the longest delay between

an input changing value and the output changing value for all possible inputs

to a logic gate. This delay limits the logic gate’s speed of operation.

Table 4-1: Comparison of Two Commercially Available TTL and CMOS ICs for a 7408 Quadruple

Two-input AND gates IC

CHARACTERISTIC SN74LS08N SN74HC08N

Family Texas TTL PDIP

Low-power Schottky (LS)

Texas CMOS PDIP

High-speed CMOS (HC)

VCC supply voltage 4.5 V to 5.5 V (5 V typical) 2 V to 6 V

VIH high-level input voltage min 2 V VCC at 5 V min = 3.5 V

VIL low-level input voltage max 0.8 V VCC at 5 V max = 1.5 V

Time propagation delay

(TPD)

Typical 12 ns (↑) 17.5 ns (↓) Typical 8 ns (↑↓)

Power (at 5 V) 5 mW (max) 0.1 mW (max)

Figure 4-24 illustrates the acceptable input and output voltage levels for both

TTL and CMOS logic gates when VDD = 5 V. The noise margin is the absolute

146 Part I ■ Raspberry Pi Basics

c04.indd 03:13:36:PM 05/20/2016 Page 146

difference between the output voltage levels and the input voltage levels. This

noise margin ensures that if the output of one logic gate is connected to the

input of a second logic gate, that noise will not affect the input state. The CMOS

logic family input logic levels are dependent on the supply voltage, VDD, where

the high-level threshold is 0.7 × VDD, and the low-level threshold is 0.3 × VDD.

It should be clear from Figure 4-24 that there are differences in behavior. For

example, if the input voltage were 2.5 V, then the TTL gate would perceive a logic

high level, but the CMOS gate (at 5 V) would perceive an undefi ned level. Also,

the output of a CMOS gate, with VDD = 3.3 V, would provide suffi cient output

voltage to trigger a logic high input on a TTL gate, but would not on a CMOS

gate with VDD = 5.0 V.

(a) (b(b))

Figure 4-24: Gate signal levels on the input and output of logic gates (a) TTL , and (b) CMOS at 5 V

High-Speed CMOS (HC) can support a wide range of voltage levels, including

the RPi 3.3 V input/outputs. The GND label is commonly used to indicate the

ground supply voltage, where VEE is often used for BJT-based devices and VSS

for FET-based devices. Traditionally, VCC was used as the label for the positive

supply voltage on BJT-based devices and VDD for FET-based devices; however,

it is now very common to see VCC being used for both.

Figure 4-23(b) illustrates a sequential logic circuit, called a JK fl ip-fl op. JK

fl ip-fl ops are core building blocks in circuits such as counters. These differ from

combinational logic circuits in that the current state is dependent on the cur-

rent inputs and the previous state. You can see from the truth table that if J = 0

and K = 0 for the input, then the value of the output Qn will be the output value

that it was at the previous time step (it behaves like a one-bit memory). A time

step is defi ned by the clock input (CLK), which is a square wave synchroniz-

ing signal. The same type of timing signal is present on the RPi; it is the clock

frequency, and the clock goes through up to 1,200,000,000 square wave cycles

per second on the RPi 3!

N O T E The web page associated with this chapter has a video that explains JK fl ip-

fl ops in detail, and a video on building a 555 timer circuit, which can be used as a low-

frequency clock signal for testing logic circuits.

 Chapter 4 ■ Interfacing Electronics 147

c04.indd 03:13:36:PM 05/20/2016 Page 147

Floating Inputs

One very common mistake when working with digital logic circuits is to leave

unused logic gate inputs “fl oating,” or disconnected. The family of the chip has

a large impact on the outcome of this mistake. With the TTL logic families these

inputs will “fl oat” high and can be reasonably expected to be seen as logic-high

inputs. With TTL ICs it is good practice to “tie” (i.e., connect) the inputs to ground

or the supply voltage, so that there is absolutely no doubt about the logic level

being asserted on the input at all times.

With CMOS circuits the inputs are very sensitive to the high voltages that

can result from static electricity and electrical noise and should also never be

left fl oating. Figure 4-25 gives the likely output of an AND gate that is wired as

shown in the fi gure. The correct outcome is displayed in the “Required (A.B)”

column.

Unused CMOS inputs that are left fl oating (between VDD and GND) can

gradually charge up due to leakage current, and depending on the IC design

could provide false inputs, or waste power by causing a DC current to fl ow

(from VDD to GND). To solve this problem you can use pull-up or pull-down

resistors, depending on the desired input state (these are ordinary resistors

with suitable values—it’s their role that is “pull up” or “pull down”), which are

described in the next section.

Figure 4-25: An AND gate with the inputs accidentally left floating when the switches are open

Pull-Up and Pull-Down Resistors

To avoid fl oating inputs, you can use pull-up or pull-down resistors as illus-

trated in Figure 4-26. Pull-down resistors are used if you want to guarantee

that the inputs to the gate are low when the switches are open, and pull-up

resistors are used if you want to guarantee that the inputs are high when the

switches are open.

The resistors are important, because when the switch is closed, the switch

would form a short circuit to ground if they were omitted and replaced by lengths

of wire. The size of the pull-down/up resistors is also important; their value

has to be low enough to solidly pull the input low/high when the switches are

148 Part I ■ Raspberry Pi Basics

c04.indd 03:13:36:PM 05/20/2016 Page 148

open but high enough to prevent too much current fl owing when the switches

are closed. Ideal logic gates have infi nite impedance and any resistor value

(short of infi nite) would suffi ce. However, real logic gates leak current and

you have to overcome this leakage. To minimize power consumption, you

should choose the maximum value that actually pulls the input low/high. A

3.3 kΩ–10 kΩ resistor will usually work perfectly, but 3.3 V will drive 1 mA–0.33 mA

through them respectively and dissipate 3.3 mW–1 mW of power respectively

when the switch is closed. For power-sensitive applications you could test larger

resistors of 50 kΩ or greater.

Figure 4-26: Pull-down and pull-up resistors, used to ensure that the switches do not create

floating inputs

The RPi has weak internal pull-up and pull-down resistors that can be used

for this purpose. This is discussed in Chapter 6. One other issue is that inputs

will have some stray capacitance to ground. Adding a resistor to the input

creates an RC low-pass fi lter on the input signal that can delay input signals.

That is not important for manually pressed buttons, as the delay will be on the

order of 0.1 μs for the preceding example, but it could affect the speed of digital

communication bus lines.

Open-Collector and Open-Drain Outputs

To this point in the chapter, all of the ICs have a regular output, where it is driven

very close to GND or the supply voltage of the IC (VCC). If you are connecting

to another IC or component that uses the same voltage level, then that should

be fi ne. However, if the fi rst IC had a supply voltage of 3.3 V and you needed to

drive the output into an IC that had a supply voltage of 5 V, then you may need

to perform level shifting.

Many ICs are available in a form with open-collector outputs, which are

particularly useful for interfacing between different logic families and for

level shifting. This is because the output is not at a specifi c voltage level, but

rather attached to the base input of an NPN transistor that is inside the IC. The

output of the IC is the “open” collector of the transistor, and the emitter of the

transistor is tied to the IC’s GND. It is possible to use a FET (74HC03) instead

 Chapter 4 ■ Interfacing Electronics 149

c04.indd 03:13:36:PM 05/20/2016 Page 149

of a BJT (74LS01) inside the IC, and while the concept is the same it is called an

open-drain output. Figure 4-27, illustrates this concept and provides an example

circuit using a 74HC03 (quad, two-input NAND gates with open-drain outputs)

to drive a 5 V circuit. The advantage of the open-drain confi guration is that

CMOS ICs support the 3.3 V level available on the RPi’s GPIOs. Essentially, the

drain resistor that is used in Figure 4-17 is placed outside the IC package, as

illustrated in Figure 4-27, it has a value of 10 kΩ in this case.

Interestingly, a NAND gate with one input tied high (or the two inputs tied

together) behaves like a NOT gate. In fact, NAND or NOR gates, each on their

own, can replicate the functionality of any of the logic gates, and for that reason

they are called universal gates.
Open-collector outputs are often used to connect multiple devices to a bus.

You will see this in Chapter 8 when the RPi’s I2C buses are described. When

you examine the truth table in the datasheet of an IC, such as the 74HC03, you

will see the letter Z used to represent the output (as in Figure 4-27). This means

that it is a high-impedance output and the external pull-up resistor can pull the

output to the high state.

Interconnecting Gates

To create useful circuits, logic gates are interconnected to other logic gates and

components. It is important to understand that there are limits to the intercon-

nect capabilities of gates.

Figure 4-27: Open-drain level-shifting example

The fi rst limit is the ability of the logic gate to source or sink current. When

the output of a gate is logic high, it acts as a current source, providing cur-

rent for connected logic gates or the LEDs shown in Figure 4-26. If the output

of the gate is logic low, the gate acts as a current sink, whereby current fl ows into

the output. Figure 4-28(a) demonstrates this by placing a current-limiting resistor

and an LED between VCC and the output of the logic gate, with the LED cathode

connected to the logic gate output. When the output of the gate is high, there

is no potential difference and the LED will be off; but when the output is low,

150 Part I ■ Raspberry Pi Basics

c04.indd 03:13:36:PM 05/20/2016 Page 150

a potential difference is created and current will fl ow through the LED and be

sinked by the output of the logic gate. According to the datasheet of the 74HC08,

it has an output current limit (IO) of ±25 mA, meaning that it can source or sink

25 mA. Exceeding these values will damage the IC.

It is often necessary to connect the output of a single (driving) gate to the

input of several other gates. Each of the connected gates will draw a current,

thus limiting the total number of connected gates. The fan-out is the number

of gates that are connected to the output of the driving gate. As illustrated in

Figure 4-28(b), for TTL the maximum fan-out depends on the output (IO) and

input current (II) requirement values when the state is low (= IOL(max)/IIL(max))

and the state is high (= IOH(max)/IIH(max)). Choose the lower value, which is com-

monly 10 or greater. The fan-in of an IC is the number of inputs that it has. For

the 7408 they are two-input AND gates, so they have a fan-in of 2.

CMOS gate inputs have extremely large resistance and draw almost no cur-

rent, allowing for large fan-out capability (>50); however, each input adds a small

capacitance (CL ≈ 3–10 pF) that must be charged and discharged by the output of

the previous stage. The greater the fan-out, the greater the capacitive load on the

driving gate, which lengthens the propagation delay. For example, the 74HC08

has a propagation delay (tpd) of about 11 ns and an input capacitance (CI) of

3.5 pF (assuming for this example that this leads to tpd = RC = 3.5 ns per connec-

tion). If one 78HC08 were driving 10 other similar gates, and each added 3.5 ns

of delay, then the propagation delay would increase to 11 + (10 × 3.5) = 46 ns of

delay, reducing the maximum operating frequency from 91 MHz to 22 MHz.

((a) (b)

Figure 4-28: (a) Sinking current on the output, and (b) TTL fan-out example

Analog-to-Digital Conversion

Analog-to-digital converters (ADC) can be used to take an analog signal and

create a digital representation of this signal. Attaching external ADCs to the

RPi (see Chapter 9) enables you to connect to many different types of sensors,

such as distance sensors, temperature sensors, light-level sensors, and so on.

However, you have to be careful with these inputs, as they should not source

or sink current, because the analog outputs of the sensors are likely to be very

 Chapter 4 ■ Interfacing Electronics 151

c04.indd 03:13:36:PM 05/20/2016 Page 151

sensitive to any additional load in parallel with the output. To solve this problem,

you need to fi rst look at how operational amplifi ers function.

Analog signals are continuous signals that represent the measurement of

some physical phenomenon. For example, a microphone is an analog device,

generally known as a transducer, which can be used to convert sound waves into

an electrical signal that, for example, varies between −5 V and +5 V depending

on the amplitude of the sound wave. Analog signals use a continuous range

of values to represent information, but if you want to process that signal using

your RPi, then you need a discrete digital representation of the signal. This is

one that is sampled at discrete instants in time, and subsequently quantized to

discrete values of voltage, or current. For example, audio signals will vary over

time; so to sample a transducer signal to digitally capture human speech (e.g.,

speech recognition), you need be cognizant of two factors:

 ■ Sampling rate: Defi nes how often you are going to sample the signal.

Clearly, if you create a discrete digital sample by sampling the voltage

every one second, the speech will be indecipherable.

 ■ Sampling resolution: Defi nes the number of digital representations that

you have to represent the voltage at the point in time when the signal is

sampled. Clearly, if you had only one bit, you could only capture if the

signal were closer to +5 V or −5 V, and again the speech signal would be

indecipherable.

Sampling Rate

To represent a continuous signal perfectly in a discrete form requires an infi -

nite amount of digital data. Fortunately (!), there are limits to how well human

hearing performs and therefore we can place limits on the amount of data to be

discretized. For example, 44.1 kHz and 48 kHz are common digital audio sam-

pling rates for encoding MP3 fi les, which means that if you use the former, you

will have to store 44,100 samples of your transducer voltage every second. The

sample rate is generally determined by the need to preserve a certain frequency

content of the signal. For example, humans (particularly children) can hear audio

signals at frequencies from about 20 Hz up to about 20 kHz. Nyquist’s sampling

theorem states that the sampling frequency must be at least twice the highest

frequency component present in the signal. Therefore, if you want to sample

audio signals, you need to use a sampling rate of at least twice 20 kHz, which is

40 kHz, which helps explain the magnitude of the sampling rates used in encod-

ing MP3 audio fi les (typically 44,100 samples per second—that is, 44.1 kS/s).

Quantization

In Chapter 9, 10-bit and 12-bit ADCs are interfaced to the RPi so that you can

sample analog sensors. If you interface a 12-bit ADC that utilizes a voltage

reference of 3.3 V, it will sample in the range of 0 V–3.3 V, which means that

152 Part I ■ Raspberry Pi Basics

c04.indd 03:13:36:PM 05/20/2016 Page 152

there are 212 = 4,096 possible discrete representations (numbers) for this sam-

pling resolution. If the voltage is exactly 0 V, we can use the decimal number

0 to represent it. If the voltage is exactly 3.3 V, we can use the number 4,095

to represent it. So, what voltage does the decimal number 1 represent? It is

(1 × 3.3)/4096 = 0.00080566 V. Therefore, each decimal number between 0 and

4,095 (4,096 values) represents a step of approximately 0.8 mV.

The preceding audio sampling example also illustrates one of the challenges

you face with the RPi. If the sensor outputs a voltage of –5 V to +5 V, or more

commonly 0 V to +5 V, you need to alter that range to be between 0 V and 3.3 V

to be compatible with the ADC that you have chosen. In Chapter 9, you’ll look

at how you can solve this problem. A second and more complex problem is

that we must not typically source or sink current from/to ADC circuitry, and

to solve that we need to briefl y introduce a powerful concept that predates the

digital computer, called the operational amplifi er.

Operational Amplifi ers

Operational amplifi ers (op-amps) are composed from many BJTs or FETs within

the one IC (e.g., the LM741). They can be used to create several very useful circuits,

one of which you will need in Chapter 9 to correctly interface to analog sensors.

Ideal Operational Amplifi ers

Figure 4-29(a) illustrates an ideal op-amp, placed in a very basic circuit with no

feedback (a.k.a. open-loop). The op-amp has two inputs: a noninverting input (+)

and an inverting input (−), and it produces an output that is proportional to the

difference between them, i.e., Vout = G(V1 − V2), where V1 and V2 are the voltage

levels on these two inputs, respectively. Some of the characteristics of an ideal

op-amp include the following:

 ■ An infi nite open-loop gain, G

 ■ An infi nite input impedance

 ■ A zero output impedance

No real-world op-amp has an infi nite open-loop gain, but voltage gains of

200,000 to 30,000,000 are commonplace. Such a gain can be treated as infi nite,

which means in theory that even a very small difference between the inputs

would lead to a completely impractical output. For example, a difference of 1 V

between V1 and V2 would lead to a voltage output of at least 200,000 V! If that

were really the case, I would now be issuing health warnings on the use of

op-amps! The output voltage is of course limited by the supply voltage (VCC+ and

VCC− in Figure 4-29(a)). Therefore, if you supply VCC+ = +5 V and VCC− = 0 V (GND)

 Chapter 4 ■ Interfacing Electronics 153

c04.indd 03:13:36:PM 05/20/2016 Page 153

to an op-amp using the RPi, the maximum real-world output would be in

the range of 0 V to 5 V approximately, depending on the exact op-amp used.

Likewise, a real-world op-amp does not have infi nite input impedance, but it is

in the range of 250 kΩ to 2 MΩ. The term impedance is used instead of resistance,
as the input may be an AC rather than just a DC supply. Likewise, a zero output

impedance is not possible, but it will likely be <100 Ω.

The LM358 Dual Operational Amplifi er is used for the following circuit

confi gurations (www.ti.com/product/lm358). It is an eight-pin IC in a PDIP that

contains two op-amps that have a typical open-loop differential voltage gain of

100 dB, which is 100,000 in voltage gain (voltage gain in dB = 20 × log (Vout/Vin)).
One advantage of this IC is that it has a wide supply range, in the range of 3 V

to 32 V, meaning that you can use the RPi’s 3.3 V or 5 V power rails. The LM358

can typically source up to 30 mA or sink up to 20 mA on the output.

Figure 4-29: (a) The ideal op-amp, and (b) an open-loop comparator example

The behavior of an open-loop op-amp is best explained with an example,

which is illustrated in Figure 4-29(b). Note that in this case the input is con-

nected to the inverting input of the op-amp (−ve), rather than the noninvert-

ing input (+ve), which means that Vout will be positive when Vin is lower than

the reference voltage. The circuit was built using the LM358, with a supply of

VCC+ = 5 V and VCC− = 0 V (GND). A 100 kΩ potentiometer was used to allow the

voltage on the +ve input to be varied. This is the voltage that we are effectively

comparing the input voltage with, so this circuit is called a comparator. When

the voltage on the −ve input is greater than the +ve input, by even a very small

amount, the output will quickly saturate in the negative direction to 0 V. When

the voltage on the −ve input is less than the voltage on the +ve input, the output

Vout will immediately saturate in the +ve direction to the maximum allowable

by this confi guration with the value of VCC applied.

The actual output of this circuit can be seen in Figure 4-30(a). In this view,

the potentiometer is adjusted to give a voltage on the V+ input of 1.116 V. When

V− is lower than this value, the output Vout is saturated to the maximum positive

value, in this case it is 3.816 V (LM358 positive saturation voltage). When V− is

http://www.ti.com/product/lm358

154 Part I ■ Raspberry Pi Basics

c04.indd 03:13:36:PM 05/20/2016 Page 154

greater than 1.116 V, then the output Vout saturates to the lowest value, which is

almost zero (−2 mV). Note the inversion that is taking place.

If everything remains exactly the same but the potentiometer is adjusted to

give a different value for V+, in this case 0.645 V, the output will be as shown

in Figure 4-30(b), where the duty cycle of the output Vout will be different. This

comparator circuit could also be used to detect low voltage conditions—for

example, lighting a warning LED if a battery’s voltage output fell below a certain

value. The circuit example used in 4-29(b) could be used to generate a PWM

signal with a controllable duty cycle, according to the controlling voltage V+.

(a)

(b)

Figure 4-30: Output of the comparator circuit

The very large open-loop gain means that op-amps are generally used with

feedback, which is directed to the negative or positive op-amp input. This

feedback opens up an enormous range of other applications for the op-amp.

Negative Feedback and Voltage Follower

Negative feedback is formed when you connect the output of an op-amp

(Vout) back to the inverting input (V−). When you apply a voltage (Vin) to the

noninverting input (V+) and increase it slowly, as Vin increases, then so would

the difference between V+ and V−; however, the output voltage also increases

according to G(V1 − V2) and this feeds back into the V− input, causing the

output voltage Vout to be reduced. Essentially, the op-amp attempts to keep

the voltage on the inverting (V−) input the same as the noninverting (V+) input

by adjusting the output. The impact of this action is that the value of Vout is

stabilized to be the same as the Vin voltage on V+; the higher the gain of the

op-amp, the closer this difference will be to zero.

 Chapter 4 ■ Interfacing Electronics 155

c04.indd 03:13:36:PM 05/20/2016 Page 155

That action on its own is not very useful to us, except for the fact that the

current required to set the voltage on the input is very small, and the op-amp

can control much larger currents on the output side. Because the negative feed-

back keeps the output voltage the same as the input voltage, the confi guration

as a whole has a gain of 1. This confi guration is known as a voltage follower, or

unity-gain buffer, and is illustrated in Figure 4-31. This confi guration is very

important, as it is used in Chapter 9 to protect the ADC circuitry that is attached

to the RPi, and it is also used to ensure that the ADC reference voltage is not

modifi ed by connecting it to a circuit.

(a) (b)

Figure 4-31: The voltage follower op-amp circuit

Positive Feedback

Negative feedback is the most common type of feedback used with op-amps

due to its stabilizing impact. An op-amp in a positive feedback confi guration

is one in which the output is returned to the positive noninverting input of

the op-amp. In such a case the feedback signal supports the input signal. For

example, positive feedback can be used to add hysteresis to the open-loop op-

amp comparator circuit, by connecting Vout to V+ through a positive feedback

resistor. This can be used to reduce the comparator’s response to noise on the

input signal.

Concluding Advice

There is a lot of material covered in this chapter. So to fi nish, here is some general

advice for working with electrical components and the RPi:

 ■ Never leave inputs fl oating. Use pull-up/pull-down resistors on all switches.

Check if unused IC pins need to be tied high/low.

 ■ Ensure that all of the GNDs in your circuit are connected.

 ■ Remember to power your chips with the correct voltage level.

156 Part I ■ Raspberry Pi Basics

c04.indd 03:13:36:PM 05/20/2016 Page 156

 ■ Don’t assume that a new diode, FET, BJT, or logic gate has the same pin

layout as the previous component that you used.

 ■ Just like programming, build a simple circuit fi rst, test it, and then add

the next layer of complexity. Never assume something works!

 ■ Don’t leave wire joints and croc clip connections hanging where they could

touch off each other—the same for resistors on breadboards.

 ■ Use a fl at-head screwdriver to remove ICs from breadboards, as it is very

easy to bend the IC legs beyond repair.

 ■ CMOS ICs are statically sensitive, so touching them with your fi ngers

may damage them, due to the buildup of static electricity on your body.

Touch the back of a computer or some grounding metal object before you

touch the ICs.

 ■ Don’t assume that components have exact or consistent values—in par-

ticular, transistor gains and resistor ranges.

Summary

After completing this chapter, you should hopefully be able to do the following:

 ■ Describe the basic principles of electrical circuit operation, build circuits

on breadboards, and measure voltage and current values.

 ■ Use discrete components such as diodes, LEDs, transistors, and capacitors

in your own circuit designs.

 ■ Use transistors and FETs as switches to control higher current and voltage

signals than would be possible by using the RPi outputs on their own.

 ■ Interconnect and interface to logic gates, being particularly aware of the

issues that arise with “fl oating” inputs.

 ■ Describe the principles of analog-to-digital conversion and design basic

operational-amplifi er circuits.

 ■ Combine all of these skills to build the type of circuits that are important

for safely interfacing to the RPi GPIOs.

 Chapter 4 ■ Interfacing Electronics 157

c04.indd 03:13:36:PM 05/20/2016 Page 157

Further Reading

Documents and links for further reading have been listed throughout this

chapter, but here are some further reference documents:

 ■ T. R. Kuphaldt, “Lessons in Electric Circuits,” a free series of textbooks

on the subjects of electricity and electronics: www.ibiblio.org/kuphaldt/

electricCircuits/.

 ■ All About Circuits: www.allaboutcircuits.com provides excellent applied

examples of many types of electronic circuits.

 ■ The Electronics Club: www.electronicsclub.info provides electronics

projects for beginners and for reference.

 ■ Neil Storey, Electronics: A Systems Approach, 5th ed., New York: Pearson, 2013.

Here is a full list of the components that are used in this chapter:

 ■ Breadboard

 ■ Diodes: 1N4001, general-purpose LED

 ■ Transistors: NPN: BC547, FET: BS270

 ■ Voltage regulator: KA7805/LM7805

 ■ PTC: 60R110

 ■ Button and Switch: General purpose SPST and SPDT

 ■ ICs: 74HC73N, 74HC03N, 74LS08N, 74HC08N, 74HC14, LM358N

 ■ Resistors: 1 MΩ, 2.2 kΩ, 2 x 10 kΩ, 50 kΩ, 100 Ω, 50 Ω, 1 kΩ, 470 Ω, 220 Ω,

100 kΩ POT

 ■ Capacitors: 10 μF, 1 μF, 0.33 μF, 0.1 μF

 ■ Opto-isolator: SFH617A

http://www.ibiblio.org/kuphaldt
http://www.allaboutcircuits.com
http://www.electronicsclub.info
http://www.ibiblio.org/kuphaldt/electricCircuits/

159

c05.indd 03:12:39:PM 05/17/2016 Page 159

This chapter describes several different programming options for the Raspberry

Pi (RPi), including scripted and compiled languages. An external LED control

program is provided in most of the languages so that you can investigate

each language’s structure and syntax. The advantages and disadvantages

of each language type are discussed along with example uses. The chapter

then focuses on the C/C++ and Python programming languages, describing

their principles, and why object-oriented programming (OOP) is appropriate

for the development of scalable embedded systems applications. The chapter

details how you can interface directly to the Linux kernel using the GNU C

library and fi nishes with a discussion on how the computational performance

of Python code can be greatly improved. A single chapter can only scratch the

surface on this topic, so this one focuses on physical programming with the RPi.

Equipment Required for This Chapter:

 ■ A terminal connection to the RPi (see Chapter 2)

 ■ LEDs, resistors, breadboard, hook-up wires, and a FET (BS270) or transis-

tor (BC547) (see Chapter 4)

See www.exploringrpi.com/chapter5/ for further details on this chapter.

 C H A P T E R

5

Programming on

the Raspberry Pi

http://www.exploringrpi.com/chapter5

160 Part I ■ Raspberry Pi Basics

c05.indd 03:12:39:PM 05/17/2016 Page 160

Introduction

As discussed in Chapter 3, embedded Linux is essentially “Linux on an embed-

ded system.” If your favorite programming language is available under Linux,

it is also likely to be available for the RPi. So, is your favorite language suitable

for programming the RPi? That depends on what you intend to do with the

board. Are you interfacing to electronics devices/modules? Do you plan to

write rich user interfaces? Are you planning to write a device driver for Linux?

Is performance very important, or are you developing an early pre-prototype?

Each of the answers to these questions will impact your decision regarding

which language you should use. In this chapter, you are introduced to several

different languages, and the advantages and disadvantages of each category of

language are outlined. As you read through the chapter, try to avoid focusing

on a favorite language, but instead try to use an appropriate language for the

job at hand.

How does programming on embedded systems compare to programming

on desktop computers? Here are some points to consider:

 ■ You should always write the clearest and cleanest code that is as main-

tainable as possible, just as you would on a desktop PC.

 ■ Don’t optimize your code until you are certain that it is complete.

 ■ You typically have to be more aware of how you are consuming resources

than when programming on the desktop computer. The size of data types

matters, and passing data correctly really matters. You have to be con-

cerned with memory availability, fi le system size, and data communication

availability/bandwidth.

 ■ You often have to learn about the underlying hardware platform. How

does it handle the connected hardware? What data buses are available?

How do you interface with the operating system and low-level libraries?

Are there any real-time constraints?

For the upcoming discussion, it is assumed that you are planning to do some

type of physical computing—that is, interfacing to the different input or outputs

on the RPi. Therefore, the example that is used to describe the structure and

syntax of the different languages is a simple interfacing example to control an

LED circuit. Before looking at the languages themselves, we will begin with a

brief performance evaluation of different languages running on the RPi, to put

the following discussions in context.

Performance of Languages on the RPi

Which language performs the best on the RPi? Well, that is an incredibly emo-

tive and diffi cult question to answer. Different languages perform better on

 Chapter 5 ■ Programming on the Raspberry Pi 161

c05.indd 03:12:39:PM 05/17/2016 Page 161

different benchmarks and different tasks. In addition, a program written in a

particular language can be optimized for that language to the point that it is

barely recognizable as the original code. Nor is speed of execution always an

important factor; you may be more concerned with memory usage, the portabil-

ity of the code, or the ability to quickly apply changes.

However, if you are planning to develop high-speed or real-time number-

crunching applications, performance may be a key factor in your choice of

programming language. In addition, if you are setting out to learn a new lan-

guage, and you may possibly be developing algorithmically rich programs in

the future, it may be useful to keep performance in mind.

A simple test has been put in place on different RPi models to determine the

performance of the languages discussed in this chapter. The test uses the n-body

benchmark (gravitational interaction of planets) code from tiny.cc/erpi501. The

code uses the exact same algorithm for all languages and the RPi is running in

the same state in all cases. The test uses fi ve million iterations of the algorithm

to ensure that the script used for timing does not have to be highly accurate.

All of the programs gave the same correct result (i.e., −0.169083134), indicating

that they all ran correctly and to completion. The various tests are available in

the book’s Git repository in the directory chp05/performance/.

All the code for the following tests were compiled and executed on the RPi

platform. Not all the languages used are available on Raspbian by default, but

the test has the added value of giving you confi dence that you can utilize these

languages on the RPi. Importantly, the code examples that I used in this test

contain only typical coding constructs, purposefully avoiding custom optimi-

zation libraries. Use the following call to execute the test:

pi@erpi ~/exploringrpi/chp05/performance $./run

The C/C++ Code Example

-0.169075164

-0.169083134

It took 6544 milliseconds to run the C/C++ test

The results of the tests are displayed in Table 5-1. In the third column you can

see the results for an RPi 3 (in ARMv7 mode), running at a processor frequency

of 1.2 GHz (with default CPU/GPU memory allocation). C/C++ takes 6.5 seconds

to complete this number-crunching task, so this time is used as the benchmark

and is weighted as 1.00 units. Therefore, Haskell takes 1.16 times longer to

complete the same task, Java takes 1.52 times longer, Python 94.1 times longer,

and Ruby 147 times longer. The processing durations in seconds are provided

in parentheses and the table is ordered with respect to language performance.

As you move across the columns, you can see that this performance is relatively

consistent, even as the processor frequency is adjusted (discussed in the next

section) or a desktop i7 64-bit processor is used.

162 Part I ■ Raspberry Pi Basics

c05.indd 03:12:39:PM 05/17/2016 Page 162

Table 5-1: Numeric Computation Time for 5,000,000 Iterations of the n-Body Algorithm on

Raspbian (Jessie Minimal Image)

VALUE TYPE

RPi 3 at

1.2 GHZ1

RPi 2 at

1 GHZ2

RPi B+ at

1 GHZ3

64BIT i7

PC4

C/C++ Compiled 1.00 × (6.5s) 1.00 × (9.3s) 1.00 × (10.0s) 1.00 × (0.61s)

C++11 Compiled 1.06 × (6.9s) 0.69 × (6.4s) 0.70 × (7.03s) 0.95 × (0.58s)

Haskell Compiled 1.16 × (7.6s) 1.17 × (10.8s) 1.07 × (10.8s) 1.15 × (0.70s)

Java5 JIT 1.52 × (9.94s) 1.45 × (13.4s) 2.29 × (23.0s) 1.36 × (0.83s)

Mono C# JIT 2.72 × (17.8s) 2.47 × (22.9s) 3.62 × (36.4s) 2.16 × (1.32s)

Cython6 Compiled 2.74 × (17.9s) 2.67 × (24.8s) 2.80 × (28.0s) 1.26 × (0.77s)

Node.js7 JIT 2.76 × (18.1s) 6.23 × (57.7s) 50.1 × (503s) 6.54 × (3.99s)

Lua Interpreted 20.2 × (132s) 21.2 × (197s) 25.7 × (258s) 34.3 × (20.9s)

Cython Compiled 64.2 × (420s) 66.6 × (618s) 163 × (1633s) 58.0 × (34.4s)

Perl Interpreted 92.6 × (601s) 81.5 × (756s) 171 × (1716s) 82.0 × (50.0s)

Python Interpreted 94.1 × (616s) 89.9 × (834s) 198 × (1992s) 89.7 × (54.7s)

Ruby Interpreted 147 × (962s) 140 × (1298s) 265 × (2662s) 47.4 × (28.9s)

1 RPi 3 running at 1.2 GHz, quad core (only one core utilized), ARMv7 (rev 4 with a 32-bit Linux distribution: Linux
4.1.19-v7+) supports: half thumb fastmult vfp edsp neon vfpv3 tls vfpv4 idiva idivt vfpd32 lpae evtstrm crc32.
Please ensure that you use a high-quality power supply that is capable of delivering at least 1.5 A.
2 RPi 2 overclocked at 1 GHz, quad core (only one core utilized), ARMv7 (rev 5) supports: half thumb fastmult vfp
edsp neon vfpv3 tls vfpv4 idiva idivt vfpd32 lpae evtstrm. Note: Overclocking your RPi may reduce its lifespan.
3 RPi B+ overclocked at 1 GHz, single core, ARMv6 (rev 7 v6) supports: half thumb fastmult vfp edsp java tls.
4 Windows 8.1 PC running a 64-bit Debian Jessie VirtualBox VM that was allocated 3 threads (of 12) on an Intel
i7-5820K @ 3.3 GHz, with the VM allocated 16 GB of RAM. Only one thread is used.
5 You can use sudo apt install oracle-java8-jdk to install the Oracle JDK on the Raspberry Pi
platform.
6 This Cython test involved modifying the Python source code to optimize it. It is not simply the compilation of
raw Python code. The second Cython test represents the simple compilation of raw Python source code.
7 Node.js (node -v) is version v5.10.1 and it supports the ARM NEON accelerator processor. NEON is available
on the RPi 2/3 (ARMv7) but not on the RPi B+ (ARMv6), which contributes to the poor performance of Node.js on
the RPi B+ of 50.1× the baseline. See the feature titled “LAMP and MEAN” in Chapter 12 for instructions on how to
install the latest version of Node.js on the RPi.

The code examples have not been optimized for multicore processors, so for

example, the C/C++ code only uses a single core of the RPi 3 processor. Albeit,

regular Linux threads are automatically offl oaded to other cores and the full

memory bandwidth is available to the one core. Multicore programming is

discussed in the next chapter, where you can see that the performance of the

RPi 2/3 can be further improved relative to the RPi B+, which has a single-core

processor. All the programs use between 98% and 99% of the CPU while they

are executing.

The second column in Table 5-1 indicates the language type, where compiled

refers to natively compiled languages, JIT refers to just-in-time compiled languages,

 Chapter 5 ■ Programming on the Raspberry Pi 163

c05.indd 03:12:39:PM 05/17/2016 Page 163

and interpreted refers to code that is executed by interpreters. The distinction in

these language types is described in detail throughout this chapter and is not

quite as clear-cut as presented in the table.

THE 64BIT RPi 3 BCM2837 SYSTEM ON A CHIP SOC

The RPi 3 utilizes a quad-core, Cortex-A53 BCM2837 SoC that supports 64-bit opera-

tions. It is clear from the indicative tests at the beginning of this chapter that its per-

formance is impressive, delivering approximately 30% faster performance than the

overclocked RPi 2 in the C/C++ test, despite running in 32-bit mode. This performance

improvement is mainly due to the faster CPU clock frequency, rather than the 64-bit

processor. The move to full Linux support for 64-bit embedded Linux on the RPi 3 will

eventually provide advantages (e.g., improved NEON fl oating-point performance,

improved instruction sets). However, Eben Upton from the Raspberry Pi Foundation

has indicated that it will take some time before the RPi fi rmware is updated to support

a 64-bit Linux kernel.

It is worth noting that the relative performance of Java is impressive given

that code is compiled dynamically (“just-in-time”), which is discussed later

in this chapter. Any dynamic compilation latency is included in the timings,

because the test script includes the following Bash script code to calculate the

execution duration of each program:

Duration="5000000"

echo -e "\nThe C/C++ Code Example"

T="$(date +%s%N)"

./n-body $Duration

T="$(($(date +%s%N)-T))"

T=$((T/1000000))

echo "It took ${T} milliseconds to run the C/C++ test"

The C++11 code is the version of the C++ programming language that was

approved in mid-2011. C++11 requires g++ version 4.7 or greater, and is dis-

cussed again in Chapter 7. The binary code has been built using optimizations

that do not involve modifi cations to the binary code (e.g., -O3 for C/C++ and

the +AggressiveOpts fl ag is set for Java).

Despite the “Pi” in Raspberry8 Pi being derived from “Python,” the performance

results for the language are particularly poor due to the algorithmic nature of the

problem. However, the benchmarks at (debian.org, 2013), indicate that the range

will be 9–100 times slower than the optimized C++ code for general processing

to algorithm-rich code, respectively. If you are very comfortable with Python and

you would like to improve upon its performance, you can investigate Cython, a

compiler that supports the removal of Python’s dynamic typing capability and

8 The RPi brand name continues a global trend of naming devices after fruits (e.g., Apple, Black-
Berry)! According to Liz Upton of the Raspberry Pi Foundation, the name is a throwback to
Apricot Computers in particular, a 1980s UK company that produced desktop PCs.

164 Part I ■ Raspberry Pi Basics

c05.indd 03:12:39:PM 05/17/2016 Page 164

facilitates you to generate C code directly from your Python code. Cython and

the extension of Python with C/C++ are discussed at the end of this chapter.

The fi nal column provides the results for the same code running on a desk-

top computer virtual machine. You can see that the relative performance of

the applications is broadly in line, but also note that the C++ program runs

10 times faster on a single i7 thread than it does on a single core of the RPi 3.

The computational performance of the RPi 3 is very impressive, but it will still

struggle with computationally expensive applications like signal processing

and computer vision.

As previously discussed, this is only one numerically oriented benchmark test,

but it is somewhat indicative of the type of performance you should expect from

each language. There have been many studies on the performance of languages.

However, a well-specifi ed analysis by Hundt (2011) has found that in terms of

performance, “C++ wins out by a large margin. However, it also required the

most extensive tuning efforts, many of which were done at a level of sophisti-

cation that would not be available to the average programmer” (Hundt, 2011).

RASPBERRY Pi BENCHMARKS

Roy Longbottom’s (roylongbottom.org.uk) Benchmark Collection is a well-known

set of benchmark tests that can be executed on many platforms, including the RPi. As

an alternative to the simple tests in this section, you can download and execute these

tests on the RPi using the following:

pi@erpi:~ $ mkdir perf

pi@erpi:~ $ cd perf/

...~/perf $ wget http://www.roylongbottom.org.uk/Raspberry_Pi_Benchmarks.zip

...~/perf $ unzip Raspberry_Pi_Benchmarks.zip

...~/perf $ cd Raspberry_Pi_Benchmarks /Source\ Code/

... /Source Code $ gcc whets.c cpuidc.c -lm -O3 -o whets

... /Source Code $./whets

Whetstone Single Precision C Benchmark vfpv4 32 Bit, Mon Apr 11 00:20:12 2016

Loop content Result MFLOPS MOPS Seconds

N1 floating point -1.12475013732910156 170.579 0.082

N2 floating point -1.12274742126464844 181.435 0.539

N3 if then else 1.00000000000000000 898.271 0.084

N4 fixed point 12.00000000000000000 748.817 0.306

N5 sin,cos etc. 0.49911010265350342 10.533 5.750

N6 floating point 0.99999982118606567 299.770 1.310

N7 assignments 3.00000000000000000 1198.997 0.112

N8 exp,sqrt etc. 0.75110864639282227 8.721 3.105

MWIPS 644.874 11.289

 Chapter 5 ■ Programming on the Raspberry Pi 165

c05.indd 03:12:39:PM 05/17/2016 Page 165

The RPi 3 delivers 644.9 million Whetstone instructions per second (MWIPS) in

this test. According to the benchmark results at tiny.cc/erpi507 the RPi Model B

delivers 390.6 MWIPS and the RPi 2 (at 1 GHz) delivers 568.4 MWIPS, which is broadly

in line with the performance tests described in this section.

Setting the RPi CPU Frequency

In the preceding tests, the clock frequency of the RPi was adjusted dynami-

cally at run time. The RPi has various governors that can be used to profi le

its performance/power usage ratio. For example, if you were building a

battery-powered RPi application that has low processing requirements, you

could reduce the clock frequency to conserve power. You can fi nd out infor-

mation about the current state by typing (called on the RPi 2):

pi@erpi ~ $ sudo apt install cpufrequtils

pi@erpi ~ $ cpufreq-info

... analyzing CPU 0:

 driver: BCM2835 CPUFreq

 CPUs which run at the same hardware frequency: 0 1 2 3

 CPUs which need to have their frequency coordinated by software: 0 1 2 3

 maximum transition latency: 355 us.

 hardware limits: 600 MHz - 1000 MHz

 available frequency steps: 600 MHz, 1000 MHz

 available cpufreq governors: conservative, ondemand, userspace, powersave,

 performance. current policy: frequency should be within 600 MHz and 1000 MHz.

 The governor "ondemand" may decide which speed to use within this range.

 current CPU frequency is 600 MHz. ...

As listed above, the RPi 2 has four CPU cores (0–3), so each will display an

output. In this example, the RPi 2 is overclocked by setting arm_freq=1000 in

/boot/config.txt. You can see that different governors are available, with the

profi le names conservative, ondemand, userspace, powersave, and perfor-

mance. To enable one of these governors or to explicitly set the clock frequency,

enter the following:

pi@erpi ~ $ sudo cpufreq-set -g performance

pi@erpi ~ $ cpufreq-info

... current CPU frequency is 1000 MHz. ...

pi@erpi ~ $ sudo cpufreq-set -f 600MHz

pi@erpi ~ $ cpufreq-info

... current CPU frequency is 600 MHz. ...

The default governor is ondemand, which dynamically switches the CPU

frequency. For example, if the CPU frequency is currently 600 MHz and the

average CPU usage between governor samplings is above the threshold (called

the up_threshold) then the CPU frequency will be automatically increased.

166 Part I ■ Raspberry Pi Basics

c05.indd 03:12:39:PM 05/17/2016 Page 166

You can tweak these and other settings using their sysfs entries. For example,

to set the threshold at which the CPU frequency rises to the point at which the

CPU load reaches 90% of available capacity, use the following:

pi@erpi ~ $ sudo cpufreq-set -g ondemand

pi@erpi ~ $ cd /sys/devices/system/cpu/cpufreq/ondemand/

pi@erpi .../ondemand $ ls

ignore_nice_load powersave_bias sampling_rate up_threshold

io_is_busy sampling_down_factor sampling_rate_min

pi@erpi .../ondemand $ cat up_threshold

50

pi@erpi .../ondemand $ sudo sh -c "echo 90 > up_threshold"

pi@erpi .../ondemand $ cat up_threshold

90

Finally, if you decide to permanently change the default governor on the RPi

to be performance rather than ondemand, you can edit the cpufrequtils fi le in

/etc/init.d/ as follows:

pi@erpi ~ $ cd /etc/init.d/

pi@erpi /etc/init.d $ more cpufrequtils | grep GOVERNOR=

GOVERNOR="ondemand"

pi@erpi /etc/init.d $ sudo nano cpufrequtils

pi@erpi /etc/init.d $ more cpufrequtils | grep GOVERNOR=

GOVERNOR="performance"

pi@erpi /etc/init.d $ sudo reboot

A First Circuit for Physical Computing

Figure 5-1 illustrates a circuit that you can connect to the RPi for safely driving

an LED using (a) a BS270 FET, and (b) a BC547 NPN transistor. You can use either

of these circuits to test the code that is described in this chapter.

As described in Chapter 4, a FET or NPN transistor can be used to switch a

load using a very low current. In this example the GPIO pin (GPIO4), which is

connected to Pin 7 on the GPIO header, provides the low current required to

switch the FET/transistor on or off, depending on whether the GPIO state is high

or low. The relatively large current that is required to light the LED (~10 mA–

15 mA) is sourced from the 3.3 V supply pin on the RPi using the calculation

that is described in Figure 4-9. These circuits are described in more detail in

Chapter 6.

W A R N I N G Be very careful when wiring circuits such as those in Figure 5-1.

Incorrect connections or the use of the wrong header pin can destroy your RPi. It

is good practice to wire such circuits with the power to the RPi disconnected. Only

power the RPi once you have carefully checked the circuit confi guration.

mailto:pi@erpi.../ondemand$catup_threshold90Finally
mailto:pi@erpi.../ondemand$catup_threshold90Finally
mailto:pi@erpi.../ondemand$catup_threshold90Finally
mailto:pi@erpi/etc/init.d$sudorebootAFirstCircuitforPhysicalComputingFigure5-1illustratesacircuitthatyoucanconnecttotheRPiforsafelydrivinganLED
mailto:pi@erpi/etc/init.d$sudorebootAFirstCircuitforPhysicalComputingFigure5-1illustratesacircuitthatyoucanconnecttotheRPiforsafelydrivinganLED
mailto:pi@erpi/etc/init.d$sudorebootAFirstCircuitforPhysicalComputingFigure5-1illustratesacircuitthatyoucanconnecttotheRPiforsafelydrivinganLED
mailto:pi@erpi/etc/init.d$sudorebootAFirstCircuitforPhysicalComputingFigure5-1illustratesacircuitthatyoucanconnecttotheRPiforsafelydrivinganLED

 Chapter 5 ■ Programming on the Raspberry Pi 167

c05.indd 03:12:39:PM 05/17/2016 Page 167

(a) (b)

Figure 5-1: (a) Driving an LED with a GPIO using a FET, and (b) driving an LED with a GPIO using

an NPN transistor

Once this circuit is wired correctly, you can use Linux sysfs to control the

GPIO so that you become familiar with the workfl ow in the code that follows.

The fi rst step is to enable GPIO4 on the RPi using the following steps:

pi@erpi ~ $ cd /sys/class/gpio

pi@erpi /sys/class/gpio $ ls

export gpiochip0 unexport

pi@erpi /sys/class/gpio $ echo 4 > export

pi@erpi /sys/class/gpio $ ls

export gpio4 gpiochip0 unexport

pi@erpi /sys/class/gpio $ cd gpio4

pi@erpi /sys/class/gpio/gpio4 $ ls

active_low device direction edge subsystem uevent value

GPIO4 can now be controlled using the entries in the Linux gpio4 directory.

For example, you can set up the GPIO to be an output, and change its state to

be high or low using the following steps:

pi@erpi /sys/class/gpio/gpio4 $ echo out > direction

pi@erpi /sys/class/gpio/gpio4 $ echo 1 > value

pi@erpi /sys/class/gpio/gpio4 $ echo 0 > value

If the LED circuit in Figure 5-1 is wired correctly, the change in the GPIO state

results in the LED switching on and off. You can read the state of the GPIO

using the following calls:

pi@erpi /sys/class/gpio/gpio4 $ cat direction

out

168 Part I ■ Raspberry Pi Basics

c05.indd 03:12:39:PM 05/17/2016 Page 168

pi@erpi /sys/class/gpio/gpio4 $ cat value

0

Finally, if you want to redisable the GPIO, you can perform this step:

pi@erpi /sys/class/gpio $ echo 4 > unexport

pi@erpi /sys/class/gpio $ ls

export gpiochip0 unexport

The various code examples in the remainder of this chapter utilize Linux sysfs

to automate the preceding tasks. It is important to note that sysfs is mapped to

memory and that therefore these fi le operations are actually reasonably effi cient.

Scripting Languages

A scripting language is a computer programming language that is used to

specify script fi les, which are interpreted directly by a runtime environment

to perform tasks. Many scripting languages are available, such as Bash, Perl,

Lua, and Python, and these can be used to automate the execution of tasks on

the RPi, such as system administration, interaction, and even interfacing to

electronic components using sysfs.

Scripting Language Options

Which scripting language should you choose for the RPi? There are many strong

opinions and it is a diffi cult topic, because Linux users tend to have a favorite

scripting language. However, you should choose the scripting language with

features that suit the task at hand. For example:

 ■ Bash scripting: Is a great choice for short scripts that do not require advanced

programming structures. Bash scripts are used extensively in this book for

small, well-defi ned tasks, such as the timing code in the previous section. You

can use the Linux commands discussed in Chapter 3 in your Bash scripts.

 ■ Lua: Is a fast and lightweight scripting language that can be used for embed-

ded applications because of its very small footprint. Lua supports the object-

oriented programming (OOP) paradigm (using tables and functions) and

dynamic typing, which is discussed shortly. Lua has an important role in

Chapter 13 for the programming of NodeMCU Wi-Fi modules.

 ■ Perl: Is a great choice for scripts that parse text documents or process

streams of data. It enables you to write straightforward scripts and even

supports the OOP paradigm.

 ■ Python: Is great for scripts that need more complex structure and are likely

to be built upon or modifi ed in the future. Like Lua, Python supports the

OOP paradigm and dynamic typing.

 Chapter 5 ■ Programming on the Raspberry Pi 169

c05.indd 03:12:39:PM 05/17/2016 Page 169

These four scripting languages are available preconfi gured on the Raspbian

image. It would be very useful to have some knowledge of all of these scripting

languages, because you may fi nd third-party tools or libraries that make your

current project very straightforward. This section provides a brief overview of

each of these languages, including a concise segment of code that performs the

same function in each language. It fi nishes with a discussion about the advan-

tages and disadvantages of scripting languages in general.

N O T E All the code that follows in this chapter is available in the associated GitHub

repository in the chp05 directory. If you have not done so already, use git clone

https://github.com/derekmolloy/exploringrpi.git in a Linux terminal

window to clone this repository.

Bash

Bash scripts are a great choice for short scripts that do not require advanced

programming structures, and that is exactly the application that is described

here. The fi rst program in Listing 5-1 allows a user to set up a GPIO, turn an

LED on or off, get the status of a GPIO, and close the GPIO. Essentially this script

automates the steps that are performed using sysfs earlier in this chapter. For

example, using this script by calling ./bashLED setup followed by ./bashLED

on would light the LED in Figure 5-1.

Listing 5-1: chp05/bashLED/bashLED

#!/bin/bash

LED_GPIO=4 # Use a variable -- easy to change GPIO number

An example Bash functions

function setLED

{ # $1 is the 1st argument passed to this function

 echo $1 >> "/sys/class/gpio/gpio$LED_GPIO/value"

}

Start of the program -- start reading from here

if [$# -ne 1]; then # if there is not exactly one argument

 echo "No command was passed. Usage is: bashLED command,"

 echo "where command is one of: setup, on, off, status and close"

 echo -e " e.g., bashLED setup, followed by bashLED on"

 exit 2 # error that indicates invalid number of arguments

fi

echo "The LED command that was passed is: $1"

if ["$1" == "setup"]; then

 echo "Exporting GPIO number $1"

 echo $LED_GPIO >> "/sys/class/gpio/export"

https://github.com/derekmolloy/exploringrpi.git

170 Part I ■ Raspberry Pi Basics

c05.indd 03:12:39:PM 05/17/2016 Page 170

 sleep 1 # to ensure gpio has been exported before next step

 echo "out" >> "/sys/class/gpio/gpio$LED_GPIO/direction"

elif ["$1" == "on"]; then

 echo "Turning the LED on"

 setLED 1 # 1 is received as $1 in the setLED function

elif ["$1" == "off"]; then

 echo "Turning the LED off"

 setLED 0 # 0 is received as $1 in the setLED function

elif ["$1" == "status"]; then

 state=$(cat "/sys/class/gpio/gpio$LED_GPIO/value")

 echo "The LED state is: $state"

elif ["$1" == "close"]; then

 echo "Unexporting GPIO number $LED_GPIO"

 echo $LED_GPIO >> "/sys/class/gpio/unexport"

fi

The script is available in the directory /chp05/bashLED/. If you entered the

script manually using the nano editor, the fi le needs to have the executable

fl ag set before it can be executed. (The Git repository retains executable fl ags.)

Therefore, to allow all users to execute this script, use the following call:

/chp05/bashLED$ chmod ugo+x bashLED

What is happening within this script? First, all of these command scripts

begin with a sha-bang #! followed by the name and location of the interpreter

to be used, so #!/bin/bash in this case. The fi le is just a regular text fi le, but

the sha-bang is a magic-number code to inform the OS that the fi le is an execut-

able. Next, the script defi nes the GPIO number for which you want to change

state using the variable LED_GPIO. Using a variable allows the default value to

be easily altered should you want to use a different GPIO for this task.

The script contains a function called setLED, mainly to demonstrate how

functions are structured within Bash scripting. This function is called later in

the script. Each if is terminated by a fi. The ; after the if statement terminates

that statement and allows the statement then to be placed on the same line. The

elif keyword means else if, which allows you to have multiple comparisons

within the one if block. The newline character \n terminates statements.

The fi rst if statement checks if the number of arguments passed to the script

($#) is not equal to 1. The correct way to call this script is in the form ./bashLED

on, where on is the fi rst user argument that is passed ($1) and there is one argu-

ment in total. If there were no arguments passed, the correct usage would be

displayed and the script would exit with the return code 2. This value is consis-

tent with Linux system commands, where an exit value of 2 indicates incorrect

usage. Success is indicated by a return value of 0, so any non-zero return value

generally indicates the failure of a script.

If the argument passed is on then the code displays a message and writes the

string “1” to the value fi le in the /gpio4/ directory. The remaining functions

 Chapter 5 ■ Programming on the Raspberry Pi 171

c05.indd 03:12:39:PM 05/17/2016 Page 171

modify the GPIO4 state in the same way as described in the last section. You

can execute the script as follows:

pi@erpi ~/exploringrpi/chp05/bashLED $./bashLED

No command was passed. Usage is: bashLED command,

where command is one of: setup, on, off, status and close

 e.g., bashLED setup, followed by bashLED on

pi@erpi ~/exploringrpi/chp05/bashLED $./bashLED setup

The LED command that was passed is: setup

Exporting GPIO number setup

pi@erpi ~/exploringrpi/chp05/bashLED $./bashLED on

The LED command that was passed is: on

Turning the LED on

pi@erpi ~/exploringrpi/chp05/bashLED $./bashLED status

The LED command that was passed is: status

The LED state is: 1

pi@erpi ~/exploringrpi/chp05/bashLED $./bashLED close

The LED command that was passed is: close

Unexporting GPIO number 4

Interestingly, the script does not have to be prefi xed by sudo when it is executed

by the pi user under Raspbian. On other Linux distributions this is not the case,

because GPIOs are typically owned exclusively by the superuser. However,

Raspbian has special udev rules which ensure that the GPIOs are shared within

the gpio Linux group, and because the pi user is a member of that group it is

permitted access. The user molloyd that is described in Chapter 3 would have

to be added to the gpio group to execute the script. This topic is described in

more detail in Chapter 6, but for the moment you can confi rm group ownership

and access permissions as follows:

pi@erpi /sys/class/gpio $ groups

pi adm ... gpio i2c spi input

pi@erpi /sys/class/gpio $ ls -ld gpio4

lrwxrwxrwx 1 root gpio 0 Jun 27 12:22 gpio4 -> ...

You might ask why the setuid bit could not be used on the bashLED script

to give it superuser permissions instead. Well, for security reasons, you cannot

use the setuid bit on a script to set it to execute as root. If users had write access

to a script that is owned by root and its setuid bit was set, the users could inject

any command that they wished into the script and would therefore have de facto

superuser access to the system.

For a comprehensive online guide to Bash scripting, see Mendel Cooper’s

“Advanced Bash-Scripting Guide”: tiny.cc/erpi502

Lua

Lua is the best performing interpreted language in Table 5-1 by a signifi cant

margin. In addition to good performance, Lua has a clean and straightforward

172 Part I ■ Raspberry Pi Basics

c05.indd 03:12:39:PM 05/17/2016 Page 172

syntax that is accessible for beginners. The interpreter for Lua has a small foot-

print—on the RPi it is only 130 KB in size (ls -lh /usr/bin/lua5.1), which

makes it very suitable for low-footprint embedded applications. For example, Lua

can be used successfully on the ultra-low-cost ($2–$5) ESP8266 Wi-Fi modules

that are described in Chapter 13, despite their modest memory allocations. In

fact, once a platform has an ANSI C compiler then the Lua interpreter can be

built for it. However, one downside is that the standard library of functions is

somewhat limited in comparison to other more general scripting languages,

such as Python.

Listing 5-2 provides a Lua script that has the same structure as the Bash script,

so it is not necessary to discuss it in detail.

Listing 5-2: chp05/luaLED/luaLED.lua

#!/usr/bin/lua

local LED4_PATH = "/sys/class/gpio/gpio4/" -- gpio4 sysfs path

local SYSFS_DIR = "/sys/class/gpio/" -- gpio sysfs path

local LED_NUMBER = "4" -- The GPIO used

-- Example function to write a value to the GPIO

function writeGPIO(directory, filename, value)

 file = io.open(directory..filename, "w") -- append dir and file names

 file:write(value) -- write the value to the file

 file:close()

end

print("Starting the Lua LED Program")

if arg[1]==nil then -- no argument provided?

 print("This program requires a command")

 print(" usage is: ./luaLED.lua command")

 print("where command is one of setup, on, off, status, or close")

 do return end

end

if arg[1]=="on" then

 print("Turning the LED on")

 writeGPIO(LED4_PATH, "value", "1")

elseif arg[1]=="off" then

 print("Turning the LED off")

 writeGPIO(LED4_PATH, "value", "0")

elseif arg[1]=="setup" then

 print("Setting up the LED GPIO")

 writeGPIO(SYSFS_DIR, "export", LED_NUMBER)

 os.execute("sleep 0.1") -- ensure the GPIO is exported by Linux

 writeGPIO(LED4_PATH, "direction", "out")

elseif arg[1]=="close" then

 print("Closing down the LED GPIO")

 writeGPIO(SYSFS_DIR, "unexport", LED_NUMBER)

elseif arg[1]=="status" then

 print("Getting the LED status")

 file = io.open(LED4_PATH.."value", "r")

 Chapter 5 ■ Programming on the Raspberry Pi 173

c05.indd 03:12:39:PM 05/17/2016 Page 173

 print(string.format("The LED state is %s.", file:read()))

 file:close()

else

 print("Invalid command!")

end

print("End of the Lua LED Program")

You can execute this script in the same manner as the bashLED script

(e.g., ./luaLED.lua setup or by typing lua luaLED.lua setup from the

/chp05/luaLED/ directory) and it will result in a comparable output. There are

two things to be careful of with Lua in particular: strings are indexed from 1,

not 0; and, functions can return multiple values, unlike most languages. Lua

has a straightforward interface to C/C++, which means that you can execute

compiled C/C++ code from within Lua, or use Lua as an interpreter module

within your C/C++ programs. There is an excellent reference manual at www

.lua.org/manual/ and a six page summary of Lua at tiny.cc/erpi503.

Perl

Perl is a feature-rich scripting language that provides you with access to a huge

library of reusable modules and portability to other OSs (including Windows).

Perl is best known for its text processing and regular expressions modules. In

the late 1990s it was a very popular language for server-side scripting for the

dynamic generation of web pages. Later it was superseded by technologies such

as Java servlets, Java Server Pages (JSP), and PHP. The language has evolved

since its birth in the 1980s and now includes support for the OOP paradigm.

Perl 5 (v20+) is installed by default on the Raspbian image.

A Perl version of the LED program is provided in the /chp05/perlLED/ direc-

tory. Apart from general syntax changes that are described in the comments

within the code, very little has actually changed in the translation to Perl. To

execute this code, simply type./perlLED.pl on, because the sha-bang identifi es

the Perl interpreter. You could also execute it by typing perl perlLED.pl status.

For a good resource about getting started with installing and using Perl 5,

see the guide “Learning Perl” at learn.perl.org.

Python

Python is a dynamic and strongly typed OOP language that was designed to

be easy to learn and understand. Dynamic typing means that you do not have

to associate a type (e.g., integer, character, string) with a variable; rather, the

value of the variable “remembers” its own type. Therefore, if you were to cre-

ate a variable x=5, the variable x would behave as an integer; but if you subse-

quently assign it using x=”test”, it would then behave like a string. Statically
typed languages such as C/C++ or Java would not allow the re-defi nition of a

http://www.lua.org/manual/
http://www.lua.org/manual/

174 Part I ■ Raspberry Pi Basics

c05.indd 03:12:39:PM 05/17/2016 Page 174

variable in this way (within the same scope). Strongly typed languages require

that the conversion of a variable from one type to another must have an explicit

conversion. Unfortunately, dynamic typing has a heavy performance cost, which

is apparent from the performance of Python in Table 5-1.

Python is installed by default on the Raspbian image and it is a very popular

general-purpose language within the RPi community. The Python3 example

to control the GPIO is provided in Listing 5-3. A Python2 example, which has

minor modifi cations, is provided in the same directory.

Listing 5-3: chp05/pythonLED/pythonLED3.py

#!/usr/bin/python3

import sys

from time import sleep

LED4_PATH = "/sys/class/gpio/gpio4/"

SYSFS_DIR = "/sys/class/gpio/"

LED_NUMBER = "4"

def writeLED (filename, value, path=LED4_PATH):

 "This function writes the value passed to the file in the path"

 fo = open(path + filename,"w")

 fo.write(value)

 fo.close()

 return

print("Starting the GPIO LED4 Python script")

if len(sys.argv)!=2:

 print("There is an incorrect number of arguments")

 print(" usage is: pythonLED.py command")

 print(" where command is one of setup, on, off, status, or close")

 sys.exit(2)

if sys.argv[1]=="on":

 print("Turning the LED on")

 writeLED (filename="value", value="1")

elif sys.argv[1]=="off":

 print("Turning the LED off")

 writeLED (filename="value", value="0")

elif sys.argv[1]=="setup":

 print("Setting up the LED GPIO")

 writeLED (filename="export", value=LED_NUMBER, path=SYSFS_DIR)

 sleep(0.1)

 writeLED (filename="direction", value="out")

elif sys.argv[1]=="close":

 print("Closing down the LED GPIO")

 writeLED (filename="unexport", value=LED_NUMBER, path=SYSFS_DIR)

elif sys.argv[1]=="status":

 print("Getting the LED state value")

 fo = open(LED4_PATH + "value", "r")

 print(fo.read())

 Chapter 5 ■ Programming on the Raspberry Pi 175

c05.indd 03:12:39:PM 05/17/2016 Page 175

 fo.close()

else:

 print("Invalid Command!")

print("End of Python script")

The formatting of this code is important; in fact, Python enforces the layout

of your code by making indentation a structural element. For example, after

the line “if len(sys.argv)!=2:” the next few lines are “tabbed” in. If you

did not tab in one of the lines—for example, the sys.exit(2) line—then it

would not be part of the conditional if statement and the program would

always exit at this point in the code. To execute this example, in the pythonLED

directory enter the following:

pi@erpi .../chp05/pythonLED $./pythonLED3.py setup

Starting the GPIO LED4 Python script

Setting up the LED GPIO

End of Python script

pi@erpi .../chp05/pythonLED $./pythonLED3.py on

Starting the GPIO LED4 Python script

Turning the LED on

End of Python script

Python is particularly popular on the RPi for very good pedagogical reasons,

but as users turn their attention to more advanced applications it is diffi cult

to justify the performance defi cit. This chapter concludes with a discussion on

how you can use either Cython, or combine Python with C/C++ to dramatically

improve the performance of Python. However, the complexity of Cython itself

should motivate you to consider using C/C++ directly.

To conclude this discussion of scripting, there are several strong choices for

applications on the RPi. Table 5-2 lists some of the key advantages and disad-

vantages of command scripting on the RPi, when considered in the context of

the compiled languages that are discussed shortly.

Table 5-2: Advantages and Disadvantages of Command Scripting on the RPi

ADVANTAGES DISADVANTAGES

Perfect for automating Linux system

administration tasks that require calls to

Linux commands.

Performance is poor for complex numeric

or algorithmic tasks.

Easy to modify and adapt to changes.

Source code is always present and

complex toolchains (see Chapter 7) are

not required to make modifi cations.

Generally, nano is the only tool that

you need.

Generally, relatively poor/slow programming

support for data structures, graphical user

interfaces, sockets, threads, etc.

Continues

176 Part I ■ Raspberry Pi Basics

c05.indd 03:12:39:PM 05/17/2016 Page 176

ADVANTAGES DISADVANTAGES

Generally, straightforward program-

ming syntax and structure that is rea-

sonably easy to learn when compared

to languages like C++ and Java.

Generally, poor support for complex applica-

tions involving multiple, user-developed mod-

ules or components.

Generally, quick turnaround in coding

solutions by occasional programmers or

for prototyping.

Code is in the open. Direct access to view your

code can be an intellectual property or a secu-

rity concern.

Lack of development tools (e.g., refactoring).

Dynamically Compiled Languages

With the interpreted languages just discussed, the source code text fi le is “exe-

cuted” by the user passing it to a runtime interpreter, which then translates and

executes each line of code. JavaScript and Java have different life cycles and are

quite distinct languages.

JavaScript and Node.js on the RPi

Node.js is JavaScript that is run on the server side. JavaScript is an interpreted

language by design. However, thanks to the V8 engine that was developed by

Google for their Chrome web browser, Node.js actually compiles JavaScript into

native machine instructions as it is loaded by the engine. This is called just-in-
time (JIT) compilation or dynamic translation. As demonstrated at the beginning

of this chapter, the performance of Node.js for numeric computation tasks is

impressive for a non-compiled language, specifi cally on the RPi 2/3 due to

optimizations for the ARMv7 platform.

Listing 5-4 shows the same LED code example written using JavaScript and

executed by passing it to the Node.js interpreter:

Listing 5-4: chp05/nodejsLED/nodejsLED.js

// Ignore the first two arguments (nodejs and the program name)

var myArgs = process.argv.slice(2)

var GPIO4_PATH = "/sys/class/gpio/gpio4/"

var GPIO_SYSFS = "/sys/class/gpio/"

var GPIO_NUMBER = 4

function writeGPIO(filename, value, path){

 var fs = require('fs')

 try {

 fs.writeFileSync(path+filename, value)

 }

 catch (err) {

Table 5-12 (continued)

 Chapter 5 ■ Programming on the Raspberry Pi 177

c05.indd 03:12:39:PM 05/17/2016 Page 177

 console.log("The Write Failed to the File: " + path+filename)

 }

}

console.log("Starting the RPi LED Node.js Program");

if (myArgs[0]==null){

 console.log("There is an incorrect number of arguments.");

 console.log(" Usage is: nodejs nodejsLED.js command")

 console.log(" where command is: setup, on, off, status, or close.")

 process.exit(2) //exits with the error code 2 (incorrect usage)

}

switch (myArgs[0]) {

 case 'on':

 console.log("Turning the LED On")

 writeGPIO("value", "1", GPIO4_PATH)

 break

 case 'off':

 console.log("Turning the LED Off")

 writeGPIO("value", "0", GPIO4_PATH)

 break

 case 'setup':

 console.log("Exporting the LED GPIO")

 writeGPIO("export", GPIO_NUMBER, GPIO_SYSFS)

 // need to delay by 100ms or the GPIO will not be exported correctly

 setTimeout(function(){writeGPIO("direction", "out", GPIO4_PATH)},100)

 break

 case 'close':

 console.log("Unexporting the LED GPIO")

 writeGPIO("unexport", GPIO_NUMBER, GPIO_SYSFS)

 break

 case 'status':

The code is available in the /chp05/nodejsLED/ directory and it can be executed

by typing nodejs nodejsLED.js setup, or node nodejsLED.js setup for more

recent versions of Node.js.

The code has been structured in the same way as the previous examples and

there are not too many syntactical differences. However, there is one major dif-

ference between Node.js and other languages: functions are called asynchronously.

Up to this point, all of the languages discussed followed a sequential-execution

mode. Therefore, when a function is called, the program counter (also known

as the instruction pointer) enters that function and does not reemerge until the

function is complete. Consider, for example, code like this:

functionA();

functionB();

The functionA() is called and functionB() will not be called until func-

tionA() is fully complete. This is not the case in Node.js! In Node.js, functionA()

is called fi rst and then Node.js continues executing the subsequent code, includ-

ing entering functionB(), while the code in functionA() is still being executed.

Node.js permits asynchronous calls because they help ensure that the code

is “lively.” For example, if you performed a database query, your code may be

178 Part I ■ Raspberry Pi Basics

c05.indd 03:12:39:PM 05/17/2016 Page 178

able to do something else useful while awaiting the result. When the result

is available, a callback function is executed to process the received data. This

asynchronous structure is perfect for Internet-attached applications, where

posts and requests are being made of websites and web services, and it is not

clear when a response will be received (if at all). Node.js has an event loop that

manages all the asynchronous calls, creating threads for each call as required,

and ensuring that the callback functions are executed when an asynchronous

call completes its assigned tasks. Node.js is revisited again in Chapter 12 when

the Internet of Things is discussed.

Java on the RPi

Up to this point in the chapter, interpreted languages are examined, meaning the

source code fi le (a text fi le) is executed using an interpreter or dynamic transla-

tor at run time. Importantly, the code exists in source code form, right up to the

point when it is executed using the interpreter.

With traditional compiled languages, the source code (a text fi le) is translated

directly into machine code for a particular platform using a set of tools, which

we will call a compiler for the moment. The translation happens when the code

is being developed; once compiled, the code can be executed without needing

any additional runtime tools.

Java is a hybrid language: You write your Java code in a source fi le, e.g.,

example.java, which is a regular text fi le. The Java compiler (javac) compiles

and translates this source code into machine code instructions (called bytecodes)
for a Java virtual machine (VM). Regular compiled code is not portable between

hardware architectures, but bytecode fi les (.class fi les) can be executed on any

platform that has an implementation of the Java VM. Originally, the Java VM

interpreted the bytecode fi les at run time. However, more recently, dynamic

translation is employed by the VM to convert the bytecodes into native machine

instructions at run time.

The key advantage of this life cycle is that the compiled bytecode is portable

between platforms; and because it is compiled to a generic machine instruc-

tion code, the dynamic translation to “real” machine code is very effi cient. The

downside of this structure when compared to compiled languages is that the

VM adds overhead to the execution of the fi nal executable.

The Oracle Java Development Kit (JDK) and Java Runtime Environment (JRE)

are currently installed by default on the RPi Raspbian full image. To install the

JDK on the Raspbian Minimal Image, use sudo apt install oracle-java8-jdk.

Listing 5-5 provides a source code example that is also available in the GitHub

repository in bytecode form.

 Chapter 5 ■ Programming on the Raspberry Pi 179

c05.indd 03:12:39:PM 05/17/2016 Page 179

N O T E Large installations such as Oracle Java might cause you to run out of space

on your RPi SD card. You can identify the fi ve largest packages that are installed on

your distribution using the command dpkg-query -Wf '${Installed-Size}\

t${Package}\n' | sort -n | tail -n5. You can then remove large unused

packages using apt remove. Here are the fi ve largest on the RPi Raspbian image—

note that Oracle Java 8 is presently the second largest package.

55920 pypy-upstream

65025 sonic-pi

104249 raspberrypi-bootloader

181992 oracle-java8-jdk

448821 wolfram-engine

Listing 5-5: chp05/javaLED/LEDExample.java (Segment)

package exploringRPi;

import java.io.*;

public class LEDExample {

 private static String GPIO4_PATH = "/sys/class/gpio/gpio4/";

 private static String GPIO_SYSFS = "/sys/class/gpio/";

 private static void writeSysfs(String filename, String value, String path){

 try{

 BufferedWriter bw = new BufferedWriter(new FileWriter(path+filename));

 bw.write(value);

 bw.close();

 }

 catch(IOException e){

 System.err.println("Failed to access RPi sysfs file: " + filename);

 }

 }

 public static void main(String[] args) {

 System.out.println("Starting the LED Java Application");

 if(args.length!=1) {

 System.out.println("There is an incorrect number of arguments.");

 System.out.println(" Correct usage is: LEDExample command");

 System.out.println("command is: setup, on, off, status, or close");

 System.exit(2);

 }

 if (args[0].equalsIgnoreCase("On") || args[0].equalsIgnoreCase("Off")){

 System.out.println("Turning the LED " + args[0]);

 writeSysfs("value",args[0].equalsIgnoreCase("On")?"1":"0",GPIO4_PATH);

 }

 ...

 }

}

180 Part I ■ Raspberry Pi Basics

c05.indd 03:12:39:PM 05/17/2016 Page 180

The program can be executed using the run script that is in the /chp05/

javaLED/ directory. You can see that the class is placed in the package direc-

tory exploringRPi.

Early versions of Java suffered from poor computational performance. However,

more recent versions take advantage of dynamic translation at runtime (just-in-

time, or JIT, compilation) and, as demonstrated at the start of this chapter, the

performance is approximately 50% slower (including dynamic translation) than

that of the natively compiled C++ code, with only a minor additional memory

overhead. Table 5-3 lists some of the advantages and disadvantages of using

Java for development on the RPi.

Table 5-3: Advantages and Disadvantages of Java on the RPi

ADVANTAGES DISADVANTAGES

Code is portable. Code compiled on

the PC can be executed on the RPi or

another embedded Linux platform.

Sandboxed applications do not have access to

system memory, registers or system calls (except

through /proc) or JNI (Java Native Interface).

There is a vast and extensive library of

code available that can be fully inte-

grated in your project.

Executing as root is slightly diffi cult due to

required environment variables. This is

pre-confi gured for the RPi pi user account.

Well-designed OOP support. It is not suitable for scripting.

Can be used for user-interface applica-

tion development on the RPi when it is

attached to a display

Computational performance is very respectable,

but slower than optimized C/C++ programs.

Slightly heavier on memory.

Strong support for multi-threading. Strictly typed and no unsigned integer types.

Has automatic memory allocation and

de-allocation using a garbage collec-

tor, removing memory leak concerns.

Royalty payment is required if deployed to a plat-

form that “involves or controls hardware” (Oracle,

2014).

C and C++ on the RPi

C++ was developed by Bjarne Stroustrup at Bell Labs (now AT&T Labs) during

1983–1985. It is based on the C language (named in 1972) that was developed

at AT&T for UNIX systems in the early 1970s (1969–1973) by Dennis Ritchie.

As well as adding an object-oriented (OO) framework (originally called “C with

Classes”), C++ also improves the C language by adding features such as better

type checking. It quickly gained widespread usage, which was largely due to its

similarity to the C programming language syntax, and the fact that it allowed

existing C code to be used when possible. C++ is not a pure OO language but

rather a hybrid, having the organizational structure of OO languages but retain-

ing the effi ciencies of C, such as typed variables and pointers.

 Chapter 5 ■ Programming on the Raspberry Pi 181

c05.indd 03:12:39:PM 05/17/2016 Page 181

Unlike Java, C++ is not “owned” by a single company. In 1998 the ISO

(International Organization for Standardization) committee adopted a world-

wide uniform language specifi cation that aimed to remove inconsistencies

between the various C++ compilers (Stroustrup, 1998). This standardization

continues today with C++11 approved by the ISO in 2011 (gcc 4.7+ supports the

fl ag -std=c++11) and more new features appearing in compilers today with the

approval of C++14 in August 2014.

Why am I covering C and C++ in more detail than other languages in this book?

 ■ First, I believe that if you can understand the workings of C and C++, you

can understand the workings of any language. In fact, most compilers (Java

native methods, Java virtual machine, JavaScript, etc.) and interpreters

(Bash, Lua, Perl, Python, etc.) are written in C.

 ■ At the beginning of this chapter, a signifi cant performance advantage of C/

C++ over other languages was described (yes, it was demonstrated using

only one random test!). It is also important to remember that the same

code running on the RPi 3 at 1.2 GHz was 10 times slower than the same

code running on only one thread (12 total) of an Intel i7-5820K at 3.3 GHz.

 ■ Chapter 16 explains how to develop Linux loadable kernel modules (LKM),

which requires a reasonable grasp of the C programming language. Later

in this chapter, code is provided that demonstrates how you can commu-

nicate directly with Linux kernel space using the GNU C Library (glibc).

 ■ Many of the application examples in this book such as streaming network

data and image processing use C++ and a comprehensive library of C++

code called Qt.

Table 5-4 lists some advantages and disadvantages of using C/C++ on the

RPi. The next section reviews some of the fundamentals of C and C++ pro-

gramming, to ensure that you have the skills necessary for the remaining

chapters in this book. It is not possible to cover every aspect of C and C++

programming in part of one chapter of one book. The Further Reading section

at the end of this chapter directs you to recommended texts.

Table 5-4: Advantages and Disadvantages of C/C++ on the RPi

ADVANTAGES DISADVANTAGES

You can build code directly on the RPi or

you can cross-compile code using pro-

fessional toolchains. Runtime environ-

ments do not need to be installed.

Compiled code is not portable. Code compiled

for your x86 desktop will not run on the RPi

ARM processor.

C++ has full support for procedural pro-

gramming, OOP, and support for gener-

ics through the use of STL (Standard

Template Library).

Many consider the languages to be complex

to master. There is a tendency to need to know

everything before you can do anything.

Continues

182 Part I ■ Raspberry Pi Basics

c05.indd 03:12:39:PM 05/17/2016 Page 182

ADVANTAGES DISADVANTAGES

It gives the best computational perfor-

mance, especially if optimized. However,

optimization can be diffi cult and can

reduce the portability of your code.

The use of pointers and the low-level control

available makes code prone to memory leaks.

With careful coding these can be avoided and

can lead to effi ciencies over dynamic memory

management schemes.

Can be used for high-performance

user-interface application development

on the RPi using third-party libraries.

Libraries such as Qt and Boost provide

extensive additional libraries for compo-

nents, networking, etc.

By default, C and C++ do not support graphical

user interfaces, network sockets, etc. Third-

party libraries are required.

Off ers low-level access to glibc for inte-

grating with the Linux system. Programs

can be setuid to root.

Not suitable for scripting (there is a C shell,

csh, that does have syntax like C). You can

integrated Lua. Not ideal for web development

either.

The Linux kernel is written in C and hav-

ing knowledge of C/C++ can help if you

ever have to write device drivers or con-

tribute to Linux kernel development.

C++ attempts to span from low-level to high-

level programming tasks, but it can be dif-

fi cult to write very scalable enterprise or web

applications.

The C/C++ languages are ISO standards,

not owned by a single company.

The next section provides a revision of the core principles that have been

applied to examples on the RPi. It is intended to serve as an overview and a set of

reference examples that you can come back to again and again. It also focuses on

topics that cause my students diffi culties, pointing out common mistakes. Also,

remember that course notes for my object-oriented programming module are

publicly available at ee402.eeng.dcu.ie along with further support materials.

C and C++ Language Overview

The following examples can be edited using the nano editor and compiled on

the RPi directly using the gcc and g++ compilers, which are installed by default.

The code is in the directory chp05/overview.

The fi rst example you should always write in any new language is “Hello

World.” Listing 5-6 and 5-7 provide C and C++ code respectively, for the purpose

of a direct comparison of the two languages.

Listing 5-6: chp05/overview/helloworld.c

#include <stdio.h>
int main(int argc, char *argv[]){
 printf("Hello World!\n");
 return 0;
}

Table 3-12 (continued)

 Chapter 5 ■ Programming on the Raspberry Pi 183

c05.indd 03:12:39:PM 05/17/2016 Page 183

Listing 5-7: chp05/overview/helloworld.cpp

#include<iostream>
int main(int argc, char *argv[]){
 std::cout << "Hello World!" << std::endl;
 return 0;
}

The #include call is a pre-processor directive that effectively loads the contents

of the stdio.h fi le (/usr/include/stdio.h) in the C case, and the iostream header

(/usr/include/c++/4.X/iostream) fi le in the C++ case, and copies and pastes the

code in at this exact point in your source code fi le. These header fi les contain (or

link to) the function prototypes, enabling the compiler to understand the format

of functions such as printf() in stdio.h and streams like cout in iostream. The

actual implementation of these functions is in shared library dependencies.

The angular brackets (< >) around the include fi lename means that it is a standard,

rather than a user-defi ned include (which would use double quotes).

The main() function is the starting point of your application code. There can

only be one function called main() in your application. The int in front of main()

indicates that the program will return a number back to the shell prompt. As

stated before, it is good to use 0 for successful completion, 2 for invalid usage,

and any other set of numbers to indicate failure conditions. This value is returned

to the shell prompt using the line return 0; in this case. The main() function

will return 0 by default in C++, and an arbitrary value in C. Remember that

you can use echo $? at the shell prompt to see the last value that was returned.

The parameters of the main() function are int argc and char *argv[]. As you

saw in the scripting examples, the shell can pass arguments to your application,

providing the number of arguments (argc) and an array of strings (*argv[]).

In C/C++ the fi rst argument passed is argv[0] and it contains the executable

name and full path used to execute the application.

The C code line printf("Hello World!\n"); allows you to write to the Linux

shell, with the \n representing a new line. The printf() function provides you

with additional formatting instructions for outputting numbers, strings, etc.

Note that every statement is terminated by a semicolon.

The C++ code line std::cout << "Hello World!" << std::endl; outputs

a string just like the printf() function. In this case cout represents the output

stream; and the function used is actually the <<, which is called the output
stream operator. The syntax is discussed later, but std::cout means the output

stream in the namespace std. The endl (end line) representation is similar to

\n. These programs can be compiled and executed directly on the RPi by typ-

ing the following:

pi@erpi ~/exploringrpi/chp05/overview $ gcc helloworld.c -o helloworldc

pi@erpi ~/exploringrpi/chp05/overview $./helloworldc

Hello World!

pi@erpi ~/exploringrpi/chp05/overview $ g++ helloworld.cpp -o helloworldcpp

pi@erpi ~/exploringrpi/chp05/overview $./helloworldcpp

Hello World!

184 Part I ■ Raspberry Pi Basics

c05.indd 03:12:39:PM 05/17/2016 Page 184

The sizes of the C and C++ executables are different from account for the

different header fi les, output functions, and exact compilers that are used:

pi@erpi ~/exploringrpi/chp05/overview $ ls -l helloworldc*

-rwxr-xr-x 1 pi pi 5744 Jun 27 23:30 helloworldc

-rwxr-xr-x 1 pi pi 7500 Jun 27 23:30 helloworldcpp

Compiling and Linking

You just saw how to build a C or C++ application, but there are a few

intermediate steps that are not obvious in the preceding example, because

the intermediate stage outputs are not retained by default. Figure 5-2 illustrates the

full build process from preprocessing right through to linking.

You can perform the steps in Figure 5-2 yourself by using the Helloworld

.cpp code example. The steps can be performed explicitly as follows, so that

you can view the output at each stage:

pi@erpi ~/tmp $ ls -l helloworld.cpp

-rw-r--r-- 1 pi pi 114 Jun 28 11:56 helloworld.cpp

pi@erpi ~/tmp $ g++ -E helloworld.cpp > processed.cpp

pi@erpi ~/tmp $ ls -l

total 424

-rw-r--r-- 1 pi pi 114 Jun 28 11:56 helloworld.cpp

-rw-r--r-- 1 pi pi 428379 Jun 28 11:57 processed.cpp

pi@erpi ~/tmp $ g++ -S processed.cpp -o helloworld.s

pi@erpi ~/tmp $ ls

helloworld.cpp helloworld.s processed.cpp

pi@erpi ~/tmp $ g++ -c helloworld.s

pi@erpi ~/tmp $ ls

helloworld.cpp helloworld.o helloworld.s processed.cpp

pi@erpi ~/tmp $ g++ helloworld.o -o helloworld

pi@erpi ~/tmp $ ls

helloworld helloworld.cpp helloworld.o helloworld.s processed.cpp

pi@erpi ~/tmp $./helloworld

Hello World!

You can see the text fi le output that results from preprocessing by typing less

processed.cpp, where the necessary header fi les are “pasted in” above your

code. At the very bottom of this much larger fi le you will fi nd your code. This

fi le is passed to the C/C++ compiler, which validates the code and generates

platform-independent assembler code (.s). You can view this code by typing

less helloworld.s, as illustrated in Figure 5-2.

This .s text fi le is then passed to the assembler, which converts the platform-

independent instructions into binary instructions for the RPi platform (the .o

fi le). You can see the assembly language code that is generated if you use the

objdump (object fi le dump) tool on the RPi by typing objdump -D helloworld.o,

as illustrated in Figure 5-2.

 Chapter 5 ■ Programming on the Raspberry Pi 185

c05.indd 03:12:39:PM 05/17/2016 Page 185

Figure 5-2: Building C/C++ applications on the RPi

Object fi les contain generalized binary assembly code that does not yet con-

tain suffi cient information to be executed on the RPi. However, after linking the

fi nal executable code, helloworld contains the target-specifi c assembly language

code that has been combined with the libraries, statically and dynamically as

required. You can use the objdump tool again to disassemble the executable,

which results in the following output:

pi@erpi ~/tmp $ objdump -d helloworld | more

helloworld: file format elf32-littlearm

Disassembly of section .init:

00010568 <_init>:

 10568: e92d4008 push {r3, lr}

 1056c: eb00002f bl 10630 <call_weak_fn>

 10570: e8bd8008 pop {r3, pc}...

The fi rst column is the memory address, which steps by 4 bytes (32-bits) between

each instruction (i.e., 1056c − 10568 = 4). The second column is the full 4-byte

instruction at that address. The third and fourth columns are the human-read-

able version of the second column that describes the opcode and operand of

the 4-byte instruction. For example, the fi rst instruction at address 10568 is a

push, which pushes r3, which is one of the ARM processor’s 16, 32-bit registers

(labeled r0-r15), followed by lr (the link register, r14) onto the stack.

Understanding ARM instructions is another book in and of itself (see

infocenter.arm.com). However, it is useful to appreciate that any natively com-

piled code, whether it uses the OOP paradigm or not, results in low-level machine

code, which does not support dynamic typing, OOP, or any such high-level

186 Part I ■ Raspberry Pi Basics

c05.indd 03:12:39:PM 05/17/2016 Page 186

structures. In fact, whether you use an interpreted or compiled language, the

code must eventually be converted to machine code so that it can execute on

the RPi’s ARM processor.

Writing the Shortest C/C++ Program

Is the HelloWorld example the shortest program that can be written in C or

C++? No, Listing 5-8 is the shortest valid C and C++ program.

Listing 5-8: chp05/overview/short.c

main(){}

This is a fully functional C and C++ program that compiles with no errors and

works perfectly, albeit with no output. Therefore, in building a C/C++ program,

there is no need for libraries; there is no need to specify a return type for main(),

because it defaults to int; the main() function returns 0 by default in C++ and

an arbitrary number in C (see echo $? call below); and an empty function is

a valid function. This program will compile as a C or C++ program as follows:

pi@erpi .../overview $ gcc short.c -o shortc

pi@erpi .../overview $ g++ short.c -o shortcpp

pi@erpi .../overview $ ls -l short*

-rwxr-xr-x 1 pi pi 5580 Jun 28 14:08 shortc

-rw-r--r-- 1 pi pi 9 Jun 16 01:56 short.c

-rwxr-xr-x 1 pi pi 5792 Jun 28 14:09 shortcpp

pi@erpi .../overview $./shortc

pi@erpi .../overview $ echo $?

232

pi@erpi .../overview $./shortcpp

pi@erpi .../overview $ echo $?

0

This is one of the greatest weaknesses of C and C++. There is an assumption

that you know everything about the way the language works before you write

anything. In fact, aspects of the preceding example might be used by a program-

mer to demonstrate how clever they are, but they are actually demonstrating

poor practice in making their code unreadable by less “expert” programmers.

For example, if you rewrite the C++ code in short.cpp to include comments

and explicit statements, to create short2.cpp, and then compile both using the

-O3 optimization fl ag, the output will be as follows:

pi@erpi .../overview $ g++ --version

g++ (Raspbian 4.9.2-10) 4.9.2

pi@erpi .../overview $ more short.cpp

main(){}

pi@erpi .../overview $ more short2.cpp

// A really useless program, but a program nevertheless

int main(int argc, char *argv[]){

 return 0;

}

 Chapter 5 ■ Programming on the Raspberry Pi 187

c05.indd 03:12:39:PM 05/17/2016 Page 187

pi@erpi .../overview $ g++ -O3 short.cpp -o short_1

pi@erpi .../overview $ g++ -O3 short2.cpp -o short_2

pi@erpi .../overview $ ls -l short_*

-rwxr-xr-x 1 pi pi 5776 Jun 28 14:15 short_1

-rwxr-xr-x 1 pi pi 5776 Jun 28 14:16 short_2

Note that the executable size is exactly the same! Adding the comment, the

explicit return statement, the explicit return type, and explicit arguments has

had no impact on the size of the fi nal binary application. However, the benefi t

is that the actual functionality of the code is much more readily understood by

a novice programmer.

Static and Dynamic Compilation

You can build a program with the fl ag -static to statically link the libraries,

rather than the default form of linking dynamically with shared libraries. This

means that the compiler and linker effectively place all the library routines

required by your code directly within the program executable:

pi@erpi .../overview $ g++ -O3 short.cpp -static -o short_static

pi@erpi .../overview $ ls -l short_static

-rwxr-xr-x 1 pi pi 581804 Jun 28 14:23 short_static

It is clear that the program executable size has grown signifi cantly. One advantage

of this form is that the program can be executed by ARM systems on which the

C++ standard libraries are not installed; however, unlike dynamic linking, it is

not possible to update the linked library code without recompiling.

With dynamic linking, it is useful to note that you can discover which shared

library dependencies your compiled code is using, by calling ldd:

pi@erpi ~/exploringrpi/chp05/overview $ ldd shortcpp

 /usr/lib/arm-linux-gnueabihf/libcofi_rpi.so (0x76efa000)

 libstdc++.so.6 => /usr/lib/arm-linux-gnueabihf/libstdc++.so.6 (0x76de8000)

 libm.so.6 => /lib/arm-linux-gnueabihf/libm.so.6 (0x76d6d000)

 libgcc_s.so.1 => /lib/arm-linux-gnueabihf/libgcc_s.so.1 (0x76d40000)

 libc.so.6 => /lib/arm-linux-gnueabihf/libc.so.6 (0x76c03000)

 /lib/ld-linux-armhf.so.3 (0x76ed8000)

You can see that the g++ compiler (and glibc) on the Raspbian image for

the RPi (all models) has been patched to support the generation of hard

fl oating-point (gnueabihf) instructions. This allows for faster code execution

with fl oating-point numbers than if it used the soft fl oating-point ABI (applica-

tion binary interface) to emulate fl oating-point support in software (gnueabi).

N O T E The gcc/g++ compilers automatically search certain include and library paths.

The include paths are typically /usr/include/, /usr/local/include/, and

/usr/include/target/ (or /usr/target/include/), where target in the

case of the RPi is typically arm-linux-gnueabihf. The library paths are typically

/usr/lib/, /usr/local/lib/, and /usr/lib/target/ (or /usr/target/

lib/). Use g++ -v, or c++ -v for more information, including your target name.

188 Part I ■ Raspberry Pi Basics

c05.indd 03:12:39:PM 05/17/2016 Page 188

Variables and Operators in C/C++

A variable is a data item stored in a block of memory that has been reserved for

it. The type of the variable defi nes the amount of memory reserved and how

it should behave (see Figure 5-3). This fi gure describes the output of the code

example sizeofvariables.c in Listing 5-9.

Figure 5-3: Memory allocation for variables on the 32-bit RPi

Listing 5-9 details various variables available in C/C++. When you create a

local variable c below, it is allocated a box/block of memory on the stack (prede-

termined reserved fast memory) depending on its type. In this case, c is an int

value; therefore, four bytes (32 bits) of memory are allocated to store the value.

Assume that variables in C/C++ are initialized with random values; therefore,

in this case c = 545; replaces that initial random value by placing the number

545 in the box. It does not matter if you store the number 0 or 2,147,483,647 in

this box; it will still occupy 32 bits of memory! Note that there is no guarantee

regarding the ordering of local variable memory—it was fortuitously linear in

this particular example.

Listing 5-9: chp05/overview/sizeofvariables.c

#include<stdio.h>

#include<stdbool.h> // required for the C bool typedef

int main(){

 double a = 3.14159;

 float b = 25.0;

 int c = 545; // note: variables are not = 0 by default!

 long int d = 123;

 char e = 'A';

 bool f = true; // no need for definition in C++

 printf("a val %.4f & size %d bytes (@addr %p).\n", a, sizeof(a),&a);

 printf("b val %4.2f & size %d bytes (@addr %p).\n", b, sizeof(b),&b);

 printf("c val %d (oct %o, hex %x) & " \

 "size %d bytes (@addr %p).\n", c, c, c, sizeof(c), &c);

 printf("d val %d & size %d bytes (@addr %p).\n", d, sizeof(d), &d);

 printf("e val %c & size %d bytes (@addr %p).\n", e, sizeof(e), &e);

 printf("f val %5d & size %d bytes (@addr %p).\n", f, sizeof(f), &f);

}

 Chapter 5 ■ Programming on the Raspberry Pi 189

c05.indd 03:12:39:PM 05/17/2016 Page 189

The sizeof(c) operator returns the size of the type of the variable in bytes.

In this example, it returns 4 for the size of the int type. The &c call can be read

as the “address of” c. This provides the address of the fi rst byte that stores the

variable c, in this case returning 0x7edc1608. The %.4f on the fi rst line means

display the fl oating-point number to four decimal places. Executing this program

on the RPi gives the following output:

pi@erpi ~/exploringrpi/chp05/overview $./sizeofvariables

a value 3.1416 and size 8 bytes (@addr 0x7edc1610).

b value 25.00 and size 4 bytes (@addr 0x7edc160c).

c value 545 (oct 1041, hex 221) and size 4 bytes (@addr 0x7edc1608).

d value 123 and size 4 bytes (@addr 0x7edc1604).

e value A and size 1 bytes (@addr 0x7edc1603).

f value 1 and size 1 bytes (@addr 0x7edc1602).

On the RPi with a 32-bit Linux image, you typically use four bytes to repre-

sent the int type. The smallest unit of memory that you can allocate is 1 byte;

so, yes, you are representing a Boolean value with 1 byte, which could actually

store eight unique Boolean values. You can operate directly on variables using

operators. The program operators.c in Listing 5-10 contains some points that

often cause diffi culty in C/C++.

Listing 5-10: chp05/overview/operators.c

#include<stdio.h>

int main(){

 int a=1, b=2, c, d, e, g;

 float f=9.9999;

 c = ++a;

 printf("The value of c=%d and a=%d.\n", c, a);

 d = b++;

 printf("The value of d=%d and b=%d.\n", d, b);

 e = (int) f;

 printf("The value of f=%.2f and e=%d.\n", f, e);

 g = 'A';

 printf("The value of g=%d and g=%c.\n", g, g);

 return 0;

}

This code will give the following output:

pi@erpi ~/exploringrpi/chp05/overview $./operators

The value of c=2 and a=2.

The value of d=2 and b=3.

The value of f=10.00 and e=9.

The value of g=65 and g=A.

On the line c=++a;, the value of a is pre-incremented before the equals assign-

ment to c on the left side. Therefore, a is increased to 2 before assigning the

value to c, so this line is equivalent to two statements: a=a+1; c=a; However,

on the line d=b++; the value of b is post-incremented and is equivalent to two

190 Part I ■ Raspberry Pi Basics

c05.indd 03:12:39:PM 05/17/2016 Page 190

statements: d=b; b=b+1; The value of d is assigned the value of b, which is 2,

before the value of b is incremented to 3.

On the line e=(int)f; a C-style cast is being used to convert a fl oating-point

number into an integer value. Effectively, when programmers use a cast they are

notifying the compiler that they are aware that there will be a loss of precision

in the conversion of a fl oating-point number to an int (and that the compiler

will introduce conversion code). The fractional part is truncated, so 9.9999 is

converted to e=9, because the.9999 is removed by the truncation. It is worth

noting that printf("%.2f",f) displays the fl oating-point variable to two decimal

places, in contrast, rounding the value.

On the line g='A', g is assigned the ASCII equivalent value of capital A, which

is 65. The printf("%d %c",g, g); will display either the int value of g if %d is

used, or the ASCII character value of g if %c is used.

A const keyword can be used to prevent a variable from being changed.

There is also a volatile keyword that is useful for notifying the compiler that

a particular variable might be changed outside its control, and that the compiler

should not apply any type of optimization to that value. This notifi cation is

useful on the RPi if the variable in question is shared with another process or

physical input/output.

It is possible to defi ne your own type in C/C++ using the typedef keyword.

For example, if you did not want to include the header fi le stdbool.h in the

sizeofvariables.c previous example, it would be possible to defi ne it in this

way instead:

typedef char bool;

#define true 1

#define false 0

Probably the most common and most misunderstood mistake in C/C++

programming is present in the following code segment:

if (x=y){ // perform a statement Z }

When will the body statement Z be performed? The answer is whenever y

is not equal to 0 (the current value of x is irrelevant!). The mistake is placing

a single = (assignment) instead of == (comparison) in the if condition. The

assignment operator returns the value on the right side of the operator, which

is automatically converted to true if y is not equal to 0. If y is equal to zero, a

false value is returned. Java does not allow this error, because it has no implicit

conversion between 0 and false, and 1 and true.

Pointers in C/C++

A pointer is a special type of variable that stores the address of another variable

in memory—we say that the pointer is “pointing at” that variable. Listing 5-11

 Chapter 5 ■ Programming on the Raspberry Pi 191

c05.indd 03:12:39:PM 05/17/2016 Page 191

is a code example that demonstrates how you can create a pointer p and make

it point at the variable y.

Listing 5-11: chp05/overview/pointers.c

#include<stdio.h>

int main(){

 int y = 1000;

 int *p;

 p = &y;

 printf("The variable has value %d and the address %p.\n", y, &y);

 printf("The pointer stores %p and points at value %d.\n", p, *p);

 printf("The pointer has address %p and size %d.\n", &p, sizeof(p));

 return 0;

}

When this code is compiled and executed, it gives the following output:

pi@erpi ~/exploringrpi/chp05/overview $./pointers

The variable has value 1000 and the address 0x7e8a0634.

The pointer stores 0x7e8a0634 and points at value 1000.

The pointer has address 0x7e8a0630 and size 4.

So, what is happening in this example? Figure 5-4 illustrates the memory

locations and the steps involved. In Step 1, the variable y is created and assigned

the initial value of 1000. A pointer p is then created with the dereference type

of int. In essence, this means that the pointer p is being established to point at

int values. In Step 2, the statement p = &y; means “let p equal to the address

of y,” which sets the value of p to be the 32-bit address 0x7e8a0634. We now

say that p is pointing at y. These two steps could have been combined using the

call int *p = &y; (i.e., create a pointer p of dereference type int and assign it

to store the address of y).

Figure 5-4: Example of pointers in C/C++ on the RPi

Why does a pointer need a dereference type? For one example, if a pointer

needs to move to the next element in an array, it needs to know whether it

should move by 4 bytes, 8 bytes, etc. Also, in C++ you need to be able to know

how to deal with the data at the pointer based on its type. Listing 5-12 is another

192 Part I ■ Raspberry Pi Basics

c05.indd 03:12:39:PM 05/17/2016 Page 192

example of working with pointers that explains how a simple error of intention

can cause serious problems.

Listing 5-12: chp05/overview/pointers2.c

#include<stdio.h>

int main(){

 int y = 1000, z;

 int *p = &y;

 printf("The pointer p has the value %d and stores addr: %p\n", *p, p);

 // Let z = 1000 + 5 and the increment p and y to 1001 -- wrong!!!

 z = *p++ + 5;

 printf("The pointer p has the value %d and stores addr: %p\n", *p, p);

 printf("The variable z has the value %d\n", z);

 return 0;

}

This code gives the following output:

pi@erpi ~/exploringrpi/chp05/overview $./pointers2

The pointer p has the value 1000 and stores addr: 0x7ee5861c

The pointer p has the value 1005 and stores addr: 0x7ee58620

The variable z has the value 1005

In this example, the pointer p is of dereference type int, and it is set to point

at the address of y. At this point in the code, the output is as expected, because

p has the “value of” 1000 and the “address of” 0x7ee5861c. On the next line,

the intention may have been to increase (post-increment) the value of y by 1 to

1001 and assign z a value of 1005 (i.e., before the post-increment takes place).

However, perhaps contrary to your intention, p now has the “value of” 1005

and the “address of” 0x7ee58620.

Why has this occurred? Part of the diffi culty of using pointers in C/C++ is

understanding the order of operations in C/C++, called the precedence of the

operations. For example, if you write the statement

int x = 1 + 2 * 3;

what will the value of x be? In this case it will be 7, because in C/C++ the mul-

tiplication operator has a higher level of precedence than the addition operator.

Similarly, the problem in Listing 5-12 is your possible intention of using *p++

to increment the “value of” p by 1.

In C/C++ the post-increment operator (p++) has precedence over the derefer-

ence operator (*p). This means that *p++ actually post-increments the “address

of” the pointer p by one int (i.e., 4 bytes), not the dereferenced value *p (as 1000

in this example). Most worrying is the second output line, because it is clear

that p is now “pointing at” z, which just happens to be at the next address—it

could actually refer to an address outside the program’s memory allocation.

Such errors of intention are very diffi cult to debug without using the debug-

ging tools that are described in Chapter 7. To fi x the code to suit your intention,

 Chapter 5 ■ Programming on the Raspberry Pi 193

c05.indd 03:12:39:PM 05/17/2016 Page 193

simply use (*p)++, which makes it clear that it is the “value of” p that should be

post-incremented by 1, resulting in p having the “value of” 1001 and z having

the value 1005.

There are approximately 58 operators in C++, with 18 different major prece-

dence levels. Even if you know the precedence table, you should still make it

clear for other users what you intend in a statement by using round brackets

(()), which effectively groups and overrides operator precedence. Therefore, you

should always write the following even if you know that the round brackets

are not required:

int x = 1 + (2 * 3);

Finally, on the topic of C pointers, there is also a void pointer that can be

declared as void *p;, which effectively states that the pointer p does not have

a dereference type and it will have to be assigned at a later stage (see /chp05/

overview/void.c) using the following syntax:

int a = 5;

void *p = &a;

printf("p points at address %p and value %d\n", p, *((int *)p));

When executed, this code gives an output like the following:

The pointer p points at address 0xbea546c8 and value 5

Therefore, it is possible to cast a pointer from one deference type to another and

the void pointer can potentially be used to store a pointer of any dereference

type. In Chapter 6 void pointers are used to develop an enhanced GPIO interface.

C-Style Strings

The C language has no built-in string type but rather uses an array of the char-

acter type, terminated by the null character (\0), to represent a string. There is

a standard C library for strings that can be used as shown in Listing 5-13:

Listing 5-13: chp05/overview/cstrings.c

#include<stdio.h>

#include<string.h>

#include<stdlib.h>

int main(){

 char a[20] = "hello ";

 char b[] = {'w','o','r','l','d','!','\0'}; // the \0 is important

 a[0]='H'; // set the first character to be H

 char *c = strcat(a,b); // join/concatenate a and b

 printf("The string c is: %s\n", c);

 printf("The length of c is: %d\n", strlen(c)); // call string length

194 Part I ■ Raspberry Pi Basics

c05.indd 03:12:39:PM 05/17/2016 Page 194

 // find and replace the w with a W

 char *p = strchr(c,'w'); // returns pointer to first 'w' char

 *p = 'W';

 printf("The string c is now: %s\n", c);

 if (strcmp("cat", "dog")<=0){ // ==0 would be equal

 printf("cat comes before dog (lexiographically)\n");

 }

 //insert "to the" into middle of "Hello World!" string - very messy!

 char *d = " to the";

 char *cd = malloc(strlen(c) + strlen(d));

 memcpy(cd, c, 5);

 memcpy(cd+5, d, strlen(d));

 memcpy(cd+5+strlen(d), c+5, 6);

 printf("The cd string is: %s\n", cd);

 //tokenize cd string using spaces

 p = strtok(cd," ");

 while(p!=NULL){

 printf("Token:%s\n", p);

 p = strtok(NULL, " ");

 }

 return 0;

}

The code is explained by the comments within the example. When executed,

this code gives the following output:

pi@erpi ~/exploringrpi/chp05/overview $./cstrings

The string c is: Hello world!

The length of c is: 12

The string c is now: Hello World!

cat comes before dog (lexiographically)

The cd string is: Hello to the World

Token:Hello

Token:to

Token:the

Token:World

LED Control in C

Now that you have covered enough C programming to get by, you can look at

how to write the external LED control application in C. In Listing 5-14 the same

structure as the other examples is retained:

Listing 5-14: chp05/makeLED/makeLED.c

#include<stdio.h>

#include<stdlib.h>

#include<string.h>

#define GPIO_NUMBER "4"

#define GPIO4_PATH "/sys/class/gpio/gpio4/"

 Chapter 5 ■ Programming on the Raspberry Pi 195

c05.indd 03:12:39:PM 05/17/2016 Page 195

#define GPIO_SYSFS "/sys/class/gpio/"

void writeGPIO(char filename[], char value[]){

 FILE* fp; // create a file pointer fp

 fp = fopen(filename, "w+"); // open file for write/update

 fprintf(fp, "%s", value); // send the value to the file

 fclose(fp); // close the file using fp

}

int main(int argc, char* argv[]){

 if(argc!=2){ // program name is argument 1

 printf("Usage is makeLEDC and one of:\n");

 printf(" setup, on, off, status, or close\n");

 printf(" e.g. makeLEDC on\n");

 return 2; // invalid number of arguments

 }

 printf("Starting the makeLED program\n");

 if(strcmp(argv[1],"setup")==0){

 printf("Setting up the LED on the GPIO\n");

 writeGPIO(GPIO_SYSFS "export", GPIO_NUMBER);

 usleep(100000); // sleep for 100ms

 writeGPIO(GPIO4_PATH "direction", "out");

 }

 else if(strcmp(argv[1],"close")==0){

 printf("Closing the LED on the GPIO\n");

 writeGPIO(GPIO_SYSFS "unexport", GPIO_NUMBER);

 }

 else if(strcmp(argv[1],"on")==0){

 printf("Turning the LED on\n");

 writeGPIO(GPIO4_PATH "value", "1");

 }

 else if (strcmp(argv[1],"off")==0){

 printf("Turning the LED off\n");

 writeGPIO(GPIO4_PATH "value", "0");

 }

 else if (strcmp(argv[1],"status")==0){

 FILE* fp; // see writeGPIO function above for description

 char line[80], fullFilename[100];

 sprintf(fullFilename, GPIO4_PATH "/value");

 fp = fopen(fullFilename, "rt"); // reading text this time

 while (fgets(line, 80, fp) != NULL){

 printf("The state of the LED is %s", line);

 }

 fclose(fp);

 }

 else{

 printf("Invalid command!\n");

 }

 printf("Finished the makeLED Program\n");

 return 0;

}

Build this program by calling the ./build script in the /chp05/makeLED/

directory, and execute it using ./makeLEDC setup, ./makeLEDC on, etc.

196 Part I ■ Raspberry Pi Basics

c05.indd 03:12:39:PM 05/17/2016 Page 196

The only topic that you have not seen before is the use of files in C,

but the worked example should provide you with the information you need in

the writeLED() function. The FILE pointer fp points to a description of the

fi le that identifi es the stream, the read/write position, and its state. The fi le is

opened using the fopen() function that is defi ned in stdio.h, which returns a

FILE pointer. In this case it is being opened for write/update (w+). The alterna-

tives would be as follows: read (r), write (w), append (a), read/update (r+), and

append/update (a+). If you are working with binary fi les, you append a b to the

state; for example, “w+b” opens a new binary fi le for update (write and read).

Also, “t” can be used to explicitly state that the fi le is in text format.

For a full reference of C functions available in the standard libraries, see www

.cplusplus.com/reference/.

The C of C++

As discussed previously, the C++ language was built on the C language, add-

ing support for OOP classes. However, a few other differences are immediately

apparent when you start working with general C++ programming. Initially, the

biggest change that you will notice is the use of input/output streams and

the general use of strings.

First Example and Strings in C++

Listing 5-15 is the string example, rewritten to use the C++ string library.

Listing 5-15: chp05/overview/cppstrings.cpp

#include<iostream>

#include<sstream> // to tokenize the string

//#include<cstring> // how to include the C++ equivalent of a C header

using namespace std;

int main(){

 string a = "hello ";

 char temp[] = {'w','o','r','l','d','!','\0'}; //the \0 is important!

 string b(temp);

 a[0]='H';

 string c = a + b;

 cout << "The string c is: " << c << endl;

 cout << "The length of c is: " << c.length() << endl;

 int loc = c.find_first_of('w');

 c.replace(loc,1,1,'W');

 cout << "The string c is now: " << c << endl;

 if (string("cat")< string("dog")){

 cout << "cat comes before dog (lexiographically)\n";

http://www.cplusplus.com/reference/
http://www.cplusplus.com/reference/

 Chapter 5 ■ Programming on the Raspberry Pi 197

c05.indd 03:12:39:PM 05/17/2016 Page 197

 }

 c.insert(5," to the");

 cout << "The c string is now: " << c << endl;

 // tokenize string using spaces - could use Boost.Tokenizer

 // or C++11 to improve syntax. Using stringstream this time.

 stringstream ss;

 ss << c; // put the c string on the stringstream

 string token;

 while(getline(ss, token, ' ')){

 cout << "Token: " << token << endl;

 }

 return 0;

}

Build this code by typing g++ cppstrings.cpp -o cppstrings. When executed,

this code gives the same output as the cstrings.c example. Some aspects are

more straightforward in C++ but there are some points worth mentioning.

The code uses the iostream and sstream header fi les, which are C++ headers.

There is a concept called namespaces in C++ that enables a programmer to limit a

function or class to a particular scope. In C++, all the standard library functions

and classes are limited to the standard namespace (std). You can explicitly identify

that you want to use a class from the std namespace by using std::string.

However, that is quite verbose. The alternative is to use the statement using

namespace std;, which brings the entire namespace into your code. Do not do

this in one of your C++ header fi les, because it will pollute the namespace for

anyone who uses your header fi le.

The code uses cout, which is the standard output stream, and the output

stream operator (<<) to display strings. There is an equivalent standard input

stream (cin) and the input stream operator (>>). The output stream operator “looks

to” its right and identifi es the type of the data. It will display the data depending

on its type, so there is no need for %s, %d, %p, and so on, because you would use in

the printf() function. The endl stream manipulation function inserts a newline

character and fl ushes the stream.

The string objects are manipulated in this example using + to append two

strings, and < or == to compare two strings. These operators are essentially func-

tions like append() and strcmp(). In C++, you can defi ne what these operators

do for your own data types (operator overloading).

Passing by Value, Pointer, and Reference

As you have seen with the code samples, functions enable us to write a section

of code that can be called several times, from different locations in our code.

There are three key ways of passing a value to a function:

 ■ Pass by value: This will create a new variable (val in the following code

example) and will store a copy of the value of the source variable (a) in this

new variable. Any changes to the variable val will not have any impact

198 Part I ■ Raspberry Pi Basics

c05.indd 03:12:39:PM 05/17/2016 Page 198

on the source variable a. Pass by value can be used if you want to prevent

the original data from being modifi ed. However, a copy of the data has to

be made, and if you are passing a large array of data, such as an image,

copying will have a memory and computational cost. An alternative to

pass by value is to pass by constant reference. In the following example, a

is also passed as the second argument to the function by constant reference

and is received as the value cr. The value cr can be read in the function,

but it cannot be modifi ed.

 ■ Pass by pointer: You can pass a pointer to the source data. Any modifi ca-

tions to the value at the pointer (ptr) will affect the source data. The call

to the function must pass an address (&b—the address of b).

 ■ Pass by reference: In C++ you can pass a value by reference. The func-

tion determines whether an argument is to be passed by value or passed

by reference, through the use of the ampersand symbol. In the following

example, &ref indicates that the value c is to be passed by reference. Any

modifi cations to ref in the function will affect the value of c.

Here is a function with all four examples (passing.cpp):

int afunction(int val, const int &cr, int *ptr, int &ref){

 val+=cr;

// cr+=val; // not allowed because it is constant

 *ptr+=10;

 ref+=10;

 return val;

}

int main(){

 int a=100, b=200, c=300;

 int ret;

 ret = afunction(a, a, &b, c);

 cout << "The value of a = " << a << endl;

 cout << "The value of b = " << b << endl;

 cout << "The value of c = " << c << endl;

 cout << "The return value is = " << ret << endl;

 return 0;

}

When executed, this code results in the following output:

pi@erpi ~/exploringrpi/chp05/overview $./passing

The value of a = 100

The value of b = 210

The value of c = 310

The return value is = 200

If you want to pass a value to a function that is to be modifi ed by that func-

tion in C++, you can pass it by pointer or by reference. However, unless you are

passing a value that could be NULL, or you need to reassign the pointer in the

function (e.g., iterate over an array), always use pass by reference. Now you are

ready to write the LED code in C++!

 Chapter 5 ■ Programming on the Raspberry Pi 199

c05.indd 03:12:39:PM 05/17/2016 Page 199

Flashing the LEDs Using C++ (non-OO)

The C++ LED fl ashing code is available in makeLED.cpp in the /chp05/makeLED/

directory. As most of the code is very similar to the C example, it is not repeated

here. However, it is worth displaying the following segment, which is used to

open the fi le using the fstream fi le stream class. The output stream operator

(<<) in this case sends the string to fstream, where the c_str() method returns

a C++ string as a C string:

void writeLED(string filename, string value){

 fstream fs;

 string path(LED3_PATH);

 fs.open((path + filename).c_str(), fstream::out);

 fs << value;

 fs.close();

}

Overview of Object-Oriented Programming

The following discussion highlights a few core concepts that you have to under-

stand before you can write object-oriented code. The discussion uses pseudo

code as the concepts are relevant to all languages that support the OOP para-

digm—including C++, Python, Lua tables, C#, Java, JavaScript, Perl, Ruby, the

OOHaskell library, etc.

Classes and Objects

Think about the concept of a television: You do not have to remove the case to

use it, because there are controls on the front and on the remote; you can still

understand the television, even if it is connected to a games console; it is com-

plete when you purchase it, with well-defi ned external requirements, such as

power supply and signal inputs; and your television should not crash! In many

ways that description captures the properties that should be present in a class.

A class is a description. It should describe a well-defi ned interface to your code;

represent a clear concept; be complete and well documented; and be robust, with

built-in error checking. Class descriptions are built using two building blocks:

 ■ States (or data): The state values of the class.

 ■ Methods (or behavior): How the class interacts with its data. Method

names usually include an action verb (e.g., setX()).

For example, here is pseudo-code (i.e., not real C++ code but with similar syntax)

for an illustrative Television class:

class Television{

 int channelNumber;
 bool on;

200 Part I ■ Raspberry Pi Basics

c05.indd 03:12:39:PM 05/17/2016 Page 200

 powerOn() { on = true; }
 powerOff(){ on = false;}
 changeChannel(int x) { channelNumber = x; }
};

Therefore, the example Television class has two states and three methods.

The benefi t of this structure is that you have tightly bound the states and meth-

ods together within a class structure. The powerOn() method means nothing

outside this class. In fact, you can write a powerOn() method in many different

classes without worrying about naming collisions.

An object is the realization of the class description—an instance of a class. To

continue the analogy, the Television class is the blueprint that describes how

you would build a television, and a Television object is the physical realiza-

tion of those plans into a physical television. In pseudo-code this realization

might look like this:

void main(){

 Television dereksTV();

 Television johnsTV();

 dereksTV.powerOn();

 dereksTV.changeChannel(52);

 johnsTV.powerOn();

 johnsTV.changeChannel(1);

}

Therefore, dereksTV and johnsTV are instances of the Television class. Each

has its own independent state, so changing the channel on dereksTV has no

impact on johnsTV. To call a method, it must be prefi xed by the object name on

which it is to be called (e.g., johnsTV.powerOn()). Calling the changeChannel()

method on johnsTV objects does not have any impact on the dereksTV object.

In this book, a class name generally begins with a capital letter, e.g., Television,

and an object generally begins with a lowercase letter, e.g., dereksTV. This is

consistent with the notation used in many languages, such as Java. Unfortunately,

the C++ standard library classes (e.g., string, sstream) do not follow this nam-

ing convention.

Encapsulation

Encapsulation is used to hide the mechanics of an object. In the physical tele-

vision analogy, encapsulation is provided by the box that protects the inner

electronic systems. However, you still have the remote control that will have a

direct impact on the way the inner workings function.

In OOP, you can decide what workings are to be hidden (e.g., TV electron-

ics) using an access specifi er keyword called private, and what is to be part of

the interface (TV remote control) using the access specifi er keyword public. It is

good practice to always set the states of your class to be private, so that you can

control how they are modifi ed by public interface methods of your own design.

For example, the pseudo-code might become the following:

 Chapter 5 ■ Programming on the Raspberry Pi 201

c05.indd 03:12:39:PM 05/17/2016 Page 201

class Television{
 private:
 int channelNumber;
 bool on;
 remodulate_tuner();
 public:
 powerOn() { on = true; }
 powerOff(){ on = false;}
 changeChannel(int x) {
 channelNumber = x;
 remodulate_tuner();
 }
};

Now the Television class has private state data (on, channelNumber) that

is affected only by the public interface methods (powerOn(), powerOff(),

changeChannel()) and a private implementation method remodulate_tuner()

that cannot be called from outside the class.

There are a number of advantages of this approach: First, users of this class

(another programmer) need not understand the inner workings of the Television

class; they just need to understand the public interface. Second, the author of

the Television class can modify and/or perfect the inner workings of the class

without affecting other programmers’ code.

Inheritance

Inheritance is a feature of OOP that enables building class descriptions from

other class descriptions. Humans do this all the time; for example, if you were

asked, “What is a duck?” you might respond with, “It’s a bird that swims,

and it has a bill instead of a beak.” This description is reasonably accurate,

but it assumes that the concept of a bird is also understood. Importantly, the

description states that the duck has the additional behavior of swimming, but

also that it has the replacement behavior of having a bill instead of a beak. You

could loosely code this with pseudo-code as follows:

class Bird{

 public:

 void fly();

 void describe() { cout << "Has a beak and can fly"; }

};

class Duck: public Bird{ // Duck IS-A Bird

 Bill bill;

 public:

 void swim();

 void describe() { cout << "Has a bill and can fly and swim"; }

};

In this case, you can create an object of the Duck class:

int main(){

 Duck d; // creates the Duck instance object d

202 Part I ■ Raspberry Pi Basics

c05.indd 03:12:39:PM 05/17/2016 Page 202

 d.swim(); // specific to the Duck class

 d.fly(); // inherited from the parent Bird class

 d.describe(); // describe() is inheritated and over-ridden in Duck

 // so, "Has a bill and can fly and swim" would appear

}

The example here illustrates why inheritance is so important. You can build

code by inheriting from, and adding to, a class description (e.g., swim()), or inher-

iting from a parent class and replacing a behavior (e.g., describe()) to provide

a more specifi c implementation; this is called overriding a method, which is a

type of polymorphism (multiple forms). Another form of polymorphism is called

overloading, which means multiple methods can have the same name, in the

same class, disambiguated by the compiler by having different parameter types.

You can check that you have an inheritance relationship by the is-a test; for

example, a “duck is a bird” is valid, but a “bird is a duck” would be invalid

because not all birds are ducks. This contrasts to the is-a-part-of relationship;

for example, a “bill is a part of a duck.” An is-a-part-of relationship indicates

that the bill is a member/state of the class. Using this simple check can be very

useful when the class relationships become complex.

You can also use pointers with objects of a class; for example, to dynamically

allocate memory for two Duck objects in C++, you can use the following:

int main(){

 Duck *a = new Duck();

 Bird *b = new Duck(); // ptr of parent can point to a child object

 b->describe(); // will actually describe a duck (if virtual)

 //b->swim(); // not allowed! Bird does not 'know' swim()

}

Interestingly, the Bird pointer b is permitted to point at a Duck object. As the

Duck class is a child of a Bird class, all the methods that the Bird pointer can

call are “known” by the Duck object. Therefore the describe() method can be

called. The arrow notation (b->describe()) is simply a neater way of writing

(*b).describe() in C++. In this case, the Bird pointer b has the static type Bird

and the dynamic type Duck.

One last point is that an additional access specifi er called protected can be

used through inheritance in C++. If you want to create a method or state in the

parent class that you want to be available to the child class but you do not want

to make public, use the protected access specifi er.

N O T E I have notes publicly available at ee402.eeng.dcu.ie on these topics. In

particular, Chapters 3 and 4 describe this topic in much greater detail, including mate-

rial on abstract classes, destructors, multiple inheritance, friend functions, the stan-

dard template library (STL).

 Chapter 5 ■ Programming on the Raspberry Pi 203

c05.indd 03:12:39:PM 05/17/2016 Page 203

Object-Oriented LED Control in C++

These OOP concepts can now be applied to a real C++ application on the RPi by

restructuring the functionally-oriented C++ code into a class called LED, which

consists of states and methods. This code is slightly more verbose. However,

the main difference is that the code presented in Listing 5-16 can simultane-

ously control many GPIOs using multiple objects of the one LED class. To that

end, the example assumes that the circuit in Figure 5-1 for GPIO4 (Pin 7) is also

replicated for GPIO17 (Pin 11).

Listing 5-16: chp05/makeLEDOOP/makeLEDs.cpp

#include<iostream>

#include<fstream>

#include<string>

#include<unistd.h> // for the microsecond sleep function

using namespace std;

#define GPIO "/sys/class/gpio/"

#define FLASH_DELAY 50000 // 50 milliseconds

class LED{

 private: // the following is part of the implementation

 string gpioPath; // private states

 int gpioNumber;

 void writeSysfs(string path, string filename, string value);

 public: // part of the public interface

 LED(int gpioNumber); // the constructor -- create the object

 virtual void turnOn();

 virtual void turnOff();

 virtual void displayState();

 virtual ~LED(); // the destructor -- called automatically

};

LED::LED(int gpioNumber){ // constructor implementation

 this->gpioNumber = gpioNumber;

 gpioPath = string(GPIO "gpio") + to_string(gpioNumber) + string("/");

 writeSysfs(string(GPIO), "export", to_string(gpioNumber));

 usleep(100000); // ensure GPIO is exported

 writeSysfs(gpioPath, "direction", "out");

}

// This implementation function is "hidden" from outside the class

void LED::writeSysfs(string path, string filename, string value){

 ofstream fs;

 fs.open((path+filename).c_str());

 fs << value;

204 Part I ■ Raspberry Pi Basics

c05.indd 03:12:39:PM 05/17/2016 Page 204

 fs.close();

}

void LED::turnOn(){

 writeSysfs(gpioPath, "value", "1");

}

void LED::turnOff(){

 writeSysfs(gpioPath, "value", "0");

}

void LED::displayState(){

 ifstream fs;

 fs.open((gpioPath + "value").c_str());

 string line;

 cout << "The current LED state is ";

 while(getline(fs,line)) cout << line << endl;

 fs.close();

}

LED::~LED(){ // The destructor unexports the sysfs GPIO entries

 cout << "Destroying the LED with GPIO number " << gpioNumber << endl;

 writeSysfs(string(GPIO), "unexport", to_string(gpioNumber));

}

int main(int argc, char* argv[]){ // the main function start point

 cout << "Starting the makeLEDs program" << endl;

 LED led1(4), led2(17); // create two LED objects

 cout << "Flashing the LEDs for 5 seconds" << endl;

 for(int i=0; i<50; i++){ // LEDs will alternate

 led1.turnOn(); // turn GPIO4 on

 led2.turnOff(); // turn GPIO17 off

 usleep(FLASH_DELAY); // sleep for 50ms

 led1.turnOff(); // turn GPIO4 off

 led2.turnOn(); // turn GPIO17 on

 usleep(FLASH_DELAY); // sleep for 50ms

 }

 led1.displayState(); // display final GPIO4 state

 led2.displayState(); // display final GPIO17 state

 cout << "Finished the makeLEDs program" << endl;

 return 0;

}

This code uses the to_string() function that was introduced in C++11, and

therefore the program can be built using the -std=c++11 fl ag and executed by

typing the following:

pi@erpi .../makeLEDOOP $ g++ makeLEDs.cpp -o makeLEDs -std=c++11

pi@erpi .../makeLEDOOP $./makeLEDs

Starting the makeLEDs program

Flashing the LEDs for 5 seconds

 Chapter 5 ■ Programming on the Raspberry Pi 205

c05.indd 03:12:39:PM 05/17/2016 Page 205

The current LED state is 0

The current LED state is 1

Finished the makeLEDs program

Destroying the LED with GPIO number 17

Destroying the LED with GPIO number 4

This code results in the LEDs attached to GPIO4 and GPIO17 fl ashing with

alternate state for 5 seconds.

This code is structured as a single LED class with private states for the GPIO

path and number, and a private implementation method writeSysfs(). The

states and helper method are not accessible outside the class. The public interface

methods are turnOn(), turnOff(), and displayState(). There are two more

public methods:

 ■ The fi rst is a constructor, which enables you to initialize the state of the

object. It is called by LED led(4) to create the object led of the LED class

with GPIO number 4. This is similar to the way that you assign initial

values to an int, e.g., int x=5;. A constructor must have the exact same

name as the class name (LED in this case) and it cannot return anything,

not even void.

 ■ The last is a destructor (~LED()). Like a constructor, it must have the exact

same name as the class name and is prefi xed by the tilde (~) character. This

method is called automatically when the object is being destroyed. You can

see this happening in the code output as an output message is provided.

You can think of the keyword virtual as “allowing overriding to take place

when an object is dynamically bound.” It should always be there (except for

the constructor), unless you know that there will defi nitely be no child class.

Removing the virtual keyword will result in a slight improvement in the

performance of your code.

The syntax void LED::turnOn(){...} is simply used to state that the turnOn()

method is the one associated with the LED class. It is possible to have many

classes in the one .cpp fi le, and it would be possible for two classes to have a

turnOn() method; therefore, the explicit association allows you to inform the

compiler of the correct relationship. I have written this code in a single fi le,

because it is the fi rst example. However, you will see in later examples that it is

correct practice to break your code into header fi les (.h or .hpp) and implementa-
tion fi les (.cpp), because it allows for separate compilation, which greatly reduces

the recompilation times for large-scale C++ projects.

Hopefully the layout of the C++ version of the LED control code is clear at

this point. The advantage of this OOP version is that you now have a structure

that can be built upon when you want to provide additional functionality. In

Chapter 8, you see how you can build similar structures to wrap electronic

modules such as accelerometers and temperature sensors, and how to use the

encapsulation property of OOP to hide some of the more complex calculations

from programmers that interface to the code.

206 Part I ■ Raspberry Pi Basics

c05.indd 03:12:39:PM 05/17/2016 Page 206

Interfacing to the Linux OS

In Chapter 3, the Linux directory structure is discussed, and one of the directories

discussed is the /proc directory—the process information virtual fi le system.

It provides you with information about the runtime state of the kernel and it

enables you to send control information to the kernel. In effect, it provides you

with a fi le-based interface from user space to kernel space. There is a Linux ker-

nel guide to the /proc fi le system at tiny.cc/erpi504. For example, if you type

pi@erpi /proc $ cat cpuinfo

processor : 0

model name : ARMv7 Processor rev 5 (v7l)

BogoMIPS : 64.00

Features : half thumb fastmult vfp edsp neon vfpv3 tls vfpv4

idiva idivt vfpd32 lpae evtstrm ...

Hardware : BCM2709

Revision : a01041

Serial : 00000000ec729acf

it provides you with information on the CPU. Try some of the following: cat

uptime, cat interrupts, cat version in the same directory. The example,

chp05/proc/readUptime.cpp, provides an example program to read the system

uptime and calculate the percentage of system idle time.

Many /proc entries can be read by programs that execute with regular user

accounts, however many entries can only be written to by a program with

superuser privileges. For example, entries in /proc/sys/kernel enable you to

confi gure the parameters of a Linux kernel as it is executing.

You have to be careful with the consistency of the fi les in /proc. The Linux

kernel provides for atomic operations—instructions that execute without inter-

ruption. Certain “fi les” within /proc (such as /proc/uptime) are totally atomic

and cannot be interrupted while they are being read. However, other fi les such

as /proc/net/tcp are only atomic within each row of the fi le, meaning that the

fi le will change as it is being read, and therefore simply reading the fi le may

not provide a consistent snapshot.

Glibc and Syscall

The Linux GNU C library, glibc, provides an extensive set of wrapper functions

for system calls. It includes functionality for handling fi les, signals, mathematics,

processes, users, and much more. See tiny.cc/erpi505 for a full description

of the GNU C library.

It is much more straightforward to call a glibc function than it is to

parse the equivalent /proc entries. Listing 5-17 provides a C++ example that

uses the glibc passwd structure to fi nd out information about the current user.

 Chapter 5 ■ Programming on the Raspberry Pi 207

c05.indd 03:12:39:PM 05/17/2016 Page 207

It also uses the syscall() function directly to determine the user’s ID and to

change the access permissions of a fi le—see the comments in the listing.

Listing 5-17: /exploringrpi/chp05/syscall/glibcTest.cpp

#include<gnu/libc-version.h>

#include<sys/syscall.h>

#include<sys/types.h>

#include<pwd.h>

#include<cstdlib>

#include<sys/stat.h>

#include<iostream>

#include<signal.h>

#include<unistd.h>

using namespace std;

int main(){

 // Use helper functions to get system information:

 cout << "The GNU libc version is: " << gnu_get_libc_version() << endl;

 // Use glibc passwd struct to get user information - no error check!:

 struct passwd *pass = getpwuid(getuid());

 cout << "The current user's login is: " << pass->pw_name << endl;

 cout << "-> their full name is: " << pass->pw_gecos << endl;

 cout << "-> their user ID is: " << pass->pw_uid << endl;

 // You can use the getenv() function to get environment variables

 cout << "The user's shell is: " << getenv("SHELL") << endl;

 cout << "The user's path is: " << getenv("PATH") << endl;

 // An example syscall to call a get the user ID -- see sys/syscall.h

 int uid = syscall(0xc7);

 cout << "Syscall gives their user ID as: " << uid << endl;

 // Call chmod directly -- type "man 2 chmod" for more information

 int ret = chmod("test.txt", 0666);

 // Can use syscall to do the same thing

 ret = syscall(SYS_chmod, "test.txt", 0666);

 return 0;

}

This code can tested as follows, where you can see that the fi le permissions

are altered by the program and the current user’s information is displayed:

pi@erpi .../chp05/syscall $ ls -l test.txt

-rw-r--r-- 1 pi pi 0 Jun 16 01:56 test.txt

pi@erpi .../chp05/syscall $ sudo usermod -c "Exploring RPi" pi

pi@erpi .../chp05/syscall $ g++ glibcTest.cpp -o glibcTest

pi@erpi .../chp05/syscall $./glibcTest

The GNU libc version is: 2.19

The current user's login is: pi

208 Part I ■ Raspberry Pi Basics

c05.indd 03:12:39:PM 05/17/2016 Page 208

-> their full name is: Exploring RPi

-> their user ID is: 1000

The user's shell is: /bin/bash

The user's path is: /usr/local/sbin:/usr/local/bin:/usr/sbin...

Syscall gives their user ID as: 1000

pi@erpi .../chp05/syscall $ ls -l test.txt

-rw-rw-rw- 1 pi pi 0 Jun 16 01:56 test.txt

pi@erpi .../chp05/syscall $ chmod 644 test.txt

There are many glibc functions, but the syscall() function requires special

attention. It performs a generalized system call using the arguments that you

pass to the function. The fi rst argument is a system call number, as defi ned in

sys/syscall.h.9 You will have to follow through the header includes fi les to fi nd

the defi nitions. Alternatively, you can use syscalls.kernelgrok.com to search

for defi nitions (e.g., search for SYS_getuid and you will see that the register eax

= 0xc7, as used in Listing 5-17). Clearly it is better if you use SYS_getuid instead.

Improving the Performance of Python

Despite the popularity of Python on the RPi platform, it is clear from Table 5-1

that if you are to use it for certain embedded applications you may need enhanced

performance. This section describes two alternative approaches for addressing

the performance issue by investigating Cython, and an alternative approach of

extending Python with C/C++ code.

Regardless of the approach taken, the fi rst step is to set up your RPi so that

you build a C/C++ module. You do this by installing the Python development

package for the exact version of Python that you are using. Adapt the instruc-

tions in this section to use the library versions that you identify using the fol-

lowing steps:

pi@erpi ~ $ sudo apt install python-dev

pi@erpi ~ $ python --version

Python 2.7.9

pi@erpi ~ $ sudo apt install python3-dev

pi@erpi ~ $ python3 --version

Python 3.4.2

pi@erpi ~ $ ls /usr/lib/arm-linux-gnueabihf/libpython*.so

/usr/lib/arm-linux-gnueabihf/libpython2.7.so

/usr/lib/arm-linux-gnueabihf/libpython3.4m.so

Cython

Cython is an optimizing compiler for Python and a language that extends Python

with C-style functionality. Typically, the Cython compiler uses your Python code

9 This location is typically found underneath the path /usr/include/arm-linux-gnue-
abihf/ and links to other header files such as asm/unistd.h and bits/syscall.h.

 Chapter 5 ■ Programming on the Raspberry Pi 209

c05.indd 03:12:39:PM 05/17/2016 Page 209

to generate effi cient C shared libraries, which you can then import into other

Python programs. However, to get the maximum benefi t from Cython you must

adapt your Python code to use Cython-specifi c syntax. The top-performing

Cython entry in Table 5.1 (i.e., at 2.74×) is available in chp05/performance/

cython_opt/nbody.pyx). If you inspect the code you will see the use of cdef

C variable declarations and various variable types (e.g., double, int), which

indicates the removal of dynamic typing from the base Python version (chp05/

performance/n-body.py).

A concise example is developed here to describe the fi rst steps involved in

adapting Python code to create Cython code. The code proves the relationship

sin = 2x dx()∫0
π

 by applying a simple numeric integration approach, as provided

in Listing 5-18.

Listing 5-18: /chp05/cython/test.py

from math import sin

def integrate_sin(a,b,N):

 dx = (b-a)/N

 sum = 0

 for i in range(0,N):

 sum += sin(a+i*dx)

 return sum*dx

The code in Listing 5-18 can be executed directly within the Python interpreter

as follows (use exec(open("test.py").read()) under Python3):

pi@erpi ~/exploringrpi/chp05/cython $ python

>>> from math import pi

>>> execfile('test.py')

>>> integrate_sin(0,pi,1000)

1.9999983550656624

>>> integrate_sin(0,pi,1000000)

1.9999999999984077

And a timer can be introduced to evaluate its performance:

>>> import timeit

>>> print(timeit.timeit("integrate_sin(0,3.14159,1000000)",setup="fr →

om __main__ import integrate_sin", number=10))

30.0536530018

>>> quit()

The timeit module allows you to determine the execution duration of a func-

tion call. In this example, the RPi 2 takes 30.0 seconds to evaluate the function

10 times, with N equal to 1,000,000.

It is possible to get a report on computationally costly dynamic Python behav-

ior within your source code using:

pi@erpi ~/exploringrpi/chp05/cython $ sudo apt install cython

pi@erpi ~/exploringrpi/chp05/cython $ cython -a test.py

pi@erpi ~/exploringrpi/chp05/cython $ ls -l *.html

-rw-r--r-- 1 pi pi 31421 Jun 30 02:49 test.html

210 Part I ■ Raspberry Pi Basics

c05.indd 03:12:39:PM 05/17/2016 Page 210

You can transfer this fi le to your desktop machine for viewing. The darker the

shade of yellow on a line in the HTML report, the greater the level of dynamic

behavior that is taking place on that line.

N O T E If you have both Python2 and Python3 installed you may need to install

Cython for Python3 as follows (this appears to hang, but leave it run as it can take lon-

ger than 20 minutes to install):

pi@erpi ~ $ sudo apt install python3-pip

pi@erpi ~ $ sudo pip3 install cython

Cython supports static type defi nitions, which greatly improves the perfor-

mance of the code. The code can be adapted to test.pyx in Listing 5-19 where

the types of the variables and return types are explicitly defi ned.

Listing 5-19: /chp05/cython/test.pyx

cdef extern from "math.h":

 double sin(double x)

cpdef double integrate_sin(double a, double b, int N):

 cdef double dx, s

 cdef int i

 dx = (b-a)/N

 sum = 0

 for i in range(0,N):

 sum += sin(a+i*dx)

 return sum*dx

An additional configuration file setup.py is required, as provided in

Listing 5-20, so that Cython can compile the module correctly.

Listing 5-20: /chp05/cython/setup.py

from distutils.core import setup

from distutils.extension import Extension

from Cython.Distutils import build_ext

ext_modules = [Extension("test", ["test.pyx"])]

setup(

 name = 'random number sum application',

 cmdclass = {'build_ext' : build_ext },

 ext_modules = ext_modules

)

Python can use the setup.py confi guration fi le to directly build the test.pyx

fi le into C code (test.c), which is then compiled and linked to create a shared

library (test.so). The library code can be executed directly within Python as

follows, where the execution duration is 6.42 seconds—a fi vefold improvement

in performance:

pi@erpi .../chp05/cython $ python setup.py build_ext --inplace

running build_ext... cythoning test.pyx to test.c ...

 Chapter 5 ■ Programming on the Raspberry Pi 211

c05.indd 03:12:39:PM 05/17/2016 Page 211

pi@erpi ~/exploringrpi/chp05/cython $ ls

build setup.py test.c test.html test.py test.pyx test.so

pi@erpi ~/exploringrpi/chp05/cython $ python

Python 2.7.9 (default, Mar 8 2015, 00:52:26)

>>> import timeit

>>> print(timeit.timeit("test.integrate_sin(0,3.14159,1000000)",setup="imp

ort test",number=10))

6.41986918449

It is also worth mentioning that Cython can be used to build a Python program

into a standalone executable. Once an execution starting point is added to the

Cython fi le (the equivalent of main()) then the following steps can be used to

compile the Cython code into a native binary executable:

pi@erpi .../chp05/cython_exe $ tail -n 3 test.pyx

if __name__ == '__main__':

 integral = integrate_sin(0, 3.14159, 1000000)

 print("The integral of sin(x) in the range 0..PI is: ", integral)

pi@erpi .../chp05/cython_exe $ cython --embed test.pyx

pi@erpi .../chp05/cython_exe $ gcc test.c -I/usr/include/python3.4/

-lpython3.4m -o test -lutil -ldl -lpthread -lm

pi@erpi ~/exploringrpi/chp05/cython_exe $./test

('The integral of sin(x) in the range 0..PI is: ', 1.9999999999906055)

Cython goes a long way to addressing performance concerns that you may

have in using Python. However, there is a signifi cant learning curve in adapt-

ing Python code for effi ciency, which has only been touched upon here. An

alternative approach is to write custom C/C++ code modules that add to the

capability of Python, rather than using Cython at all.

Extending Python with C/C++

It is possible to call compiled C/C++ code directly from within Python programs.

This capability enables you to enhance the performance of Python programs

using C/C++ code modules that can be called just like regular Python functions.

The Python/C API

This workfl ow for the Python/C API is reasonably straightforward and is best

explained with worked examples. There are examples available for Python2 and

Python3 in the /chp05/python2_C/ and /chp05/python3_C/ directories, because

there were signifi cant changes on module development in the move to Python3.

The diffi cult step is to develop a C/C++ module that is structured so that it is

compatible with Python. Listing 5-21 provides a template example for Python3

that you can use to develop your own modules. It consists of two simple functions

hello() and integrate(). The hello() function expects a string argument, for

example Derek, which it displays in the form Hello Derek!. The integrate()

function has the same form as the integrate_sin() function in Listing 5-19.

The Python2 example has identical functionality but slightly different syntax.

212 Part I ■ Raspberry Pi Basics

c05.indd 03:12:39:PM 05/17/2016 Page 212

Listing 5-21: chp05/python3_C/ERPiModule.cpp

#include <Python.h>

#include <math.h>

/** A hello() function that can be called from Python3:

 * @param self A pointer to the calling PyObject

 * @param args the arguments passed from the Python code

 * @return All objects types extend PyObject -- return a ptr */

static PyObject* hello(PyObject* self, PyObject* args){

 const char* name;

 if (!PyArg_ParseTuple(args, "s", &name)){

 printf("Failed to parse the string name!\n");

 Py_RETURN_NONE;

 }

 printf("Hello %s!\n", name);

 Py_RETURN_NONE;

}

/** integrate() function to integrate sin(x) over a range a..b*/

static PyObject* integrate(PyObject* self, PyObject* args){

 double a, b, dx, sum=0;

 int N;

 // expecting two doubles and an int from Python

 if (!PyArg_ParseTuple(args, "ddi", &a, &b, &N)){

 printf("Failed to parse the arguments!\n");

 Py_RETURN_NONE;

 }

 dx = (b-a)/N;

 for(int i=0; i<N; i++){

 sum += sin((a+i)*dx);

 }

 return Py_BuildValue("d", sum*dx); // send PyObject back to Python

}

/** An array of structures, where each structure has four fields:

 * ml_name (char *) the name of the function

 * ml_meth (PyCFunction) a pointer to the C function above

 * ml_flags (int) flag bits - state how call is constructed

 * ml_doc (char *) describes the function

 * hello() and integrate() functions exposed in this example. */

static PyMethodDef ERPiMethods[] = {

 {"hello", hello, METH_VARARGS, "Displays Hello Derek!"},

 {"integrate", integrate, METH_VARARGS, "Integrates the sin(x) fn."},

 {NULL, NULL, 0, NULL} // must end with a null structure

};

/** A structure that defines the module structure */

static struct PyModuleDef moduledef = {

 PyModuleDef_HEAD_INIT, // m_base -- always the same

 "ERPiModule", // m_name -- module name

 "Module for Exploring RPi", // m_doc -- Docstring for the module

 -1, // m_size -- has global state

 ERPiMethods, // m_methods -- module-level functions

 Chapter 5 ■ Programming on the Raspberry Pi 213

c05.indd 03:12:39:PM 05/17/2016 Page 213

 NULL, // m_reload -- currently unused

 NULL, // m_traverse -- function to call GC traversal

 NULL, // m_clear -- function to call during GC clearing

 NULL, // m_free -- function to call during deallocation

};

/** Initialization function for the module */

PyMODINIT_FUNC PyInit_ERPiModule(void){

 return PyModule_Create(&moduledef);

}

The C/C++ code in Listing 5-21 can be built to a shared object fi le using the

following call (the build command is on one line):

pi@erpi ~/exploringrpi/chp05/python3_C $ g++ -O3 ERPiModule.cpp -shared

-I/usr/include/python3.4/ -lpython3.4m -o ERPiModule.so

pi@erpi ~/exploringrpi/chp05/python3_C $ ls -l *.so

-rwxr-xr-x 1 pi pi 7168 Jun 29 00:00 ERPiModule.so

Once the shared module is in place it can be imported by a Python pro-

gram and the two functions hello() and integrate() can be invoked

directly. Listing 5-22 provides an example Python3 program that calls the two

functions and displays the result of the integrate() call.

Listing 5-22: chp05/python3_C/test.py

#!/usr/bin/python3

import ERPiModule

print("*** Start of the Python program")

print("--> Calling the C hello() function passing Derek")

ERPiModule.hello("Derek")

print("--> Calling the C integrate() function")

val = ERPiModule.integrate(0, 3.14159, 1000000)

print("*** The result is: ", val)

print("*** End of the Python program")

The Python script in Listing 5-22 can be executed as follows:

pi@erpi ~/exploringrpi/chp05/python3_C $./test.py

*** Start of the Python program

--> Calling the C hello() function passing Derek

Hello Derek!

--> Calling the C integrate() function

*** The result is: 1.9999999999906055

*** End of the Python program

Finally, the performance of the code is impressive, taking 3.23 seconds for

the C/C++ integration test under both Python2 and Python3:

pi@erpi ~/exploringrpi/chp05/python3_C $ python3

>>> import timeit

>>> print(timeit.timeit("ERPiModule.integrate(0,3.14159,1000000)",setup="imp

ort ERPiModule",number=10))

3.2270326350117102

214 Part I ■ Raspberry Pi Basics

c05.indd 03:12:39:PM 05/17/2016 Page 214

Boost.Python

An alternative approach to extending Python with C/C++ is to use a wrapper

that binds C/C++ and Python called Boost.Python, which essentially wraps the

Python/C API. In addition, it simplifi es the syntax and provides support for calls

to C++ objects. You can search for the latest release and install Boost.Python on

your RPi using the following steps (~270 MB):

pi@erpi ~ $ apt-cache search libboost-python

libboost-python1.54-dev - Boost.Python Library development files ...

pi@erpi ~ $ sudo apt install libboost-python1.54-dev

A C++ program can be developed, as in Listing 5-23, that uses the Boost.

Python library and its special BOOST_PYTHON_MODULE(name) macro that declares

the Python module initialization functions—essentially replacing the verbose

syntax that is present in Listing 5-21.

Listing 5-23: /chp05/boostPython/erpi.cpp

#include<string>

#include<boost/python.hpp> // .hpp convention for c++ headers

using namespace std; // just like cpp for source files

namespace exploringrpi{ // keep the global namespace clean

 string hello(string name) { // e.g., returns "Hello Derek!"

 return ("Hello " + name + "!");

 }

 double integrate(double a, double b, int n) { // same as before

 double sum=0, dx = (b-a)/n;

 for(int i=0; i<n; i++){ sum += sin((a+i)*dx); }

 return sum*dx;

 }

}

BOOST_PYTHON_MODULE(erpi){ // the module is called erpi

 using namespace boost::python; // require the boost.python namespace

 using namespace exploringrpi; // bring in custom namespace

 def("hello", hello); // make hello() visible to Python

 def("integrate", integrate); // make integrate() also visible

}

The code can be built into a shared library as before. Make sure to include

the boost_python library in the build options:

pi@erpi ~/exploringrpi/chp05/boostPython $ g++ -O3 erpi.cpp -shared -I/usr/ →

include/python2.7/ -lpython2.7 -lboost_python -o erpi.so

pi@erpi ~/exploringrpi/chp05/boostPython $ ls -l *.so

-rwxr-xr-x 1 pi pi 27400 Jul 18 18:38 erpi.so

 Chapter 5 ■ Programming on the Raspberry Pi 215

c05.indd 03:12:39:PM 05/17/2016 Page 215

The library can then be used by a Python script, such as that in Listing 5-24.

Listing 5-24: /chp05/boostPython/test.py

#!/usr/bin/python

A Python program that calls C program code

import erpi

print "Start of the Python program"

print erpi.hello("Derek")

val = erpi.integrate(0, 3.14159, 1000000)

print "The integral result is: ", val

print "End of the Python program"

The script in Listing 5-24 can be executed, resulting in the following output:

pi@erpi ~/exploringrpi/chp05/boostPython $./test.py

Start of the Python program

Hello Derek!

The integral result is: 1.99999999999

End of the Python program

In addition, the timeit test results in ~3.225 s, which is consistent with

the Python/C API performance. Despite its large footprint, Boost.Python

is the recommended approach for integrating C/C++ and Python code due to its

performance, simplifi ed syntax, and support for C++ classes. Therefore, Boost.

Python is used again in later chapters. See tiny.cc/erpi506 for further details.

Summary

After completing this chapter, you should be able to do the following:

 ■ Describe the multitude of issues that would impact on your choice of

programming languages to use in building physical-computing applica-

tions for the RPi.

 ■ Write basic scripting language program code on the RPi that interfaces

to an LED, which is attached to an RPi GPIO.

 ■ Compare and contrast scripting, hybrid, and compiled programming

languages, and their application to the RPi.

 ■ Write C code examples that interface to the RPi’s GPIOs.

 ■ Describe the principles of OOP programming, and write C++ classes that

provide program structure for physical-computing applications.

 ■ Write C/C++ code that can interface directly to the Linux OS.

 ■ Write C/C++ modules that can be called directly from Python.

216 Part I ■ Raspberry Pi Basics

c05.indd 03:12:39:PM 05/17/2016 Page 216

Further Reading

Most of the sections in this chapter contain links to the relevant websites for

further reading and reference materials. Here is a list of some books on pro-

gramming that are relevant to the materials in this chapter:

 ■ Bjarne Stroustrup, The C++ Programming Language, 4th ed., Addison-Wesley

Professional, 2013, 978-0-321-56384-2.

 ■ Scott Meyers, Effective Modern C++, O’Reilly Media, 2014, 978-1-4919-0399-5.

 ■ Bill Lubanovic, Introducing Python: Modern Computing in Simple Packages,

O’Reilly Media, 2014, 978-1-4493-5936-2.

 ■ Michael Kerrisk, The Linux Programming Interface, No Starch Press, 2010,

978-1-59327-220-3.

 ■ Derek Molloy, “EE402: Object-Oriented Programming Module Notes,”

ee402.eeng.dcu.ie.

Bibliography

 ■ debian.org (2013, December 1). The Computer Language Benchmarks

Game. Retrieved March 7, 2014, from Debian.org: benchmarksgame.
alioth.debian.org

 ■ Hundt, R. (2011). Loop Recognition in C++/Java/Go/Scala. Proceedings

of Scala Days 2011. Mountain View, CA.: www.scala-lang.org.

 ■ Oracle (2014, March 10). Java SE Embedded FAQ. Retrieved March 10,

2014, from Oracle.Com: www.oracle.com/technetwork/java/embedded/
resources/se-embeddocs/

 ■ Stroustrup, B. (1998, October 14). International standard for the C++

programming language published. Retrieved March 18, 2014, from

stroustrup.com: www.stroustrup.com/iso_pressrelease2.htm l

http://www.scala-lang.org
http://www.oracle.com/technetwork/java/embedded
http://www.stroustrup.com/iso_pressrelease2.htm
http://www.oracle.com/technetwork/java/embedded/resources/se-embeddocs/

c06.indd 06:44:58:PM 05/12/2016 Page 217

Par t

II
Interfacing, Controlling,

and Communicating

In This Part

Chapter 6: Interfacing to the Raspberry Pi Inputs/Outputs

Chapter 7: Cross-Compilation and the Eclipse IDE

Chapter 8: Interfacing to the Raspberry Pi Buses

Chapter 9: Enhancing the Input/Output Interfaces on the Raspberry Pi

Chapter 10: Interacting with the Physical Environment

Chapter 11: Real-Time Interfacing Using the Arduino

219

c06.indd 06:44:58:PM 05/12/2016 Page 219

This chapter integrates the Linux, programming, and electronics groundwork

from earlier chapters to show you how to build circuits and write programs that

interface to the Raspberry Pi’s single-wire inputs and outputs. In this chapter,

you will see practical examples that explain how to use general-purpose input/

outputs (GPIOs) to interface to different types of electronic circuits. GPIO inter-

facing is fi rst performed using sysfs to ensure that you have skills that are trans-

ferrable to other embedded Linux devices. Next, memory-mapped approaches

are investigated that have impressive performance, but are largely specifi c

to the RPi platform. Finally, the wiringPi library of C functions is discussed

in detail. It uses sysfs and memory-mapped approaches to provide a custom

GPIO interfacing library for the RPi platform that is very accessible. Examples

are provided of how it can be used to communicate with one-wire sensors, to

generate pulse-width modulated (PWM) signals, and to generate high-frequency

timing signals. Finally, there is a brief discussion on the impact of udev rules

and Linux permissions on GPIO interfacing.

C H A P T E R

6

Interfacing to the Raspberry Pi

Input/Outputs

220 Part II ■ Interfacing, Controlling, and Communicating

c06.indd 06:44:58:PM 05/12/2016 Page 220

Equipment Required for This Chapter:

 ■ Raspberry Pi (ideally an RPi 2/3 for the multicore examples)

 ■ Components from Chapter 4 (e.g., button, LED, optocoupler)

 ■ An Aosong AM230x humidity and temperature sensor

 ■ A generic servo motor (e.g., Hitec HS-422)

Further details on this chapter are available at www.exploringrpi.com/chapter6/.

Introduction

At this point in the book, you have seen how to administer a Linux system,

write high-level programming code, and build basic, but realistic, electronic

interfacing circuits. It is now time to bring those different concepts together so

that you can build software applications that run on Linux to control, or take

input from, electronics circuits of your own design.

It is possible to interface electronic circuits and modules to the RPi in several

different ways. For example:

 ■ Using the GPIOs on the RPi’s GPIO header: This provides you with

versatility in terms of the type of circuits that you can connect and is the

subject of this chapter.

 ■ Using the buses (e.g., I2C, SPI) or UART on the GPIO header: Bus con-

nections enable communications to complex modules such as sensors and

displays. This topic is the subject of Chapter 8.

 ■ Connecting USB modules (e.g., keyboards, Wi-Fi): If Linux drivers are

available, many different electronic device types can be connected to the

RPi. Examples are provided in later chapters.

 ■ Communicating through Ethernet/Wi-Fi/Bluetooth to electronics
modules: It is possible to build network-attached sensors that commu-

nicate to the RPi using network connections. Chapter 12 fi rst introduces,

and Chapter 13 then focuses on, this topic.

The next step in working with the RPi is to connect it to circuits using the

GPIO expansion header. The background material of earlier chapters is very

important, because this is a surprisingly complex topic that will take some time

to get used to, particularly the memory-mapped I/O discussion. However, code

and example circuits are provided throughout this chapter that you can use to

help you build your own interfacing circuits.

Figure 6-1 provides you with a fi rst view of the functionality of the inputs

and outputs on the GPIO header. Many of these pins are multiplexed, meaning

http://www.exploringrpi.com/chapter6

 Chapter 6 ■ Interfacing to the Raspberry Pi Input/Outputs 221

c06.indd 06:44:58:PM 05/12/2016 Page 221

they have more functions (or ALT modes) than what is displayed in the fi gure.

This fi gure illustrates the most commonly used functionality.

Figure 6-1: The RPi GPIO header (RPi 2/3)

General-Purpose Input/Outputs

This chapter describes how you can interface to the RPi’s GPIO header pins in

the following ways:

 ■ Digital output: How you can use a GPIO to turn an electrical circuit on

or off. The example uses an LED, but the principles hold true for any

circuit type; for example, you could even use a relay to turn on/off high-

powered devices. Circuits are provided to ensure that you do not draw

too much current from a GPIO. Code examples are developed to make

software interfacing straightforward and effi cient.

 ■ Digital input: How you can read in a digital output from an electrical

circuit into a software application running under Linux. Circuits are

provided to ensure that this is performed safely.

 ■ Analog output: How you can use PWM to output a proportional signal

that can be used as an analog voltage level or as a control signal for certain

types of devices, such as servo motors.

 ■ Analog input: The RPi does not have a dedicated analog-to-digital con-

verter (ADC). However, this capability can be added using low-cost bus

devices, as described in Chapter 9.

222 Part II ■ Interfacing, Controlling, and Communicating

c06.indd 06:44:58:PM 05/12/2016 Page 222

This chapter assumes that you have read Chapter 4—in particular, switching

circuits using FETs/BJTs and the use of pull-up/down resistors.

W A R N I N G Be especially careful when working with the GPIO header, because

incorrect connections can, and will, destroy your board. Test all new circuits to ensure

that their voltage and current levels are within range before connecting them to the

GPIO header. Also, follow the advice on interfacing circuits using FETs and optocou-

plers, as described in this chapter. Chapter 8 provides additional advice on interfacing

to circuits that use diff erent logic voltage levels.

GPIO Digital Output

The example output confi guration illustrated in Figure 6-2(a) uses a GPIO con-

nected to a FET to switch a circuit. As described in Chapter 4, when a voltage is

applied to the gate input of a FET, it will close the virtual drain-source “switch,”

enabling current to fl ow from the 5 V supply through the 220 Ω current limit-

ing resistor, to GND through a lighting LED. This circuit is different from that

in Figure 5-1(a), because a 5 V source is used in place of a 3.3 V source so as to

illustrate the switching capability of this circuit confi guration. Figure 6-2(b)

illustrates an equivalent BJT circuit. Note that both circuits use a larger current

limiting resistor (220 Ω versus 120 Ω) to protect the LED.

The advantage of these types of circuit is that they can be applied to many

on/off digital output applications, because the BS270 FET datasheet indicates

that it can drive a constant current of up to 400 mA (and a pulsed current of up

to 2 A) across the drain-source at up to 60 V. However, at a gate voltage of 3.3 V,

the BS270 can only switch a maximum drain current of approximately 130 mA.

The high input impedance of the gate means that you can use two (or indeed

more) BS270s in parallel to double the maximum current to approximately

260 mA at the same gate voltage. Similarly, the BC547 can drive a collector

current (IC) up to 100 mA at a collector-emitter voltage (VCE) of less than 45 V

(the total power dissipated, P ≈ VCE × IC, must also be less than 500 mW—i.e., if

VCE = 10 V then IC ≤ 50 mA).

The maximum current is also limited if you are sourcing the supply current

from the RPi GPIO header. The 3.3 V header pins (1 and 17) can together supply

a maximum of ~50 mA. The 5 V header pins (2 and 4) can together safely sup-

ply approximately 200 mA–300 mA. For greater currents, you need an external

supply, but you have to be especially careful that your circuit does not apply

power to the GPIO pins while the RPi is powered down.

RPi GPIOs are 3.3 V tolerant and you should only source and sink approxi-

mately 2 mA–3 mA from or to each pin. Each pin is capable of sourcing/sinking

slightly larger currents if GPIO utilization is sparse, but it is best to avoid such

a dependency. In Figure 6-2, it is safe to use the 5 V supply to drive the LED,

because the drain-source circuit of the FET is never connected to the gate input.

You will also notice that, unlike the example in Chapter 4, there is no resistor

 Chapter 6 ■ Interfacing to the Raspberry Pi Input/Outputs 223

c06.indd 06:44:58:PM 05/12/2016 Page 223

on the gate of the FET. It is not necessary in this particular case, because an

internal pull-down resistor is enabled within the RPi by default on this pin. This

is discussed shortly.

(a) (b)

Figure 6-2: A 5 V LED circuit (a) using a FET, and (b) using a BJT

Once the circuit is built and attached to the RPi, you can boot the board and

control the LED using a Linux terminal and sysfs as described in Chapter 5.

Figure 6-3 displays the actual voltages and currents that are exhibited by the

two circuits. You can see that there is a negligible level of current sourced from

GPIO17 by the FET circuit in Figure 6-3(a), and the gate voltage is dropped

across the gate-source pins of the FET. In Figure 6-3(b) the 2.2 kΩ resistor drives

a small current into the base of the transistor, IB = (3.3 V − 0.77 V) / 2.2 kΩ, that

switches on the transistor, thus lighting the LED. The 1.15 mA current is well

within tolerance for an RPi GPIO.

(a) (b)

Figure 6-3: The voltage and current characteristics of the circuits in Figure 6-2 (a) using a FET,

and (b) using a BJT

224 Part II ■ Interfacing, Controlling, and Communicating

c06.indd 06:44:58:PM 05/12/2016 Page 224

To test the performance of this approach, a short bash shell script to toggle

the LED as quickly as possible is provided in Listing 6-1. This does not result in

a visible “blink,” because the LED is fl ashing faster than a human can observe;

however, toggling can be visualized using an oscilloscope.

Listing 6-1: /chp06/fl ash_script/fl ash.sh

#!/bin/bash

Short script to toggle a GPIO pin at the highest frequency possible

echo 17 > /sys/class/gpio/export

sleep 0.5

echo "out" > /sys/class/gpio/gpio17/direction

COUNTER=0

while [$COUNTER -lt 100000]; do

 echo 1 > /sys/class/gpio/gpio17/value

 let COUNTER=COUNTER+1

 echo 0 > /sys/class/gpio/gpio17/value

done

echo 17 > /sys/class/gpio/unexport

You can see from the oscilloscope trace in Figure 6-4 that the output is cycling

every 0.36 ms approximately, equating to a frequency of approximately 2.78 kHz,

which is not very high for an embedded controller. The period is reasonably

constant, which is largely due to the fact that this Linux kernel utilizes kernel

preemption options—as discussed later in this chapter. In addition, the top com-

mand (executed in another Linux terminal window) indicates that the CPU load

for this script is consuming 100% of a single core (on the RPi 2/3 execute top and

press 1 to see the individual core utilization). You can also see that the current

driving the LED is 12 mA–13 mA, which is large enough to damage the RPi if

this current were simultaneously sourced from, or sinked to, several GPIOs.

A C++ class is presented in the next section that can be used to control a

GPIO using sysfs and it achieves higher switching frequencies, but with similar

CPU loads. If you require a high-frequency periodic switching signal, PWM or

general-purpose clocks, which are discussed later in this chapter, can be used.

PWM can achieve frequencies of 1 MHz or higher, without a signifi cant CPU

load. However, many applications require the activation of a switched circuit

at low frequencies (e.g., controlling motors, smart home control), and in such

cases this confi guration is perfectly valid.

Figure 6-4: Scope display of the GPIO output caused by the flash.sh script

 Chapter 6 ■ Interfacing to the Raspberry Pi Input/Outputs 225

c06.indd 06:44:58:PM 05/12/2016 Page 225

GPIO Digital Input

The next application is to use a GPIO as a digital input, which enables software

written on the RPi to read the state of a pushbutton or any other logic high/

low input. This task is fi rst performed using a Linux terminal, and then it is

performed using C/C++ code. The LED circuit should be left connected when

building this input circuit because both circuits are reused throughout this

chapter.

The circuit shown in Figure 6-5(a) consists of a normally open pushbutton

(SPST) that is connected to the RPi Pin 13 (GPIO27). You will notice that, having

discussed the need for pull-up or pull-down resistors on pushbutton switches

in Chapter 4, none are present in this circuit. This is not accidental, because

Pin 13 on the GPIO header is connected by default to GND using an internal

pull-down resistor. This is discussed shortly. Use the following steps to read

the state of the button (i.e., either 0 or 1) using a Linux terminal:

pi@erpi /sys/class/gpio $ echo 27 > export

pi@erpi /sys/class/gpio $ cd gpio27

pi@erpi /sys/class/gpio/gpio27 $ ls

active_low device direction edge subsystem uevent value

pi@erpi /sys/class/gpio/gpio27 $ echo in > direction

pi@erpi /sys/class/gpio/gpio27 $ cat direction

in

pi@erpi /sys/class/gpio/gpio27 $ cat value

0

pi@erpi /sys/class/gpio/gpio27 $ cat value

1

Therefore, the value is 1 when the button is pressed and 0 when it is released.

GPIO27 sinks approximately 64 μA when the button is pressed. Each time you

type cat value, you are polling the input to check the value. The downside of

this approach is that you will not identify a change in the value of the input

unless you constantly poll the value state.

(a) (b)

Figure 6-5: Connecting a pushbutton to the RPi (a) internal pull-down resistor, and (b) internal

pull-up resistor

226 Part II ■ Interfacing, Controlling, and Communicating

c06.indd 06:44:58:PM 05/12/2016 Page 226

Interestingly, if you connect nothing to GPIO4, which is Pin 7, and enter the

same sequence of commands, you get a different output:

pi@erpi /sys/class/gpio $ echo 4 > export

pi@erpi /sys/class/gpio $ cd gpio4/

pi@erpi /sys/class/gpio/gpio4 $ cat direction

out

pi@erpi /sys/class/gpio/gpio4 $ echo in > direction

pi@erpi /sys/class/gpio/gpio4 $ cat value

1

pi@erpi /sys/class/gpio/gpio4 $ cat value

0

With nothing connected to this input, it registers a value of 1. That is because

this input is connected via an internal pull-up resistor to the 3.3 V line. Figure 6-5(b)

illustrates the correct button wiring confi guration for such a GPIO. Note that

this GPIO input has the opposite polarity to the circuit in Figure 6-5(a); GPIO4

is low when the button is pressed, whereas GPIO27 is high when the button is

pressed. It should be clear at this stage that you need to understand the GPIO

confi guration, including these internal resistors, to use the GPIO pins properly.

Internal Pull-Up and Pull-Down Resistors

The importance of pull-up and pull-down resistors is discussed in some detail

in Chapter 4. They ensure that open switches do not allow a GPIO input to fl oat.

Such external resistors are typically “strong” pull-up/down resistors in that they

“strongly” tie the input to a high/low value using relatively low resistance val-

ues (e.g., 5 kΩ–10 kΩ). The RPi has “weak” internal pull-up and internal pull-down

resistors that can be confi gured using memory-based GPIO control techniques

that are described later in this chapter.

You can physically check whether an internal pull-up or pull-down resistor

is enabled on a pin by connecting a 100 kΩ resistor between the pin and GND

(as shown in Figure 6-6(a), where the shaded area represents functionality that

is internal to the RPi’s SoC), and then between the pin and the 3.3 V supply (as

shown in Figure 6-6(b)). If you connect a 100 kΩ (the one I used had an actual

value of 98.5 kΩ) to Pin 16 and measure the voltage across it, you will see that

the voltage drop is 0 V when the resistor is connected to GND, and I measured

2.226 V (not 3.3 V) when it was connected to the 3.3 V rail. This indicates that

there is an internal pull-down resistor enabled, and the combination of these

resistors is behaving like a voltage divider circuit. You can estimate the value

of the internal pull-down resistor as in Figure 6-6(b).

Clearly, Pin 16, which is GPIO23, has an internal pull-down resistor enabled, but

if you perform the same test on Pin 7, which is GPIO4, you will get a completely

different response. When you connect the resistor as shown in Figure 6-6(a)

you will get a voltage drop of ~2.213 V across the 100 kΩ resistor, and almost 0 V

 Chapter 6 ■ Interfacing to the Raspberry Pi Input/Outputs 227

c06.indd 06:44:58:PM 05/12/2016 Page 227

when you connect it as in Figure 6-6(b). That is because Pin 7 has an internal

pull-up resistor enabled. Performing the same calculations gives an internal pull-

up resistor value of approximately 48.6 kΩ.

(a) (b)

Figure 6-6: Internal pull-down resistor value determination, using a 100 kΩ resistor connected

(a) from the GPIO pin to GND, and (b) from the GPIO pin to the 3.3 V supply

You need to factor these resistor values into the behavior of your input/out-

put circuits, and you need to be able to alter the internal resistor confi guration

in certain circumstances. For example, you may even want to turn them off

for certain circuits. Also, note that Pin 3 (GPIO2) and Pin 5 (GPIO3) have two

permanent onboard 1.8 kΩ “strong” pull-up resistors attached on the PCB (R23

and R24). This is discussed in Chapter 8.

As well as confi guring pins to have either a pull-up or a pull-down resistor

confi guration, there are also different modes for each pin. This is called the

ALT mode for the pin. Later in this chapter, Figure 6-11 provides a full list of

alternative modes for each of the GPIO header pins.

Interfacing to Powered DC Circuits

The RPi itself provides the power required for the output and input circuits that

are illustrated in Figures 6-2 and 6-5 respectively. The current that can be sourced

or sinked by these circuits is limited by the RPi specifi cations. Therefore, it is

often necessary to interface to circuits that are powered by an external supply.

You must be very careful when interfacing the RPi to circuits that have their

own power supply (e.g., high-powered LEDs, car alarms, garage openers). For

example, you should design the circuit so that it does not attempt to source

current from, or sink current to the RPi GPIOs while the board is powered off.

In addition, it would be ideal if you could avoid sharing a GND connection

between the circuit and the RPi in case something goes wrong with the circuit

or its power supply.

A good solution is to utilize low-cost optocouplers, such as those described in

Chapter 4 to design circuits in which there is no electrical connection whatsoever

228 Part II ■ Interfacing, Controlling, and Communicating

c06.indd 06:44:58:PM 05/12/2016 Page 228

between the RPi and the externally powered circuit. Figure 6-7 illustrates an

output circuit with an NPN transistor that is placed in a Darlington pair arrange-

ment with the optocoupler to switch on or off the externally powered circuit load.

A 5 V external power supply is used in this example, but a greater DC supply

voltage can be used. In addition, the maximum switching current is limited by

the transistor characteristics (e.g., of a BC547), not by the optocoupler’s output

current Ic level.

Figure 6-7: The optocoupler output circuit

The 617A optocoupler’s current transfer ratio (CTR) of ≈0.5 when If = 1 mA

(i.e., when GPIO17 is high) results in an output current of Ic = 0.5 mA, which

enters the base of the BC547 transistor. This small current switches on the BC547

transistor, which in turn supplies a current of IL = 40 mA to the resistive load in

this example. One downside of this confi guration is that the voltage supply to

the load is reduced by the VCE of the Darlington pair (≈1 V). An alternative to this

arrangement is to use a Sziklai pair as illustrated in Figure 6-7, in which a PNP

transistor is connected to the optocoupler output. Both arrangements limit the

switching frequency capability of your output circuit (typically to the tens of

kilohertz range). Unlike the 617A, the 4N25 exposes the base of the optocoupler

receiver. This allows for the placement of additional base emitter resistors to

improve the circuit’s frequency response.

An optocoupler can also be connected to a GPIO to receive an input from an

externally powered DC circuit, as illustrated in Figure 6-8. Importantly, this

circuit can be adapted for any DC supply voltage and it will not sink any cur-

rent to the GPIO input when the RPi is powered off. You must choose a resistor

value for the input side of the optocoupler to limit the forward current of the

diode (If(max) < 60 mA for the 617A/4N251).

GPIO27 is confi gured with an internal pull-down resistor by default, so it

has a low state when the button is not pressed. The RPi GPIO input circuit in

Figure 6-5(a) sinks 64 μA to GPIO27 when the button is pressed. Similarly, this is

1 See tiny.cc/erpi603 and tiny.cc/erpi604.

 Chapter 6 ■ Interfacing to the Raspberry Pi Input/Outputs 229

c06.indd 06:44:58:PM 05/12/2016 Page 229

the maximum current that will be sinked by this circuit (when If and Vf exceed

minimal levels for the optocoupler). This circuit can be adapted to handle a vary-

ing DC input voltage (within a range) by using a voltage regulator to maintain

a value of If that is less than If(max) for the chosen optocoupler.

Figure 6-8: The optocoupler input circuit

C++ Control of GPIOs Using sysfs

A C++ class has been written that wraps the sysfs GPIO functionality on the RPi

to make it easier to use. The importance of this approach is that it is transfer-

rable to any embedded Linux device. Later in this chapter, memory-mapped

approaches are investigated, but they are specifi c to the RPi.

Listing 6-2 provides the class defi nition, which lists the available class I/O

functionality. The implementation of this functionality is similar to the code

in Chapter 5 for the control of an external LED. The full listing is in /chp06/

GPIO/GPIO.h and GPIO.cpp.

The C++ code is separated into header (.h) and implementation (.cpp) fi les,

and the process of building applications in this form is called separate compilation.

Separate compilation makes building large projects much more effi cient, but it

can be diffi cult to manage all of the individual fi les. The next chapter introduces

the Eclipse integrated development environment (IDE) for cross-compilation,

to make this process seamless.

Listing 6-2: /chp06/GPIO/GPIO.h

...

#define GPIO_PATH "/sys/class/gpio/"

namespace exploringRPi { // all code is within a custom namespace

enum GPIO_DIRECTION{ INPUT, OUTPUT }; // enumerations limit options

enum GPIO_VALUE{ LOW=0, HIGH=1 };

230 Part II ■ Interfacing, Controlling, and Communicating

c06.indd 06:44:58:PM 05/12/2016 Page 230

enum GPIO_EDGE{ NONE, RISING, FALLING, BOTH };

class GPIO {

private:

 int number, debounceTime;

 string name, path;

public:

 GPIO(int number); // the constructor exports pin

 virtual int getNumber() { return number; }

 // General Input and Output Settings

 virtual int setDirection(GPIO_DIRECTION);

 virtual GPIO_DIRECTION getDirection();

 virtual int setValue(GPIO_VALUE);

 virtual int toggleOutput();

 virtual GPIO_VALUE getValue();

 virtual int setActiveLow(bool isLow=true); // low=1, high=0

 virtual int setActiveHigh(); // default state

 virtual void setDebounceTime(int time) { this->debounceTime = time; }

 // Advanced output: faster by keeping the stream open (~20x)

 virtual int streamOpen();

 virtual int streamWrite(GPIO_VALUE);

 virtual int streamClose();

 virtual int toggleOutput(int time); // thread invert output every X ms

 virtual int toggleOutput(int numberOfTimes, int time);

 virtual void changeToggleTime(int time) { this->togglePeriod = time; }

 virtual void toggleCancel() { this->threadRunning = false; }

 // Advanced input: presented later in this chapter

 virtual int setEdgeType(GPIO_EDGE);

 virtual GPIO_EDGE getEdgeType();

 virtual int waitForEdge(); // waits until button is pressed

 virtual int waitForEdge(CallbackType callback); // threaded callback

 virtual void waitForEdgeCancel() { this->threadRunning = false; }

 virtual ~GPIO(); // destructor unexports the pin

private:

 int write(string path, string filename, string value);

 int write(string path, string filename, int value);

 string read(string path, string filename);

 int exportGPIO();

 int unexportGPIO();

 ofstream stream;

 pthread_t thread;

 CallbackType callbackFunction;

 bool threadRunning;

 int togglePeriod; // default 100ms

 int toggleNumber; // default -1 (infinite)

 friend void* threadedPoll(void *value);

 Chapter 6 ■ Interfacing to the Raspberry Pi Input/Outputs 231

c06.indd 06:44:58:PM 05/12/2016 Page 231

 friend void* threadedToggle(void *value);

};

void* threadedPoll(void *value); // callback functions for threads

void* threadedToggle(void *value); // callback functions for threads

} /* namespace exploringRPi */

You can extend this C++ class through inheritance to add the functionality

that you require, and you can integrate it into your projects without restric-

tions on its use. Use of this class is demonstrated in Listing 6-3, an example

that simultaneously interacts with the LED circuit in Figure 6-2 and the button

circuit in Figure 6-5(a).

Listing 6-3: /chp06/GPIO/simple.cpp

#include<iostream>

#include<unistd.h> // for the usleep() function

#include"GPIO.h"

using namespace exploringRPi;

using namespace std;

int main(){

 GPIO outGPIO(17), inGPIO(27); // Pin 11 and Pin 13

 outGPIO.setDirection(OUTPUT); // basic output example

 for (int i=0; i<10; i++){ // flash the LED 10 times

 outGPIO.setValue(HIGH); // turn the LED on

 usleep(500000); // sleep for 0.5 seconds

 outGPIO.setValue(LOW); // turn the LED off

 usleep(500000); // sleep for 0.5 seconds

 }

 inGPIO.setDirection(INPUT); // basic input example

 cout << "The input state is: "<< inGPIO.getValue() << endl;

 outGPIO.streamOpen(); // fast write example

 for (int i=0; i<1000000; i++){ // write 1 million cycles

 outGPIO.streamWrite(HIGH); // high

 outGPIO.streamWrite(LOW); // immediately low, repeat

 }

 outGPIO.streamClose(); // close the stream

 return 0;

}

To build and execute Listing 6-3, use the following:

pi@erpi .../chp06/GPIO $ g++ simple.cpp GPIO.cpp -o simple -pthread

pi@erpi .../chp06/GPIO $./simple

The input state is: 1

You must pass both .cpp fi les to the compiler as the code uses separate com-

pilation. The -pthread fl ag is required for class functionality that is described

232 Part II ■ Interfacing, Controlling, and Communicating

c06.indd 06:44:58:PM 05/12/2016 Page 232

later in this chapter. This code example fl ashes the LED 10 times, reads the state

of the button, and then fl ashes the LED one million times as fast as possible

(takes about 8 seconds).

BOOST.PY THON AND THE GPIO CLASS

As stated toward the end of Chapter 5, it is possible to call C++ class code from

within Python by using Boost.Python. There is an example project in the /chp06/
GPIOpython/ directory that provides all of the necessary fi les. For example, the

Python code segment below uses the C++ GPIO class in Listing 6-2 to fl ash an LED at

5 Hz until a button is pressed. The GPIO.h fi le contains a BOOST_PYTHON_MODULE()

sample that is used to wrap the C++ class.

pi@erpi ~/exploringrpi/chp06/GPIOpython $ more simple.py

#!/usr/bin/python

A Python program that uses the GPIO C++ class

import gpio

from time import sleep

print "Start of the Python Simple GPIO program"

led = gpio.GPIO(17)

button = gpio.GPIO(27)

led.setDirection(1)

button.setDirection(0)

while button.getValue() == 0:

 led.setValue(1)

 sleep(0.1)

 led.setValue(0)

 sleep(0.1)

print "End of the GPIO program"

To test the performance of this code, Figure 6-9 captures the signal output

of the LED fl ashing when the streamWrite() method is used. It is fl ashing at

about 129 kHz. Unfortunately, the C++ application had to run at 100% of CPU

usage on a single core to generate these outputs.

Figure 6-9: The GPIO C++ class flashing the LED

 Chapter 6 ■ Interfacing to the Raspberry Pi Input/Outputs 233

c06.indd 06:44:58:PM 05/12/2016 Page 233

N O T E The load on a Linux device can be determined by identifying the number of

processors and by examining the load averages:

pi@erpi ~ $ nproc

4

pi@erpi ~ $ uptime

18:53:57 up 7:00, 2 users, load average: 1.43, 0.73, 0.33

The three fi gures represent the load average for the past 1, 5, and 15 minutes. A

fi gure of 4.00 is the maximum load on a quad-core processor before tasks must be

queued. A good rule of thumb is to avoid exceeding an average load of ~70% of this

amount (i.e., 2.8 on the RPi 2/3) to provide the processor with the headroom for han-

dling processes effi ciently. Available memory is also an important performance con-

sideration: use cat /proc/meminfo.

PWM and clocks are described later in this chapter, illustrating how to switch

a GPIO using a regular periodic signal, at a fi xed frequency, with negligible

CPU load. For fast GPIO switching using a nonperiodic signal, one technique

that can be used is to switch GPIO states using direct access to system memory.

However, such a technique effectively bypasses the operating system and any

safeguards that it may have implemented.

THE PREEMPTIBLE LINUX KERNEL

The period and duty cycle of the output in Figure 6-9 is quite regular for an embed-

ded Linux device. This is largely due to the fact that the Raspbian distribution utilizes

a preemptive kernel option during kernel build. This option reduces latency delays by

making most kernel code preemptible; essentially, the kernel can be interrupted while

executing a system call to attend to a higher-priority task. As a result, the code in

Listing 6-3 runs with low latency delays, and therefore low signal jitter (period irregu-

larity), despite the fact that the processor is under considerable load.

You can type uname -a to determine whether your kernel has the preemption

capabilities, but for a more precise description you can check the build options for

your kernel by examining the config.gz fi le that is available in the /proc direc-

tory. For example, you can determine if the kernel was built to support preemption by

searching for the PREEMPT string within the build options fi le:

pi@erpi /proc $ gunzip -c config.gz | grep PREEMPT

CONFIG_TREE_PREEMPT_RCU=y

CONFIG_PREEMPT_RCU=y

CONFIG_PREEMPT_NONE is not set

CONFIG_PREEMPT_VOLUNTARY is not set

CONFIG_PREEMPT=y

CONFIG_PREEMPT_COUNT=y

CONFIG_DEBUG_PREEMPT is not set

CONFIG_PREEMPT_TRACER is not set

Continues

234 Part II ■ Interfacing, Controlling, and Communicating

c06.indd 06:44:58:PM 05/12/2016 Page 234

THE PREEMPTIBLE LINUX KERNEL continued

You can test the latency of the RPi to a stimulus using the cyclictest pro-

gram, which has a test loop that attempts to sleep for a very precise time period.

Immediately after this period, the thread wakes with a high priority. The actual time is

determined, the diff erence in expected versus actual time is calculated, and statistics

are collected (e.g., diff erence, max diff erence). The loop repeats for a user-defi ned

number of cycles:

pi@erpi ~ $ git clone git://git.kernel.org/pub/scm/linux/kernel/git/clrkw →

llms/rt-tests.git

pi@erpi ~ $ cd rt-tests/

pi@erpi ~/rt-tests $ make all

pi@erpi ~/rt-tests $./cyclictest --help

cyclictest V 0.92 ...

Building cyclictest requires the numactl and libnuma-dev packages, which

are installed by default under Raspbian. The test can be performed on the RPi 2 using

the following call, where a high run priority is set (e.g., 80):

pi@erpi ~/rt-tests $ sudo cpufreq-set -g performance

pi@erpi ~/rt-tests $ sudo ./cyclictest -t 1 -p 80 -n -i 1000 -l 10000 --smp

/dev/cpu_dma_latency set to 0us

policy: fifo: loadavg: 0.00 0.01 0.15 1/157 8971

T: 0 (8966) P:80 I:1000 C: 10000 Min: 9 Act: 9 Avg: 12 Max: 98

T: 1 (8967) P:80 I:1500 C: 6671 Min: 8 Act: 12 Avg: 11 Max: 52

T: 2 (8968) P:80 I:2000 C: 5003 Min: 9 Act: 12 Avg: 11 Max: 47

T: 3 (8969) P:80 I:2500 C: 4002 Min: 9 Act: 12 Avg: 13 Max: 68

The results display latency statistics in microseconds for each core on the RPi 2. The

same test performed on a multicore Linux desktop machine, which does not have the

PREEMPT patch applied gives the following results:

molloyd@debian:~/$ sudo ./cyclictest -t 1 -p 80 -n -i 1000 -l 10000 --smp

/dev/cpu_dma_latency set to 0us

policy: fifo: loadavg: 0.30 0.09 0.06 1/329 3049

T: 0 (3047) P:80 I:1000 C: 10000 Min: 17 Act: 1441 Avg: 452 Max: 2581

T: 1 (3048) P:80 I:1500 C: 7637 Min: 16 Act: 194 Avg: 412 Max: 2868

T: 2 (3049) P:80 I:2000 C: 5774 Min: 19 Act: 102 Avg: 463 Max: 2626

To achieve a better understanding of the data, a histogram can be plotted as in

Figure 6-10 using steps such as (-h and -p allow you to specify the histogram latency

sample bins (μs) and the task priority respectively):

pi@erpi ~/rt-tests $ sudo ./cyclictest -h 100 -p 80 -t 1 -q -n -i 1000 →

 -l 100000 --smp > histogram.dat

pi@erpi ~/rt-tests $ sudo apt install gnuplot

pi@erpi ~/rt-tests $ echo 'set term png; set output "plot.png"; plot →

 "histogram.dat" with linespoints lc rgb "blue";' | gnuplot

git://git.kernel.org/pub/scm/linux/kernel/git/clrkw

 Chapter 6 ■ Interfacing to the Raspberry Pi Input/Outputs 235

c06.indd 06:44:58:PM 05/12/2016 Page 235

(a)

(b)

Figure 6-10: The cyclictest results histogram for 10,000 samples (a) on the RPi 2, and

(b) on a Linux desktop VM that is under load with no preemption support

The histogram for the RPi 2 has a normal distribution centered on 12μs–13 μs,

whereas the test case on the desktop VM with no preemption support has a bimodal

distribution with the peaks at approximately 100 μs and 200 μs—it also has long tails,

which will lead to considerable jitter problems. Pay particular attention to the diff er-

ence in the ranges on the x-axis of both plots. The low latency results on the RPi 2 with

preemption support helps explain the low signal jitter in Figure 6-9. This topic is revis-

ited in Chapter 7.

To view the plot outputs, you can use FTP (see Chapter 3) to transfer the images to

your desktop computer, or you can view them remotely on the RPi by using virtual

network computing (VNC), which is described at the beginning of Chapter 14.

236 Part II ■ Interfacing, Controlling, and Communicating

c06.indd 06:44:58:PM 05/12/2016 Page 236

Figure 6-11: The RPi GPIO header

 Chapter 6 ■ Interfacing to the Raspberry Pi Input/Outputs 237

c06.indd 06:44:58:PM 05/12/2016 Page 237

More C++ Programming

To understand some features of the GPIO class, it is necessary to examine some

additional programming concepts in C/C++ that are used. These techniques

can be applied generally to enhance your programs on the RPi. Callback func-

tions, POSIX threads, and the use of Linux system polling can be used to create

an effi cient sysfs-based GPIO poll that has negligible CPU overhead and fast

response times (i.e., less than 0.15 ms). The GPIO class for this chapter supports

this functionality so an overview of these programming techniques is all that

you require.

N O T E This discussion on C++ programming and the subsequent description of

memory-based GPIO control provide important background and context for some

advanced concepts on GPIO interfacing. However, at any point you can jump ahead to

the practical guide on wiringPi and return here at a later stage.

Callback Functions

In Chapter 5, callback functions are described as they relate to Node.js programs

and asynchronous function calls. Essentially, a callback function (or listener func-
tion) is a function that is executed when some type of event occurs. This is vital

for asynchronous function calls like those in JavaScript, but it is also useful in

C++ applications. For example, in the enhanced GPIO class, this structure is used

so that a function can be executed only when a physical pushbutton is pressed.

Callback functions are typically implemented in C/C++ using function pointers.

Just like variables, program functions are stored in memory. Therefore, they

have a memory address, and this memory address can be passed to another

function. Function pointers are pointers that store the address of a function. It

is possible to pass such a pointer to other functions, which can dereference the

function pointer and invoke its associated function. This is best demonstrated

with a code example, such as that in Listing 6-4 where the doMath() function is

passed a value and a pointer to a function that should be applied to the value.

Listing 6-4: /chp06/callback/callback.cpp

#include<iostream>

using namespace std;

typedef int (*CallbackType)(int); // used to tidy up the syntax

int squareCallback(int x){ // callback function that squares

 return x*x;

}

int cubeCallback(int x){ // callback function that cubes

238 Part II ■ Interfacing, Controlling, and Communicating

c06.indd 06:44:58:PM 05/12/2016 Page 238

 return x*x*x;

}

int doMath(int num, CallbackType callback){

 return callback(num); // call the function that is passed

}

int main() {

 cout << "Math program -- the value of 5: " << endl;

 cout << "->squared is: " << doMath(5, &squareCallback);

 cout << "->cubed is: " << doMath(5, &cubeCallback) << endl;

 return 0;

}

Creating a type using typedef simply makes it easier to change the type at

a later stage and cleans up the syntax somewhat. The address of the square-

Callback() or cubeCallback() function is passed as a pointer to the doMath()

function. When executed, the output of this code is:

pi@erpi ~/exploringrpi/chp06/callback $./callback

Math program -- the value of 5:

->squared is: 25 ->cubed is: 125

This programming structure is quite common in (and underneath) user-

interface programming, where functions can be called when a user interacts

with display user-interface components such as buttons and menus. It makes

sense to apply the same structure to physical pushbuttons and switches.

N O T E Please edit and build the code examples throughout this book. If something

goes wrong, you can use Git to revert to the original fi le. For example, if you make

changes to callback.cpp and can no longer get it to work, you can simply delete

it and check it out again to get the last version that was added to the staging area (i.e.,

by git add callback.cpp):

pi@erpi ~/exploringrpi/chp06/callback $ rm callback.cpp

pi@erpi ~/exploringrpi/chp06/callback $ git checkout callback.cpp

pi@erpi ~/exploringrpi/chp06/callback $ ls

callback callback.cpp

POSIX Threads

POSIX threads (Pthreads) is a set of C functions, types, and constants that provides

everything you need to implement threading within your C/C++ applications on

the RPi. Adding threading to your code can allow parts of your code to execute

apparently concurrently (most RPi models have a single-core processor), with

each thread receiving a “slice” of processing time. However, the RPi 2/3 has

a quad-core processor that enables threads to truly run concurrently, greatly

improving the performance of threaded applications.

 Chapter 6 ■ Interfacing to the Raspberry Pi Input/Outputs 239

c06.indd 06:44:58:PM 05/12/2016 Page 239

To use Pthreads in your application you need to include the pthread.h header

fi le and use the -pthread fl ag when compiling and linking the code using gcc/

g++2. All the Pthread functions are prefi xed with pthread_. Listing 6-5 is an

example of using Pthreads on the RPi to create two parallel counters (the com-

ments describe the structure of the code).

Listing 6-5: /chp06/pthreads/pthreads.cpp

#include <iostream>

#include <pthread.h>

#include <unistd.h>

using namespace std;

// This is the thread function that executes when the thread is created

// it passes and receives data by void pointers

void *threadFunction(void *value){

 int *x = (int *)value; // cast the data passed to an int pointer

 while(*x<5){ // while the value of x is less than 5

 usleep(10); // sleep for 10us - encourage main thread

 (*x)++; // increment the value of x by 1

 }

 return x; // return the pointer x (as a void*)

}

int main() {

 int x=0, y=0;

 pthread_t thread; // this is our handle to the pthread

 // create the thread, pass the reference, address of the function and data

 // pthread_create() returns 0 on the successful creation of a thread

 if(pthread_create(&thread, NULL, &threadFunction, &x)!=0){

 cout << "Failed to create the thread" << endl;

 return 1;

 }

 // at this point the thread was created successfully

 while(y<5){ // loop and increment y, displaying values

 cout << "The value of x=" << x << " and y=" << y++ << endl;

 usleep(10); // encourage the pthread to run

 }

 void* result; // OPTIONAL: receive data back from pthread

 pthread_join(thread, &result); // allow the pthread to complete

 int *z = (int *) result; // cast from void* to int* to get z

 cout << "Final: x=" << x << ", y=" << y << " and z=" << *z << endl;

 return 0;

}

Building and executing as follows results in the following output:

2 The Eclipse IDE is used in the next chapter. To use Pthreads in Eclipse, select Project Properties
➪ C/C++ Build Settings ➪ GCC C++ Linker ➪ Miscellaneous ➪ Linker Flags, and add
-pthread.

240 Part II ■ Interfacing, Controlling, and Communicating

c06.indd 06:44:58:PM 05/12/2016 Page 240

pi@erpi .../chp06/pthreads $ g++ pthreads.cpp -o threads -pthread

pi@erpi .../chp06/pthreads $./threads

The value of x=0 and y=0

The value of x=3 and y=1

The value of x=4 and y=2

The value of x=5 and y=3

The value of x=5 and y=4

Final: x=5, y=5 and z=5

However, run it again, and you may get a different output!

pi@erpi .../chp06/pthreads $./threads

The value of x=1 and y=0

The value of x=3 and y=1

The value of x=5 and y=2

The value of x=5 and y=3

The value of x=5 and y=4

Final: x=5, y=5 and z=5

The usleep() calls have been introduced to encourage the thread manager to

switch to the main thread at that point. The order of the output may change, but

the fi nal results will always be consistent due to the pthread_join() function

call, which blocks execution at this point until the thread has run to completion,

regardless if one or more cores are utilized.

Listing 6-6 displays a code outline for a simple performance test on the RPi 2/3

to evaluate the capability of its multicore processor, and to demonstrate how you

can use threads to utilize the four cores. Each thread is tasked with generating

fi ve million pseudo-random numbers and an evaluation is performed when

multicore threading is enabled and effectively disabled.

Listing 6-6: /chp06/multicore/perftest.cpp (Segment)

void* thread_function(void*) { // generate 5M random numbers

 unsigned rand_seed = 0;

 for(int i=0; i<5000000; i++){ rand_r(&rand_seed); }

 return 0;

}

void random_generate_no_threads(int numCalls) {

 for(int i=0; i<numCalls; i++){ thread_function(NULL); }

}

void random_generate_with_threads(int numCalls) {

 pthread_t* threads[numCalls]; // array of thread pointers

 for(int i=0; i<numCalls; i++){ threads[i] = new pthread_t; }

 for(int i=0; i<numCalls; i++){ // create on thread for each call

 pthread_create(threads[i], NULL, thread_function, NULL);

 } // wait for them all to complete

 for(int i=0; i<numCalls; i++){ pthread_join(*threads[i], NULL); }

 for(int i=0; i<numCalls; i++){ delete threads[i]; }

}

int main(int argc, char* argv[]) { // determine number of cores

 Chapter 6 ■ Interfacing to the Raspberry Pi Input/Outputs 241

c06.indd 06:44:58:PM 05/12/2016 Page 241

...

 unsigned int numThreads = std::thread::hardware_concurrency();

...

}

As the number of calls is increased, you can see the impact of threading on

the RPi 2/3 in Figure 6-12. The time measured is real time, which is also known

as wall-clock time—that is, time as we perceive it. This is different from user time,
which is the amount of CPU time taken by user space code, or system time, which

is the amount of CPU time taken in kernel space.

The real time required for the multicore RPi 2/3 to calculate 5 M or 20 M

pseudo-random numbers is almost the same, because each thread runs in parallel

on its own core. When fi ve or more threads are required, the four cores share

the additional load; therefore, the slope of the load line is one quarter of that

for the single-core implementation. Accurate timing is provided by the C++11

Chrono and the Boost Chrono libraries. See the /chp06/multicore/ directory,

where the test can be performed (e.g., for 20 M numbers on the RPi 3) as follows:

pi@erpi:~/exploringrpi/chp06/multicore $./perftest 4
This hardware supports 4 concurrent threads.
Performing test using 4 thread enabled function calls
Real Time: No threads 646677 us
Real Time: With threads 150989 us

All performance tests at the beginning of Chapter 5 are performed using a

single core on the RPi 2/3. It is therefore possible to achieve much-improved

results on the multicore RPi 2/3 versus other RPi models if the code examples

were adapted to parallelize the numeric calculations.

Figure 6-12: Single-core versus multicore threading performance test on the RPi 2 and RPi 3

(measuring real time)

Linux poll (sys/poll.h)

At the beginning of this chapter, code is presented that can be used to detect the

state of a button by checking the state of the value fi le. This is a very processor-

intensive operation and not really practical. If you listed the contents of the

242 Part II ■ Interfacing, Controlling, and Communicating

c06.indd 06:44:58:PM 05/12/2016 Page 242

/sys/class/gpio directory, you may have also noticed a fi le entry called edge

that up to now has had no relevance:

pi@erpi /sys/class/gpio $ echo 4 > export

pi@erpi /sys/class/gpio $ cd gpio4

pi@erpi /sys/class/gpio/gpio4 $ ls

active_low device direction edge subsystem uevent value

pi@erpi /sys/class/gpio/gpio4 $ cat edge

none

You can use a system function called poll() from the sys/poll.h header

fi le, which has the syntax

int poll(struct pollfd *ufds, unsigned int nfds, int timeout);

where the fi rst argument specifi es a pointer to an array of pollfd structures,

each of which identifi es a fi le entry to be monitored and the type of event to

be monitored (e.g., EPOLLIN to read operations, EPOLLET edge triggered, and

EPOLLPRI for urgent data). The next argument, nfds, identifi es how many ele-

ments are in the fi rst argument array. The fi nal argument identifi es a timeout

in milliseconds. If this value is -1, then the kernel will wait forever for the

activity identifi ed in the array. This code has been added to the GPIO class in

the waitForEdge() methods.

An Enhanced GPIO Class

The programming concepts just discussed are complex and may be diffi cult to

understand if it is your fi rst time seeing them; however, these techniques have

been used to enhance the GPIO class so that it is faster and more effi cient; the

code in Listing 6-2 already integrates these changes.

The tests to evaluate the performance of the class are provided as examples

of how to use this class. The test circuit is the combination of the LED circuit in

Figure 6-2 and the button circuit in Figure 6-5(a). Therefore, the LED is attached

to Pin 11 (GPIO17) and the button is attached to Pin 13 (GPIO27). In these tests,

the LED lights when the button is pressed.

Listing 6-7 tests the performance of a synchronous poll that forces the program

to wait for the button to be pressed before proceeding.

Listing 6-7: /chp06/GPIO/tests/test_syspoll.cpp

#include<iostream>

#include"GPIO.h"

using namespace exploringRPi;

using namespace std;

int main(){

 GPIO outGPIO(17), inGPIO(27);

 inGPIO.setDirection(INPUT); //button is an input

 Chapter 6 ■ Interfacing to the Raspberry Pi Input/Outputs 243

c06.indd 06:44:58:PM 05/12/2016 Page 243

 outGPIO.setDirection(OUTPUT); //LED is an output

 inGPIO.setEdgeType(RISING); //wait for rising edge

 outGPIO.streamOpen(); //fast write, ready file

 outGPIO.streamWrite(LOW); //turn the LED off

 cout << "Press the button:" << endl;

 inGPIO.waitForEdge(); //will wait forever

 outGPIO.streamWrite(HIGH); //button pressed, light LED

 outGPIO.streamClose(); //close the output stream

 return 0;

}

The response time of this code is captured in Figure 6-13(a). This code runs

with a ~0% CPU load, because the polling is handled effi ciently by the Linux

kernel. Using an oscilloscope, the electrical response time is measured between

the fi rst rising edge of the button press and the LED turning on. This program

responds in ~123 μs, which is well within physical debounce fi lter times. Using

the class’s debounce fi lter will not affect this performance, only the delay between

repeated button presses. The downside of this code is that the program cannot

perform other operations while awaiting the button press.

The second example, in Listing 6-8, tests the performance of the asynchronous

waitForEdge() method, which accepts a function pointer and uses Pthreads to

allow the program to continue with other operations. In this example, the main

thread counts, but it could be performing other tasks.

Listing 6-8: /chp06/GPIO/tests/test_callback.cpp

#include<iostream>

#include<unistd.h>

#include"GPIO.h"

using namespace exploringRPi;

using namespace std;

GPIO *outGPIO, *inGPIO; // global pointers

int activateLED(int var) { // the callback function

 outGPIO->streamWrite(HIGH); // turn on the LED

 cout << "Button Pressed" << endl;

 return 0;

}

int main() {

 inGPIO = new GPIO(27); // the button GPIO

 outGPIO = new GPIO(17); // the LED GPIO

 inGPIO->setDirection(INPUT); // the button is an input

 outGPIO->setDirection(OUTPUT); // the LED is an output

 outGPIO->streamOpen(); // use fast write to LED

 outGPIO->streamWrite(LOW); // turn the LED off

 inGPIO->setEdgeType(RISING); // wait for rising edge

 cout << "You have 10 seconds to press the button:" << endl;

 inGPIO->waitForEdge(&activateLED); // pass the callback function

 cout << "Listening, but also doing something else..." << endl;

244 Part II ■ Interfacing, Controlling, and Communicating

c06.indd 06:44:58:PM 05/12/2016 Page 244

 for(int i=0; i<10; i++){

 usleep(1000000); // sleep for 1 second

 cout << "[sec]" << flush; // indicates 1 second has elapsed

 }

 outGPIO->streamWrite(LOW); // turn off the LED after 10 seconds

 outGPIO->streamClose(); // shutdown the stream

 return 0;

}

The signifi cant change in this code is that when the setEdgeType() method

is called, a new thread is created within the method and it immediately returns

control so that the main thread can continue to perform operations. The main

thread simply counts for ten seconds before turning off the LED. If the button

is pressed, the activateLED() function is called. Whether the pushbutton is

pressed or not, the LED will be turned off, and the program will exit after 10

seconds of counting:

pi@erpi ~/exploringrpi/chp06/GPIO/tests $./test_callback

You have 10 seconds to press the button:

Listening, but also doing something else...

[sec][sec][sec][sec][sec]Button Pressed

[sec][sec][sec]Button Pressed

[sec][sec]

(a) (b)

Figure 6-13: Time delay in lighting an LED in response to a button press at ~0% CPU usage

(a) using sys/poll.h, and (b) integrating callback functions and Pthreads

The response time of this code is captured in Figure 6-13(b), and it is only

marginally slower than the previous code (by ~11 μs), which is the cost of the

callback function and the Pthreads code. Again, this code has no noticeable load

on the CPU. The full implementation code is available in the GPIO.cpp fi le, and

you can edit it to suit your needs. A more advanced version would use functors

(function objects) and the C++ Standard Template Library (STL) to remove the

requirement for the callback code to be a global function.

 Chapter 6 ■ Interfacing to the Raspberry Pi Input/Outputs 245

c06.indd 06:44:58:PM 05/12/2016 Page 245

Memory-Based GPIO Control

The full datasheet for the Broadcom BCM2835 Peripherals is available from

the Raspberry Pi Foundation at tiny.cc/erpi601. It is an important document

that describes the low-level detail of the SoC, which is used to custom build

the Linux kernel for the RPi. However, it is also possible to use such low-level

I/O detail to bypass the Linux kernel, using direct memory manipulation to

take control of the SoC’s inputs and outputs. While this approach can achieve

much better I/O performance, you should avoid using it if possible, because your

programs will not be portable to other embedded Linux platforms. In addition,

since the Linux kernel is unaware of such direct memory manipulations, you

could potentially generate resource confl icts.

N O T E This section describes how high-performance GPIO control is achieved

on the RPi using memory-mapped techniques, which are specifi c to the RPi’s SoC.

This provides context for the impressive performance of the wiringPi library that is

described in the next section. Should this material prove diffi cult, jump to the section

on wiringPi and return here at a later stage.

Linux uses a virtual memory system, which means that there is a difference

between the physical address used by the hardware and the virtual address

that is used to access the hardware. In 32-bit Linux the virtual memory system

utilizes the full 32-bit addressing to allocate a virtual space that is much larger

than the available physical memory; 32-bit addressing supports 232 addresses

(i.e., 4 GB), whereas there is 1 GB of RAM available on the RPi 2/3. The extended

address range allows for memory paging and for the mapping of physical devices

(e.g., peripherals) into a unifi ed address space. For example, on the RPi 2, you

can see that 943 MB3 of memory is allocated to system RAM:

pi@erpi ~/exploringrpi/chp06 $ cat /proc/iomem

 00000000-3affffff : System RAM

 00008000-0075a023 : Kernel code

 007bc000-008de493 : Kernel data

 3f000000-3f000fff : bcm2708_vcio

 3f006000-3f006fff : bcm2708_usb

 3f006000-3f006fff : dwc_otg

 3f200000-3f2000b3 : /soc/gpio

3 Note 0x3affffff = 966,655 KB = 943 MB. By default, 64 MB is allocated to the GPU, and vc_mem.
mem_size=0x3f000000 (i.e., 1,008 MB) on the current Raspbian image; see the console output of
the kernel booting in Chapter 3. Formally speaking, these values should be represented as MiB
(mebibytes) and KiB (kibibytes), as 1 MiB = 1,024 KiB is used in these calculations. Linux tends
to overlook the IEC notation.

246 Part II ■ Interfacing, Controlling, and Communicating

c06.indd 06:44:58:PM 05/12/2016 Page 246

...

pi@erpi ~/exploringrpi/chp06 $ cat /proc/meminfo

MemTotal: 949380 kB

MemFree: 730976 kB

...

At the bottom of the fi rst list, you can see that the GPIO peripheral base

address on the RPi 2/3 of 0x3f20 0000. This is 0x2000 0000 on all other cur-

rent models of the RPi. You may also notice that the total memory (MemTotal)

available in the second list is 16 MB short (i.e., 943 MB – 927 MB) of the available

System RAM. This is because the kernel allocates a small portion of memory

to reserved memory, which is mainly used to store the kernel image itself; it has

to be stored somewhere!

GPIO Control Using devmem2

You can query the value at a memory address using C code that accesses

/dev/mem directly. However, to become familiar with the steps, it is best that you

build and install Jan-Derk Bakker’s devmem2 program, which is a very useful

command-line tool for reading from and writing to memory locations:

pi@erpi ~ $ wget http://www.lartmaker.nl/lartware/port/devmem2.c

devmem2.c 100%[=====================>] 3.47K --.-KB/s in 0s

2015-07-05 01:13:43 (72.0 MB/s) - 'devmem2.c' saved [3551/3551]

pi@erpi ~ $ gcc devmem2.c -o devmem2

pi@erpi ~ $./devmem2

Usage: ./devmem2 { address } [type [data]]

 address : memory address to act upon

 type : access operation type : [b]yte, [h]alfword, [w]ord

 data : data to be written

The registers that are important for GPIO control are described in Figure 6-14.

The full list is in Table 6-1 of the BCM2835 ARM Peripherals manual.

If the circuit is connected as in Figure 6-2, it is possible to use the devmem2

program to control the LED circuit. Assuming that the devmem2 program is cur-

rently present in the pi user home directory, you can use it to read the value of

the GPLVL0 register on the RPi 2/3 (replace 0x3F20 with 0x2000 for other RPi

models):

pi@erpi /sys/class/gpio $ echo 17 > export

pi@erpi /sys/class/gpio $ cd gpio17

pi@erpi /sys/class/gpio/gpio17 $ echo out > direction

pi@erpi /sys/class/gpio/gpio17 $ cat value

0

pi@erpi /sys/class/gpio/gpio17 $ sudo ~/devmem2 0x3F200034

/dev/mem opened. Memory mapped at address 0x76f0e000.

Value at address 0x3F200034 (0x76f0e034): 0xB000C1FF

pi@erpi /sys/class/gpio/gpio17 $ echo 1 > value

pi@erpi /sys/class/gpio/gpio17 $ sudo ~/devmem2 0x3F200034

/dev/mem opened. Memory mapped at address 0x76ee3000.

Value at address 0x3F200034 (0x76ee3034): 0xB002C1FF

 Chapter 6 ■ Interfacing to the Raspberry Pi Input/Outputs 247

c06.indd 06:44:58:PM 05/12/2016 Page 247

Figure 6-14: Examples of the registers available for memory-mapped GPIO manipulation

Notice that the difference is 0x20000, which is 100000000000000000 in binary

(i.e., 1 followed by 17 zeros, or 1<<17). GPIO17 is in the fi rst bank of addresses.

For GPIO32 to GPIO53, you have to read the GPLVL1 register. The output above

indicates that the output is low the fi rst time that the GPLVL0 register is dis-

played, and high the second time.

You can use the same devmem2 program to set the LED to be off by setting

bit 17 on the GPCLR0 (0028) register, and the LED to be on by setting bit 17 on

the GPSET0 (001C) register:

pi@erpi /sys/class/gpio/gpio17 $ cat value

1

pi@erpi /sys/class/gpio/gpio17 $ sudo ~/devmem2 0x3F200028 w 0x20000

/dev/mem opened. Memory mapped at address 0x76f77000.

Value at address 0x3F200028 (0x76f77028): 0x6770696F

Written 0x20000; readback 0x6770696F

pi@erpi /sys/class/gpio/gpio17 $ cat value

0

pi@erpi /sys/class/gpio/gpio17 $ sudo ~/devmem2 0x3F20001C w 0x20000

/dev/mem opened. Memory mapped at address 0x76f7a000.

Value at address 0x3F20001C (0x76f7a01c): 0x6770696F

248 Part II ■ Interfacing, Controlling, and Communicating

c06.indd 06:44:58:PM 05/12/2016 Page 248

Written 0x20000; readback 0x6770696F

pi@erpi /sys/class/gpio/gpio17 $ cat value

1

Here you can see that setting these bits has a direct impact on the sysfs value

entry for the gpio17 entry.

Note that there are some other registers available for setting and detecting

interrupt events (e.g., falling/rising edge detection). Please see Table 6-1 in the

BCM2835 ARM Peripherals document.

GPIO Control Using C and /dev/mem

Figure 6-14 also provides details and an example of how to confi gure the mode

of a pin. All of the GPIOs can be set to read or write mode, or they can be set

to an ALT mode, which are listed in Figure 6-11. The mode is set using a 3-bit

value as listed in the table on the bottom left of Figure 6-14. For example, by

setting the 3-bit value to be 000 then the pin will act as an input.

BIT MANIPULATION IN C/C++

This section uses many bitwise operations to effi ciently manipulate memory. It is

worth examining a short segment of code to ensure that you are comfortable with

these operations. The full example is available at /chp06/bits/bitsTest.cpp.

The uint8_t (unsigned 8-bit integer) type and the display() function below are

used to create a concise example:

string display(uint8_t a) {

 stringstream ss; // setw() sets width and bitset formats as binary

 ss << setw(3) << (int)a << "(" << bitset<8>(a) << ")";

 return ss.str();

}

int main(){

 uint8_t a = 25, b = 5; // 8 bits unsigned is in the range 0 to 255

 cout << "A is " << display(a) << " and B is " << display(b) << endl;

 cout << "A & B (AND) is " << display(a & b) << endl;

 cout << "A | B (OR) is " << display(a | b) << endl;

 cout << " ~A (NOT) is " << display(~a) << endl;

 cout << "A ^ B (XOR) is " << display(a ^ b) << endl;

 cout << "A << 1 (LSL) is " << display(a << 1) << endl;

 cout << "B >> 1 (LSR) is " << display(b >> 1) << endl;

 cout << "1 << 8 (LSL) is " << display(1 << 8) << endl; // warning!

 return 0;

}

 Chapter 6 ■ Interfacing to the Raspberry Pi Input/Outputs 249

c06.indd 06:44:58:PM 05/12/2016 Page 249

When this code is compiled and executed it results in the following output:

pi@erpi ~/exploringrpi/chp06/bits $./bits

A is 25(00011001) and B is 5(00000101)

A & B (AND) is 1(00000001)

A | B (OR) is 29(00011101)

 ~A (NOT) is 230(11100110)

A ^ B (XOR) is 28(00011100)

A << 1 (LSL) is 50(00110010)

B >> 1 (LSR) is 2(00000010)

1 << 8 (LSL) is 0(00000000)

Note that 1 shifted left 8 times (1<<8) resulted in a value of 0 (and a compiler warn-

ing), because overfl ow has occurred and the 1 has been lost. You can use the limited

size of a data type to simplify calculations; this principle is used to simplify a check-

sum calculation later in this chapter (in Listing 6-14).

The location to which you should write the 3-bit mode is described at the

top of Figure 6-14. For example, to set GPIO17 to be an output, you can write

001 to the FSEL17 value, which is bits 21, 22, and 23 in the GPFSEL1 register.

Importantly, you need to ensure that you only manipulate those specifi c 3 bits

when you change FSEL17, because to change any other bits will impact on

GPIO10–GPIO19, likely changing their pin modes.

Listing 6-9 provides a C code example that sets up GPIO17 as an output and

fl ashes an LED very quickly (at ~1.18 MHz). It also sets up GPIO27 as an input,

so that the LED will continue to fl ash until a pushbutton is pressed. The com-

ments in the code listing describe the bit manipulations that are used.

Listing 6-9: /chp06/memoryGPIO/LEDfl ash.c

#include <stdio.h>

#include <stdlib.h>

#include <fcntl.h>

#include <errno.h>

#include <sys/mman.h>

#include <stdint.h> // for uint32_t - 32-bit unsigned integer

// GPIO_BASE is 0x20000000 on RPi models other than the RPi 2/3

#define GPIO_BASE 0x3F200000 // on the RPi 2/3

#define GPSET0 0x1c // from Figure 6-14

#define GPCLR0 0x28

#define GPLVL0 0x34

static volatile uint32_t *gpio; // pointer to the gpio (*int)

int main() {

250 Part II ■ Interfacing, Controlling, and Communicating

c06.indd 06:44:58:PM 05/12/2016 Page 250

 int fd, x;

 printf("Start of GPIO memory-manipulation test program.\n");

 if(getuid()!=0) {

 printf("You must run this program as root. Exiting.\n");

 return -EPERM;

 }

 if ((fd = open("/dev/mem", O_RDWR | O_SYNC)) < 0) {

 printf("Unable to open /dev/mem: %s\n", strerror(errno));

 return -EBUSY;

 }

 // get a pointer that points to the peripheral base for the GPIOs

 gpio = (uint32_t *) mmap(0, getpagesize(), PROT_READ|PROT_WRITE,

 MAP_SHARED, fd, GPIO_BASE);

 if ((int32_t) gpio < 0) {

 printf("Memory mapping failed: %s\n", strerror(errno));

 return -EBUSY;

 }

 // Here the gpio pointer points to the GPIO peripheral base address.

 // Set up the LED GPIO FSEL17 mode = 001 at addr GPFSEL1 (0004).

 // Remember that adding one 32-bit value moves the addr by 4 bytes.

 // Writing NOT 7 (i.e., ~111) clears bits 21, 22 and 23.

 (gpio + 1) = ((gpio + 1) & ~(7 << 21) | (1 << 21));

 // Set up the button GPIO FSEL27 mode = 000 at addr GPFSEL2 (0008).

 // Both FSEL17 and FSEL27 are 21 bits in, but on different registers.

 (gpio + 2) = ((gpio + 2) & ~(7 << 21) | (0 << 21));

 // Writing the 000 is not necessary but is there for clarity.

 do {

 // Turn the LED on using bit 17 on the GPSET0 register

 *(gpio + (GPSET0/4)) = 1 << 17;

// usleep(10); // don't use as non-blocking - adds latency!

 for(x=0;x<50;x++){} // blocking delay hack using a simple loop

 *(gpio + (GPCLR0/4)) = 1 << 17; // turn the LED off

 for(x=0;x<49;x++){} // delay hack -- balanced for while()

 }

 while((*(gpio+(GPLVL0/4))&(1<<27))==0); // only true if bit 27 high

 printf("Button was pressed - end of example program.\n");

 close(fd);

 return 0;

}

The program can be built and then executed using the sudo tool as follows,

where the output appears as in Figure 6-15, which will continue to be displayed

until the button is pressed.

pi@erpi ~/exploringrpi/chp06/memoryGPIO $ gcc LEDflash.c -o ledflash

pi@erpi ~/exploringrpi/chp06/memoryGPIO $ sudo ./ledflash

Start of GPIO memory-manipulation test program.

Button was pressed - end of example program.

Changing the Internal Resistor Confi guration

Figure 6-5(b) illustrates the correct way to connect a pushbutton to GPIO4 as it

has a pull-up resistor confi guration by default. It is remarked earlier that when

 Chapter 6 ■ Interfacing to the Raspberry Pi Input/Outputs 251

c06.indd 06:44:58:PM 05/12/2016 Page 251

this circuit is disconnected the GPIO state is high, because the pull-up resistor

“pulls up” the disconnected input to the 3.3 V line. This can be observed using

sysfs (again, with no circuit connected to GPIO4):

pi@erpi /sys/class/gpio $ echo 4 > export

pi@erpi /sys/class/gpio $ cd gpio4

pi@erpi /sys/class/gpio/gpio4 $ echo in > direction

pi@erpi /sys/class/gpio/gpio4 $ cat value

1

Figure 6-15: The output of the memory-mapped example in Listing 6-9

This GPIO can be adjusted to have a pull-down resistor enabled instead of the

pull-up resistor by changing the GPPUD (0094) register in Figure 6-14, where

0x00 = off (i.e., disable), 0x01 = enable pull-down, and 0x02 = enable pull-up.

This value is then clocked to the correct output using the GPPUDCLK0 (0098)

register—i.e., by setting and removing the clock bit for the specifi c GPIO. GPIO4

is bit 4, which is 10000 in binary (0x1016). So, to set the GPIO to have a pull-down

resistor enabled, fi rst set the GPPUD (0094) register to pull-down mode on the

RPi 2/3 (use 0x2000 0094 for other RPi models):

pi@erpi /sys/class/gpio/gpio4 $ sudo ~/devmem2 0x3F200094 w 0x01

/dev/mem opened. Memory mapped at address 0x76ed3000.

Value at address 0x3F200094 (0x76ed3094): 0x2

Written 0x10; readback 0x0

Set bit 4 on the GPPUDCLK0 register, clear the GPPUD register, and then

remove the clock control signal from GPPUDCLK0 as follows:

pi@erpi /sys/class/gpio/gpio4 $ sudo ~/devmem2 0x3F200098 w 0x10

pi@erpi /sys/class/gpio/gpio4 $ sudo ~/devmem2 0x3F200094 w 0x00

pi@erpi /sys/class/gpio/gpio4 $ sudo ~/devmem2 0x3F200098 w 0x00

This process applies the GPPUD register mode solely to GPIO4 because it is

the only GPIO identifi ed in the GPPUDCLK0 register.

252 Part II ■ Interfacing, Controlling, and Communicating

c06.indd 06:44:58:PM 05/12/2016 Page 252

When the GPIO value is subsequently read (still with no circuit attached), it

returns a value of 0, which indicates that a pull-down resistor is now enabled

on GPIO4, rather than the previous pull-up resistor:

pi@erpi /sys/class/gpio/gpio4 $ cat value

0

To set this GPIO back to a pull-up confi guration, use the following:

pi@erpi /sys/class/gpio/gpio4 $ sudo ~/devmem2 0x3F200094 w 0x02

pi@erpi /sys/class/gpio/gpio4 $ sudo ~/devmem2 0x3F200098 w 0x10

pi@erpi /sys/class/gpio/gpio4 $ sudo ~/devmem2 0x3F200094 w 0x00

pi@erpi /sys/class/gpio/gpio4 $ sudo ~/devmem2 0x3F200098 w 0x00

pi@erpi /sys/class/gpio/gpio4 $ cat value

1

WiringPi

WiringPi (www.wiringpi.com) is an extensive GPIO control library for the RPi

platform that is written and maintained by Gordon Henderson (@drogon). The

library function syntax is similar to that in the Arduino Wiring library, and it

is a popular choice among RPi users. The wiringPi library also has third-party

bindings for Python, Ruby, and Perl.

WiringPi utilizes the sysfs and memory-mapped techniques described thus

far in this chapter to create a highly effi cient library and command set that

have been custom developed for the RPi platform. It is recommended that you

use this library for controlling the GPIOs on the RPi when fast GPIO switching

is required; however, be aware that this approach is largely specifi c to the RPi

platform and not to embedded Linux devices in general.

Installing wiringPi

To ensure that you install the latest version of wiringPi, clone its Git repository

and build the libraries directly on your RPi, as follows:

pi@erpi ~ $ git clone git://git.drogon.net/wiringPi

pi@erpi ~ $ cd wiringPi/

pi@erpi ~/wiringPi $ ls

build debian examples INSTALL pins VERSION

COPYING.LESSER devLib gpio People README.TXT wiringPi

pi@erpi ~/wiringPi $./build

wiringPi Build script ...

pi@erpi ~/wiringPi $ ls /usr/local/lib/

libwiringPiDev.so libwiringPi.so python2.7 python3.4

libwiringPiDev.so.2.25 libwiringPi.so.2.25 python3.2 site_ruby

The built libraries are automatically copied to the /usr/local/lib/ direc-

tory, and the C header fi les to /usr/local/include/, which are included by

gcc/g++ in the default library and include paths. If you are having diffi culties

http://www.wiringpi.com
git://git.drogon.net/wiringPi

 Chapter 6 ■ Interfacing to the Raspberry Pi Input/Outputs 253

c06.indd 06:44:58:PM 05/12/2016 Page 253

in building wiringPi programs, add -I/usr/local/include/ -L/usr/local/

lib/ as arguments to the gcc/g++ call.

The gpio Command

Installed as part of the wiringPi build, the gpio program is a very useful

 command-line tool for accessing and controlling the GPIOs on the RPi. Figure 6-16

provides a summary of some of the commands that are available, along with

some example usage.

For historical reasons wiringPi tends use a different numbering scheme than

the physical pin number or GPIO number. These numbers are displayed in the

WPi column in Figure 6-11. However, many gpio commands can also accept

regular GPIO numbering by using a -g option. You can use the gpio command

to write Linux scripts to control the GPIOs. For example:

pi@erpi ~ $ gpio -v

gpio version: 2.32

Copyright (c) 2012-2015 Gordon Henderson ...

Raspberry Pi Details:

 Type: Pi 3, Revision: 02, Memory: 1024MB, Maker: Sony ...

pi@erpi ~ $ gpio readall

+-----+-----+--------+------+---+--Pi 3--+---+------+------+-----+-----+

| BCM | wPi | Name | Mode | V |Physical| V | Mode | Name | wPi | BCM |

+-----+-----+--------+------+---+---++---+---+------+------+-----+-----+

| | | 3.3v | | | 1 || 2 | | | 5v | | |

| 2 | 8 | SDA.1 | ALT0 | 1 | 3 || 4 | | | 5V | | |

| 3 | 9 | SCL.1 | ALT0 | 1 | 5 || 6 | | | 0v | | |

| 4 | 7 | GPIO.7 | OUT | 0 | 7 || 8 | 1 | ALT5 | TxD | 15 | 14 |…

Figure 6-16: Some gpio command options

254 Part II ■ Interfacing, Controlling, and Communicating

c06.indd 06:44:58:PM 05/12/2016 Page 254

To read the pushbutton input value on Pin 13 (GPIO27) from Figure 6-5(a)

using the gpio command, the WPi number is 2, therefore using either WPi

numbering or GPIO numbering gives consistent results:

pi@erpi ~ $ gpio mode 2 in

pi@erpi ~ $ gpio read 2

0

pi@erpi ~ $ gpio -g read 27

0

pi@erpi ~ $ gpio read 2

1

pi@erpi ~ $ gpio -g read 27

1

Not all gpio commands and library calls support the -g mode, so the follow-

ing description retains WPi numbering. To light the LED in Figure 6-2 (GPIO17,

Pin 11, WPi number 0) using the gpio command:

pi@erpi ~ $ gpio mode 0 out

pi@erpi ~ $ gpio write 0 1

pi@erpi ~ $ gpio write 0 0

You can also wait for a rising or falling edge on the button press. The fi rst

gpio wfi command below will not return control until the button is pressed,

and the second command awaits the button to be released:

pi@erpi ~ $ gpio wfi 2 rising

pi@erpi ~ $ gpio wfi 2 falling

The PWM functionality listed in Figure 6-16 is described shortly.

Programming with wiringPi

WiringPi contains a comprehensive library of C functions for controlling RPi

GPIOs, regardless of the board model. Listing 6-10 provides a fi rst wiringPi

program that displays information about the board that you are using. Again,

it is assumed for these examples that the board is connected to the LED and

Button circuits as illustrated in Figure 6-2 and Figure 6-5(a).

Listing 6-10: /chp06/wiringPi/info.cpp

#include <iostream>

#include <wiringPi.h>

using namespace std;

#define LED_GPIO 17 // this is GPIO17, Pin 11

#define BUTTON_GPIO 27 // this is GPIO27, Pin 13

int main() { // must be run as root

 wiringPiSetupGpio(); // use the GPIO numbering form

 pinMode(LED_GPIO, OUTPUT); // the LED set up as an output

 pinMode(BUTTON_GPIO, INPUT); // the Button set up as an input

 Chapter 6 ■ Interfacing to the Raspberry Pi Input/Outputs 255

c06.indd 06:44:58:PM 05/12/2016 Page 255

 int model, rev, mem, maker, overVolted;

 piBoardId(&model, &rev, &mem, &maker, &overVolted);

 cout << "This is an RPi: " << piModelNames[model] << endl;

 cout << " with revision number: " << piRevisionNames[rev] << endl;

 cout << " manufactured by: " << piMakerNames[maker] << endl;

 cout << " it has: " << mem << " RAM and o/v: " << overVolted << endl;

 cout << "Button GPIO has ALT mode: " << getAlt(BUTTON_GPIO);

 cout << " and value: " << digitalRead(BUTTON_GPIO) << endl;

 cout << "LED GPIO has ALT mode: " << getAlt(LED_GPIO);

 cout << " and value: " << digitalRead(LED_GPIO) << endl;

 return 0;

}

This code can be built using g++ by linking to the wiringPi library (-lwiringPi

explicitly links to libwiringPi.so, which is in the /usr/local/lib/ directory).

The program must be executed using the sudo tool, because memory-mapping

operations require superuser access:

pi@erpi ~/exploringrpi/chp06/wiringPi $ g++ info.cpp -o info -lwiringPi

pi@erpi ~/exploringrpi/chp06/wiringPi $ sudo ./info

This is an RPi: Model 2

 with revision number: 1.1

 manufactured by: Sony

 it has: 1024 RAM and o/v: 68956

Button GPIO has ALT mode: 0 and value: 0

LED GPIO has ALT mode: 1 and value: 1

Figure 6-17 provides a summary of the C functions that are available in

the wiringPi library. The examples that follow describe how you can utilize

these wiringPi functions effectively in your own input/output applications.

Toggling an LED Using wiringPi

Listing 6-11 provides a code example for toggling a GPIO at a frequency of

~1.1 MHz on the RPi 2. This is much faster than what is possible using the sysfs

approach, and clearly the LED toggle is not visible to humans! However, it is a

useful wiringPi performance test. Results are displayed in Figure 6-18(a).

Listing 6-11: /chp06/wiringPi/fasttoggle.cpp

// Do not optimize this code using -O3 as it will remove the delay hack

#include <wiringPi.h>

#include <iostream>

using namespace std;

#define LED_GPIO 17 // this is GPIO17, Pin 11

int main() {

 wiringPiSetupGpio(); // use GPIO, not WPi, labels

 cout << "Starting fast GPIO toggle on GPIO" << LED_GPIO << endl;

 cout << "Press CTRL+C to quit..." << endl;

 pinMode(LED_GPIO, OUTPUT); // GPIO17 is an output pin

256 Part II ■ Interfacing, Controlling, and Communicating

c06.indd 06:44:58:PM 05/12/2016 Page 256

 while(1) { // loop forever - await ^C press

 digitalWrite(LED_GPIO, HIGH); // LED on

 for(int i=0; i<50; i++) { } // blocking delay hack

 digitalWrite(LED_GPIO, LOW); // LED off

 for(int i=0; i<49; i++) { } // shorter delay to balance

 } // the duty cycle somewhat

 return 0; // program will never reach here!

}

Figure 6-17: Summary of the wiringPi API

On the RPi 2/3, this program utilizes 100% of one core and signifi cant portions

of other cores for kernel tasks (such as kworker and ksoftirqd). The for loop

is used in place of a sleep call, because it is a simple hack to retain processor

control; the usual usleep() alternative is nonblocking and will result in a much

larger delay than you might anticipate. This is because the kernel may allocate

the core to other tasks, which also results in signal jitter.

 Chapter 6 ■ Interfacing to the Raspberry Pi Input/Outputs 257

c06.indd 06:44:58:PM 05/12/2016 Page 257

(a) (b)

Figure 6-18: Performance of the wiringPi C code (a) the fastToggle example, and (b) the

buttonLED example

Button Press—LED Response

Listing 6-12 registers an interrupt service routine (ISR) callback function to light

the LED once and to count the number of times that the button is pressed. The

wiringPiISR() function is used to register the callback function with the inter-

rupt, which is triggered on the rising edge of the button circuit input signal.

The lightLED() function is called whenever the button is pressed (rising edge),

but not when it is released (falling edge).

Listing 6-12: /chp06/wiringPi/buttonLED.cpp

#include <iostream>

#include <wiringPi.h>

#include <unistd.h>

using namespace std;

#define LED_GPIO 17 // this is GPIO17, Pin 11

#define BUTTON_GPIO 27 // this is GPIO27, Pin 13

// the Interrupt Service Routine (ISR) to light the LED

void lightLED(void) {

 static int x = 1; // store number of times pressed. Use static

 // to retain the state on multiple calls

 digitalWrite(LED_GPIO, HIGH); // turn the LED on

 cout << "Button pressed " << x++ << " times! LED on" << endl;

}

int main() { // must be run as root

 wiringPiSetupGpio(); // use the GPIO numbering

 pinMode(LED_GPIO, OUTPUT); // the LED

 pinMode(BUTTON_GPIO, INPUT); // the Button

 digitalWrite (LED_GPIO, LOW); // LED is off

 cout << "Press the button on GPIO " << BUTTON_GPIO << endl;

 // call the lightLED() ISR on the rising edge (i.e., button press)

 wiringPiISR(BUTTON_GPIO, INT_EDGE_RISING, &lightLED);

258 Part II ■ Interfacing, Controlling, and Communicating

c06.indd 06:44:58:PM 05/12/2016 Page 258

 for(int i=10; i>0; i--) { // countdown to program end

 cout << "You have " << i << " seconds remaining..." << endl;

 sleep(1); // sleep for 1 second

 }

 return 0; // program ends after 10s

}

An example output from this code is displayed below. You can see that the

button was pressed soon after the counter started, but that the counter contin-

ues to count in parallel. Repeated presses of the button increment the counter

and result in multiple messages appearing; however, the LED simply remains

lit until the program is restarted. The program ends after 10 seconds; the ISR is

no longer active at that point:

pi@erpi ~/exploringrpi/chp06/wiringPi $ sudo ./buttonLED

Press the button on GPIO 27

You have 10 seconds remaining...

You have 9 seconds remaining...

Button pressed 1 times! LED on

Button pressed 2 times! LED on

You have 8 seconds remaining...

The response time of this circuit is displayed in Figure 6-18(b) and it is impres-

sive for a Linux userspace program. The LED lights ~87 μs after the button is

pressed, which is faster than the previous sys/poll.h code.

One diffi culty with this example is that it is prone to switch bounce. Chapter 4

describes several hardware solutions to overcoming switch bounce using RC

circuits and Schmitt triggers, but we can also use software techniques. The

lightLED() ISR can be modifi ed to include timing code as in Listing 6-13, which

ensures that the duration between button presses exceeds a time period (e.g.,

200 ms) before registering subsequent presses as valid.

Listing 6-13: /chp06/wiringPi/buttonLEDdebounced.cpp (segment)

#define DEBOUNCE_TIME 200 // debounce time in ms

// the interrupt service routine (ISR) to light the LED - debounced

void lightLED(void){

 static unsigned long lastISRTime = 0, x = 1;

 unsigned long currentISRTime = millis();

 if (currentISRTime - lastISRTime > DEBOUNCE_TIME){

 digitalWrite(LED_GPIO, HIGH); // turn the LED on

 cout << "Button pressed " << x++ << " times! LED on" << endl;

 }

 lastISRTime = currentISRTime;

}

 Chapter 6 ■ Interfacing to the Raspberry Pi Input/Outputs 259

c06.indd 06:44:58:PM 05/12/2016 Page 259

PY THON AND WIRINGPI

A binding has been developed by Phil Howard (@Gadgetoid) for wiringPi so that

you can use it within Python scripts. The package can be installed in Python2 and

Python3, respectively, as follows:

pi@erpi ~ $ sudo apt install python-dev python-pip

pi@erpi ~ $ sudo pip install wiringpi2

Downloading/unpacking wiringpi2 ...

pi@erpi ~ $ sudo apt install python3-dev python3-pip

pi@erpi ~ $ sudo pip3 install wiringpi2

Downloading/unpacking wiringpi2 ...

You can then execute Python with superuser privileges to test that wiringPi is work-

ing correctly. The following test controls an LED on GPIO17 (as wired in Figure 6-2) and

a pushbutton on GPIO27 (as wired in Figure 6-5(a)):

pi@erpi ~ $ sudo python3

Python 3.4.2 (default, Oct 19 2014, 13:31:11) ...

>>> import wiringpi2

>>> wiringpi2.piBoardRev()

2

>>> wiringpi2.wiringPiSetupGpio()

0

>>> wiringpi2.pinMode(17,1)

>>> wiringpi2.digitalWrite(17,1)

>>> wiringpi2.digitalWrite(17,0)

>>> wiringpi2.pinMode(27,0)

>>> wiringpi2.digitalRead(27)

0

>>> wiringpi2.digitalRead(27)

1

A Python3 program can be developed using these steps that fl ashes the LED at 5 Hz

until the button is pressed (see /python/ledflash.py):

pi@erpi ~/exploringrpi/chp06/python $ more ledflash.py

#!/usr/bin/python3

import wiringpi2 as wpi

from time import sleep

print("Starting the Python wiringPi example")

wpi.wiringPiSetupGpio()

wpi.pinMode(17,1)

wpi.pinMode(27,0)

while wpi.digitalRead(27)==0:

Continues

260 Part II ■ Interfacing, Controlling, and Communicating

c06.indd 06:44:58:PM 05/12/2016 Page 260

PY THON AND WIRINGPI continued

 wpi.digitalWrite(17,1)

 sleep(0.1)

 wpi.digitalWrite(17,0)

 sleep(0.1)

print("Button pressed: end of example")

pi@erpi ~/exploringrpi/chp06/python $ chmod ugo+x ledflash.py

pi@erpi ~/exploringrpi/chp06/python $ sudo ./ledflash.py

Starting the Python wiringPi example

Button pressed: end of example

N O T E Once in a while, you might experience unexplainable problems in the behav-

ior of a program that utilizes the RPi GPIOs. If your initial tests do not resolve the prob-

lem, reboot the board before further testing. The GPIO registers retain state between

GPIO application executions, and it is possible that a previous application GPIO state is

interfering with your program.

Communicating to One-Wire Sensors

The Aosong family of temperature and humidity sensors4 (AM2301, AM2302,

and DHT11) can digitally communicate with the RPi using a single GPIO. The

GPIO can be set high and low with respect to time to send data bits to the sensor

to initiate communication. The same GPIO can then be sampled over time to

read the sensor’s response. The consistency of the sample time is vital for this

application, because the data response is 40 bits long and takes less than 4.3 ms

to transfer. Therefore, memory-mapped wiringPi code is used.

Figure 6-19 illustrates how you can connect one of these sensors to the RPi

using an arbitrary GPIO pin (e.g., GPIO22). The datasheet for the AM230x sen-

sors recommend that the DATA line is connected to VCC using a strong pull-up

resistor, and that a 100 nF decoupling capacitor is used between VCC and GND.

Using this confi guration, the RPi or the sensor can safely pull the voltage level

to GND to communicate bi-directionally.

Communication takes place when the RPi pulls the GPIO low for 18 ms and

then releases the line high for a further 20–40 μs. The GPIO switches to read

mode and ignores the 80 μs low level and the 80 μs high pulse that follows. The

sensor then returns 5 bytes of data (i.e., 40-bits) in most-signifi cant bit (MSB)

fi rst form, where the fi rst 2 bytes represent the humidity value, the following 2

bytes represent the temperature, and the fi nal byte is a parity-sum, which can be

4 Datasheets: DHT11 tiny.cc/erpi605 and DHT22(AM2301/2) tiny.cc/erpi606

 Chapter 6 ■ Interfacing to the Raspberry Pi Input/Outputs 261

c06.indd 06:44:58:PM 05/12/2016 Page 261

used to verify that the received data is valid (it is the 8-bit bounded sum of the

preceding 4 bytes). The bits are sent by varying the duration of high pulses. A

high for 26 μs–28 μs signifi es a binary 0, and a high for 70 μs signifi es a binary 1.

The top of Figure 6-19 illustrates an actual oscilloscope data capture and

worked calculations to explain the process for the AM2301/AM2302 sensors.

The DHT11 only sends an MSB for the humidity and the temperature values

and therefore does not have fractional precision.

Figure 6-19: Using a one-wire sensor with the RPi and wiringPi (waveform for the AM2301/2302)

Listing 6-14 is a C++ program that can be used to communicate to the AM230x/

DHT family of sensors using the wiringPi library. Note that the count variable

represents ~2 μs increments and the LH_THRESHOLD value can be used to adjust

the pulse width timing distinction between a 0 and 1.

Listing 6-14: /chp06/dht/dht.cpp

#include<iostream>

#include<unistd.h>

#include<wiringPi.h>

#include<iomanip>

using namespace std;

#define USING_DHT11 true // The DHT11 uses only 8 bits

#define DHT_GPIO 22 // Using GPIO 22 for this example

262 Part II ■ Interfacing, Controlling, and Communicating

c06.indd 06:44:58:PM 05/12/2016 Page 262

#define LH_THRESHOLD 26 // Low=~14, High=~38 - pick avg.

int main(){

 int humid = 0, temp = 0;

 cout << "Starting the one-wire sensor program" << endl;

 wiringPiSetupGpio();

 piHiPri(99); // Use a high priority to help timing code

TRYAGAIN: // If checksum fails (come back here)

 unsigned char data[5] = {0,0,0,0,0};

 pinMode(DHT_GPIO, OUTPUT); // gpio starts as output

 digitalWrite(DHT_GPIO, LOW); // pull the line low

 usleep(18000); // wait for 18ms

 digitalWrite(DHT_GPIO, HIGH); // set the line high

 pinMode(DHT_GPIO, INPUT); // now gpio is an input

 // need to ignore the first and second high after going low

 do { delayMicroseconds(1); } while(digitalRead(DHT_GPIO)==HIGH);

 do { delayMicroseconds(1); } while(digitalRead(DHT_GPIO)==LOW);

 do { delayMicroseconds(1); } while(digitalRead(DHT_GPIO)==HIGH);

 // Remember the highs, ignore the lows -- a good philosophy!

 for(int d=0; d<5; d++) { // for each data byte

 // read 8 bits

 for(int i=0; i<8; i++) { // for each bit of data

 do { delayMicroseconds(1); } while(digitalRead(DHT_GPIO)==LOW);

 int width = 0; // measure width of each high

 do {

 width++;

 delayMicroseconds(1);

 if(width>1000) break; // missed a pulse -- data invalid!

 } while(digitalRead(DHT_GPIO)==HIGH); // time it!

 // shift in the data, msb first if width > the threshold

 data[d] = data[d] | ((width > LH_THRESHOLD) << (7-i));

 }

 }

 if (USING_DHT11){

 humid = data[0] * 10; // one byte - no fractional part

 temp = data[2] * 10; // multiplying to keep code concise

 }

 else { // for DHT22 (AM2302/AM2301)

 humid = (data[0]<<8 | data[1]); // shift MSBs 8 bits left and OR LSBs

 temp = (data[2]<<8 | data[3]); // same again for temperature

 }

 unsigned char chk = 0; // the checksum will overflow automatically

 for(int i=0; i<4; i++){ chk+= data[i]; }

 if(chk==data[4]){

 cout << "The checksum is good" << endl;

 cout << "The temperature is " << (float)temp/10 << "°C" << endl;

 cout << "The humidity is " << (float)humid/10 << "%" << endl;

 }

 else {

 Chapter 6 ■ Interfacing to the Raspberry Pi Input/Outputs 263

c06.indd 06:44:58:PM 05/12/2016 Page 263

 cout << "Checksum bad - data error - trying again!" << endl;

 usleep(2000000); // have to delay for 1-2 seconds between readings

 goto TRYAGAIN; // a GOTO!!! call yourself a C/C++ programmer!

 }

 return 0;

}

Set USING_DHT11 to be false if you are using a DHT22 (AM2301/AM2302)

sensor and execute it as follows:

pi@erpi ~/exploringrpi/chp06/dht $ g++ dht.cpp -o dht -lwiringPi

pi@erpi ~/exploringrpi/chp06/dht $ sudo ./dht

Starting the one-wire sensor program

Checksum is good

The temperature is 24.1°C

The humidity is 47.7%

You will not see a fractional output if you are using the DHT11. The Celsius

value can be converted to Fahrenheit by multiplying it by 1.8 and then adding

32 (i.e., 24.1°C = 75°F).

The importance of this example is that you can use the same sampling-over-

time approach for other one-wire sensors.

PWM and General-Purpose Clocks

The RPi has useful ALT modes for many of its GPIO header pins, as illustrated

in Figure 6-11. Several of these ALT modes are described in Chapter 8, but this

discussion focuses on the PWM and GPCLK entries.

Pulse-Width Modulation (PWM)

The RPi has pulse-width modulation (PWM) capabilities that can provide digital-

to-analog conversion (DAC), or generate control signals for motors and certain

types of servos. The number of PWM outputs is very limited on the RPi boards.

All RPi models have one PWM (PWM0) output at Pin 12 (GPIO18). On the RPi 2/3

and RPi B+/A+ there is a second PWM (PWM1) output on Pin 33 (GPIO13).

It is possible to use software PWM on the other GPIO pins by toggling the

GPIO, but this approach has a high CPU cost and is only suitable for low-

frequency PWM signals. Chapter 9 describes circuitry that can be used to add

16–992 hardware PWMs to each I2C bus!

The PWM device on the RPi is clocked at a fi xed base-clock frequency of

19.2 MHz, and therefore integer divisor and range values are used to tailor the

PWM frequency for your application according to the following expression:

PWM frequency = 19.2 MHz / (divisor × range),

264 Part II ■ Interfacing, Controlling, and Communicating

c06.indd 06:44:58:PM 05/12/2016 Page 264

where the range is subsequently used to adjust the duty cycle of the PWM signal;

be careful, though, because a low range value results in poor duty-cycle resolu-

tion. RPi PWMs share the same frequency but have independent duty cycles.

The default PWM mode of operation on the RPi is to use balanced PWM (see

the MSEN mode in Section 9.4 in the BCM2835 ARM Peripherals manual). Balanced

PWM means that the frequency will change as the duty cycle is adjusted, there-

fore to control the frequency you need to use the call pwmSetMode(PWM_MODE_MS)

to change the mode to mark-space.5

Listing 6-15 provides a fi rst PWM example. It uses both PWMs on the RPi 2/3

to generate two signals with different duty cycles. If you want to use this code

on older RPi models, remove all references to PWM1.

Listing 6-15: /chp06/wiringPi/pwm.cpp

#include <iostream>

#include <wiringPi.h>

using namespace std;

#define PWM0 12 // this is physical Pin 12

#define PWM1 33 // only on the RPi B+/A+/2/3

int main() { // must be run as root

 wiringPiSetupPhys(); // use the physical pin numbers

 pinMode(PWM0, PWM_OUTPUT); // use the RPi PWM output

 pinMode(PWM1, PWM_OUTPUT); // only on recent RPis

 // Setting PWM frequency to be 10kHz with a full range of 128 steps

 // PWM frequency = 19.2 MHz / (divisor * range)

 // 10000 = 19200000 / (divisor * 128) => divisor = 15.0 = 15

 pwmSetMode(PWM_MODE_MS); // use a fixed frequency

 pwmSetRange(128); // range is 0-128

 pwmSetClock(15); // gives a precise 10kHz signal

 cout << "The PWM Output is enabled" << endl;

 pwmWrite(PWM0, 32); // duty cycle of 25% (32/128)

 pwmWrite(PWM1, 64); // duty cycle of 50% (64/128)

 return 0; // PWM output stays on after exit

}

Figure 6-20(a) shows the output results. The base frequency of 19.2 MHz is

divided by 15 and a range value of 128, giving a PWM frequency of 10 kHz. At

a PWM value of 32 (i.e., 32/128) the signal has a duty cycle of 25% and at 64 it

has a duty cycle of 50%. These values are verifi ed in the measurement table that

is displayed in Figure 6-20(a).

5 The mark represents the time duration that the PWM waveform is high and the space repre-
sents the time duration that the waveform is low. A duty cycle of 50% has a mark-space ratio of
1/1 = 1. A duty cycle of 20% has a mark-space ratio of 1/4 = 0.25.

 Chapter 6 ■ Interfacing to the Raspberry Pi Input/Outputs 265

c06.indd 06:44:58:PM 05/12/2016 Page 265

(a) (b)

Figure 6-20: (a) Output of the program in Listing 6-15 (b) A button and PWM LED circuit

PWM Application—Fading an LED

Figure 6-20(b) illustrates a circuit that uses a PWM output to control the brightness

of an LED. LEDs are current-controlled devices, so PWM is typically employed

to provide brightness-level control. This is achieved by fl ashing the LED faster

than can be perceived by a human, where the amount of time that the LED

remains on, versus off (i.e., the duty cycle) affects the human-perceived bright-

ness level. Listing 6-16 provides a code example for slowly fading an LED on

and off using PWM until a pushbutton is pressed. This example employs an

ISR on the button press to ensure that the program ends gracefully, having

completed a full fade cycle.

N O T E Instead of fading an LED in and out, you could use PWM to visibly fl ash an

LED with minimal CPU overhead. For example, to fl ash an LED with a precise 10 Hz fre-

quency and a 50% duty cycle (clock divisor = 1920, range = 1000):

pi@erpi ~ $ gpio mode 1 pwm

pi@erpi ~ $ gpio pwm-ms

pi@erpi ~ $ gpio pwmc 1920

pi@erpi ~ $ gpio pwmr 1000

pi@erpi ~ $ gpio pwm 1 500

Listing 6-16: /chp06/wiringPi/fadeLED.cpp

#include <iostream>

#include <wiringPi.h>

#include <unistd.h>

266 Part II ■ Interfacing, Controlling, and Communicating

c06.indd 06:44:58:PM 05/12/2016 Page 266

using namespace std;

#define PWM_LED 18 // this is PWM0, Pin 12

#define BUTTON_GPIO 27 // this is GPIO27, Pin 13

bool running = true; // fade in/out until button pressed

void buttonPress(void) { // ISR on button press - not debounced

 cout << "Button was pressed -- start graceful end." << endl;

 running = false; // the while() loop should end soon

}

int main() { // must be run as root

 wiringPiSetupGpio(); // use the GPIO numbering

 pinMode(PWM_LED, PWM_OUTPUT); // the PWM LED - PWM0

 pinMode(BUTTON_GPIO, INPUT); // the button input

 wiringPiISR(BUTTON_GPIO, INT_EDGE_RISING, &buttonPress);

 cout << "Fading the LED in/out until the button is pressed" << endl;

 while(running) {

 for(int i=1; i<=1023; i++) { // Fade fully on

 pwmWrite(PWM_LED, i);

 usleep(1000);

 }

 for(int i=1022; i>=0; i--) { // Fade fully off

 pwmWrite(PWM_LED, i);

 usleep(1000);

 }

 }

 cout << "LED Off: Program has finished gracefully!" << endl;

 return 0;

}

PWM Application—Controlling a Servo Motor

Servo motors consist of a DC motor that is attached to a potentiometer and a

control circuit. The position of the motor shaft can be controlled by sending

a PWM signal to the controller.

The Hitec HS-422 is a low-cost (less than $10), good quality, and widely avail-

able servo motor that can be supplied using the RPi 5 V supply. It is rated to rotate

±45º from the center. It can rotate in the range ±90º, but the potentiometer does

not behave in a perfectly linear way outside of the ±45º range. According to its

datasheet, the HS-422 expects a pulse every 20 ms (i.e., 50 Hz) that has duration

from 1100 μs (to set the position to −45º from the center position) to 1900 μs (to

set the position to +45º from the center position). The center position can be set

by passing a pulse of 1500 μs in duration.

Figure 6-21 illustrates the connections and timings for the servo motor that

enables it to rotate from −90º using a pulse of 570 μs to +90º using a pulse of

2350 μs. These values and the center point of 1460 μs were manually calibrated,

and will vary for each individual servo motor.

 Chapter 6 ■ Interfacing to the Raspberry Pi Input/Outputs 267

c06.indd 06:44:58:PM 05/12/2016 Page 267

Figure 6-21: Controlling a servo motor using PWM, positioning from –90º to +90º using different

pulse widths

The servo motor has three leads: black, red, and yellow. The black lead is

connected to the RPi GND (Pin 20); the red lead is connected to the RPi 5 V

(Pin 2) supply; and the yellow lead is connected via a 1 kΩ resistor to the RPi

PWM0 output (Pin 12). The 1 kΩ resistor limits the current sourced from Pin

12 to about 0.01 mA. C++ code to sweep the servo motor back and forth until a

button is pressed is available in Listing 6-17.

CONTROLLING THE SERVO MOTOR USING THE GPIO COMMAND

You can also use the gpio command to control the PWM pins. For example, to set up a

50 Hz signal on PWM0 Pin 12 (WPi Pin 1):

pi@erpi ~ $ gpio mode 1 pwm

pi@erpi ~ $ gpio pwm-ms

pi@erpi ~ $ gpio pwmc 384

pi@erpi ~ $ gpio pwmr 1000

And to control the servo motor in Figure 6-21 using the calculations therein to

rotate the servo arm to –90° (29) and then to +90° (118), do the following:

pi@erpi ~ $ gpio pwm 1 29

pi@erpi ~ $ gpio pwm 1 118

Listing 6-17: /chp06/wiringPi/servo.cpp

#include <iostream>

#include <wiringPi.h>

#include <unistd.h>

using namespace std;

#define PWM_SERVO 18 // this is PWM0, Pin 12

#define BUTTON_GPIO 27 // this is GPIO27, Pin 13

#define LEFT 29 // manually calibrated values

#define RIGHT 118 // for the left, right and

268 Part II ■ Interfacing, Controlling, and Communicating

c06.indd 06:44:58:PM 05/12/2016 Page 268

#define CENTER 73 // center servo positions

bool sweeping = true; // sweep servo until button pressed

void buttonPress(void) { // ISR on button press - not debounced

 cout << "Button was pressed -- finishing sweep." << endl;

 sweeping = false; // the while() loop should end soon

}

int main() { // must be run as root

 wiringPiSetupGpio(); // use the GPIO numbering

 pinMode(PWM_SERVO, PWM_OUTPUT); // the PWM servo

 pinMode(BUTTON_GPIO, INPUT); // the button input

 wiringPiISR(BUTTON_GPIO, INT_EDGE_RISING, &buttonPress);

 pwmSetMode(PWM_MODE_MS); // use a fixed frequency

 pwmSetRange(1000); // 1000 steps

 pwmSetClock(384); // gives 50Hz precisely

 cout << "Sweeping the servo until the button is pressed" << endl;

 while(sweeping) {

 for(int i=LEFT; i<RIGHT; i++) { // rotate to right

 pwmWrite(PWM_SERVO, i);

 usleep(10000);

 }

 for(int i=RIGHT; i>=LEFT; i--) { // rotate to left

 pwmWrite(PWM_SERVO, i);

 usleep(10000);

 }

 }

 pwmWrite(PWM_SERVO, CENTER); // rotate to center

 cout << "Program has finished gracefully - servo centred" << endl;

 return 0;

}

General-Purpose Clock Signals

WiringPi provides support for the generation of clock signals on the general

purpose clock outputs. GPCLK0 (Pin 7 and Pin 38) is available on all RPi mod-

els, but GPCLK1 (Pin 29 and Pin 40) and GPCLK2 (Pin 31) are available as in

Figure 6-11. GPCLK1 should not be used because it is reserved for internal6

use. Listing 6-18 provides a short code example that generates a 4.8 MHz clock

signal. Figure 6-22 displays an oscilloscope capture of the RPi 2 generating two

clock signals simultaneously (a negative DC bias is introduced on the scope for

clarity). This capture is at the limit of the capability of the Analog Discovery

oscilloscope, which helps explain the “ringing” effects.

Listing 6-18: /chp06/wiringPi/clock.cpp

#include <iostream>

#include <wiringPi.h>

6 This use appears to involve Ethernet, because GPCLK1 works, but using it instantly termi-
nates your SSH session!

 Chapter 6 ■ Interfacing to the Raspberry Pi Input/Outputs 269

c06.indd 06:44:58:PM 05/12/2016 Page 269

using namespace std;

#define GPCLK0 4 // this is Pin 7 GPIO4

#define GPCLK1 5 // Pin 29, GPIO5 -- do not use

#define GPCLK2 6 // Pin 31, GPIO6 -- RPi A+,B+,2/3

int main() { // must be run as root

 wiringPiSetupGpio(); // use the GPIO numbers

 pinMode(GPCLK0, GPIO_CLOCK); // set up the clock from 19.2MHz base

 gpioClockSet(GPCLK0, 4800000); // output a clean 4.8MHz clock on GPCLK0

 cout << "The clock output is enabled on GPIO" << GPCLK0 << endl;

 return 0; // clock persists after exit

}

Figure 6-22: The RPi 2 generating 1.2 MHz and 4.8 MHz clock signals simultaneously (FFT also

displayed)

HIGHFREQUENCY CLOCK SIGNALS ADVANCED

The pigpio C library (abyz.co.uk/rpi/pigpio/) minimal clock access code can

be used to set Pin 7 to output a clock frequency of between 4.687 kHz and 500 MHz!

The clock can be set to choose diff erent internal clock sources. For example, to output

a clock frequency of 10 MHz on GPCLKO (Pin 7) using the PLLD (see Section 6.3 of the

BCM2835 ARM Peripherals manual):

pi@erpi ~ $ wget abyz.co.uk/rpi/pigpio/pigpio.zip

pi@erpi ~ $ unzip pigpio.zip

pi@erpi ~ $ cd PIGPIO/

pi@erpi ~/PIGPIO $ make

pi@erpi ~/PIGPIO $ sudo make install

pi@erpi ~/exploringrpi/chp06/minimal_clk $ gcc minimal_clk.c -o minimal_clk

pi@erpi ~/exploringrpi/chp06/minimal_clk $ sudo ./minimal_clk 10.0m

PLLD: 50 0 10.00 MHz

 OSC: 1 3768 ILLEGAL

HDMI: 21 2457 10.29 MHz

PLLC: 100 0 10.00 MHz

Using PLLD (I=50 F=0 MASH=0)

Press return to exit and disable clock...

270 Part II ■ Interfacing, Controlling, and Communicating

c06.indd 06:44:58:PM 05/12/2016 Page 270

GPIOs and Permissions

Throughout this chapter, all programs that interface to the GPIOs are executed

without using sudo. This is not the default behavior under Linux, rather GPIOs

are usually only accessible to the superuser. Raspbian has been carefully confi g-

ured so that GPIO sysfs entries belong to the gpio user group. You can see that

this is the case, and that the pi user is a member of the gpio group as follows:

pi@erpi /sys/class/gpio $ ls -l

total 0

-rwxrwx--- 1 root gpio 4096 Jul 7 01:17 export

lrwxrwxrwx 1 root gpio 0 Jul 7 01:17 gpiochip0 -> ...

-rwxrwx--- 1 root gpio 4096 Jul 7 01:17 unexport

pi@erpi /sys/class/gpio $ groups

pi adm dialout ... gpio i2c spi input

This is a very useful feature of Raspbian, because it prevents you from having

to run applications as the superuser, where a coding mistake could damage your

fi le system. This capability is actually an advanced feature of mainline Linux

called udev rules that enables you to customize the behavior of the udevd service.

Writing udev Rules

Udev rules provide you with some userspace control over devices on the RPi,

such as renaming devices, changing permissions and executing a script when

a device is attached. The fi rst step in understanding this capability is to fi nd

out information about the /sys/class/gpio directory:

pi@erpi ~ $ udevadm info --path=/sys/class/gpio --attribute-walk

...

 looking at device '/class/gpio':

 KERNEL=="gpio"

 SUBSYSTEM=="subsystem"

 DRIVER==""

The udev rules are contained in fi les that are stored in the /etc/udev/rules.d

and /lib/udev/rules.d/ directories. The former is for custom rules and the

latter is typically used for general system rules. A rule fi le is a regular text

fi le that is given a name which is prefi xed by a priority number; the lower the

number, the greater the priority of the rules fi le. The Raspbian confi guration

uses the 99-com.rules fi le, which is provided in Listing 6-19. It has the lowest

available priority so that it does not interfere with other rules fi les in the /lib/

udev/rules.d/ directory.

Listing 6-19: /etc/udev/rules.d/99-com.rules

SUBSYSTEM=="gpio*", PROGRAM="/bin/sh -c 'chown -R root:gpio /sys/class/gpio

&& chmod -R 770 /sys/class/gpio; chown -R root:gpio /sys/devices/virtual/gpio

 Chapter 6 ■ Interfacing to the Raspberry Pi Input/Outputs 271

c06.indd 06:44:58:PM 05/12/2016 Page 271

&& chmod -R 770 /sys/devices/virtual/gpio'"

SUBSYSTEM=="input", GROUP="input", MODE="0660"

SUBSYSTEM=="i2c-dev", GROUP="i2c", MODE="0660"

SUBSYSTEM=="spidev", GROUP="spi", MODE="0660"

Essentially, this rules fi le executes a single line script that uses the chown com-

mand to change the group of a GPIO device (and all symbolic entries) to be gpio

when an entry is added. It also contains rules to change the access permissions

for input, I2C, and SPI devices (discussed in Chapter 8).

You can edit this fi le to suit custom user and group requirements. For example,

it is possible to replace the user root:gpio entry with the user molloyd:gpio in

Listing 6-19 and test that the rule works as follows:

pi@erpi /etc/udev/rules.d $ sudo nano 99-com.rules

pi@erpi /etc/udev/rules.d $ sudo udevadm test --action=add /class/gpio

calling: test version 215 ...

read rules file: /lib/udev/rules.d/10-local-rpi.rules ...

read rules file: /etc/udev/rules.d/99-com.rules

read rules file: /lib/udev/rules.d/99-systemd.rules ...

ACTION=add

DEVPATH=/class/gpio

SUBSYSTEM=subsystem

USEC_INITIALIZED=3950621318

You can restart the udev service (or reboot) to ensure that your changes to

the rules fi le have been applied. If you then export an entry in the /sys/class/

gpio directory, the owner of all entries will change and, in this case, the user

molloyd now owns all GPIO sysfs entries:

pi@erpi /sys/class/gpio $ sudo systemctl restart systemd-udevd

pi@erpi /sys/class/gpio $ ls -l

total 0

-rwxrwx--- 1 root gpio 4096 Jul 7 22:03 export

lrwxrwxrwx 1 root gpio 0 Jul 7 01:17 gpiochip0 -> ...

-rwxrwx--- 1 root gpio 4096 Jul 7 01:17 unexport

pi@erpi /sys/class/gpio $ echo 27 > export

pi@erpi /sys/class/gpio $ ls -l

total 0

-rwxrwx--- 1 molloyd gpio 4096 Jul 7 22:05 export

lrwxrwxrwx 1 molloyd gpio 0 Jul 7 22:05 gpio27 -> ...

lrwxrwxrwx 1 molloyd gpio 0 Jul 7 01:17 gpiochip0 -> ...

-rwxrwx--- 1 molloyd gpio 4096 Jul 7 01:17 unexport

This is a useful learning exercise, but remember to change the ownership

back to root before continuing on!

Udev rules are a powerful capability for controlling what happens when

devices are attached to the RPi. For example you could create symbolic links

when a certain USB webcam or USB fl ash device is plugged in. For a compre-

hensive guide on writing udev rules, see tiny.cc/erpi602

272 Part II ■ Interfacing, Controlling, and Communicating

c06.indd 06:44:58:PM 05/12/2016 Page 272

Permissions and wiringPi

The wiringPi applications that you wrote often use memory-mapped I/O and

require the use of the sudo tool. So, why does the gpio command not require

superuser permission, especially given that it is written using the same library?

The answer is that it does, and if you examine the executable program you will

see how it achieves this permission:

pi@erpi /usr/local/bin $ ls -l gpio

-rwsr-xr-x 1 root root 30456 Jul 10 03:38 gpio

The gpio executable fi le is owned by root and the setuid bit, which is described

in Chapter 3, is set. This gives the gpio command superuser access, regardless

of which user account invokes it. You can use the same permission setting for

any of your custom-developed wiringPi programs. For example:

pi@erpi ~/exploringrpi/chp06/wiringPi $ ls -l info

-rwxr-xr-x 1 pi pi 9692 Jul 11 14:31 info

pi@erpi ~/exploringrpi/chp06/wiringPi $./info

wiringPiSetup: Must be root. (Did you forget sudo?)

pi@erpi ~/exploringrpi/chp06/wiringPi $ sudo chown root info

pi@erpi ~/exploringrpi/chp06/wiringPi $ ls -l info

-rwxr-xr-x 1 root pi 9692 Jul 11 14:31 info

pi@erpi ~/exploringrpi/chp06/wiringPi $./info

wiringPiSetup: Must be root. (Did you forget sudo?)

Changing the owner to root is insuffi cient because the program is still executed

by the pi user. However, when the setuid bit is set and the fi le is owned by root

then the program is executed as if by root, regardless of the actual user account

that executes it:

pi@erpi ~/exploringrpi/chp06/wiringPi $ sudo chmod u+s info

pi@erpi ~/exploringrpi/chp06/wiringPi $ ls -l info

-rwsr-xr-x 1 root pi 9692 Jul 11 14:31 info

pi@erpi ~/exploringrpi/chp06/wiringPi $./info

This is an RPi: Model 3 ...

If you rebuild the executable again then the setuid bit is unset (even if you

use sudo on the call to g++). This is for security reasons, because otherwise a

user could insert malicious source code into the binary executable:

pi@erpi ~/exploringrpi/chp06/wiringPi $ g++ info.cpp -o info -lwiringPi

pi@erpi ~/exploringrpi/chp06/wiringPi $ ls -l info

-rwxr-xr-x 1 pi pi 9692 Jul 11 18:51 info

 Chapter 6 ■ Interfacing to the Raspberry Pi Input/Outputs 273

c06.indd 06:44:58:PM 05/12/2016 Page 273

Summa ry

After completing this chapter, you should be able to do the following:

 ■ Use an RPi GPIO to output a binary signal to a digital circuit, or read in

a binary input from a digital circuit.

 ■ Write shell scripts and effi cient C/C++ sysfs code to control GPIOs on

the RPi.

 ■ Describe the impact of the PREEMPT kernel patch and multiple CPU

cores on the performance of GPIO applications.

 ■ Utilize internal pull-up and pull-down resistors for interfacing.

 ■ Manipulate GPIO state using memory-mapped registers on the RPi’s SoC

using the shell prompt and C/C++ program code.

 ■ Use the wiringPi library of C functions to control the RPi’s GPIOs in an

effi cient and accessible manner.

 ■ Communicate bi-directionally with a sensor using a single GPIO.

 ■ Use PWM on the RPi to fade an LED and drive a servo motor.

 ■ Use general-purpose clocks to output high-frequency clock signals.

 ■ Use Linux udev rules and the setuid bit to improve user-level control of

GPIO applications.

275

c07.indd 08:45:27:PM 05/12/2016 Page 275

To this point in the book, all the code is built and executed directly on the

RPi. However, for larger projects this can be impractical, because you may

need to manage many source fi les within a single project. In addition, compi-

lation times can be slow on the RPi for building large projects. This chapter

fi rst describes how you can use your desktop computer to develop applica-

tions that can be deployed directly to the RPi. The Eclipse integrated devel-

opment environment (IDE) is then introduced, which allows for advanced

development capabilities, such as remote debugging. The chapter fi nishes

by outlining how you can build and deploy a custom Linux kernel for the

RPi platform.

Equipment Required for This Chapter:

 ■ A Linux (ideally Debian 8+) standalone or virtual machine (VM) desktop

instance (see Chapter 3)

 ■ Any RPi board for deployment and debugging

Further details on this chapter are available at

www.exploringrpi.com/chapter7/.

C H A P T E R

7

Cross-Compilation and

the Eclipse IDE

http://www.exploringrpi.com/chapter7
http://www.exploringrpi.com/chapter7

276 Part II ■ Interfacing, Controlling, and Communicating

c07.indd 08:45:27:PM 05/12/2016 Page 276

Setting Up a Cross-Compilation Toolchain

This section describes how you can establish a full-featured cross-compilation

environment for building code for the RPi using your desktop computer. A

typical C/C++ compiler that is executed on a desktop computer (e.g., Intel

x86) will build executable machine code for that platform only. Therefore, a

cross-compiler is required, because it is capable of creating executable code for

the RPi ARM platform directly from your desktop computer, even though it

has a different hardware architecture. Linux is generally used on the desktop

computer for this task, because cross-compiling code that is written under

Windows/Mac OS X to run on an ARM Linux device is a challenging pro-

cess, particularly when integrating third-party libraries. Therefore, if you are

using Windows/Mac OS X you can use the VirtualBox confi guration that is

described in Chapter 3. In fact, a VirtualBox Debian 64-bit VM is used for all

the desktop work in this book.

The environment and confi guration for cross-platform development is an

ever-evolving process. All the steps in this chapter work at the time of this

writing, but it is likely that some steps in this chapter will change as updates

are performed on the Linux kernel, to the toolchain, and to the Eclipse develop-

ment environment. Visit the web page associated with this chapter to check for

updates: www.exploringrpi.com/chapter7/. The primary aim of this chapter

is to ensure that you grasp the concepts behind cross-compilation and that you

see practical examples of the tools in use.

The fi rst step in cross-compiling Linux applications is the installation of a

Linux toolchain. A cross-compilation toolchain is suitably named as a set of software

development tools and libraries (e.g.; gcc, gdb, glibc) that are chained together

to enable you to build executable code for an operating system on one type of

machine (e.g.; a 64-bit Linux OS on an Intel x86-64 machine), but to execute that

code on a different operating system and/or a different architecture, such as a

32-bit Linux or 64-bit Linux OS on an ARM device.

N O T E This chapter assumes that the sudo tool is available on your desktop

machine. You can enable it as follows:

molloyd@desktop:~$ su -
root@desktop:~# apt install sudo
root@desktop:~# visudo
root@desktop:~# more /etc/sudoers | grep molloyd
molloyd ALL=(ALL:ALL) ALL
root@desktop:~# exit

To begin, you can discover detailed information about your Linux version by

typing the following commands individually or together using &&. This informa-

tion is valuable when deciding which particular toolchain to use:

http://www.exploringrpi.com/chapter7
http://www.exploringrpi.com/chapter7

 Chapter 7 ■ Cross-Compilation and the Eclipse IDE 277

c07.indd 08:45:27:PM 05/12/2016 Page 277

pi@erpi ~ $ uname -a && cat /etc/os-release && cat /proc/version

Linux erpi 4.1.18-v7+ #846 SMP Thu Feb 25 14:22:53 GMT 2016 armv7l GNU/Linux

GNU/Linux PRETTY_NAME="Raspbian GNU/Linux 8 (jessie)" ...

Linux version 4.1.18-v7+ (dc4@dc4-XPS13-9333) (gcc version 4.9.3 ...)

#846 SMP Thu Feb 25 14:22:53 GMT 2016

The Linaro Toolchain for Raspbian

Installing a toolchain can be a surprisingly complex task because many

different confi gurations are available. One straightforward approach is to

use a prebuilt toolchain from a repository that the RPi Foundation makes

available at github.com/raspberrypi/tools/. You can clone this repository

(~325 MB) and used the Linaro1 toolchain binaries directly as follows on

your desktop machine:

molloyd@desktop:~$ sudo apt install build-essential git

molloyd@desktop:~$ git clone https://github.com/raspberrypi/tools.git

Receiving objects: 100% (17851/17851), 325.16 MiB | 7.88 MiB/s, done.

When the repository is cloned, you can see that the cross-compilation tools

are installed on your desktop machine. For example, the g++ compiler is avail-

able in the following directory:

molloyd@desktop:~$ cd tools/arm-bcm2708/gcc-linaro-arm-linux-gnueabihf-r →

aspbian-x64/bin/

molloyd@desktop:~/tools/arm-bcm2708/gcc-linaro-arm-linux-gnueabihf-raspb

ian-x64/bin$ ls -l *g++

-rwxr-xr-x 1 molloyd molloyd 739112 Aug 1 12:01 arm-linux-gnueabihf-g++

The compiler name is preceded by a triple X-Y-Z, where X identifi es the

architecture as arm, Y identifi es the vendor (typically absent for Linux), and Z

identifi es the application binary interface (ABI) as linux-gnueabihf. The embed-
ded ABI (EABI) defi nes a standardized machine-code-level interface between

compiled programs, compiled libraries, and the OS, which aims to ensure

that binary code created with one toolchain can be linked with a project that

uses a different toolchain or compiler. Therefore, linux-gnueabihf can be

read as the GNU EABI for Linux that supports hardware accelerated fl oating-

point operations (i.e., hard fl oats). Hard fl oat operations are much faster than

soft fl oat operations as they take advantage of the microprocessor’s on-chip

fl oating-point unit (FPU), rather than having to perform the calculations using

software (i.e., soft fl oats).

1 Linaro (www.linaro.org) is an organization that aims to support embedded Linux devel-
opment on the ARM platform by working with industry and the open source community to min-
imize development fragmentation. It was founded in 2010 by ARM, IBM, Freescale, Samsung,
ST-Ericsson, and Texas Instruments.

http://www.linaro.org

278 Part II ■ Interfacing, Controlling, and Communicating

c07.indd 08:45:27:PM 05/12/2016 Page 278

To test that the toolchain is working correctly you can write a short C++ pro-

gram that can be built in to binary code using the cross-compiler:

molloyd@desktop:~$ nano testrpi.cpp

molloyd@desktop:~$ more testrpi.cpp

#include<iostream>

using namespace std;

int main(){

 cout << "Testing cross compilation for the RPi" << endl;

 return 0;

}

Testing the Toolchain

After the toolchain is installed, the program can be compiled by invoking the

prebuilt cross-compiler as follows (all on a single line):

molloyd@desktop:~$ ~/tools/arm-bcm2708/gcc-linaro-arm-linux-gnueabihf-r →

aspbian-x64/bin/arm-linux-gnueabihf-g++ testrpi.cpp -o testrpi

molloyd@desktop:~$ ls -l testrpi*

-rwxr-xr-x 1 molloyd molloyd 7740 Aug 1 12:03 testrpi

-rw-r--r-- 1 molloyd molloyd 127 Aug 1 12:02 testrpi.cpp

Unsurprisingly, when the binary is invoked on the Intel x86 desktop machine,

it will not execute, because it contains ARM binary code instructions:

molloyd@desktop:~$./testrpi

bash: ./testrpi: cannot execute binary file: Exec format error

The program can be transferred to RPi using sftp as follows:

molloyd@desktop:~$ sftp pi@erpi.local

pi@erpi.local's password: raspberry

Connected to erpi.local.

sftp> put testrpi

Uploading testrpi to /home/pi/testrpi

sftp> bye

Finally, SSH to the RPi to confi rm that the program works correctly:

molloyd@desktop:~$ ssh pi@erpi.local

pi@erpi.local's password: raspberry

pi@erpi ~ $ ls -l testrpi

-rwxr-xr-x 1 pi pi 7008 Aug 1 18:34 testrpi

pi@erpi ~ $./testrpi

Testing cross compilation for the RPi

Success! If you see this output, then you are able to build a binary on the

desktop machine that can be executed directly on the RPi. Finally, you can use

the ldd tool to display the shared library dependencies of the program, which

can be useful in debugging dependency problems:

pi@erpi ~ $ ldd testrpi

 /usr/lib/arm-linux-gnueabihf/libcofi_rpi.so (0x76f56000)

mailto:pi@erpi.local
mailto:pi@erpi.local's
mailto:pi@erpi.local
mailto:pi@erpi.local's

 Chapter 7 ■ Cross-Compilation and the Eclipse IDE 279

c07.indd 08:45:27:PM 05/12/2016 Page 279

 libstdc++.so.6 => /usr/lib/arm-linux-gnueabihf/libstdc++.so.6 (0x76e41000)

 libm.so.6 => /lib/arm-linux-gnueabihf/libm.so.6 (0x76dc6000)

 libgcc_s.so.1 => /lib/arm-linux-gnueabihf/libgcc_s.so.1 (0x76d99000)

 libc.so.6 => /lib/arm-linux-gnueabihf/libc.so.6 (0x76c5c000)

 /lib/ld-linux-armhf.so.3 (0x76f34000)

Updating the PATH Environment Variable

The PATH environment variable can be adjusted so that the call to the compiler

is less verbose. This is best performed by editing the .bashrc fi le in the user’s

home directory so that the bash shell can set the variable on startup:

molloyd@desktop:~$ nano .bashrc

molloyd@desktop:~$ tail -1 .bashrc

export PATH=$PATH:~/tools/arm-bcm2708/gcc-linaro-arm-linux-gnueabihf-r

aspbian-x64/bin

Rather than reboot on this occasion, you can use the source command to

apply this change, whereupon the PATH becomes the following:

molloyd@desktop:~$ source ~/.bashrc

molloyd@desktop:~$ echo $PATH

/usr/local/bin:/usr/bin:/bin:/usr/local/games:/usr/games:/home/molloyd/

tools/arm-bcm2708/gcc-linaro-arm-linux-gnueabihf-raspbian-x64/bin

The compiler can now be executed without requiring its full path:

molloyd@desktop:~$ arm-linux-gnueabihf-g++ testrpi.cpp -o testrpi

Debian Cross-Toolchains

Recent Debian releases provide support for cross-compilation and a very useful

feature called multipackage installations, which greatly reduces the complexity

of cross-platform compilation when third-party libraries are required. If you

are using a Debian (8+) desktop installation, you can set up a cross-compilation

environment using the following steps:

 1. Update the sources lists to include the cross-toolchain sources list, which

makes a list of cross-compilation packages available:2

molloyd@desktop:~$ cd /etc/apt/sources.list.d/
molloyd@desktop:/etc/apt/sources.list.d$ sudo nano crosstools.list

molloyd@desktop:/etc/apt/sources.list.d$ more crosstools.list

deb http://emdebian.org/tools/debian jessie main

2 The Embedded Debian (Emdebian) Project ceased in July 2014, and it is recommended that you
use cross-toolchains. For Debian Jessie the armhf cross-toolchain is maintained on the Emdebian
repository, but it should be integrated into newer versions of Debian, removing the need for
Steps 1 and 2.

280 Part II ■ Interfacing, Controlling, and Communicating

c07.indd 08:45:27:PM 05/12/2016 Page 280

 2. Use curl to download the archive public key and apt-key to install it.

This allows for the validation of downloaded cross-toolchain packages:

molloyd@desktop:/etc/apt/sources.list.d$ sudo apt install curl

molloyd@desktop:/etc/apt/sources.list.d$ curl http://emdebian.org/tools/ →

debian/emdebian-toolchain-archive.key | sudo apt-key add -

molloyd@desktop:/etc/apt/sources.list.d$ cd ~/

 3. Add armhf as a foreign architecture and update the list of available pack-

ages. This step is particularly useful for installing cross-development

libraries. You must perform an update at this point:

molloyd@desktop:~$ sudo dpkg --add-architecture armhf

molloyd@desktop:~$ dpkg --print-architecture

amd64

molloyd@desktop:~$ dpkg --print-foreign-architectures

armhf

molloyd@desktop:~$ sudo apt update

 4. You can then install the cross-build toolchain as follows:

molloyd@desktop:~$ sudo apt install crossbuild-essential-armhf

... Setting up libyaml-libyaml-perl (0.41-6) ...

Processing triggers for libc-bin (2.19-18) ...

molloyd@desktop:~$ cd /usr/bin

molloyd@desktop:/usr/bin$ ls -l *g++

lrwxrwxrwx 1 root root 27 Jan 16 2015 arm-linux-gnueabihf-g++

-> arm-linux-gnueabihf-g++-4.9

lrwxrwxrwx 1 root root 7 Feb 25 07:13 g++ -> g++-4.9

lrwxrwxrwx 1 root root 7 Feb 25 07:13 x86_64-linux-gnu-g++ -> g++-4.9

You can see that the /usr/bin directory now contains a g++ entry for

natively compiling x86 code, and an arm-linux-gnueabihi-g++ entry for

cross compiling armhf code.

 5. The compiler can be tested and its version checked from any location

(as /usr/bin is in the default PATH), by using the following:

molloyd@desktop:~$ arm-linux-gnueabihf-g++ -v

gcc version 4.9.2 (4.9.2-10)

 6. You can use the code example that is used to test the Linaro toolchain to

test this toolchain, and you should obtain the same results. You can install

both toolchains on the desktop machine. The cross-toolchains will take

precedence as the /usr/bin entry appears fi rst in the PATH environment

variable.

N O T E You can use apt-cache to search for alternative compiler versions. The RPi

with its Raspbian distribution supports hard fl oats (hf), so use tools with the hf suffi x

when they are available:

molloyd@desktop:~$ apt-cache search gnueabihf | grep g++
g++-4.9-arm-linux-gnueabihf - GNU C++ compiler
g++-arm-linux-gnueabihf - GNU C++ cross-compiler for architecture armhf

 Chapter 7 ■ Cross-Compilation and the Eclipse IDE 281

c07.indd 08:45:27:PM 05/12/2016 Page 281

At this point, the binary executable will not execute on your desktop machine

because it contains ARM instructions. However, the next section describes how

the ARM processor can be emulated on the desktop machine.

Emulating the armhf Architecture

A package called QEMU can be installed on the desktop machine so that it can

emulate the RPi’s armhf architecture. This is called user-mode emulation. QEMU

can also perform full computer-mode emulation, just like VirtualBox. You can

install the QEMU user-mode emulation as follows:

molloyd@desktop:~$ sudo apt install qemu-user-static

molloyd@desktop:~$ dpkg --print-foreign-architectures

armhf

Now, the armhf instructions can be emulated on the x86 machine (with a

performance cost), and the test program can execute on the desktop machine:

molloyd@desktop:~$./testrpi

Testing the RPi pre-built toolchain

Cross-Compilation with Third-Party Libraries (Multiarch)

This section is not necessary to cross-compile C/C++ applications; however, it

is likely that you will need to add third-party libraries in the future for tasks

such as image and numeric processing. Traditionally, this has been a very dif-

fi cult topic, but thanks to recent releases in Debian and Ubuntu, this problem

has become much more manageable.

At this point, you have a cross-compiler in place, and you should currently

be able to cross-compile applications that use the standard C/C++ libraries.

However, what if you want to build a C/C++ application that uses a third-party

library that contains compiled code? If you install the library on your x86 desktop

machine, that library code will contain native x86 instructions. If you want to

use the third-party library and deploy it to your RPi, you need to use a library

that contains ARM machine code instructions.

Traditionally, developers have used tools like xapt, which converts

Debian packages to a cross-platform version on-the-fl y (e.g., xapt -a armhf -m

libopencv-dev). However, recent releases of Debian (8+) now have strong

 support for multiarch—multi-architecture package installs.

A multiarch-capable package installer can be used to install an RPi armhf

library on your desktop machine. The version of dpkg has to be greater than

1.16.2 for multiarch support. Also, if you have not already done so, you should

add the armhf target architecture:

molloyd@desktop:~$ dpkg --version

Debian `dpkg' package management program version 1.17.26 (amd64).

molloyd@desktop:~$ sudo dpkg --add-architecture armhf

282 Part II ■ Interfacing, Controlling, and Communicating

c07.indd 08:45:27:PM 05/12/2016 Page 282

Then install a sample third-party library package after performing an update

(note the armhf after the package name):

molloyd@desktop:~$ sudo apt update

molloyd@desktop:~$ sudo apt install libicu-dev:armhf

Reading package lists... Done ...

Setting up libicu-dev:armhf (52.1-8+deb8u2) ...

The libicu-dev libraries for utilizing Unicode are installed in the /usr/lib/

arm-linux-gnueabihf directory. This keeps them separate from the x86 librar-

ies that are stored in the /usr/lib directory, because otherwise they would

overwrite your current x86 libraries, which would be problematic:

molloyd@desktop:/usr/lib/arm-linux-gnueabihf$ ls libicu*

libicudata.a libicui18n.so.52 libicule.a ...

And you are done! If necessary, you can confi gure your C++ build environ-

ment to include the /usr/lib/arm-linux-gnueabihf directory. This procedure

works well and it is reasonably straightforward; however, it is relatively new to

Linux, and interdependency problems currently arise. See wiki.debian.org/

Multiarch/HOWTO for more information.

Cross-Compilation Using Eclipse

Eclipse is an integrated development environment (IDE) that enables you

to manage your code and integrate cross-compilation tools, debuggers, and

other plug-ins to create a sophisticated development platform. It can even be

extended to provide full remote debugging support for applications that are

physically running on your RPi. This is a powerful feature that enables you

to debug software applications that are interfacing with the real hardware

in your projects, but view the debug values within your desktop Eclipse

environment.

Eclipse is written in Java and was initially focused on Java software develop-

ment. However, Eclipse has excellent support for C/C++ development using the

C/C++ Development Tooling (CDT) extension.

Installing Eclipse on Desktop Linux

Using a web browser on your Linux desktop or Linux desktop VM running

under Windows (see Chapter 3), download Eclipse from www.eclipse.org.

There is a version that has CDT (C/C++ Development Tooling) integration

(e.g., Eclipse IDE for C/C++ Developers), which you should install. The ver-

sion of Eclipse that is used in this guide is Mars.2, which was released in

February 2016.

http://www.eclipse.org

 Chapter 7 ■ Cross-Compilation and the Eclipse IDE 283

c07.indd 08:45:27:PM 05/12/2016 Page 283

After you have downloaded Eclipse, decide whether you want to install

it for all users or only for the current user, by extracting the archive in a

suitable location. The Iceweasel or Chromium browser will download

the fi le to the user’s ~/Downloads directory. Therefore, use the following

steps to install Eclipse in a user’s account, and execute it (as a background

process using &):

molloyd@desktop:~/Downloads$ ls eclipse*

eclipse-cpp-mars-R-linux-gtk-x86_64.tar.gz

molloyd@desktop:~/Downloads$ tar -xvf eclipse* -C ..

molloyd@desktop:~/Downloads$ cd ~/eclipse/

molloyd@desktop:~/eclipse$./eclipse &

At this point, you can use Eclipse to create C++ applications on the desktop

machine that are deployed to the desktop machine. However, because the target

platform is the RPi, Eclipse must be confi gured for cross-compilation.

N O T E Instead of executing eclipse using a terminal window, you can execute

it directly from your Debian/Ubuntu Linux desktop environment by creating an

eclipse.desktop fi le as follows:

molloyd@desktop:~/.local/share/applications$ more eclipse.desktop
[Desktop Entry]
Type=Application
Exec=/home/molloyd/eclipse/eclipse
Name=Eclipse
GenericName=An IDE for C/C++ development
Icon=/home/molloyd/eclipse/icon.xpm
Terminal=false
Categories=Development;IDE;C++
MimeType=text/x-c++src;text/x-c++hdr;text/x-xsrc;application/x-designer;

An Eclipse icon entry is now available in the Activities window that when double

clicked will execute eclipse.

Confi guring Eclipse for Cross-Compilation

When Eclipse starts up, you can choose the default Workspace directory,

and then you will see a brief guide that describes C/C++ development. You

can begin confi guration by creating a new project using File ➪ New ➪ C++

project. As illustrated in Figure 7-1(a), set the project name to RPiTest, pick

the project type Hello World C++ Project, and the Toolchain to be Cross GCC.

Repeatedly click Next until you see the Cross GCC Command dialog win-

dow, as illustrated in Figure 7-1(b). Enter arm-linux-gnueabihf- for the

cross-compiler prefi x and set its path to /usr/bin or to the Linaro toolchain

directory. Finally, click Finish.

284 Part II ■ Interfacing, Controlling, and Communicating

c07.indd 08:45:27:PM 05/12/2016 Page 284

(a) (b)

Figure 7-1: Creating a new C++ project in Eclipse: (a) the project settings, and (b) the cross-

compiler prefix

The Eclipse IDE is now confi gured for cross-compilation using the cross-

compilation toolchain that was set up at the beginning of this chapter. You can

choose Project ➪ Build All and then run on the desktop machine by pressing the

green arrow or (Run ➪ Run). In Figure 7-2, this results in the message !!!Hello

World!!! appearing in the Console window. This only appears on the desktop

computer if you have installed QEMU, because the executable contains ARM

machine code, which is clear from the binary name RPiTest - [arm/le] that is

highlighted at the top left of Figure 7-2.

Figure 7-2: The creation and cross-compilation of a C++ project in Eclipse

 Chapter 7 ■ Cross-Compilation and the Eclipse IDE 285

c07.indd 08:45:27:PM 05/12/2016 Page 285

The preceding steps provide a quick way of confi guring the cross-compilation

settings within Eclipse Mars or Luna. Older versions of Eclipse (e.g., Kepler)

require you to confi gure the cross-compiler using the project settings. That option

is still available within Eclipse Mars; select the project that was just created,

and then go to Project ➪ Properties. (If the option is grayed out, it likely means

that the project is not selected.) Go to C/C++ Build ➪ Settings and under the

Tool Settings tab. You should see the Cross Settings as illustrated in Figure 7-3.

Effectively, these settings mean that the arm-linux-gnueabihf-g++ command

is used to compile the project code.

Figure 7-3: Eclipse Mars settings for cross-compilation

It should not be necessary to set the C/C++ includes and library settings

explicitly because they are included by default by gcc/g++. However, it might

be necessary at a later stage, particularly when using third-party libraries. To

do this, go to Project ➪ Properties ➪ C/C++ General ➪ Paths and Symbols, and

set the following (the Linaro directories must be set here3):

 ■ Includes ➪ GNU C (Include directories) ➪ Add ➪ File System ➪ File

System ➪/usr/include/arm-linux-gnueabihf/ and press OK.

 ■ Includes ➪ GNU C++ (Include directories) ➪ Add ➪ File System ➪ File

System ➪/usr/include/arm-linux-gnueabihf/c++/4.9/ and press OK.

 ■ Library Paths (not Libraries) ➪ Add ➪ File System ➪ File System ➪/usr/

lib/arm-linux-gnueabihf/.

 ■ Press OK to apply the confi guration.

Now you should be able to deploy the binary application directly to the RPi,

because it contains ARM machine code instructions. You can transfer the binary

application to the RPi using sftp, but it would be better in the longer term if

you had a direct link to the RPi from within Eclipse; for this, you can use the

Remote System Explorer plug-in.

3 For example, the C++ include directory is currently: ~/tools/arm-bcm2708/gcc-linaro-arm-
linux-gnueabihf-raspbian-x64/arm-linux-gnueabihf/include/c++/4.8.3/

286 Part II ■ Interfacing, Controlling, and Communicating

c07.indd 08:45:27:PM 05/12/2016 Page 286

Remote System Explorer

The Remote System Explorer (RSE) plug-in enables you to establish a direct

connection between your Eclipse environment and the RPi, over a network

connection, by using the SSH server on your RPi. You can install the RSE within

Eclipse using Help ➪ Install New Software. Under the “Work with” drop-down

menu choose “Mars…” and then select General Purpose Tools ➪ Remote System

Explorer User Actions. Press Next, follow the steps, and then restart Eclipse.

You should now have RSE functionality within Eclipse. Go to Window ➪ Show

View ➪ Other ➪ Remote Systems➪ Remote Systems. In the Remote Systems

frame that appears, click the icon for Defi ne a Connection to a Remote System,

and in the New Connection dialog, select the following:

 ■ Choose Linux Type ➪ Next.

 ■ Host Name: Enter your RPi’s IP address—e.g., erpi.local.

 ■ Connection Name: Change it to “Raspberry Pi” ➪ Next.

 ■ [Files] Confi guration ➪ ssh.fi les ➪ Next.

 ■ [Processes] Confi guration ➪ processes.shell.linux ➪ Next.

 ■ [Shells] Confi guration ➪ ssh.shells ➪ Next.

 ■ Eclipse Luna allows you to install a terminal at this point, but a separate

installation is required with Eclipse Mars.

To install the terminal in Eclipse Mars use Help ➪ Install New Software.

Under the “Work with” drop-down menu choose “Mars…” and then search

for “terminal.” Install TM Terminal and the TM Terminal View RSE add-in.

You can then right-click the Raspberry Pi entry in the Remote Systems tab

and choose Connect. You should see the dialog illustrated in Figure 7-4. In this

example, the pi user account is used on the RPi as the account into which the

executable code is deployed. Usefully, Eclipse uses a master password system

to manage passwords for all of your individual connections.

Figure 7-4: Connecting to the RPi for the first time using RSE

 Chapter 7 ■ Cross-Compilation and the Eclipse IDE 287

c07.indd 08:45:27:PM 05/12/2016 Page 287

Once you are connected to the RPi, you can go to the Project Explorer win-

dow, right-click the executable that you just built (RPiTest [arm/le]), and choose

Copy. Then go to a directory on the Remote Explorer, such as testCross (see

Figure 7-5). Right-click it and choose Paste. The fi le is now on the RPi and can

be executed from the Terminal window. Right-click the Raspberry Pi entry

in the Remote Systems tab and choose Open Terminal. The output of the test

program is illustrated in Figure 7-5. It is necessary to set the RPiTest fi le to be

executable on the fi rst occasion.

Figure 7-5: The Terminal window, connected to the RPi and executing the cross-compiled

RPiTest C++ application

One way to automate the process of copying the fi les from the desktop com-

puter to the RPi is by using the secure copy command scp. You can set up your

desktop computer so that it does not need to use a password to ssh to the RPi

by using the following steps on the desktop computer (when prompted you

should leave the passphrase blank):

molloyd@desktop:~$ ssh-keygen

molloyd@desktop:~$ ssh-copy-id pi@erpi.local

molloyd@desktop:~$ ssh-add

molloyd@desktop:~$ ssh pi@erpi.local

You should now be able to ssh to the RPi without requiring a password. You

can then confi gure Eclipse under Project ➪ Properties ➪ C/C++ Build ➪ Settings

➪ Build Steps (tab) ➪ Post-build steps, set the Command to be scp RPiTest pi@

erpi.local:/home/pi/testCross/

SECURE COPY SCP AND RSYNC

The secure copy program, scp, provides a mechanism for transferring fi les between

two hosts using the Secure Shell (SSH) protocol. For example, to transfer a fi le

test1.txt from a Linux desktop machine to the RPi, you can use the following (all

commands are executed on the desktop machine):

molloyd@desktop:~/test$ echo "Testing SCP" >> test1.txt

molloyd@desktop:~/test$ scp test1.txt pi@erpi.local:/tmp

test1.txt 100% 12 0.0KB/s 00:00

Continues

mailto:pi@erpi.local
mailto:pi@erpi.local
mailto:pi@erpi.local:/tmp

288 Part II ■ Interfacing, Controlling, and Communicating

c07.indd 08:45:27:PM 05/12/2016 Page 288

SECURE COPY SCP AND RSYNC continued

To copy a fi le from the RPi back to the Linux desktop machine, you can use the

following:

molloyd@desktop:~/test$ scp pi@erpi.local:/tmp/test1.txt test2.txt
test1.txt 100% 12 0.0KB/s 00:00
molloyd@desktop:~/test$ more test2.txt
Testing SCP

Use -v to see full, verbose output of the transfer. Using -C will automatically

compress and decompress the fi les to speed up the data transfer. Using -r allows for

the recursive copy of a directory, including all of its fi les and subdirectories. Using

-p will preserve the modifi cation times, access times, and modes of the original fi les.

Therefore, to copy the entire desktop test directory to the RPi /tmp directory, you

could use the following:

molloyd@desktop:~$ scp -Cvrp test pi@erpi.local:/tmp
... Transferred: sent 3664, received 2180 bytes, in 0.1 seconds

Just like scp, the rsync utility can copy fi les; however, it can also be used to syn-

chronize fi les and directories across multiple locations, where only the diff erences are

transferred (delta encoding). For example, to perform the same operation using rsync,

you can use the following:

molloyd@desktop:~$ rsync -avze ssh test pi@erpi.local:/tmp/test
sending incremental file list
test/
test/test1.txt
test/test2.txt
sent 231 bytes received 58 bytes 578.00 bytes/sec
total size is 24 speedup is 0.08

Using -a requests archive mode (like -p for scp), -v requests verbose output, -z

requests the compression of data (like -C for scp), and -e ssh requests rsync to use

the SSH protocol. To test rsync, create an additional fi le in the test directory and per-

form the same command again using the following:

molloyd@desktop:~$ rsync -avze ssh test pi@erpi.local:/tmp/test
sending incremental file list
test/
test/test3.txt
sent 180 bytes received 39 bytes 438.00 bytes/sec
total size is 24 speedup is 0.11

Importantly, you can see that only one fi le has been transferred in this case. The

rsync utility can delete fi les after transfer (using -delete), which you should only use

after performing a dry run (using -dry-run).

mailto:pi@erpi.local:/tmp/test1.txt
mailto:pi@erpi.local:/tmp
mailto:pi@erpi.local:/tmp/test
mailto:pi@erpi.local:/tmp/test

 Chapter 7 ■ Cross-Compilation and the Eclipse IDE 289

c07.indd 08:45:27:PM 05/12/2016 Page 289

Integrating GitHub into Eclipse

A very useful plug-in can be installed into Eclipse that allows for full GitHub

integration, enabling you to link to your own GitHub repositories or to get easy

access to the example code and resources for this book. To install it, open Help

➪ Install New Software, and choose Mars... in the Work with section. Then,

under the tree item Collaboration, choose Eclipse GitHub integration with task

focused interface.

Once this plug-in is installed, you can open Window ➪ Show View ➪ Other ➪

Git, and there are several options, such as Git Interactive Rebase, Git Refl og, Git

Repositories, Git Staging, and Git Tree Compare. If you choose Git Repositories,

select the options Clone a Git repository ➪ GitHub, and you can search for “Derek

Molloy.” You should fi nd the repository derekmolloy/exploringRPi.

If not, you can go back to the Clone URI option and add the repository directly

using git://github.com/DerekMolloy/ExploringRPi.git. You will then have

full access to the source code in this book directly from within the Eclipse IDE,

as captured in Figure 7-6. Because there are so many projects in this repository,

the easiest way to use this code repository is to copy the fi les that you need into

a new project.

Figure 7-6: Eclipse GitHub integration, displaying the exploringRPi repository

Remote Debugging

Remote debugging is the next step in developing a full-featured, cross-

development platform confi guration. Because you are likely planning to

interact with hardware modules that are physically connected to the RPi, it

would be ideal if you could debug your code live on the RPi. Remote debug-

ging with Eclipse enables you to control the execution steps, and even view

debug messages and memory values directly from within Eclipse on your

desktop machine.

A short program in Listing 7-1 is used to test that remote debugging is work-

ing correctly. This program can be used directly within the /chp07/ repository

git://github.com/DerekMolloy/ExploringRPi.git

290 Part II ■ Interfacing, Controlling, and Communicating

c07.indd 08:45:27:PM 05/12/2016 Page 290

directory to check that you have local command-line debugging and remote

debugging working correctly.

Listing 7-1: /chp07/test.cpp

#include<iostream>

using namespace std;

int main(){

 int x = 5;

 x++;

 cout << "The value of x is " << x << endl;

 return 0;

}

COMMAND LINE DEBUGGING

It is possible to use the GNU debugger, gdb directly at the command line. For example, if

you want to debug the code in Listing 7-1 directly on the RPi, you could perform the follow-

ing steps (-g ensures that symbolic debugging information is included in the executable):

pi@erpi ~/exploringrpi/chp07 $ g++ -g test.cpp -o test
pi@erpi ~/exploringrpi/chp07 $ gdb test

This GDB was configured as "arm-linux-gnueabihf" ...
Reading symbols from test...done.
(gdb) break main
Breakpoint 1 at 0x1075c: file test.cpp, line 5.
(gdb) info break
Num Type Disp Enb Address What
1 breakpoint keep y 0x0001075c in main() at test.cpp:5
(gdb) run
Starting program: /home/pi/exploringrpi/chp07/test
Breakpoint 1, main () at test.cpp:5
5 int x = 5;
(gdb) display x
1: x = 0
(gdb) step
6 x++;
1: x = 5
(gdb) step
7 cout << "The value of x is " << x << endl;
1: x = 6
(gdb) continue
Continuing.
The value of x is 6
[Inferior 1 (process 15870) exited normally]

(gdb) quit

The Eclipse IDE executes tools such as gdb from your chosen toolchain and inter-

prets their outputs, providing a fully integrated interactive display.

You need the debug server gdbserver to run on the RPi for the Eclipse desktop

installation to connect to the debugger. This tool is installed by default on the

Raspbian image, but you can install or update it using the following command:

pi@erpi ~ $ sudo apt install gdbserver

 Chapter 7 ■ Cross-Compilation and the Eclipse IDE 291

c07.indd 08:45:27:PM 05/12/2016 Page 291

The gdb server executes on the RPi and is controlled by the Eclipse IDE on the

desktop machine. The built executable is still transferred to the RPi using the RSE

confi guration described earlier.

The Linux desktop machine requires an ARM-compatible debugger that can

connect to the gdb server on RPi. There are two ways to do this: You can install the

GNU multi-architecture debugger, or you can use arm-linux-gnueabihf-gdb from

the Linaro toolchain that is described at the beginning of this chapter. The GNU

multi-architecture debugger can be installed on the desktop machine as follows:

molloyd@desktop:~$ sudo apt install gdb-multiarch

To complete this confi guration, you may need to create a fi le called .gdbinit

in the project folder that defi nes the remote architecture as arm:

molloyd@desktop:~/workspace/RPiTest$ echo "set architecture arm" >> .gdbinit

molloyd@desktop:~/workspace/RPiTest$ more .gdbinit

set architecture arm

Check that your version of gdb-multiarch is not 7.7.x, because there is a known

problem in using it to remotely debug ARM code. If you have diffi culties, use

the Linaro arm-linux-gnueabihf-gdb.

COMMAND LINE REMOTE DEBUGGING

If you are experiencing diffi culties with the Eclipse setup, you can use command-line

remote debugging to familiarize yourself with the underlying tools and to test your

confi guration. The code in Listing 7-1 is once again used for this example. The fi rst

step is to execute the gdb server on the RPi and request that it listens to TCP port (e.g.,

12345), as follows:

pi@erpi ~/exploringrpi/chp07 $ gdbserver --multi localhost:12345

Listening on port 12345

The use of --multi means that the server has not yet started to debug a target

program, and therefore a target must be identifi ed by the desktop machine.

The Linaro debugger can then be used to connect to the gdb server from the desk-

top machine as follows (where -q test requests a quiet mode and for the symbols to

be read from the test binary in the current directory):

molloyd@desktop:~/exploringrpi/chp07$ arm-linux-gnueabihf-gdb -q test
Reading symbols from /home/molloyd/exploringrpi/chp07/test...done.
(gdb) target extended erpi.local:12345
Remote debugging using erpi.local:12345
(gdb) set remote exec-file test
(gdb) break main
Breakpoint 1 at 0x1075c: file test.cpp, line 5.
(gdb) run
Starting program: /home/molloyd/exploringrpi/chp07/test
Breakpoint 1, main () at test.cpp:5
5 int x = 5;
(gdb) display x
1: x = 0
(gdb) step

Continues

292 Part II ■ Interfacing, Controlling, and Communicating

c07.indd 08:45:27:PM 05/12/2016 Page 292

COMMAND LINE REMOTE DEBUGGING continued

6 x++;
1: x = 5
(gdb) continue
Continuing.
[Inferior 1 (process 18125) exited normally]

The fi nal output of the gdb server on the RPi is as follows:

pi@erpi ~/exploringrpi/chp07 $ gdbserver --multi localhost:12345
Listening on port 12345
Remote debugging from host 192.168.1.107
Process test created; pid = 18125
The value of x is 6

Child exited with status 0

Just to reiterate, the test program is executed on the RPi, but the debugger is con-

trolled on the desktop machine by passing commands over the network.

Eclipse must be confi gured so that it can connect to the RPi’s gdb server. Go

to Run ➪ Debug Confi gurations ➪ Debugger, and delete any current debug

confi gurations. Select C/C++ Remote Applications on the left side and right-

click it to create a new confi guration. In this example, the confi guration is called

RPiTest, as illustrated in Figure 7-7. The Connection entry can be set to the

Raspberry Pi connection (as described in the Remote System Explorer section),

and you should be able to browse to the remote path (i.e., on the RPi) for the C/

C++ application, as illustrated in the same fi gure.

Figure 7-7: Setting the debug configuration

Change the GDB debugger from gdb to gdb-multiarch or arm-linux-gnue-

abihf-gdb, as illustrated in Figure 7-8. You should also identify the .gdbinit

fi le that was just created. Press the Browse button to the right of “GDB com-

mand fi le:” and locate your workspace directory. You may have to right-click

the File Explorer window and choose Show Hidden Files to fi nd the hidden fi le

.gdbinit. That confi guration fi le can be used to set many more confi guration

options. For example, it can be used to further confi gure the remote server and

to identify different default breakpoints.

 Chapter 7 ■ Cross-Compilation and the Eclipse IDE 293

c07.indd 08:45:27:PM 05/12/2016 Page 293

Figure 7-8: Setting up the remote debugger

Any program arguments can be added to the Arguments tab in Figure 7-8.

Finally, under the Gdbserver Settings tab (see Figure 7-9), set the executable

path and an arbitrary port number for the gdbserver command. This allows

the desktop computer to remotely invoke the gdbserver command on the RPi

and to connect to it over TCP/IP using its port number.

Figure 7-9: Setting the RPi gdb server port

You can enable this debug confi guration to be added to the debugger “bug”

menu on the main window (see Figure 7-11) by using the Common tab. Finally,

you can start debugging by clicking the Debug button on the bottom right of

Figure 7-10.

Figure 7-10: Adding to the “bug” menu

294 Part II ■ Interfacing, Controlling, and Communicating

c07.indd 08:45:27:PM 05/12/2016 Page 294

When prompted, you should accept the change to a Debug Perspective view,

which appears as in Figure 7-11. You can see that the program is currently

halted at a breakpoint on line 15 of the program code. The output is displayed

in the Console window at the bottom, and the Variables window displays that

the current value of x is 6 at this point in the program.

This type of debug view can be invaluable when developing complex applica-

tions, especially when the RPi is connected to electronic circuits and modules.

You can use the Step Over button to step through each line of your code, watch-

ing the variable values, while seeing how the program interacts with physically

connected circuits.

Figure 7-11: The Debug Perspective view

Automatic Documentation (Doxygen)

As your RPi projects grow in capability and complexity, it will become especially

important that your code is self-documenting. If you follow good programming

practice when naming variables and methods, as discussed in Chapter 5, you

will not have to document every single line of code. Rather, you should write

inline documentation comments, using automatic documentation tools like

Doxygen or Javadoc, for every class, method, and state. This will enable other

programmers to have an immediate understanding of what your code does

and how it is structured.

Javadoc is an automatic documentation generator that generates HTML code

directly from Java source code. Likewise, Doxygen is a tool that can be used

 Chapter 7 ■ Cross-Compilation and the Eclipse IDE 295

c07.indd 08:45:27:PM 05/12/2016 Page 295

for generating documentation from annotated C/C++ source fi les in HTML,

LaTeX, and other formats. Doxygen can also generate documentation for the

other programming languages that are discussed in Chapter 5, but the follow-

ing discussion focuses on how it can be used for C++ documentation and how

it can be integrated with the Eclipse IDE. An output example, which documents

the C++ GPIO class from Chapter 6, is displayed in Figure 7-12.

Figure 7-12: Example Doxygen HTML output

First, you need to install Doxygen on the Linux desktop machine using the

following command:

molloyd@desktop:~$ sudo apt install doxygen

Once installed, you can immediately begin generating documentation for

your project. For example, copy the GPIO.h and GPIO.cpp fi les from the chp06/

GPIO/ directory into a temporary directory such as ~/temp and then build the

documentation as follows:

molloyd@desktop:~/temp$ ls

GPIO.cpp GPIO.h

molloyd@desktop:~/temp$ doxygen -g

Configuration file `Doxyfile' created ...

molloyd@desktop:~/temp$ ls

Doxyfile GPIO.cpp GPIO.h

molloyd@desktop:~/temp$ doxygen -w html header.html footer.html stylesheet.css

molloyd@desktop:~/temp$ ls

Doxyfile footer.html GPIO.cpp GPIO.h header.html stylesheet.css

This automatically generates HTML fi les that you can customize for your

project, adding headers, footers, and style sheets to suit your needs. Next, call

the doxygen command on the Doxyfile confi guration:

molloyd@desktop:~/temp$ doxygen Doxyfile

molloyd@desktop:~/temp$ ls

Doxyfile doxygen_sqlite3.db footer.html GPIO.cpp GPIO.h

header.html html latex stylesheet.css

296 Part II ■ Interfacing, Controlling, and Communicating

c07.indd 08:45:27:PM 05/12/2016 Page 296

You can see that there are html and latex folders containing the auto-

matically generated documentation. You can view the output by browsing

(e.g., in Chromium/Iceweasel, type file:// and press Enter in the

address bar) to the ~/temp/html/ directory and opening the index.html

fi le. There is a comprehensive manual on the features of Doxygen at www

.doxygen.org.

Adding Doxygen Support in Eclipse

The documentation that results from the previous steps is reasonably limited.

It is hyperlinked and captures the methods and states of the class, but there is

no deeper description. By integrating Doxygen into Eclipse, you can confi gure

and execute the Doxygen tools directly, and you can also provide inline com-

mentary that is integrated into your generated documentation output. The fi rst

step is to enable Doxygen in the editor. In Eclipse, go to Window ➪ Preferences

➪ C/C++ ➪ Editor. In the window at the bottom, under Workspace default

select Doxygen. Apply the settings, and then in the editor type /** followed by

the Return key above any method, and the IDE will automatically generate a

comment as follows:

/**

 * @param number

 */

GPIO::GPIO(int number) {

You can then add a description of what the method does, as shown in the

following example:

/**

 * Constructor for the General Purpose Input/Output (GPIO) class. It

 * will export the GPIO automatically.

 * @param number The GPIO number for the RPi pin

 */

GPIO::GPIO(int number) {

To complete the installation, you can install the Eclox plug-in for Eclipse by

going to Help ➪ Install New Software, and add a new site http://download

.gna.org/eclox/update/ to install the Eclox plug-in.

After Eclipse restarts, you will see a blue @ symbol in the top bar of Eclipse.

Press this button to add a Doxyfile to your project. You can then open the Doxyfile

to set the Doxygen confi guration for your project, as illustrated in Figure 7-13.

You can then press on the blue @ symbol again to generate the documentation

for your project, whereupon html and latex directories will appear in your

project. You can browse to these directories and open the documentation fi les

directly within Eclipse.

http://download
http://download.gna.org/eclox/update/ to install the Eclox plug-in
http://www.doxygen.org
http://www.doxygen.org

 Chapter 7 ■ Cross-Compilation and the Eclipse IDE 297

c07.indd 08:45:27:PM 05/12/2016 Page 297

Figure 7-13: Doxygen Eclox plug-in running within Eclipse Mars

At this point, you have everything you need to cross-compile applications

for your RPi. The next part of this chapter outlines how you can cross-compile

Linux itself and deploy it to an RPi board.

Building Linux

The Linux kernel is essentially a large C program that forms the central

core of the Linux OS. Together with loadable kernel modules (LKMs), it

is responsible for managing almost everything that occurs on a Linux-

based RPi. The kernel is custom built for each architecture type, which

means that there is a different kernel required for the ARMv7 RPi 2/3 than

other ARMv6 RPi models. The custom-built kernel for ARM devices

utilizes device tree binary (DTB) fi les, which provide a standardized descrip-

tion of the device to reduce the amount of custom code required for each

device model.

The Raspbian image contains a full Linux distribution that includes

a kernel; however, advanced users may want to replace the kernel with a

very recent or user-confi gured kernel. Typically, this involves building

the kernel from source code, which can be performed directly on the RPi,

but it can take quite some time. Alternatively, the cross-compilation tools

that are described in this chapter can be used, which can greatly reduce

compilation time by leveraging the resources of a capable Linux desktop

machine.

The following description is written with the assumption that you have

installed a cross-compilation toolchain, as described at the beginning of this

chapter. The steps involved in this process are constantly undergoing change,

so updates are maintained on the chapter web page at www.exploringrpi

.com/chapter7.

http://www.exploringrpi
http://www.exploringrpi.com/chapter7

298 Part II ■ Interfacing, Controlling, and Communicating

c07.indd 08:45:27:PM 05/12/2016 Page 298

Downloading the Kernel Source

The Raspberry Pi Foundation maintains the code that is required to build the

kernel for the RPi on a GitHub repository. This reduces the complexity of the build

process in comparison to cloning the “vanilla” repository from www.kernel

.org, because the GitHub repository contains helpful confi guration fi les. You can

clone the entire GitHub repository, but you should typically use a shallow clone,
which greatly reduces the download time because the development history is

truncated (~143 MB versus the full repository size of ~1.25 GB):

molloyd@desktop:~$ git clone --depth=1 git://github.com/raspberrypi/linux.git

Cloning into 'linux'...

molloyd@desktop:~$ cd linux/

molloyd@desktop:~/linux$ ls

arch CREDITS drivers include Kbuild lib mm

REPORTING-BUGS security usr block crypto firmware init

Kconfig MAINTAINERS net samples sound virt COPYING

fs ipc kernel Makefile README scripts tools

If you would like to build a different kernel version than the current master

version, you can clone the full repository and check out a particular develop-

ment branch:

molloyd@desktop:~/linux$ git branch -a

* rpi-4.1.y

 remotes/origin/HEAD -> origin/rpi-4.1.y

 remotes/origin/linux_stable

 remotes/origin/master

 remotes/origin/rpi-3.10.y ...

 remotes/origin/rpi-3.18.y ...

molloyd@desktop:~/linux$ git checkout rpi-3.18.y

Branch rpi-3.18.y set up to track remote branch rpi-3.18.y from origin.

Switched to a new branch 'rpi-3.18.y'

molloyd@desktop:~/linux$ git branch -a

* rpi-3.18.y

 rpi-4.1.y ...

If you need to verify the exact version of Linux that you are about to build

(including the sublevel):

molloyd@desktop:~/linux$ git checkout linux_stable

molloyd@desktop:~/linux$ head -3 Makefile

VERSION = 3

PATCHLEVEL = 18

SUBLEVEL = 14

Typically, if you need to check out a different sublevel version, you can use

git tag -l and then perform a checkout of that branch (e.g., git checkout

-b v3.18.12), but the tags in the GitHub repository are not aligned with the

“vanilla” kernel, and you might not be able to check out a desired release.

http://www.kernel
http://www.kernel.org

 Chapter 7 ■ Cross-Compilation and the Eclipse IDE 299

c07.indd 08:45:27:PM 05/12/2016 Page 299

As an alternative to cloning the full repository, you can obtain a full list of

the remote references, and then clone a specifi c branch as follows:

molloyd@desktop:~$ git ls-remote --heads git://github.com/raspberrypi/linux →

.git

51af817611f2c0987030d024f24fc7ea95dd33e6 refs/heads/linux_stable

645fd9b0c0b3c1f79f71f92dac79bd2f87010444 refs/heads/master

1b49b450222df26e4abf7abb6d9302f72b2ed386 refs/heads/rpi-3.10.y

8f768c5f2a3314e4eacce8d667c787f8dadfda74 refs/heads/rpi-3.11.y ...

6db93ee810fe7c58b02f71e76c8efef49e701084 refs/heads/rpi-4.5.y ...

molloyd@desktop:~ $ git clone -b rpi-3.11.y --depth=1 --single-branch →

git://github.com/raspberrypi/linux.git

molloyd@desktop:~ $ cd linux/

molloyd@desktop:~/linux$ git branch -a

* rpi-3.11.y

 remotes/origin/rpi-3.11.y ...

Building the Linux Kernel

The core tools and confi guration fi les that are required to build the kernel should

already be installed on your desktop machine.4 Therefore, to build the kernel,

you begin by choosing your target RPi model:

 ■ For the RPi 2/3 (ARMv7), type the following (from 3.18.y on):

molloyd@desktop:~/linux$ export CC=arm-linux-gnueabihf-

molloyd@desktop:~/linux$ make ARCH=arm CROSS_COMPILE=${CC} →

bcm2709_defconfig

 ■ Or, for other RPi models (ARMv6):

molloyd@desktop:~/linux$ export CC=arm-linux-gnueabihf-

molloyd@desktop:~/linux$ make ARCH=arm CROSS_COMPILE=${CC} →

bcmrpi_defconfig

This step identifi es that you are building for the ARM architecture, and it

identifi es a prefi x for the cross-compilation tools. It results in the creation of a

confi guration fi le (.config) in the current directory.

You can further customize the kernel confi guration by installing the ncurses-

dev package and calling make menuconfig, as follows:

molloyd@desktop:~/linux$ sudo apt install ncurses-dev

molloyd@desktop:~/linux$ make ARCH=arm CROSS_COMPILE=${CC} menuconfig

This step displays the Kernel Confi guration tool, as illustrated in Figure 7-14.

Effectively, this tool enables you to modify the .config fi le in a structured man-

ner, where available options are presented in menu form.

4 You may need to install build-essential, git, ncurses-dev, and crossbuild-essential-armhf.

git://github.com/raspberrypi/linux
git://github.com/raspberrypi/linux.git

300 Part II ■ Interfacing, Controlling, and Communicating

c07.indd 08:45:27:PM 05/12/2016 Page 300

Figure 7-14: The Kernel Configuration tool for Linux 4.0.9

You should browse the confi guration menu to see some entries that may be

of interest in relation to the RPi platform:

 ■ Under System Type, you can see that there are options for the BCM2709

platform. For example under Broadcom BCM2709 Implementations, you

can see that device tree support and GPIO support are enabled by default.

 ■ In the Kernel Features menu, you can see that the number of CPUs is

set at 4 for the RPi 2/3. You can alter the Preemption Model in the same

menu (see Figure 7-15(a)).

 ■ In the Boot options menu, you can see the Default kernel command string,

which begins “console=ttyAMA0, 115200 …” (see the boot log in Chapter 3).

 ■ Under CPU Power Management, you can use the CPU Frequency scal-

ing menu to enable/disable the various governors. You can also change

the default governor from “powersave” to one of the other governors if

you so want.

 ■ In the Floating point emulation menu, you can see that the confi guration

includes Advanced SIMD (NEON) Extension support for the RPi 2/3

platform.

 ■ The Device Drivers menu provides options for confi guring I2C, SPI, USB

devices, and much more.

The confi guration is saved in the .config fi le when you exit this tool. You

are then ready to build the kernel, its associated LKMs, and DTBs. You can do

so by calling this command:

... ~/linux$ make -j 6 ARCH=arm CROSS_COMPILE=${CC} zImage modules dtbs

 Chapter 7 ■ Cross-Compilation and the Eclipse IDE 301

c07.indd 08:45:27:PM 05/12/2016 Page 301

The argument -j 6 enables parallel execution, allowing the make command

to execute several jobs simultaneously. My VM has six CPU threads in this case.

This option dramatically improves compilation time; in fact, it took approxi-

mately 8 minutes to build the kernel on my VM. Note that you might have to

perform a make clean between subsequent kernel builds.

THE FULLY PREEMPTIBLE KERNEL RT PATCH

You can also apply patches to the kernel that you are building. For example, you

can download the PREEMPT_RT patch from www.kernel.org/pub/linux/
kernel/projects/rt/ as a .gz fi le for the exact kernel version that you are

building. Unfortunately, the patch is not available for all kernel versions, so

some research is required to ensure that you choose a kernel for which a patch

has been released. You can open the URL above in a web browser to identify

available options. You can apply the patch to your kernel source as follows:

molloyd@desktop:~/linux$ git checkout rpi-3.18.y
molloyd@desktop:~/linux$ wget https://www.kernel.org/pub/linux/ker →
nel/projects/rt/3.18/older/patch-3.18.16-rt13.patch.gz
molloyd@desktop:~/linux$ gunzip patch-3.18.16-rt13.patch.gz
molloyd@desktop:~/linux$ cat patch-3.18.16-rt13.patch | patch -p1

If the patch does not apply correctly, you can reverse it by using the following:

molloyd@desktop:~/linux$ cat patch-3.18.16-rt13.patch | patch -R -p1

In Figure 7-15(a), the RT patch has been applied, which results in a new option for a

fully preemptible kernel in the menuconfig tool.

(a) (b)

Figure 7-15: (a) The PREEMPT_RT menuconfig option (b) The results histogram of the

cyclictest under load

The patched kernel can be deployed using the steps that follow in this section. On

reboot, uname -a should display a message that includes RT. Figure 7-15(b) illustrates

the cyclictest results histogram of the fully preemptible kernel in comparison to a ker-

nel with no forced preemption. These kernels were tested under load by using the

Continues

http://www.kernel.org/pub/linux
http://www.kernel.org/pub/linux/kernel/projects/rt/

302 Part II ■ Interfacing, Controlling, and Communicating

c07.indd 08:45:27:PM 05/12/2016 Page 302

THE FULLY PREEMPTIBLE KERNEL RT PATCH continued

performance tests from Chapter 5 to create the load. The RT results on the RPi 2 are

as follows:

pi@erpi ~ $ uname -a
Linux erpi 3.18.16-rt13-v7+ #1 SMP PREEMPT RT Aug 6 12:41:42 EDT
2015 armv7l GNU/Linux
pi@erpi ~/rt-tests $ sudo ./cyclictest -t 1 -p 70 -n -i 1000 -l 100000 --smp
policy: fifo: loadavg: 0.87 0.34 0.15 2/175 1150
T: 0 (1238) P:70 I:1000 C: 100000 Min: 8 Act: 13 Avg: 11 Max: 87
T: 1 (1239) P:70 I:1500 C: 66669 Min: 8 Act: 23 Avg: 12 Max: 64
T: 2 (1240) P:70 I:2000 C: 50001 Min: 8 Act: 17 Avg: 12 Max: 48
T: 3 (1241) P:70 I:2500 C: 40001 Min: 8 Act: 15 Avg: 12 Max: 54

The same kernel built with the No Forced Preemption model does not perform as

well when tested under load. The maximum latency is higher, and the average latency

is somewhat higher:

pi@erpi ~/rt-tests $ uname -a
Linux erpi 3.18.16-rt13-v7+ #2 SMP Aug 6 19:14:58 EDT 2015 armv7l GNU/Linux
pi@erpi ~/rt-tests $ sudo ./cyclictest -t 1 -p 70 -n -i 1000 -l 100000 --smp
policy: fifo: loadavg: 0.90 0.40 0.19 4/153 932
T: 0 (874) P:70 I:1000 C: 100000 Min: 7 Act: 11 Avg: 17 Max: 466
T: 1 (875) P:70 I:1500 C: 66668 Min: 8 Act: 12 Avg: 15 Max: 206
T: 2 (876) P:70 I:2000 C: 50001 Min: 7 Act: 13 Avg: 14 Max: 488
T: 3 (877) P:70 I:2500 C: 40000 Min: 7 Act: 11 Avg: 15 Max: 188

The new Linux kernel image appears in the /arch/arm/boot/ directory in

uncompressed form (Image), and in a self-extracting compressed form (zImage).

The latter should be used, as it reduces boot times:5

molloyd@desktop:~/linux/arch/arm/boot$ ls -l *Image

-rwxr-xr-x 1 molloyd molloyd 8743476 Aug 3 09:06 Image

-rwxr-xr-x 1 molloyd molloyd 4000616 Aug 3 09:06 zImage

The new DTB fi les are stored in the dts/ and dts/overlays/ directories, as

follows:

molloyd@desktop:~/linux/arch/arm/boot/dts$ ls -l *.dtb

-rw-r--r-- 1 molloyd molloyd 9900 Aug 2 17:02 bcm2709-rpi-2-b.dtb

molloyd@desktop:~/linux/arch/arm/boot/dts/overlays$ ls *.dtb

ads7846-overlay.dtb iqaudio-dac-overlay.dtb

rpi-proto-overlay.dtb ...

The fi nal build step is to package the LKMs so that they can be deployed to

the RPi. A temporary directory temp_modules/ is used for this task, and you

can view the resulting structure using the tree command:

molloyd@desktop:~/linux$ make ARCH=arm CROSS_COMPILE=arm-linux-gnueabihf- →

INSTALL_MOD_PATH=temp_modules/ modules_install

5 A zImage or bzImage (big zImage) file contains executable decompression code and the
Linux kernel, which is compressed in gzip format by default (see the kernel compression mode
in the kernel configuration tool as illustrated in Figure 7-14).

 Chapter 7 ■ Cross-Compilation and the Eclipse IDE 303

c07.indd 08:45:27:PM 05/12/2016 Page 303

molloyd@desktop:~/linux/temp_modules$ sudo apt install tree

molloyd@desktop:~/linux/temp_modules$ tree . | more

└── lib

 ├── firmware

 │ ├── cpia2

 │ │ └── stv0672_vp4.bin

 ...

 └── modules

 └── 4.0.9-v7+

 ├── build -> /home/molloyd/linux

 ├── kernel

 │ ├── arch

 │ │ └── arm

 │ │ ├── crypto

 │ │ │ ├── aes-arm-bs.ko

 ...

Deploying the Linux Kernel

You can test the new kernel using an existing Raspbian image to which you

can copy the kernel image, DTBs, and the LKMs for the new kernel. You can

do this by mounting the SD card from your offl ine RPi onto your Linux

desktop machine. More information on this approach is available at tiny

.cc/erpi701.

An online approach is used here, where the fi les are copied to a live Raspberry

Pi over the network. Regardless of the approach that you take, you should back

up the live RPi’s existing kernel confi guration (e.g., in /boot/backup/) using

the following steps:

pi@erpi /boot $ sudo mkdir backup

pi@erpi /boot $ sudo cp kernel*.img backup/

pi@erpi /boot $ sudo cp -r overlays backup/

pi@erpi /boot $ sudo cp -a /lib/firmware/ /boot/backup/

Also, if you are replacing a kernel with the exact same version number, you

should also back up its /lib/modules/X.X.X-X directory.

ENABLING SSH ROOT LOGIN WITH RASPBIAN

To transfer fi les to certain directories on the RPi using scp or rsync, you may need to

enable SSH root login. The fi rst step is to enable root login (as described in Chapter 5)

using the following:

pi@erpi ~ $ sudo passwd root
Enter new UNIX password: secretpassword

...

Continues

304 Part II ■ Interfacing, Controlling, and Communicating

c07.indd 08:45:27:PM 05/12/2016 Page 304

ENABLING SSH ROOT LOGIN WITH RASPBIAN continued

Then edit the sshd confi guration fi le (sshd_config) to permit root login by

changing the PermitRootLogin value to yes. Then restart the service:

pi@erpi /etc/ssh $ sudo nano sshd_config
pi@erpi /etc/ssh $ more sshd_config | grep RootLogin
PermitRootLogin yes
pi@erpi /etc/ssh $ sudo systemctl restart sshd

To reverse this confi guration, set the PermitRootLogin value back to with-
out-password and disable root login using sudo passwd -l root.

You may need to enable SSH root login on your RPi to copy the fi les to the

board. Then use scp or rsync to transfer the fi les as follows:

molloyd@desktop:~/linux/arch/arm/boot$ scp zImage root@erpi.local:/boot/ker →

nel7_erpi.img

root@erpi.local's password:

zImage 100% 3907KB 3.8MB/s 00:00

molloyd@desktop:~/linux/arch/arm/boot$ scp dts/*.dtb root@erpi.local:/boot/

molloyd@desktop:~/linux/arch/arm/boot$ scp dts/overlays/*.dtb root@erpi.loc →

al:/boot/overlays/

molloyd@desktop:~/linux/arch/arm/boot$ cd ~/linux/temp_modules/

Unfortunately, the lib/modules/ directory contains symbolic links that can-

not be easily ignored by scp. You can delete them and use scp, or you can use

the rsync command for the last fi le copy step:

molloyd@desktop:~/linux/temp_modules$ rsync -avhe ssh lib/ root@erpi.local:/

The fi les are now in place on the RPi. You should then edit the /boot/config

.txt fi le to select your new kernel (kernel7_erpi.img) rather than overwriting

the current kernel.img or kernel7.img fi les:

pi@erpi /boot $ sudo nano config.txt

pi@erpi /boot $ more config.txt | grep kernel

kernel=kernel7_erpi.img

Finally, you can reboot the RPi and verify the new kernel version:

pi@erpi /boot $ sudo reboot

...

pi@erpi ~ $ uname -a

Linux erpi 4.0.9-v7+ #1 SMP PREEMPT Aug 2 17:06:27 EDT 2015 armv7l GNU/Linux

N O T E The RPi fi rmware is also available on a separate GitHub repository: github

.com/raspberrypi/firmware.git. However, it is a very large repository (4 GB+).

In the repository, you will fi nd the latest prebuilt kernels, versions of the boot fi les (e.g.,

bootcode.bin, start.elf), and the latest VideoCoreIV userspace libraries. The

fi rmware fi les are updated relatively infrequently, and an apt update followed by an

apt upgrade is the easiest way to keep your RPi image and fi rmware up to date.

mailto:root@erpi.local:/boot/ker
mailto:root@erpi.local's
mailto:root@erpi.local:/boot
mailto:root@erpi.loc
mailto:root@erpi.local:

 Chapter 7 ■ Cross-Compilation and the Eclipse IDE 305

c07.indd 08:45:27:PM 05/12/2016 Page 305

Building a Linux Distribution (Advanced)

In the previous section, a new Linux kernel was deployed to an existing Raspbian

image distribution. It is also possible to build a custom Linux distribution for the

RPi using open source projects such as OpenWRT (www.openwrt.org), Buildroot
(buildroot.uclibc.org), and the Yocto Project (www.yoctoproject.org). These

projects aim to create tools, templates and processes to support you in building

custom embedded Linux distributions.

Poky (www.pokylinux.org) is an open source build tool from the Yocto Project

that can be used to build customized Linux images for more complex embed-

ded systems, such as the RPi. The Poky platform builder, which is derived from

OpenEmbedded, can be used to build ready-to-install Linux fi le system images,

by automatically downloading and building all the Linux applications (e.g., SSH

servers, gcc, X11 applications), and confi guring and installing them within a

root fi le system. The alternative approach to using a build system such as Poky

is that you would have to confi gure each Linux application by hand, matching

dependency versions—a diffi cult task that would have to be repeated for each

system type.

Poky uses the BitBake build tool to perform tasks such as downloading, com-

piling and installing software packages and fi le system images. The instructions

as to which tasks BitBake should perform are contained in metadata recipe (.bb)

fi les. There is a full “Poky Handbook” that is co-authored by Richard Purdie of

the Linux Foundation at tiny.cc/erpi702.

Here is a short guide that works through the steps that are currently required

to build a minimal Linux distribution for the RPi. This is intended as a learning

exercise that aims to give you a fl avor of what to expect; there are full books

written on this topic! Depending on the specifi cation of your PC, these steps

can take several hours to complete:

 1. Clone the Poky repository (~113 MB), and within the repository download

the RPi recipes (~350 KB), which are placed in the poky/meta-raspberrypi

directory:

molloyd@desktop:~$ git clone git://git.yoctoproject.org/poky.git
Cloning into 'poky'...

molloyd@desktop:~$ cd poky/
molloyd@desktop:~/poky$ git clone git://git.yoctoproject.org/meta-raspberrypi

Cloning into 'meta-raspberrypi'...

 2. Confi gure the build environment and create the build directory and the

confi guration fi les that you can use to confi gure the build:

molloyd@desktop:~/poky$ source oe-init-build-env erpi
Shell environment set up for builds.

You can now run 'bitbake <target>'

Common targets are: core-image-minimal ...

molloyd@desktop:~/poky/erpi$ cd conf

http://www.openwrt.org
http://www.yoctoproject.org
http://www.pokylinux.org
git://git.yoctoproject.org/poky.git
git://git.yoctoproject.org/meta-raspberrypi
http://www.openwrt.org
http://buildroot.uclibc.org

306 Part II ■ Interfacing, Controlling, and Communicating

c07.indd 08:45:27:PM 05/12/2016 Page 306

molloyd@desktop:~/poky/erpi/conf$ ls

bblayers.conf local.conf templateconf.cfg

 3. Add the meta-raspberrypi recipes directory to the BBLAYERS entry in the

bblayers.conf fi le:

molloyd@desktop:~/poky/erpi/conf$ more bblayers.conf
...

BBLAYERS ?= " \

 /home/molloyd/poky/meta \

 /home/molloyd/poky/meta-yocto \

 /home/molloyd/poky/meta-yocto-bsp \

 /home/molloyd/poky/meta-raspberrypi \

 " ...

 4. You can confi gure the build by adding entries to the confi guration fi les.

Note that the README fi le in the poky/meta-raspberrypi directory contains

a guide to the available RPi options. Edit the local.conf fi le to replace

qemux86 with raspberrypi (or raspberrypi2), enable the camera, and set

the GPU memory size. So, for example:

molloyd@desktop:~/poky/erpi/conf$ more local.conf
...

MACHINE ??= "raspberrypi2"

GPU_MEM = "16"

VIDEO_CAMERA = "1"

...

 5. Set the cross-compiler variables and you are ready to build an RPi image

(use either rpi-hwup-image or rpi-basic-image). The basic image includes

SSH support and so is used here:

molloyd@desktop:~/poky/erpi$ CC=arm-linux-gnueabihf-gcc
molloyd@desktop:~/poky/erpi$ LD=arm-linux-gnueabihf-ld

molloyd@desktop:~/poky/erpi$ bitbake rpi-basic-image

Parsing recipes: 100% |###################################| Time: 00:00:38

Parsing of 904 .bb files complete (0 cached, 904 parsed). 1318 targets, 61

skipped, 0 masked, 0 errors ...

You may have to run this step several times until you have resolved miss-

ing dependencies. For example, I had to install the following:

molloyd@desktop:~/poky/erpi$ sudo apt install diffstat chrpath →
 libsdl-dev

At this point the build should begin; it takes approximately 45 minutes

on a VM that has an allocation of six i7 threads.

 6. You can then write the fi nal image to an SD card using the steps described

in Chapter 2. The SD image fi le is located at

molloyd@desktop:~/poky/erpi/tmp/deploy/images/raspberrypi2$ ls -l →
*.rpi-sdimg
-rw-r--r-- 1 molloyd molloyd 130023424 Aug 8 17:44 rpi-basic-image-

raspberrypi2-20150810205912.rootfs.rpi-sdimg

 Chapter 7 ■ Cross-Compilation and the Eclipse IDE 307

c07.indd 08:45:27:PM 05/12/2016 Page 307

After the RPi has been booted with the new distribution, you can connect

to it using its IP address (see Chapter 2), and you can log in as root with no

password required:

molloyd@desktop:~$ ssh root@192.168.1.116

root@raspberrypi2:~# uname -a

Linux raspberrypi2 3.18.11 #2 SMP PREEMPT Aug 8 8:38:21 EDT 2015 armv7l ...

root@raspberrypi2:~# df -h

Filesystem Size Used Available Use% Mounted on

/dev/root 73.5M 58.3M 11.1M 84% /

devtmpfs 427.6M 0 427.6M 0% /dev

tmpfs 431.8M 156.0K 431.6M 0% /run

tmpfs 431.8M 52.0K 431.7M 0% /var/volatile

The ext4 partition on this minimal image is ~58 MB in size, so you do not have

access to anything like the same range of tools as within the Raspbian image.

Typically, packages are added to the distribution at the build stage, but it is

possible to add a package manager such as deb/apt.6 However, adding typical

package management capabilities to your custom build involves pointing /etc/

apt/sources.list on the RPi at your own web server, which contains packages

that are custom built for your distribution (e.g., from /poky/erpi/tmp/deploy/).

At this stage, you can adjust the confi guration fi les, and BitBake will only

rebuild packages that are affected by your changes. For example, it is possible

to confi gure kernel settings using the menuconfi g tool (as in Figure 7-14) at this

stage and rebuild the SD image within a matter of minutes:

molloyd@desktop:~/poky/erpi$ bitbake virtual/kernel -c menuconfig

molloyd@desktop:~/poky/erpi$ bitbake virtual/kernel -c compile -f

molloyd@desktop:~/poky/erpi$ bitbake virtual/kernel

molloyd@desktop:~/poky/erpi$ bitbake rpi-basic-image

One key strength of the Poky build tool is that there is strong community

support; see pokylinux.org/support/.

Summary

After completing this chapter, you should be able to do the following:

 ■ Install a cross-compilation toolchain on desktop Linux that can be used

to build applications for the RPi using your desktop PC.

 ■ Use a package manager to install multi-architecture third-party libraries

that may be required for cross-compilation.

 ■ Emulate the ARM architecture on the desktop PC using QEMU.

6 Add three line entries for IMAGE_FEATURES += "package-management", +PACKAGE_
CLASSES ?= "package_deb", and CORE_IMAGE_EXTRA_INSTALL += "apt" to the
local.conf file.

mailto:root@192.168.1.116

308 Part II ■ Interfacing, Controlling, and Communicating

c07.indd 08:45:27:PM 05/12/2016 Page 308

 ■ Install and confi gure the Eclipse integrated development environment

(IDE) for cross-compilation to build RPi applications.

 ■ Confi gure Eclipse for remote deployment of applications, remote debug-

ging, GitHub integration, and automated documentation.

 ■ Build a custom Linux kernel and deploy it to the RPi.

Further Reading

The steps in this chapter are prone to changes of the Linux distribution, the

Eclipse version, and the kernel confi guration. If you are experiencing diffi cul-

ties with this confi guration or want to contribute information that will make

it easier for others to do the same tasks that are presented in this chapter, visit

www.exploringrpi.com/chapter7/.

http://www.exploringrpi.com/chapter7

309

c08.indd 08:39:49:PM 05/12/2016 Page 309

This chapter describes bus communication in detail, explaining and comparing

the different bus types that are available on the Raspberry Pi. It describes how

you can confi gure them for use, and how you can communicate with and con-

trol I2C, SPI, and UART devices, using both Linux tools and custom-developed

C/C++ code. Practical examples are provided using different low-cost bus

devices, such as a real-time clock, an accelerometer, a serial shift register with

a seven-segment display, a USB-to-TTL 3.3 V cable, and a GPS receiver. After

reading this chapter, you should have the skills necessary to begin interfacing

almost any type of bus device to the Raspberry Pi.

Equipment Required for This Chapter:

 ■ Raspberry Pi (ideally an RPi 2/3)

 ■ A real-time clock on a breakout board (e.g., the DS3231)

 ■ ADXL345 accelerometer on an I2C/SPI breakout board

 ■ 74HC595 shift register, seven-segment display, and resistors

 ■ A USB-to-TTL 3.3 V cable (see Chapter 1 and Chapter 2)

 ■ A low-cost UART GPS receiver (e.g., the GY-GPS6MV2)

Further details on this equipment and chapter are available at

www.exploringrpi.com/chapter8.

C H A P T E R

8

Interfacing to the

Raspberry Pi Buses

http://www.exploringrpi.com/chapter8

310 Part II ■ Interfacing, Controlling, and Communicating

c08.indd 08:39:49:PM 05/12/2016 Page 310

Introduction to Bus Communication

In Chapter 6, the use of general-purpose input/outputs (GPIOs) is discussed in

detail, which makes it clear how you can connect the RPi to standalone compo-

nents, including one-wire sensors that have custom communications protocols.

This chapter examines more complex communications that can be performed

using the bus interfaces that are available on the RPi. Bus communication is a

mechanism that enables data to be transferred between the high-level compo-

nents of an embedded platform, using standardized communications protocols.

The two most commonly used embedded system buses are available on the RPi,

and they are the subject of this chapter: Inter-Integrated Circuit (I2C) and Serial
Peripheral Interface (SPI). In addition, Universal Asynchronous Receiver/Transmitter

(UART) devices are discussed. These are computer hardware devices that can

be confi gured and used to send and receive serial data. When combined with

appropriate driver interfaces, UARTs can implement standard serial commu-

nication protocols, such as RS-232, RS-422, or RS-485.

Understanding the behavior and use of bus communication protocols and

devices enables the possibility of building advanced RPi electronic systems.

There are a huge number of complex sensors, actuators, input devices, I/O

expanders, and other microcontrollers that conform to these communication

protocols, and the RPi is capable of communicating with them all. Several such

devices are used in Chapter 9 to enhance the interfacing capabilities of the

RPi, and in Chapter 10 to interface the RPi to the physical environment using

sensors and actuators. In addition, Chapter 11 describes how you can use the

popular Arduino microcontroller to build your own advanced bus devices,

which can be interfaced directly to the RPi using these buses.

The topics discussed in this chapter are all demonstrated using practical

examples with devices that were largely chosen based on their wide avail-

ability and low cost. However, the focus of this chapter is on imparting an

understanding of the techniques employed in using the RPi’s buses, rather than

just describing the specifi c bus devices used. To this end, the chapter provides

generic communications code that you can use in order to apply the principles

described to any device of your choosing.

I2C

Inter-Integrated Circuit (IIC or I2C) is a two-wire bus that was designed by Philips

in the 1980s to interface microprocessors or microcontrollers to low-speed

peripheral devices. A master device, such as the RPi, controls the bus, and many

addressable slave devices can be attached to the same two wires. It has remained

 Chapter 8 ■ Interfacing to the Raspberry Pi Buses 311

c08.indd 08:39:49:PM 05/12/2016 Page 311

popular over the years, mainly due to its relative simplicity and breadth of

adoption. It is currently used in smartphones, most microcontrollers, and even

environmental management applications in large-scale server farms. Here are

some general features of the I2C bus:

 ■ Only two signal lines are required for communication, the Serial Data

(SDA) line for the bidirectional transmission of data, and the Serial Clock

(SCL) line, which is used to synchronize the data transfer. Because the

bus uses this synchronizing clock signal, the data transfer is said to be

synchronous. The transmission is said to be bidirectional because the same

SDA wire can be used for sending and receiving data.

 ■ Each device on the bus can act as a master or a slave. The master device is

the one that initiates communication and the slave device is the one that

responds. Designated slave devices cannot initiate communication with

the master device.

 ■ Each slave device attached to the bus is pre-assigned a unique address,

which is in either 7-bit or 10-bit form. In the following examples, 7-bit

addressing is used, i.e., 0x00 to 0x7F (27 = 12810 = 0x80).

 ■ It has true multi-master bus facilities, including collision detection and

arbitration if two or more master devices activate at once.

 ■ On-chip noise fi ltering is built in as standard.

I2C Hardware

Figure 8-1(a) illustrates the interconnection of multiple slave devices to the

I2C bus. All output connections to the SDA and SCL lines are in open-drain

confi guration (discussed in Chapter 4), whereby all devices share a common

ground connection. This means that devices with different logic families can

be intermixed on the bus, and that a large number of devices can be added to

a single bus. In theory, up to 128 devices could be attached to a single bus, but

doing so would greatly increase the capacitance of the interconnecting lines.

The bus is designed to work over short distances, as long bus lines are prone

to electrical interference and capacitance effects (e.g., a pair of 22 AWG shielded

wires has a capacitance of about 15 pF/ft).

Transmission line capacitance has a huge impact on data transmission rates. In

Chapter 4 (see Figure 4-11), when a 10 μF capacitor is connected in parallel with

a resistive load and an AC voltage supply is applied, the capacitor had a very

clear smoothing effect on the voltage across the load. This smoothing effect is

unwelcome in the transmission of digital data; for example, if a random binary

signal (0 V–3.3 V) switches at a high frequency, then severe smoothing could

312 Part II ■ Interfacing, Controlling, and Communicating

c08.indd 08:39:49:PM 05/12/2016 Page 312

result in a constant 1.65 V signal, which carries no binary information at all.

Typically, the longer the bus length and the more I2C devices that are attached

to it, the slower the speed of data transmission. There are I2C repeaters available

that act as current amplifi ers to help solve the problems associated with long

lines. Further documentation on the I2C bus is available from NXP directly at

tiny.cc/erpi801.

(a) (b)

Figure 8-1: (a) The I2C bus configuration, and (b) the built-in pull-up resistors on the I2C1 bus

I2C on the RPi

I2C on the RPi is implemented using the Broadcom Serial Controller (BSC),

which supports 7-bit/10-bit addressing and bus frequencies of up to 400 kHz

(see Chapter 3 of the BCM2835 ARM Peripherals document). NXP (formerly

Philips) has newer I2C Fast-mode Plus (Fm+) devices that can communicate at

up to 1 MHz1, but this capability is not available on the RPi.

The I2C bus requires pull-up resistors (RP) on both the SDA and SCL lines, as

illustrated in Figure 8-1(a). These are called termination resistors and they usu-

ally have a value of between 1 kΩ and 10 kΩ. Their role is to pull the SDA and

SCL lines up to VCC when no I2C device is pulling them down to GND. This

pull-up confi guration enables multiple master devices to take control of the bus,

and for the slave device to “stretch” the clock signal (i.e., hold SCL low). Clock
stretching can be used by the slave device to slow down data transfer until it

has fi nished processing and is ready to transmit. These termination resistors

(R23 and R24) are physically attached to the RPi’s I2C1 bus (Pins 3 and 5), as

illustrated in Figure 8-1(b). Termination resistors are often also present on the

1 In 2012 NXP released Ultra Fast-mode (UFm) I2C, which offers a 5 MHz mode. However, it
is quite different from other I2C modes as it is unidirectional and there is only a single master.
It is currently not widely adopted.

 Chapter 8 ■ Interfacing to the Raspberry Pi Buses 313

c08.indd 08:39:49:PM 05/12/2016 Page 313

breakout board that is associated with an I2C device. This can be a useful feature,

but their equivalent parallel resistance should be factored into your design if

you are using several boards on the same bus.

The optional serial resistors (RS) shown in Figure 8-1(a) usually have low val-

ues (e.g., 250 Ω), and can help protect against overcurrent conditions. The I2C

devices are typically attached to the SDA and SCL lines using built-in Schmitt

trigger inputs (see Chapter 4) to reduce the impact of signal noise by building

in a degree of switching hysteresis.

W A R N I N G The I2C bus on the RPi is 3.3 V tolerant; consequently, you may need

logic-level translation circuitry if you want to connect 5 V powered I2C devices to it.

That topic is discussed at the end of this chapter.

Enabling the I2C bus on the RPi

The primary I2C bus is not enabled by default on the RPi. You can enable it

using the raspi-config tool (see Chapter 2) using the “Advanced Options”

menu. However, the change does not always apply correctly and it is useful to

understand the system changes that the tool makes. Essentially, the tool adds an

entry to the /boot/config.txt and the /etc/modules fi les. You can make these

changes manually by adding an i2c_arm entry line to the boot confi guration fi le:

pi@erpi /boot $ more config.txt | grep i2c_arm

dtparam=i2c_arm=on

Save the confi guration fi le and reboot; at this point, the bus is not yet available.

The I2C bus implementation on the RPi uses loadable kernel modules (LKMs).

Therefore, at this point you can manually load the LKMs using the modprobe

command, as follows:

pi@erpi /dev $ sudo modprobe i2c-bcm2708

pi@erpi /dev $ sudo modprobe i2c-dev

pi@erpi /dev $ lsmod | grep i2c

Module Size Used by

i2c_dev 6027 0

i2c_bcm2708 4990 0

These modules are loaded from the modules directory for your kernel version.

For example:

pi@erpi:/lib/modules/4.1.19-v7+/kernel/drivers/i2c $ ls -l i2c-dev.ko

-rw-r--r-- 1 root root 15576 Mar 14 15:39 i2c-dev.ko

A new i2c-1 device is then available in the /dev directory:

pi@erpi /dev $ ls -l i2c*

crw-rw---T 1 root i2c 89, 1 Mar 26 16:33 i2c-1

mailto:pi@erpi:/lib/modules/4.1.19-v7+/kernel/drivers/i2c

314 Part II ■ Interfacing, Controlling, and Communicating

c08.indd 08:39:49:PM 05/12/2016 Page 314

Instead of loading the modules manually, you can edit the /etc/modules fi le

and add the module names to the fi le. The I2C LKMs are then automatically

loaded on boot.

pi@erpi /etc $ cat modules
snd-bcm2835
i2c-bcm2708
i2c-dev

N O T E If you are having diffi culties with these steps, check that any required mod-

ules are not listed in a blacklist fi le within /etc/modprobe.d/, and ensure that you

are using the latest fi rmware by using sudo rpi-update. You should also check the

chapter web page for updates.

Enabling a Second I2C Bus

There is a second I2C bus (see Table 8-1) on recent RPi models that is reserved

for the automatic confi guration of HATs that are attached to the board. If you

are not using HATs, then you can use this bus for your own applications. To

do this, you must edit the kernel command line arguments in /boot/cmdline

.txt to include the text, “bcm2708.vc_i2c_override=1” (the entire command

must be on a single line):

pi@erpi /boot $ sudo nano cmdline.txt

pi@erpi /boot $ more cmdline.txt

dwc_otg.lpm_enable=0 console=ttyAMA0,115200 console=tty1 root=/dev/mmcbl →

k0p2 rootfstype=ext4 elevator=deadline rootwait bcm2708.vc_i2c_override=1

You must also add an entry to /boot/config.txt as follows:

pi@erpi /boot $ tail -1 config.txt

dtparam=i2c_vc=on

After reboot, you should now have two I2C devices.

pi@erpi ~ $ ls /dev/i2c*

/dev/i2c-0 /dev/i2c-1

W A R N I N G The second I2C bus does not have onboard pull-up resistors. You will

have to add them to your circuit or it will not work correctly. Standard resistor values

of 1.8 kΩ, 2.2 kΩ, and 4.7 kΩ should work well in most applications. Use a larger value

if possible, as each time you add a device with on-board pull-up resistors to the bus,

the combined parallel resistance is further reduced and a larger current will fl ow.

 Chapter 8 ■ Interfacing to the Raspberry Pi Buses 315

c08.indd 08:39:49:PM 05/12/2016 Page 315

Table 8-1: I2C Buses on the RPi2

H/W

BUS S/W DEVICE

SDA

PIN

SCL

PIN DESCRIPTION

I2C1 /dev/i2c-1 Pin 3 Pin 5 General I2C bus. This is disabled by

default.

I2C0 /dev/i2c-0 Pin 27 Pin 28 Reserved I2C bus for HAT manage-

ment. This is not available on the

older RPi A/B boards.

CHANGING THE I2C BAUD RATE

The current I2C clock frequency can be determined from the sysfs LKM parameters:

pi@erpi ~ $ sudo cat /sys/module/i2c_bcm2708/parameters/baudrate

100000

On some Linux image releases, it is possible to adjust the baud rate for the I2C buses

on reboot using device tree parameters. You can edit the /boot/config.txt fi le

and add a line that contains dtparam=i2c_baudrate=400000 to change the fre-

quency to 400 kHz. The updated baud rate is set on reboot.

pi@erpi ~ $ sudo cat /sys/module/i2c_bcm2708/parameters/baudrate

400000

On other Linux image releases and confi gurations, it is possible to reload the LKM

with a custom argument at run time, for example:

pi@erpi:~ $ sudo modprobe -r i2c_bcm2708

pi@erpi:~ $ sudo modprobe i2c_bcm2708 baudrate=400000

pi@erpi:~ $ sudo cat /sys/module/i2c_bcm2708/parameters/baudrate

400000

This change can be made to persist on reboot by creating a fi le named i2c_
bcm2708.conf in the /etc/modprobe.d/ directory that contains the following:

pi@erpi:/etc/modprobe.d $ more bcm_2708.conf

options i2c_bcm2708 baudrate=400000

An I2C Test Circuit

There are many I2C devices available that can be connected to the RPi, and

two different types are described in this section—a real-time clock and an

2 There is a third 5 V I2C bus available via the HDMI connector. It is possible to use it from Linux
user space but you must use kernel patches. Also, the primary I2C bus on early RPi versions is
i2c-0, not i2c-1 as on later versions.

mailto:pi@erpi:/etc/modprobe.d

316 Part II ■ Interfacing, Controlling, and Communicating

c08.indd 08:39:49:PM 05/12/2016 Page 316

accelerometer. These particular devices have been chosen because they have

a low cost, are widely available, are useful, and have high-quality datasheets.

A Real-Time Clock

Unlike a desktop computer, the RPi does not have an onboard battery-backed

clock. This means that the clock time is lost on each occasion that the board

reboots; however, a network-attached RPi can retrieve the current time from the

network using the Network Time Protocol (NTP). If you are using an RPi that

cannot remain connected to a stable network, then a battery-backed real-time

clock (RTC) can be a valuable addition.

Devices synchronize time with an RTC only occasionally, so RTCs are typi-

cally attached to an I2C bus. If you are purchasing a module, then you should

ensure that it is supported by an LKM for your kernel. This allows for full OS

integration of the RTC, which is discussed shortly.

pi@erpi /lib/modules/4.1.5-v7+/kernel/drivers/rtc $ ls

rtc-bq32k.ko rtc-ds3234.ko rtc-m41t93.ko rtc-pcf8563.ko rtc-rx8025.ko

rtc-ds1305.ko rtc-em3027.ko rtc-m41t94.ko rtc-pcf8583.ko rtc-rx8581.ko

rtc-ds1307.ko rtc-fm3130.ko rtc-max6900.ko rtc-r9701.ko rtc-s35390a.ko

rtc-ds1374.ko rtc-isl12022.ko rtc-max6902.ko rtc-rs5c348.ko rtc-x1205.ko

rtc-ds1390.ko rtc-isl12057.ko rtc-pcf2123.ko rtc-rs5c372.ko

rtc-ds1672.ko rtc-isl1208.ko rtc-pcf2127.ko rtc-rv3029c2.ko

rtc-ds3232.ko rtc-m41t80.ko rtc-pcf8523.ko rtc-rx4581.ko

The DS3231 has been chosen for this chapter, as it is a high-accuracy RTC that

keeps time to ±63 seconds per year (i.e., ±2ppm3 at 0°C–50°C), and it is widely

available in module form at very low cost (even less than $1). The DS3231 is

compatible with the DS1307 LKM (rtc-ds1307.ko).

The ADXL345 Accelerometer

The Analog Devices ADXL345 is a small, low-cost accelerometer that can measure

angular position with respect to the direction of Earth’s gravitational force. For

example, a single-axis accelerometer at rest on the surface of the Earth, with

the sensitive axis parallel to Earth’s gravity, will measure an acceleration of 1g

(9.81 m/s2) straight upward. While accelerometers provide absolute orientation

measurement, they suffer from high-frequency noise, so they are often paired

with gyroscopes for accurate measurement of change in orientation (e.g., in

game controllers)—a process known as sensor fusion. However, accelerometers

have excellent characteristics for applications in which low-frequency absolute

rotation is to be measured. For simplicity, an accelerometer is used on its own

in the following discussions, because the main aim is to impart an understand-

ing of the I2C bus.

3 Two parts per million evaluates to (31,536,000 seconds per year × ±2)/1,000,000 = ±63.072
seconds.

 Chapter 8 ■ Interfacing to the Raspberry Pi Buses 317

c08.indd 08:39:49:PM 05/12/2016 Page 317

The ADXL345 can be set to measure values with a fi xed 10-bit resolution, or

using a 13-bit resolution at up to ±16 g. The ADXL335 analog accelerometer is

utilized in Chapter 10—it provides voltages on its outputs that are proportional

to its orientation. Digital accelerometers such as the ADXL345 include analog-

to-digital conversion circuitry along with real-time fi ltering capabilities—they

are more complex devices with many confi gurable options, but it is actually

easier to attach them to the RPi than their analog equivalents. The ADXL345

can be interfaced to the RPi using an I2C or SPI bus, which makes it an ideal

sensor to use in this chapter as an example for both bus types. The chapter web

page identifi es suppliers from whom you can purchase this particular sensor.

The I2C slave address is determined by the slave device itself. For example,

the ADXL345 breakout board has the address 0x53, which is determined at

manufacture. Many devices, including the ADXL345, have selection inputs that

allow you to alter this value within a defi ned range4. If the device does not have

address selection inputs, then you cannot connect two of them to the same bus,

as their addresses will confl ict. However, there are I2C multiplexers available

that would enable you to overcome this problem.

The data sheet for the ADXL345 is an important document that should be

read along with this chapter. It is available at www.analog.com/ADXL345 or tiny

.cc/erpi802.

Wiring the Test Circuit

Figure 8-2 illustrates a test circuit that can be used to evaluate the function

of I2C devices that are attached to the RPi. In this circuit an ADXL345 and a

DS3231 breakout board are connected to the same I2C1 bus. The ADXL345 has

the address 0x53 and the DS3231 has the address 0x68, so there will not be a

confl ict. The CS input of the ADXL345 breakout board is set high to place the

module in I2C mode.

Even if you do not have these particular sensors, the following discussion

is fully representative of the steps required to connect any type of I2C sensor

to the RPi.

Figure 8-2: Two I2C devices connected to the I2C1 bus

4 The ADXL345’s alternative address pin ALT is tied to GND on this particular breakout board,
fixing the device at I2C address 0x53, despite the capability of the device itself to be configured
for an alternative address.

http://www.analog.com/ADXL345

318 Part II ■ Interfacing, Controlling, and Communicating

c08.indd 08:39:49:PM 05/12/2016 Page 318

Using Linux I2C-Tools

Linux provides a set of tools, called i2c-tools, for interfacing to I2C bus devices;

it includes a bus probing tool, a chip dumper, and register-level access helpers.

You can install these tools using the following command:

pi@erpi ~ $ sudo apt install i2c-tools

i2cdetect

The fi rst step is to detect that the devices are present on the bus. When both I2C

buses are enabled, the i2cdetect command displays:

pi@erpi ~ $ i2cdetect -l

i2c-0 i2c 3f205000.i2c I2C adapter

i2c-1 i2c 3f804000.i2c I2C adapter

If the circuit is wired as in Figure 8-2 with an ADXL345 and a DS3231 break-

out board attached to the /dev/i2c-1 bus, then it can be probed for connected

devices, which will result in the following output:

pi@erpi ~ $ i2cdetect -y -r 1

 0 1 2 3 4 5 6 7 8 9 a b c d e f

00: -- -- -- -- -- -- -- -- -- -- -- -- --

10: -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- --

20: -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- --

30: -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- --

40: -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- --

50: -- -- -- 53 -- -- -- 57 -- -- -- -- -- -- -- --

60: -- -- -- -- -- -- -- -- 68 -- -- -- -- -- -- --

70: -- -- -- -- -- -- -- --

Hexadecimal addresses 0x03 to 0x77 are displayed by default. Using -a will

display the full range 0x00 to 0x7F. When -- is displayed, the address was

probed but no device responded. If UU is displayed, then probing was skipped,

as the address is already in use by a driver.

The ADXL345 breakout board occupies address 0x53 and the DS3231 ZS-042

breakout board occupies addresses 0x68 and 0x575. Each of the attached break-

out boards defi nes its own addresses, which means that problems will arise if

two slave devices with the same address are connected to a single bus. Many

I2C devices provide an address selection option that often involves setting an

additional input high/low, which is typically implemented on breakout boards

by jumper connections or contact points that can be bridged with solder.

5 There is a 32 Kb AT24C32 Serial EEPROM on the DS3231 ZS-042 breakout board. The A0, A1,
and A2 pins on the breakout board can be used to adjust its address. Also, the SQW pin on the
board can be used for an interrupt alarm signal or a square-wave output (1 Hz, 1 KHz, 4 KHz, or
8 KHz). The 32 K pin provides a 32 KHz clock signal.

 Chapter 8 ■ Interfacing to the Raspberry Pi Buses 319

c08.indd 08:39:49:PM 05/12/2016 Page 319

i2cdump

The i2cdump command can be used to read in the values of the registers of the

device attached to an I2C bus and display them in a hexadecimal block form.

You should not use this command without consulting the datasheet for the slave

device, as in certain modes the i2cdump command will write to the device. The

argument -y ignores a related warning. The devices in Figure 8-2 can be safely

used, and when the address 0x68 is probed on the i2c-1 bus in byte mode (b),

it results in the following output:

pi@erpi ~ $ i2cdump -y 1 0x68 b

 0 1 2 3 4 5 6 7 8 9 a b c d e f 0123456789abcdef

00: 37 45 02 03 03 01 00 00 00 00 01 00 00 00 1c 88 7E????....?...??

10: 00 17 00 XX XX XX XX XX XX XX XX XX XX XX XX XX .?.XXXXXXXXXXXXX

If the device is probed again in quick succession, then a similar output results,

but in this example the register value for address 0x00 changes from 37 to 43.

This value actually represents the number of clock seconds (in decimal form)

on the RTC module. Therefore, six seconds had elapsed between these two calls

to the i2cdump command:

pi@erpi ~ $ i2cdump -y 1 0x68 b

 0 1 2 3 4 5 6 7 8 9 a b c d e f 0123456789abcdef

00: 43 45 02 03 03 01 00 00 00 00 01 00 00 00 1c 88 CE????....?...??

10: 00 17 00 XX XX XX XX XX XX XX XX XX XX XX XX XX .?.XXXXXXXXXXXXX

To understand the meaning of such registers, you need to read the datasheet

for the device. The datasheet for the DS3231 is available at tiny.cc/erpi803

and the most important registers are illustrated in Figure 8-3. In this fi gure, the

hwclock function (see the feature on Utilizing Linux Hardware RTC Devices that

follows) is used to display the time value from the RTC module. The i2cdump

command is called (a few seconds later) to display the registers, allowing their

meaning to be verifi ed. Note that the Irish Standard Time (IST) time zone results

in a shift of plus one hour from UTC/GMT.

Figure 8-3: The DS3231 registers summary

320 Part II ■ Interfacing, Controlling, and Communicating

c08.indd 08:39:49:PM 05/12/2016 Page 320

UTILIZING LINUX HARDWARE RTC DEVICES

Linux supports the use of RTCs directly within the OS using LKMs. If a compatible

LKM is available for your chosen RTC, then the RTC can be used to maintain the cur-

rent time on the RPi without requiring you to write software. The fi rst step is to

associate the I2C device with a compatible LKM. The DS3231 is compatible with the

rtc-ds1307.ko LKM (see tiny.cc/erpi812), and can be associated with the bus

device at address 0x68 using the following:

pi@erpi ~ $ ls /lib/modules/4.1.5-v7+/kernel/drivers/rtc/*1307*

/lib/modules/4.1.5-v7+/kernel/drivers/rtc/rtc-ds1307.ko

pi@erpi ~ $ sudo modprobe rtc-ds1307

pi@erpi ~ $ lsmod|grep rtc

rtc_ds1307 9690 0

pi@erpi ~ $ sudo sh -c "echo ds1307 0x68 > /sys/class/i2c-adapt →

er/i2c-1/new_device"

pi@erpi ~ $ dmesg|tail -1

[23895.440259] i2c i2c-1: new_device: Instantiated device ds1307 at 0x68

pi@erpi ~ $ ls -l /dev/rtc*

crw------- 1 root root 254, 0 Aug 15 01:08 /dev/rtc0

A new RTC device is now present in /dev. Note that a call to i2cdetect now dis-

plays UU instead of 68 for the RTC device, which indicates that probing is skipped for

the address as it is in use by a driver.

pi@erpi ~ $ i2cdetect -y -r 1

 0 1 2 3 4 5 6 7 8 9 a b c d e f ...

60: -- -- -- -- -- -- -- -- UU -- -- -- -- -- -- -- ...

The RTC device also contains a sysfs entry that you can use to display the time, as

follows:

pi@erpi ~ $ cd /sys/class/rtc/rtc0/

pi@erpi /sys/class/rtc/rtc0 $ ls

date dev device hctosys max_user_freq name since_epoch

subsystem time uevent

pi@erpi /sys/class/rtc/rtc0 $ cat time

01:12:01

If necessary, you can delete the device using sysfs:

pi@erpi /sys/class/i2c-adapter/i2c-1 $ sudo sh -c "echo 0x68 > →

delete_device"

pi@erpi /sys/class/i2c-adapter/i2c-1 $ ls

delete_device device i2c-dev name new_device of_node subsystem uevent

pi@erpi /sys/class/i2c-adapter/i2c-1 $ ls /dev/rtc*

ls: cannot access /dev/rtc*: No such file or directory

 Chapter 8 ■ Interfacing to the Raspberry Pi Buses 321

c08.indd 08:39:49:PM 05/12/2016 Page 321

The hwclock utility can be used to read (-r) time from or write (-w) time to the

RTC device. It can also use the RTC to set (-s) the system clock. For example:

pi@erpi ~ $ date

Sat 15 Aug 01:10:50 GMT 2015

pi@erpi ~ $ sudo hwclock -r

Mon 03 Jan 2000 09:11:53 UTC -0.845753 seconds

pi@erpi ~ $ sudo hwclock -w

pi@erpi ~ $ sudo hwclock -r

Sat 15 Aug 2015 01:11:24 UTC -0.113358 seconds

pi@erpi ~ $ sudo hwclock --set --date="2000-01-01 00:00:00"

pi@erpi ~ $ sudo hwclock -r

Sat 01 Jan 2000 00:00:04 UTC -0.238222 seconds

pi@erpi ~ $ sudo hwclock -s

pi@erpi ~ $ date

Sat 1 Jan 00:02:38 GMT 2000

You can automate the process of using the RTC to set the system time on boot, by

writing a systemd service and adding the LKM to the /etc/modules fi le. An example

systemd service fi le is listed in the following code and in the directory chp08/i2c/
systemd/.

pi@erpi ~ $ tail -1 /etc/modules

rtc-ds1307

pi@erpi ~ $ more /lib/systemd/system/erpi_hwclock.service

[Unit]

Description=ERPI RTC Service

Before=getty.target

[Service]

Type=oneshot

ExecStartPre=/bin/sh -c "/bin/echo ds1307 0x68 > /sys/class/i2c-ada →

pter/i2c-1/new_device"

ExecStart=/sbin/hwclock -s

RemainAfterExit=yes

[Install]

WantedBy=multi-user.target

Next, this custom service must be enabled and the current network time protocol

(NTP) service disabled from starting on boot:

pi@erpi /lib/systemd/system $ sudo systemctl enable erpi_hwclock

pi@erpi /lib/systemd/system $ sudo systemctl disable ntp

pi@erpi /lib/systemd/system $ sudo reboot

Continues

322 Part II ■ Interfacing, Controlling, and Communicating

c08.indd 08:39:49:PM 05/12/2016 Page 322

UTILIZING LINUX HARDWARE RTC DEVICES continued

On reboot you can check the service status, and you should see that the date and

time are set according to the RTC module.

pi@erpi ~ $ sudo systemctl status erpi_hwclock.service

• erpi_hwclock.service - ERPI RTC Service

 Loaded: loaded (/lib/systemd/system/erpi_hwclock.service; enabled)

 Active: active (exited) since Sat 2000-01-01 00:09:30 GMT; 1min 3s ago

 Process: 661 ExecStart=/sbin/hwclock -s (code=exited, status=0/SUCCESS)

...

pi@erpi ~ $ date

Sat 1 Jan 00:10:45 GMT 2000

To return the system to the way it was before this feature discussion, simply disable

the custom RTC service, enable the NTP service, and reboot.

pi@erpi ~ $ sudo systemctl disable erpi_hwclock

pi@erpi ~ $ sudo systemctl enable ntp

pi@erpi ~ $ sudo reboot

i2cget

The i2cget command can be used to read the value of a register in order to

test the device, or as an input for Linux shell scripts. For example, to read the

number of seconds on the clock, you can use the following:

pi@erpi ~ $ i2cget -y 1 0x68 0x00

0x30

The Analog Discovery digital Logic Analyzer functionality can be used to

analyze the physical I2C bus in order to view the interaction of the SDA and

SCL signals as data is written to and read from the I2C bus. The Logic Analyzer

functionality has interpreters for I2C buses, SPI buses, and UART communica-

tion, which can display the numerical equivalent values of the serial data carried

on the bus. Figure 8-4 captures the signal transitions of the i2cget command

used in the preceding example. Here, you can see that the clock is running at

I2C standard data transfer mode (i.e., 100 kHz).

Figure 8-4: Using i2cget to read the number of seconds on the RTC from register 0x00

 Chapter 8 ■ Interfacing to the Raspberry Pi Buses 323

c08.indd 08:39:49:PM 05/12/2016 Page 323

W A R N I N G A Logic Analyzer is used throughout this chapter to gain a deeper

understanding of communication over I2C, SPI, and serial connections. Remember that

you should use a common ground connection for the Logic Analyzer and the RPi in all

cases. It is easy to forget to do this but it can result in inconsistent readings, which may

cause hours of frustration and confusion!

The ADXL345 accelerometer can be accessed in the same way as the RTC

module. Figure 8-5 illustrates the important registers that are utilized in this

chapter. To test that the ADXL345 is correctly connected to the bus, read the

DEVID of the attached device, which should be returned as 0xE5:

pi@erpi ~ $ i2cget -y 1 0x53 0x00

0xe5

You can see that the fi rst value at address 0x00 is 0xE5, and this value corresponds

to the DEVID entry in Figure 8-5—successful communication has been verifi ed.

Figure 8-5: Important ADXL345 registers

i2cset

As previously stated, the datasheet for the ADXL345 from Analog Devices is

available at www.analog.com/ADXL345. It is a comprehensive and well-written

datasheet that details every feature of the device. In fact, the real challenge in

working with new bus devices is in decoding the datasheet and the intricacies

of the device’s behavior. The ADXL345 has 30 public registers and Figure 8-5

illustrates those that are accessed in this chapter. Other registers enable you to

set power save inactivity periods, orientation offsets, and interrupt settings for

free-fall, tap, and double-tap detection.

http://www.analog.com/ADXL345

324 Part II ■ Interfacing, Controlling, and Communicating

c08.indd 08:39:49:PM 05/12/2016 Page 324

The x-, y-, and z-axis acceleration values are stored using a 10-bit or 13-bit

resolution; therefore, two bytes are required for each reading. Also, the data is in

16-bit two’s complement form (see Chapter 4). To sample at 13 bits, the ADXL345

must be set to the ±16 g range. Figure 8-6 (based on the ADXL345 datasheet)

describes the signal sequences required to read and write to the device. For

example, to write a single byte to a device register, the master/slave access pat-

tern in the fi rst row is used as follows:

 1. The master sends a start bit (i.e., it pulls SDA low, while SCL is high).

 2. While the clock toggles, the 7-bit slave address is transmitted one bit at a

time.

 3. A read bit (1) or write bit (0) is sent, depending on whether the master

wants to read or write to/from a slave register.

 4. The slave responds with an acknowledge bit (ACK = 0).

 5. In write mode, the master sends a byte of data one bit at a time, after

which the slave sends back an ACK bit. To write to a register, the register

address is sent, followed by the data value to be written.

 6. Finally, to conclude communication, the master sends a stop bit (i.e., it

allows SDA to fl oat high, while SCL is high).

The i2cset command can be used to set a register. This is required, for

example, to take the ADXL345 out of power-saving mode, by writing 0x08 to the

POWER_CTL register, which is at 0x2D. The value is written and then confi rmed

as follows:

pi@erpi ~ $ i2cset -y 1 0x53 0x2D 0x08

pi@erpi ~ $ i2cget -y 1 0x53 0x2D

0x08

The call to i2cset and i2cget invokes the handshaking sequences that are

described in the ADXL345 datasheet and illustrated in Figure 8-6, which also

identifi es these numbered steps.

Figure 8-6: Capture and timings required for communication with the ADXL345 device

 Chapter 8 ■ Interfacing to the Raspberry Pi Buses 325

c08.indd 08:39:49:PM 05/12/2016 Page 325

When the i2cdump command is subsequently used, the registers 0x32 through

0x37 (as identifi ed in Figure 8-5) display the acceleration values, which change as

the sensor is physically rotated and the i2cdump command is repeatedly called.

The next step is to write program code that can interpret the values contained

in the DS3231 and the ADXL345 registers.

I2C Communication in C

The fi rst C program example, in Listing 8-1, reads in all of the DS3231 RTC reg-

isters and displays the current time and temperature. The time is contained in

binary coded decimal (BCD) form in registers 0x00 (seconds), 0x01 (minutes),

and 0x02 (hours). The temperature is in hexadecimal form in registers 0x11

(whole number temperature) and in the two most-signifi cant bits of 0x12 (the

fractional part—i.e., 002=0, 012=¼, 102=½, and 112=¾).

This is a useful fi rst example because it is self-contained, will work on all

generic embedded Linux platforms, and can be adapted for other I2C devices.

Listing 8-1: exploringrpi/chp08/i2c/test/testDS3231.c

#include<stdio.h>

#include<fcntl.h>

#include<sys/ioctl.h>

#include<linux/i2c.h>

#include<linux/i2c-dev.h>

#define BUFFER_SIZE 19 //0x00 to 0x13

// the time is in the registers in encoded decimal form

int bcdToDec(char b) { return (b/16)*10 + (b%16); }

int main(){

 int file;

 printf("Starting the DS3231 test application\n");

 if((file=open("/dev/i2c-1", O_RDWR)) < 0){

 perror("failed to open the bus\n");

 return 1;

 }

 if(ioctl(file, I2C_SLAVE, 0x68) < 0){

 perror("Failed to connect to the sensor\n");

 return 1;

 }

 char writeBuffer[1] = {0x00};

 if(write(file, writeBuffer, 1)!=1){

 perror("Failed to reset the read address\n");

 return 1;

 }

 char buf[BUFFER_SIZE];

 if(read(file, buf, BUFFER_SIZE)!=BUFFER_SIZE){

 perror("Failed to read in the buffer\n");

 return 1;

 }

 printf("The RTC time is %02d:%02d:%02d\n", bcdToDec(buf[2]),

326 Part II ■ Interfacing, Controlling, and Communicating

c08.indd 08:39:49:PM 05/12/2016 Page 326

 bcdToDec(buf[1]), bcdToDec(buf[0]));

 // note that 0x11 = 17 decimal and 0x12 = 18 decimal

 float temperature = buf[0x11] + ((buf[0x12]>>6)*0.25);

 printf("The temperature is %f°C\n", temperature);

 close(file);

 return 0;

}

The code can be built and executed as follows:

pi@erpi ~/exploringrpi/chp08/i2c/test $ gcc testDS3231.c -o testDS3231

pi@erpi ~/exploringrpi/chp08/i2c/test $./testDS3231

Starting the DS3231 test application

The RTC time is 11:55:59

The temperature is 25.25°C

The temperature functionality is used to improve this RTC’s accuracy by

modeling the impact of environmental temperature on time keeping—it is

updated every 64 seconds and it is only accurate to ±3°C.

The ADXL345 digital accelerometer measures acceleration in three axes using

analog sensors, which are internally sampled and fi ltered according to the set-

tings that are placed in its registers. The acceleration values are then available

for you to read from these registers. Therefore, the sensor performs timing-

critical signal processing that would otherwise have to be performed by the

RPi. However, further numerical processing is still required in converting

the 16-bit two’s complement values stored in its registers into values that describe

angular pitch and roll. As such, C/C++ is a good choice for this type of numeri-

cal processing.

To display all the registers and to process the accelerometer values, a new

program (chp08/i2c/test/ADXL345.cpp) is written that breaks the calls into

functions, such as the readRegisters() function:

int readRegisters(int file){ // read all 64(0x40) registers to a buffer

 writeRegister(file, 0x00, 0x00); // set address to 0x00 for block read

 if(read(file, dataBuffer, BUFFER_SIZE)!=BUFFER_SIZE){

 cout << "Failed to read in the full buffer." << endl;

 return 1;

 }

 if(dataBuffer[DEVID]!=0xE5){

 cout << "Problem detected! Device ID is wrong" << endl;

 return 1;

 }

 return 0;

}

This code writes the address 0x00 to the device, causing it to send back the

full 64 (0x40) registers (BUFFER_SIZE). In order to process the two raw 8-bit

acceleration registers, code to combine two bytes into a single 16-bit value is

written as follows:

short combineValues(unsigned char upper, unsigned char lower){

 //shift the MSB left by 8 bits and OR with the LSB

 return ((short)upper<<8)|(short)lower;

}

 Chapter 8 ■ Interfacing to the Raspberry Pi Buses 327

c08.indd 08:39:49:PM 05/12/2016 Page 327

The types of the data are vital in this function, as the register data is returned

in two’s complement form. If an int type (of size 32 bits, int32_t) were used

instead of short 16-bit integral data (int16_t), then the sign bit would be located

in the incorrect bit position (i.e., not at the MSB, bit 31). This function shifts the

upper byte left (multiply) by eight places (equivalent to a multiplication by 28 =

256) and ORs the result with the lower byte, which replaces the lower byte with

eight zeroes that are introduced by the shift. This results in a 16-bit signed value

(int16_t) that has been created from two separate 8-bit values (uint8_t). When

executed, the ADXL345.cpp application will give the following output, with the

program updating the acceleration data on the same terminal shell line:

pi@erpi ~/exploringrpi/chp08/i2c/test $./ADXL345

Starting the ADXL345 sensor application

The Device ID is: e5

The POWER_CTL mode is: 08

The DATA_FORMAT is: 00

X=11 Y=2 Z=233 sample=22

Additional code is required to convert these values into pitch and roll form.

This is added to the C++ class in the next section. For your information, the Logic

Analyzer indicates that it takes 4.19 ms to read in the full set of 64 registers at

a bus speed of 100 kHz.

I2C AND WIRINGPi

The wiringPi library that is installed in Chapter 6 has a library of C functions for inter-

acting with I2C bus devices. This short code example reads the fi rst three registers

from the DS3231 RTC and displays the current time:

pi@erpi ~/exploringrpi/chp08/i2c/wiringPi $ more DS3231.c

#include<wiringPiI2C.h>

#include<stdio.h>

int main(){

 int fd = wiringPiI2CSetup(0x68);

 int secs = wiringPiI2CReadReg8(fd, 0x00);

 int mins = wiringPiI2CReadReg8(fd, 0x01);

 int hours = wiringPiI2CReadReg8(fd, 0x02);

 printf("The RTC time is %2d:%02d:%02d\n", hours, mins, secs);

 return 0;

}

pi@erpi ~/exploringrpi/chp08/i2c/wiringPi $ gcc DS3231.c -o rtc -lwiringPi

pi@erpi ~/exploringrpi/chp08/i2c/wiringPi $./rtc

The RTC time is 10:08:83

There is more information on this library at tiny.cc/erpi804. Be aware that this

library is written specifi cally for the RPi platform; it will not work on other embedded

Linux devices that do not contain the same SoC.

328 Part II ■ Interfacing, Controlling, and Communicating

c08.indd 08:39:49:PM 05/12/2016 Page 328

Wrapping I2C Devices with C++ Classes

Object-oriented programming is described in Chapter 5 as a suitable framework

for developing code for embedded systems. A specifi c C++ class can be written

to wrap the functionality of the ADXL345 accelerometer; because it is likely that

you will need to write code to control several different types of I2C devices, it

would be useful if the general I2C code could be extracted and placed in a parent

class. To this end, a class has been written for this chapter called I2CDevice that

captures the general functionality you would associate with an I2C bus device.

You can extend this code to control any type of I2C device. It can be found in

the I2CDevice.cpp and I2CDevice.h fi les in the chp08/i2c/cpp/ directory. The

class has the structure described in Listing 8-2.

Listing 8-2: /exploringrpi/chp08/i2c/cpp/I2CDevice.h

class I2CDevice {

private:

 unsigned int bus, device;

 int file;

public:

 I2CDevice(unsigned int bus, unsigned int device);

 virtual int open();

 virtual int write(unsigned char value);

 virtual unsigned char readRegister(unsigned int registerAddress);

 virtual unsigned char* readRegisters(unsigned int number,

 unsigned int fromAddress=0);

 virtual int writeRegister(unsigned int registerAddress, unsigned char value);

 virtual void debugDumpRegisters(unsigned int number);

 virtual void close();

 virtual ~I2CDevice();

};

The implementation code is available in the chp08/i2c/cpp/ directory. This

class can be extended to control any type of I2C device, and in this case it is

used as the parent of a specifi c device implementation class called ADXL345.

Therefore, you can say that ADXL345 is an I2CDevice. This inheritance relation-

ship means that any methods available in the I2CDevice class are now available

in the ADXL345 class in Listing 8-3 (e.g., readRegister()).

Listing 8-3: /exploringrpi/chp08/i2c/cpp/ADXL345.h

class ADXL345:protected I2CDevice{

 // protected inheritance means that the public I2C methods are no

 // longer publicly accessible by an object of the ADXL345 class

public:

 Chapter 8 ■ Interfacing to the Raspberry Pi Buses 329

c08.indd 08:39:49:PM 05/12/2016 Page 329

 enum RANGE { // enumerations are used to limit the options

 PLUSMINUS_2_G = 0,

 PLUSMINUS_4_G = 1,

 PLUSMINUS_8_G = 2,

 PLUSMINUS_16_G = 3

 };

 enum RESOLUTION { NORMAL = 0, HIGH = 1 };

private:

 unsigned int I2CBus, I2CAddress;

 unsigned char *registers;

 ADXL345::RANGE range;

 ADXL345::RESOLUTION resolution;

 short accelerationX, accelerationY, accelerationZ;

 float pitch, roll; // in degrees

 short combineRegisters(unsigned char msb, unsigned char lsb);

 void calculatePitchAndRoll();

 virtual int updateRegisters();

public:

 ADXL345(unsigned int I2CBus, unsigned int I2CAddress=0x53);

 virtual int readSensorState();

 virtual void setRange(ADXL345::RANGE range);

 virtual ADXL345::RANGE getRange() { return this->range; }

 virtual void setResolution(ADXL345::RESOLUTION resolution);

 virtual ADXL345::RESOLUTION getResolution() {return this->resolution;}

 virtual short getAccelerationX() { return accelerationX; }

 virtual short getAccelerationY() { return accelerationY; }

 virtual short getAccelerationZ() { return accelerationZ; }

 virtual float getPitch() { return pitch; }

 virtual float getRoll() { return roll; }

 virtual void displayPitchAndRoll(int iterations = 600);

 virtual ~ADXL345();

};

The enumerations are used to constrain the range and resolution selections

to contain only valid options. A short example (application.cpp) can be used to

test this structure, as follows:

int main(){

 ADXL345 sensor(1,0x53); // sensor is on bus 1 at the address 0x53

 sensor.setResolution(ADXL345::NORMAL); //using 10-bit resolution

 sensor.setRange(ADXL345::PLUSMINUS_4_G); //range is +/-4g

 sensor.displayPitchAndRoll(); // put the sensor in display mode

 return 0;

}

330 Part II ■ Interfacing, Controlling, and Communicating

c08.indd 08:39:49:PM 05/12/2016 Page 330

This code can be built and executed as follows, where the pitch and roll are

angular values that each vary between ±90º:

/chp08/i2c/cpp $ g++ application.cpp I2CDevice.cpp ADXL345.cpp -o ADXL345
/chp08/i2c/cpp $./ADXL345
Pitch:2.48021 Roll:-4.96507

You can use this approach to build wrapper classes for any type of I2C sensor

on any type of embedded Linux device.

SPI

The Serial Peripheral Interface (SPI) bus is a fast, full-duplex synchronous serial data

link that enables devices such as the RPi to communicate with other devices over

short distances. Therefore, like I2C the SPI bus is synchronous, but unlike the I2C

bus the SPI bus is full duplex. This means that it can transmit and receive data at

the same time, by using separate lines for both sending data and receiving data.

In this section, the SPI bus is introduced, and two separate applications are

developed. The fi rst uses the SPI bus to drive a seven-segment LED display using

the ubiquitous 74HC595 8-bit shift register. The second application interfaces

to the ADXL345 accelerometer again, this time using its SPI bus instead of the

I2C bus used previously.

SPI Hardware

SPI communication takes place between a single master device and one or more

slave devices. Figure 8-7(a) illustrates a single slave example, where four signal

lines are connected between the master and slave devices. To communicate with

the slave device, the following steps take place:

 1. The SPI master defi nes the clock frequency at which to synchronize the

data communication channels.

 2. The SPI master pulls the chip select (CS) line low, which activates the client

device—it is therefore said to be active low. This line is also known as slave
select (SS).

 3. After a short delay, the SPI master issues clock cycles, sending data out

on the master out - slave in (MOSI) line and receiving data on the master in
- slave out (MISO) line. The SPI slave device reads data from the MOSI line

and transmits data on the MISO line. One bit is sent and one bit is received

on each clock cycle. The data is usually sent in 1-byte (8-bit) chunks.

 4. When complete, the SPI master stops sending a clock signal and then pulls

the CS line high, deactivating the SPI slave device.

Unlike I2C, the SPI bus does not require pull-up resistors on the communica-

tion lines, so connections are very straightforward. A summary comparison of

I2C versus SPI is provided in Table 8-2.

 Chapter 8 ■ Interfacing to the Raspberry Pi Buses 331

c08.indd 08:39:49:PM 05/12/2016 Page 331

Table 8-2: Comparison of I2C versus SPI on the RPi

I2C SPI

Connectivity Two wires, to which up to 128

addressable devices can be

attached.

Typically four wires, and requires

additional logic for more than one

slave device.

Data rate I2C fast mode is 400 kHz. It uses

half-duplex communication.

Faster performance (~32 MHz) on the

RPi. It uses full duplex

(except the three-wire variant).

Hardware Pull-up resistors required. No pull-up resistors required.

RPi support Fully supported with two exter-

nal buses (plus one HDMI).

Fully supported with one bus.6 There

are two slave selection pins on all

boards.

Features Can have multiple masters.

Slaves have addresses, acknowl-

edge transfer, and can control

the fl ow of data.

Simple and fast, but only one master

device, no addressing, and no slave

control of data fl ow.

Application Intermittently accessed devices,

e.g., RTCs, EEPROMs.

For devices that provide data

streams, e.g., ADCs.

(a) (b)

Figure 8-7: (a) Using SPI to connect to one slave device; and (b) testing SPI using a loopback

configuration

The SPI bus operates using one of four different modes, which are chosen

according to the specifi cation defi ned in the SPI device’s datasheet. Data is syn-

chronized using the clock signal, and one of the SPI communication modes listed

in Table 8-3 is set to describe how the synchronization is performed. The clock
polarity defi nes whether the clock is low or high when it is idle (i.e., when CS is

6 There is an auxiliary SPI bus on the RPi (B+, A+, 2, and 3), but it does not currently have Linux
kernel support.

332 Part II ■ Interfacing, Controlling, and Communicating

c08.indd 08:39:49:PM 05/12/2016 Page 332

high). The clock phase defi nes whether the data on the MOSI and MISO lines is

captured on the rising edge or falling edge of the clock signal. When a clock’s

polarity is 1, the clock signal is equivalent to an inverted version of the same

signal with a polarity of 0. Therefore, a rising edge on one form of clock signal

polarity is the equivalent of a falling edge on the other. You need to examine the

datasheet for the slave device in order to determine the correct SPI mode to use.

Table 8-3: SPI Communication Modes

MODE

CLOCK POLARITY

CPOL CLOCK PHASE CPHA

0 0 (low at idle) 0 (data captured on the rising edge of the clock signal)

1 0 (low at idle) 1 (data captured on the falling edge of the clock signal)

2 1 (high at idle) 0 (data captured on the falling edge of the clock signal)

3 1 (high at idle) 1 (data captured on the rising edge of the clock signal)

The SPI protocol itself does not defi ne a maximum data rate, fl ow control, or

communication acknowledgment. Therefore, implementations vary from device

to device, so it is very important to study the datasheet of each type of SPI slave

device. There are some three-wire SPI variants that use a single bidirectional

MISO/MOSI line instead of two individual lines. For example, the ADXL345

sensor supports I2C, and both four-wire and three-wire SPI communication.

W A R N I N G Do not connect a 5 V-powered SPI slave device to the MISO input on

the RPi. Logic-level translation is discussed at the end of this chapter.

According to Section 10.5 of the BCM2835 ARM Peripherals document, the

SPI CLK register permits the serial clock rate to be set according to SCLK = Core

Clock / CDIV, where the core clock is nominally 250 MHz and the divisor must

be a multiple7 of two. Therefore, a CDIV of 8 results in an SPI clock frequency

of 31.25 MHz.

SPI on the RPi

The GPIO header layout in Figure 6-11 of Chapter 6 identifi es that the SPI bus is

accessible from this header. Figure 8-7(a) illustrates the pins that are used for SPI

on the RPi. The bus is disabled by default on the Raspbian image. To enable the

bus, you must perform similar steps to those described earlier in this chapter

7 The datasheet states that it must be a “power of 2”; however, that appears to be a typographic
error as other rates work correctly, and the datasheet also states that “odd numbers are rounded
down.”

 Chapter 8 ■ Interfacing to the Raspberry Pi Buses 333

c08.indd 08:39:49:PM 05/12/2016 Page 333

for enabling the I2C bus. Add an entry to the /boot/config.txt and to the

/etc/modules fi les as follows:

pi@erpi /boot $ cat config.txt | grep spi

dtparam=spi=on

pi@erpi /etc $ cat modules | grep spi

spi-bcm2708

pi@erpi /etc $ sudo reboot

...
pi@erpi /dev $ ls spi*

spidev0.0 spidev0.1

Despite the fact that there are two entries in /dev, there exists only one SPI

device, spidev0, which has two different enable modes (0 and 1).

Testing the SPI Bus

To test the SPI bus, you can use a program called spidev_test.c that is avail-

able from www.kernel.org. However, the latest version at the time of writing

has added support for dual and quad data-wire SPI transfers, which are not

supported on the RPi. An older version of this code has been placed in /chp08/

spi/spidev_test/ and can be built using the following:

~/exploringrpi/chp08/spi/spidev_test$ gcc spidev_test.c -o spidev_test

Because the pins have been enabled in pull-down mode, the output displayed

by the spidev_test program should be 0x00 when nothing is connected to the

bus and the test program is executed:

pi@erpi ~/exploringrpi/chp08/spi/spidev_test $./spidev_test

spi mode: 0

bits per word: 8

max speed: 500000 Hz (500 KHz)

00 00 00 00 00 00

00 00 00 00 00 00

00 00 00 00 00 00

00 00 00 00 00 00

00 00 00 00 00 00

00 00 00 00 00 00

00 00

Connect the SPI0_MOSI (Pin 19) and SPI0_MISO (Pin 21) pins together, as

shown in Figure 8-7(b). When the test program is executed again, the output

should be as follows:

pi@erpi ~/exploringrpi/chp08/spi/spidev_test $./spidev_test

spi mode: 0

bits per word: 8

max speed: 500000 Hz (500 KHz)

FF FF FF FF FF FF

40 00 00 00 00 95

http://www.kernel.org

334 Part II ■ Interfacing, Controlling, and Communicating

c08.indd 08:39:49:PM 05/12/2016 Page 334

FF FF FF FF FF FF

FF FF FF FF FF FF

FF FF FF FF FF FF

DE AD BE EF BA AD

F0 0D

This is the exact block of data that is defi ned in the tx[] array inside the

spidev_test.c code. Therefore, in this case, the block of data has been success-

fully transmitted from SPI0_MOSI (Pin 19) and received by SPI0_MISO (Pin

21). You can see the same stream of data captured using the Logic Analyzer

in Figure 8-8. The clock frequency of SCLK is 500 kHz. Interestingly, you can

determine a maximum SCLK by increasing the frequency within the spidev_

test.c code until you get an inconsistent block of data. I was able to increase

the frequency to 62 MHz on the RPi 2 (at 1 GHz) with no errors, but it is widely

reported that the maximum practical frequency is ~32 MHz and therefore you

should not exceed that level.

Figure 8-8: The SPI loopback test

A First SPI Application (74HC595)

The fi rst circuit application to test the SPI bus is illustrated in Figure 8-9. It

uses a 74HC595, which is an 8-bit shift register with latched outputs that can

be supplied at 3.3 V logic levels. The 74HC595 can typically be used at frequen-

cies of 20 MHz or greater, depending on the supply voltage VCC. The circuit in

Figure 8-9 uses a seven-segment display and resistors to create a circuit that

can display seven-segment symbols.

Seven-segment displays typically consist of eight LEDs that can be used to

display decimal or hexadecimal numerals with a “decimal” point. They are

available in a range of sizes and colors and are described as being either com-
mon cathode or common anode displays. This means that the cathodes or anodes

of the array of LEDs that make up the display are connected together as on the

top right of Figure 8-9. You should not limit the current passing through

the display by placing a single resistor on the common anode or the common

cathode connection, as the limited current will be shared among the segments

that are lighting. This results in an uneven light level, the intensity of which

 Chapter 8 ■ Interfacing to the Raspberry Pi Buses 335

c08.indd 08:39:49:PM 05/12/2016 Page 335

depends on the number of segments that are lit. Therefore, eight current-limiting

resistors (or a resistor network) are required for each seven-segment display.

It is possible to drive these displays using eight GPIO pins per seven-segment

module, but using serial shift registers and the SPI interface has the advantage

of requiring only three SPI pins, regardless of the number of segments that are

daisy chained together.

Figure 8-9: The 74HC595 seven-segment display SPI example (supports multiple display

modules)

N O T E For a video on serial-to-parallel conversion that explains the concept of out-

put latching by comparing the 74HC164 to the 74HC595, see the chapter web page

www.exploringrpi.com/chapter8.

Wiring the 74HC595 Circuit

The 74HC595 is connected to the RPi using three of the four SPI lines, as a MISO

response from the 74HC595 is not required. In addition to the 5 V and GND

inputs, the SPI connections are as follows:

 ■ SPI0_CLK is connected to the Serial Clock input (Pin 11) of the 74HC595.

This line is used to synchronize the transfer of SPI data on the MOSI line.

 ■ SPI0_MOSI is the MOSI line and is used to transfer the data from the RPi

to the 74HC595 Serial Input (Pin 14). This will send one byte at a time,

which is the full capacity of the 74HC595.

 ■ SPI_CE0_N is connected to the Serial Register Clock input, which is used

to latch the 74HC595 state to the output pins, thus lighting the LEDs.

http://www.exploringrpi.com/chapter8

336 Part II ■ Interfacing, Controlling, and Communicating

c08.indd 08:39:49:PM 05/12/2016 Page 336

As previously discussed, the 3.3 V supply rail on the RPi is capable of delivering

~50 mA. Depending on the specifi cation of the seven-segment display modules,

50 mA is likely insuffi cient to power several modules—remember to allow for

the fact that all LED segments could be on! To avoid the need for an external

power supply, this circuit is powered using the RPi’s 5 V supply. However, this

means that the circuit is now using 5 V logic levels and it would damage your RPi
if you were to connect any of the 74HC595 outputs (e.g., QH’) back to the RPi.

You can safely connect the RPi’s MOSI line directly to the circuit, as a 3.3 V

output can be safely connected to a 5 V input. However, strictly speaking,

3.3 V is slightly below the threshold of 3.5 V (i.e., 30% below 5 V) required for

an input to a 5 V logic-level CMOS IC (see Figure 4-24 in Chapter 4). In practice,

the circuit works fi ne; however, a 74LS595 (at VCC = 5 V) or a 74LVC595 (at VCC =

3.3 V) would be more appropriate, despite their high cost and lack of availability.

The LEDs on the seven-segment display will light according to the byte that

is transferred. For example, sending 0xAA should light every second LED seg-

ment (including the dot) if the setup is working correctly, as 0xAA = 101010102.

This circuit is useful for controlling eight outputs using a single serial data line

and it can be extended to further seven-segment displays by daisy chaining

74HC595 ICs together, as indicated in Figure 8-9.

Once the SPI device is enabled on the RPi, you can write directly to the device

as follows to light most of the LEDs (-n suppresses the newline character, -e

enables escape character interpretation, and \x escapes the subsequent value

as hexadecimal):

pi@erpi /dev $ echo -ne "\xFF" > /dev/spidev0.0

The following will turn most of the LEDs off:

pi@erpi /dev $ echo -ne "\x00" > /dev/spidev0.0

This may not work exactly as expected, as the current SPI communication

mode does not align by default with the operation of the 74HC595, as wired

in Figure 8-9. However, it is a useful test to confi rm that there is some level of

response from the circuit. The transfer mode issue is resolved within the code

example in the next section.

SPI Communication Using C

A C program can be written to control the seven-segment display. Basic open()

and close() operations on the /dev/spidevX.Y devices work, but if you need to

alter the low-level SPI transfer parameters, then a more sophisticated interface

is required.

The following program uses the Linux user space SPI API, which supports

reading and writing to SPI slave devices. It is accessed using Linux ioctl()

requests, which support SPI through the sys/ioctl.h and linux/spi/spidev.h

 Chapter 8 ■ Interfacing to the Raspberry Pi Buses 337

c08.indd 08:39:49:PM 05/12/2016 Page 337

header fi les. A full guide on the use of this API is available at www.kernel.org/

doc/Documentation/spi/.

The program in Listing 8-4 counts in hexadecimal (i.e., 0 to F) on a single

seven-segment display using the encoded value for each digit. For example, 0 is

obtained by lighting only the segments A, B, C, D, E, and F in Figure 8-10—this

value is encoded as 0b00111111 in Listing 8-4, where A is the LSB (on the right)

and H (the dot) is the MSB (on the left) of the encoded value. The transfer()

function is the most important part of the code example, as it transfers each

encoded value to the 74HC595 IC.

Listing 8-4: /exploringrpi/chp08/spi/spi595Example/spi595.c

#include<stdio.h>

#include<fcntl.h>

#include<unistd.h>

#include<sys/ioctl.h>

#include<stdint.h>

#include<linux/spi/spidev.h>

#define SPI_PATH "/dev/spidev0.0"

// The binary data that describes the LED state for each symbol

// A(top) B(top right) C(bottom right) D(bottom)

// E(bottom left) F(top left) G(middle) H(dot)

const unsigned char symbols[16] = { //(msb) HGFEDCBA (lsb)

 0b00111111, 0b00000110, 0b01011011, 0b01001111, // 0123

 0b01100110, 0b01101101, 0b01111101, 0b00000111, // 4567

 0b01111111, 0b01100111, 0b01110111, 0b01111100, // 89Ab

 0b00111001, 0b01011110, 0b01111001, 0b01110001 // CdEF

};

int transfer(int fd, unsigned char send[], unsigned char rec[], int len){

 struct spi_ioc_transfer transfer; // transfer structure

 transfer.tx_buf = (unsigned long) send; // buffer for sending data

 transfer.rx_buf = (unsigned long) rec; // buffer for receiving data

 transfer.len = len; // length of buffer

 transfer.speed_hz = 1000000; // speed in Hz

 transfer.bits_per_word = 8; // bits per word

 transfer.delay_usecs = 0; // delay in us

 // transfer.cs_change = 0; // affects chip select after transfer8

 // transfer.tx_nbits = 0; // no. bits for writing (default 0)

 // transfer.rx_nbits = 0; // no. bits for reading (default 0)

 // transfer.pad = 0; // interbyte delay - check version

 // send the SPI message (all of the above fields, inc. buffers)

 int status = ioctl(fd, SPI_IOC_MESSAGE(1), &transfer);

 if (status < 0) {

8 There is an unusual quirk with the RPi SPI software implementation in that you often have to
explicitly set values for many of the kernel-version-specific fields of the spi_ioc_transfer
struct fields, even if you want to use default values. If you see the error, “Transfer SPI_IOC_MES-
SAGE Failed: Invalid argument,” check the spidev.h for the kernel version that you are using
at lxr.free-electrons.com and explicitly set the default values for each of the fields in
your program code.

http://www.kernel.org
http://www.kernel.org/doc/Documentation/spi/

338 Part II ■ Interfacing, Controlling, and Communicating

c08.indd 08:39:49:PM 05/12/2016 Page 338

 perror("SPI: SPI_IOC_MESSAGE Failed");

 return -1;

 }

 return status;

}

int main(){

 unsigned int fd, i; // file handle and loop counter

 unsigned char null=0x00; // sending only a single char

 uint8_t mode = 3; // SPI mode 3

 // The following calls set up the SPI bus properties

 if ((fd = open(SPI_PATH, O_RDWR))<0) {

 perror("SPI Error: Can't open device.");

 return -1;

 }

 if (ioctl(fd, SPI_IOC_WR_MODE, &mode)==-1) {

 perror("SPI: Can't set SPI mode.");

 return -1;

 }

 if (ioctl(fd, SPI_IOC_RD_MODE, &mode)==-1) {

 perror("SPI: Can't get SPI mode.");

 return -1;

 }

 printf("SPI Mode is: %d\n", mode);

 printf("Counting in hexadecimal from 0 to F now:\n");

 for (i=0; i<=15; i++) {

 // This function can send and receive data, just sending now

 if (transfer(fd, (unsigned char*) &symbols[i], &null, 1)==-1){

 perror("Failed to update the display");

 return -1;

 }

 printf("%4d\r", i); // print the number in the terminal window

 fflush(stdout); // need to flush the output, no \n

 usleep(500000); // sleep for 500ms each loop

 }

 close(fd); // close the file

 return 0;

}

The main() function sets the SPI control parameters. These are ioctl()

requests that allow you to override the device’s current settings for parameters

such as the following, where xx is both RD (read) and RW (write):

 ■ SPI_IOC_xx_MODE: The SPI transfer mode (0–3)

 ■ SPI_IOC_xx_BITS_PER_WORD: The number of bits in each word

 ■ SPI_IOC_xx_LSB_FIRST: 0 is MSB fi rst, 1 is LSB fi rst

 ■ SPI_IOC_xx_MAX_SPEED_HZ: The maximum transfer rate in Hz

 Chapter 8 ■ Interfacing to the Raspberry Pi Buses 339

c08.indd 08:39:49:PM 05/12/2016 Page 339

The current Linux implementation provides for synchronous transfers only.

When executed, this code results in the following output, where the count value

continually increases (0 to F) on the one line of the terminal window:

pi@erpi ~/exploringrpi/chp08/spi/spi595Example $./spi595

SPI Mode is: 3

Counting in hexadecimal from 0 to F now:

 4

At the same time, this code is sending signals to the 74HC595 as captured

using the SPI interpreter of the Logic Analyzer in Figure 8-10, in which the sym-

bol 0 is being displayed by the seven-segment display (i.e., 0b00111111). During

this time period, the CS (SPI_CE0_N) line is pulled low, while the SCLK clock

(SPI0_CLK) that is “high at idle” is toggled by the SPI master after a short delay.

The data is then sent on the SDIO (MOSI) line, MSB fi rst, to the 74HC595, and it

is transferred on the rising edge of the clock signal. This confi rms that the SPI

transfer is taking place in mode 3, as described in Table 8-3.

The total transfer takes less than 18 μs (the data transfer takes ~9 μs). If the

channel were held open, it would be capable of transferring a maximum of

~111 kB/s (~0.9 Mb/s) at a clock rate of 1 MHz.

Figure 8-10: The 74HC595 SPI signal and output

Bidirectional SPI Communication in C/C++

The 74HC595 example only sends data from the RPi to the 74HC595, and as

such is a unidirectional communication example. In this section a bidirectional

communication example is developed that involves using the registers on the

ADXL345 sensor. As discussed previously, the ADXL345 has both an I2C and

an SPI communications interface. This makes it a useful device with which to

examine bidirectional SPI communication, as the register structure is already

described in detail earlier in this chapter.

340 Part II ■ Interfacing, Controlling, and Communicating

c08.indd 08:39:49:PM 05/12/2016 Page 340

N O T E For reference, the main guide for writing user space code for bidirec-

tional SPI communication under Linux is available at www.kernel.org/doc/

Documentation/spi/spidev.

The ADXL345 SPI Interface

SPI is not a formal standard with a standards body controlling its implementa-

tion, and therefore it is vital that you study the datasheet for the device that you

want to attach to the RPi. In particular, the SPI communication timing diagram

should be studied in detail. This is presented for the ADXL345 in Figure 8-11.

U
nd

er
ly

in
g

im
ag

e
co

ur
te

sy
 o

f A
na

lo
g

D
ev

ic
es

, I
nc

.

Figure 8-11: The ADXL345 SPI communication timing chart (from the ADXL345 datasheet)

Note the following very important points, which can be observed directly

from the datasheet fi gure, as summarized in Figure 8-11:

 ■ To write to an address, the fi rst bit on the SDI line must be low. To read

from an address, the fi rst bit on the SDI line must be high.

 ■ The second bit is called MB. From further analysis of the datasheet, this bit

enables multiple byte reading/writing of the registers (i.e., send the fi rst

address and data will be continuously read from that register forward).

http://www.kernel.org/doc
http://www.kernel.org/doc/Documentation/spi/spidev

 Chapter 8 ■ Interfacing to the Raspberry Pi Buses 341

c08.indd 08:39:49:PM 05/12/2016 Page 341

This leaves six bits in the fi rst byte for the address (26 = 6410 = 4016), which

is suffi cient to cover the available registers.

 ■ As shown in the fi gure, the SCLK line is high at rest and data is transferred

on the rising edge of the clock signal. Therefore, the ADXL345 device must

be used in communications mode 3 (refer to Table 8-3).

 ■ When writing (top fi gure), the address (with a leading 0) is written to SDI,

followed by the byte value to be written to the address.

 ■ When reading (bottom fi gure), the address (with a leading 1) is written to

SDI. A second byte is written to SDI and will be ignored. While the second

(ignored) byte is being written to SDI, the response will be returned on

SDO detailing the value stored at the register address.

Connecting the ADXL345 to the RPi

The ADXL345 breakout board can be connected to the SPI bus as illustrated in

Figure 8-12(a), where MOSI on the RPi is connected to SDA and MISO is con-

nected to SDO. The clock lines and the slave select lines are also interconnected.

(a) (b)

Figure 8-12: (a) SPI connection to the ADXL345; and (b) a capture of the communications

required to read register 0x00

You may notice that the value that was sent was 0x80 and not 0x00. This is

because (as detailed in Figure 8-12) the leading bit must be a 1 to read and a 0

to write from/to an address. Sending 0x00 is a write request to address 0x00

(which is not possible), and sending 0x80 (i.e., 10000000 + 00000000) is a request

to read the value at address 0x00. The second bit is 0 in both cases, thus disabling

multiple-byte read functionality for this example.

The code in Listing 8-4 is adapted in /spi/spiADXL345/spiADXL345.c so

that it reads the fi rst register (0x00) of the ADXL345, which should return the

DEVID, as illustrated in Figure 8-5. This value should be E516, which is 22910.

342 Part II ■ Interfacing, Controlling, and Communicating

c08.indd 08:39:49:PM 05/12/2016 Page 342

The maximum recommended SPI clock speed for the ADXL345 is 5 MHz, so

this value is used in the program code.

pi@erpi ~/exploringrpi/chp08/spi/spiADXL345 $ gcc spiADXL345.c -o spiADXL345

pi@erpi ~/exploringrpi/chp08/spi/spiADXL345 $./spiADXL345

SPI mode: 3

Bits per word: 8

Speed: 5000000 Hz

Return value: 229

The Logic Analyzer can be used to capture the bus communication that takes

place when this program is executed, resulting in an output as illustrated in

Figure 8-12(b).

Wrapping SPI Devices with C++ Classes

A C++ class is available in Listing 8-5 that wraps the software interface to the

SPI bus, using the OOP techniques that are described in Chapter 5. This class

is quite similar to the I2CDevice class that is described in Listing 8-2.

Listing 8-5: /chp08/spi/spiADXL345_cpp/SPIDevice.h

class SPIDevice {

public:

 enum SPIMODE{ //!< The SPI Mode

 MODE0 = 0, //!< Low at idle, capture on rising clock edge

 MODE1 = 1, //!< Low at idle, capture on falling clock edge

 MODE2 = 2, //!< High at idle, capture on falling clock edge

 MODE3 = 3 //!< High at idle, capture on rising clock edge

 };

public:

 SPIDevice(unsigned int bus, unsigned int device);

 virtual int open();

 virtual unsigned char readRegister(unsigned int registerAddress);

 virtual unsigned char* readRegisters(unsigned int number,

 unsigned int fromAddress=0);

 virtual int writeRegister(unsigned int registerAddress, unsigned char value);

 virtual void debugDumpRegisters(unsigned int number = 0xff);

 virtual int write(unsigned char value);

 virtual int write(unsigned char value[], int length);

 virtual int setSpeed(uint32_t speed);

 virtual int setMode(SPIDevice::SPIMODE mode);

 virtual int setBitsPerWord(uint8_t bits);

 virtual void close();

 virtual ~SPIDevice();

 virtual int transfer(unsigned char read[], unsigned char write[],

 int length);

private:

 std::string filename; //!< The precise filename for the SPI device

 int file; //!< The file handle to the device

 Chapter 8 ■ Interfacing to the Raspberry Pi Buses 343

c08.indd 08:39:49:PM 05/12/2016 Page 343

 SPIMODE mode; //!< The SPI mode as per the SPIMODE enumeration

 uint8_t bits; //!< The number of bits per word

 uint32_t speed; //!< The speed of transfer in Hz

 uint16_t delay; //!< The transfer delay in usecs

};

The SPI class in Listing 8-5 can be used in a standalone form for any SPI device

type. For example, Listing 8-6 demonstrates how to probe the ADXL345 device.

Listing 8-6: /chp08/spi/spiADXL345_cpp/SPITest.cpp

#include <iostream>

#include <sstream>

#include "SPIDevice.h"

#include "ADXL345.h"

using namespace std;

using namespace exploringRPi;

int main(){

 SPIDevice spi(0,0);

 spi.setSpeed(5000000);

 cout << "The device ID is: " << (int)spi.readRegister(0x00) << endl;

 spi.setMode(SPIDevice::MODE3);

 spi.writeRegister(0x2D, 0x08);

 spi.debugDumpRegisters(0x40);

}

This will give the following output when built and executed (0xE5 = 22910):

.../chp08/spi/spiADXL345_cpp $ g++ SPITest.cpp SPIDevice.cpp -o SPITest

.../chp08/spi/spiADXL345_cpp $./SPITest

The device ID is: 229

SPI Mode: 3

Bits per word: 8

Max speed: 5000000

Dumping Registers for Debug Purposes:

e5 00 00 00 00 00 00 00 00 00 00 00 00 00 00 4a

82 00 30 00 00 00 ff 07 00 00 00 b7 00 00 00 00

00 00 00 00 00 00 00 00 00 00 00 00 0a 08 00 00

02 0b 0a 00 ff ff e9 00 00 00 00 00 00 00 00 00

The same SPIDevice class can be used as the basis for modifying the ADXL345

class in Listing 8-3 to support the SPI bus rather than the I2C bus. Listing 8-7

provides a segment of the class that is complete in the /chp08/spi/spiADXL345_

cpp/ directory.

Listing 8-7: /chp08/spi/spiADXL345_cpp/ADXL345.h (Segment)

class ADXL345{

public:

 enum RANGE { ... };

 enum RESOLUTION { ... };

private:

344 Part II ■ Interfacing, Controlling, and Communicating

c08.indd 08:39:49:PM 05/12/2016 Page 344

 SPIDevice *device;

 unsigned char *registers;

 ...

public:

 ADXL345(SPIDevice *busDevice);

 virtual int readSensorState();

 ...

 virtual void displayPitchAndRoll(int iterations = 600);

 virtual ~ADXL345();

};

The full class from Listing 8-7 can be used to build an example as in Listing

8-8. This example helps demonstrate how an embedded device that is attached

to one of the buses can be wrapped with a high-level OOP class.

Listing 8-8: /chp08/spi/spiADXL345_cpp/testADXL345.cpp

#include <iostream>

#include <sstream>

#include "SPIDevice.h"

#include "ADXL345.h"

using namespace std;

using namespace exploringRPi;

int main(){

 cout << "Starting RPi ADXL345 SPI Test" << endl;

 SPIDevice *spiDevice = new SPIDevice(0,0);

 spiDevice->setSpeed(500000);

 spiDevice->setMode(SPIDevice::MODE3);

 ADXL345 acc(spiDevice);

 acc.displayPitchAndRoll(100);

 cout << "End of RPi ADXL345 SPI Test" << endl;

}

When this program is executed, it displays the current accelerometer pitch

and roll values on a single line of the terminal window:

pi@erpi ~/exploringrpi/chp08/spi/spiADXL345_cpp $./testADXL345

Starting RPi ADXL345 SPI Test

Pitch:2.75709 Roll:79.8124

Three-Wire SPI Communication

The ADXL345 supports a three-wire SPI (half duplex) mode. In this mode the

data is read and transmitted on the same SDIO line. To enable this mode on

the ADXL345, the value 0x40 must be written to the 0x31 (DATA_FORMAT) register

and a 10 kΩ resistor should be placed between SD0 and VCC on the ADXL345.

There is a draft project in place in the chp08/spi/spiADXL345/3-wire directory,

but at the time of writing, there is a lack of support for this mode in current

RPi Linux distributions.

 Chapter 8 ■ Interfacing to the Raspberry Pi Buses 345

c08.indd 08:39:49:PM 05/12/2016 Page 345

SPI AND WIRINGPi

The wiringPi library that is installed in Chapter 6 also has a basic set of C functions for

interacting with SPI bus devices. This short code example reads and displays the full

set of registers from the ADXL345 sensor:

pi@erpi ~/exploringrpi/chp08/spi/wiringPi $ more ADXL345.c

#include<wiringPiSPI.h>

#include<stdio.h>

#include<string.h> // for memset and memmove calls

int main(){

 unsigned char data[0x41]; // a buffer to store the write/read data

 int i; // need 0x41 to read the last value back

 memset(data, 0x00, 0x41); // clear the full memory buffer

 data[0]=0xC0; // continuous read of the data

 wiringPiSPISetupMode(0, 1000000, 3); // SPI channel, speed, mode

 wiringPiSPIDataRW(0, data, 0x40); // write & read all 0x40 registers

 // Shift the data back by one for the ADXL345 (e.g., 0x01->0x00)

 memmove(data, data+1, 0x40);

 printf("The DEVID is %d\n", data[0x00]); // display register 0x00

 printf("The full set of 0x40 registers are:\n");

 for(i=0; i<0x40; i++){ // display all 0x40 registers

 printf("%02X ", data[i]); // display value in hexadecmial

 if(i%16==15) printf("\n"); // place \n after each 15th value

 }

 return 0;

}

.../chp08/spi/wiringPi $ gcc ADXL345.c -o ADXL345 -lwiringPi

.../chp08/spi/wiringPi $./ADXL345

The DEVID is 229

The full set of 0x40 registers are:

E5 00 00 00 00 00 00 00 00 00 00 00 00 00 00 4A

82 00 30 00 00 02 01 3B 00 00 00 B7 00 00 00 00

00 00 00 00 00 00 00 00 00 00 00 00 0A 08 00 00

02 00 0B 00 04 00 ED 00 00 00 00 00 00 00 00 00

A memory shift operation is required in this example because the wiringPiSPI-
DataRW() function performs an SPI write and read in a single call. The response from

the ADXL345 in the example code is currently stored in the array index that follows the

request. For example, if the request to read the device ID (0x80) is stored in data[0],

then the ADXL345’s response to that request (i.e., 0xE5) is stored in data[1]. The

memmove() function shifts all returned values back by one address (e.g., data[1] is

moved to data[0]). There is more information on this library at tiny.cc/erpi806.

346 Part II ■ Interfacing, Controlling, and Communicating

c08.indd 08:39:49:PM 05/12/2016 Page 346

Multiple SPI Slave Devices on the RPi

To this point in the chapter, only one SPI device is attached to the bus, which

is quite a limited bus! The SPI bus can be shared with multiple slave devices,
provided that only one slave device is active when communication takes place.

The RPi Raspbian image has kernel support for two slave selection pins on the

SPI bus: SPI_CE0_N (Pin 24) and SPI_CE1_N (Pin 26). This is the reason for

the two SPI device entries in the /dev directory.

pi@erpi /dev $ ls -l spi*

crw-rw---T 1 root spi 153, 0 Jan 1 1970 spidev0.0

crw-rw---T 1 root spi 153, 1 Jan 1 1970 spidev0.1

The fi rst device spidev0.0 is associated with the SPI_CE0_N (Pin 24) enable

output, and the second device spidev0.1 is associated with the SPI_CE1_N

(Pin 26) enable output. For example, if you want to attach two sensors to the

same bus, you could use the wiring confi guration illustrated in Figure 8-13(a).

Your program code would then open either the spidev0.0 or spidev0.1 device,

depending on which ADXL345 is to be accessed.

(a) (b)

Figure 8-13: (a) Using two ADXL345 accelerometers on a single SPI bus; and (b) control of more

than one slave device using GPIO pins and additional logic

If you need to connect more than two devices to the same bus, then you will

not have the same level of kernel support, but you can introduce GPIOs and

logic gates (or decoders) to build a custom solution. For example, if you want

to allow the Linux SPI interface library code to retain control of the slave selec-

tion functionality, then a wiring confi guration like that in Figure 8-13(b) could

be used. This confi guration uses OR gates and an inverter to ensure that only

one slave device CS input is pulled low at a single time. In Figure 8-13(b), the fi rst

slave device is active when CS = 0 and GPIO = 0, and the second slave device is

active when CS = 0 and GPIO = 1.

 Chapter 8 ■ Interfacing to the Raspberry Pi Buses 347

c08.indd 08:39:49:PM 05/12/2016 Page 347

N O T E It is good practice to place a pull-up resistor on each of the CS lines, as it can

prevent two devices that share the SPI bus from being simultaneously active, should

an unused CS line “fl oat” low. For illustration, you can see two 10 kΩ resistors on the

CS lines in Figure 8-13(a). However, Pin 24 and Pin 26 on the RPi already have internal

pull-up resistors enabled by default, so it is not necessary to add resistors for this

application in the RPi’s default state.

Depending on the particular slave devices being used, the GPIO output

combined with a single inverter may be suffi cient, as you could “permanently”

pull the CS line low on the slave device, ignoring the CS output of the master.

However, this would not work for the 74HC595 example, as the RPi’s CS line is

used to latch the data to the output LEDs.

For more than two slave devices, a 3-to-8 line decoder, such as the 74HC138,

would be a good solution. It has inverted outputs, which means that only one of

its eight outputs is low at a single point in time. This device could be controlled

using three of the RPi’s GPIOs and it could enable one of eight slave devices

(23 = 8). There are also 4-to-16 line decoders with inverting outputs, such as the

74HC4515, which would enable you to control 16 slave devices with only four

GPIOs (24 = 16). For both of these devices, one of the RPi’s CS outputs could be

connected to their active-low E enable input(s).

UART

A Universal Asynchronous Receiver/Transmitter (UART) is a microprocessor periph-

eral device used for the serial transfer of data, one bit at a time, between two

electronic devices. UARTs were originally standalone ICs, but now are often

integrated with the host microprocessor/microcontroller. A UART is not, strictly

speaking, a bus, but its capacity to implement serial data communications over-

laps with similar capacities of the I2C and SPI buses described earlier. A UART

is described as asynchronous because the sender does not have to send a clock

signal to the recipient in order to synchronize the transmission; rather, a com-

munication structure is agreed upon that uses start and stop bits to synchronize

the transmission of data. Because no clock is required, the data is typically sent

using only two signal lines. Just like a regular telephone line, the transmit data
connection (TXD) from one end is connected to the receive data connection (RXD)

on the other end of the connection, and vice versa.

Traditionally, UARTs have been used with level converters/line drivers to imple-

ment interfaces such as RS-232 or RS-485, but for short-distance communications,

348 Part II ■ Interfacing, Controlling, and Communicating

c08.indd 08:39:49:PM 05/12/2016 Page 348

it is possible to use the original logic level for the UART outputs and inputs to

enable two UARTs to communicate with each other. Note that this is a perfectly

possible but nonstandardized use of UARTs.

The number of symbols per second is known as the baud rate or modulation

rate. With certain encoding schemes, a symbol could be used to represent two

bits (i.e., four states, for example, by using quadrature phase-shift keying [QPSK]).

Then the bit rate would be twice the baud rate. However, for a simple bi-level

UART connection, the baud rate is the same as the bit rate.

The transmitter and receiver agree upon a bit rate before communication

begins. The byte rate is somewhat lower than 1/8th of the bit rate, as there are

overhead bits associated with the serial transmission of data. Transmission begins

when the transmitter sends a start bit (logic low), as shown in Figure 8-14. On the

receiver’s end, the falling edge of the start bit is detected and then after 1.5 bit

periods, the fi rst bit value is sampled. Every subsequent bit is sampled after 1.0

bit periods, until the agreed-upon number of bits is transferred (typically seven

or eight). The parity bit is optional (though both devices must be confi gured to

either use it or not); if used, it can identify whether a transmission error has

occurred. It would be high or low, depending on whether odd or even parity
checking is employed. Finally, one stop bit is sent (or optionally two stop bits),

which is always a logic high value. The examples that follow in this section all

use a standard 8N1 form, which means that eight bits are sent in each frame,

with no parity bits and one stop bit.

Figure 8-14: UART transmission format for a typical one-byte transfer

W A R N I N G Again, it is important that you do not connect a 5 V UART device to

the UART RXD input of the RPi or you will damage the RPi. A solution to this problem is

provided at the end of this chapter.

The RPi UART

The RPi has one full UART that is accessible via the GPIO header:

 ■ TXD0 (Pin 8): Output that transmits data to a receiver

 ■ RXD0 (Pin 10): Input that receives data from a transmitter

 Chapter 8 ■ Interfacing to the Raspberry Pi Buses 349

c08.indd 08:39:49:PM 05/12/2016 Page 349

Chapter 9 describes how you can add additional UARTs to the RPi using USB

devices, but this chapter focuses on the built-in full UART. The fi rst test is to

connect these two pins together as in Figure 8-15 (a), so that the RPi UART is

literally “talking to itself.”

(a) (b)

Figure 8-15: (a) Loopback testing the UART; and (b) configuring the minicom program settings

The /dev directory includes an entry for ttyAMA0. This is the “teletype” (ter-

minal) device, which is a software interface that enables you to send and receive

data via the on-board UART. First, check that the terminal device is listed:

pi@erpi /dev $ ls -l ttyAMA0

crw-rw---- 1 root tty 204, 64 Aug 16 00:31 ttyAMA0

UART DEVICES ON THE RPi 3

The RPi boards typically support two UART devices, a mini UART (UART1, with TXD1/

RXD1 on mode ALT5 of Pin 8/10), and a full UART (UART0, with TXD0/RXD0 on mode

ALT0 of Pin 8/10). See Figure 6-11 in Chapter 6 and page 175 in the BCM2835 ARM

Peripherals guide. The mini UART is typically not used on earlier RPi models, but the

RPi 3 utilizes both UARTs: The full UART is required for onboard Bluetooth (a feature

that is not present on earlier RPi models), and the mini UART is used for the serial con-

sole function. The use of the mini UART results in the serial console being mapped to

the device /dev/ttyS0 instead of the usual /dev/ttyAMA0. The mini UART does

not have parity support and its baud rate is derived from the system clock, rather than

being programmable.

At the time of writing, to communicate between the RPi 3 and a desktop machine

using the mini UART (/dev/ttyS0) device, you have to ensure that the CPU fre-

quency does not change during communication—for example, as a result of a CPU

governor state. You may also have to set the core frequency to 250 MHz to improve

communication stability. This latter setting can reduce communication glitches, but it

also impacts upon the performance of the RPi GPU. You can set explicit CPU and core

frequency values by editing the /boot/config.txt fi le as follows:

pi@erpi:/boot $ tail -n 3 config.txt

force_turbo=1
Continues

350 Part II ■ Interfacing, Controlling, and Communicating

c08.indd 08:39:49:PM 05/12/2016 Page 350

UART DEVICES ON THE RPi 3 continued

arm_freq=1200

core_freq=250

After reboot, you can check the CPU frequency:

pi@erpi:~ $ sudo apt install cpufrequtils

pi@erpi:~ $ cpufreq-info

... cpufreq stats: 1.20 GHz:100.00%

The serial console should work correctly and you should have bidirectional

communication.

Several of the examples in this chapter require that you terminate the serial console

service. As the serial console on the RPi 3 is mapped to /dev/ttyS0 by default, you

can shut down the console service as follows (remember to also set the device to the

value /dev/ttyS0 in the code examples):

pi@erpi ~ $ sudo systemctl stop serial-getty@ttyS0

If you have diffi culties in your applications with the simple UART on the RPi 3, you

should examine the low-cost (~$1) USB UART devices that are described towards the

end of Chapter 9.

Finally, it is also possible to disable the UART1 and enable UART0 on Pins 8/10 (i.e.,

GPIO14/15) on the RPi 3 by using a device tree overlay:

pi@erpi:/boot/overlays $ ls -l pi3-mini*

-rwxr-xr-x 1 root root 1250 Mar 13 17:04 pi3-miniuart-bt-overlay.dtb

Edit the /boot/confi g.txt fi le and add the following line:

dtoverlay=pi3-miniuart-bt

The serial console reverts to /dev/ttyAMA0 after reboot, but Bluetooth function-

ality is now disabled on the RPi 3:

Raspbian GNU/Linux 8 erpi ttyAMA0

erpi login:

The source code for this overlay is available at tiny.cc/erpi814.

By default, this terminal device is set up as a Linux console for the RPi. As

described in Chapter 2, you can connect to the Linux console using a USB-to-

TTL 3.3 V cable and open a terminal connection using the getty (“get teletype”)

service. However, to perform the loopback test in Figure 8-15(a), you need to

detach the serial-getty service from the UART device. You can do this under

SysVinit or systemd as follows:

 ■ Under SysVinit you can disable the console by rebooting after editing /

etc/inittab to comment out the line that begins with T0:23 using a #

character:

pi@erpi /etc $ tail -2 inittab

#Spawn a getty on Raspberry Pi serial line

#T0:23:respawn:/sbin/getty -L ttyAMA0 115200 vt100

 Chapter 8 ■ Interfacing to the Raspberry Pi Buses 351

c08.indd 08:39:49:PM 05/12/2016 Page 351

 ■ Under systemd the device is currently attached to the serial-getty ser-

vice. It can be stopped using the following:

pi@erpi ~ $ systemctl|grep ttyAMA0

serial-getty@ttyAMA0.service loaded active running Serial Getty on ttyAMA0

pi@erpi ~ $ sudo systemctl stop serial-getty@ttyAMA0

N O T E The fi rst human-computer interface was the teletypewriter, also known as

the teletype or TTY, an electromechanical typewriter that can be used to send and

receive messages. This terminology is still in use today!

Once you have disabled the terminal service, you can test the device using

the agetty (alternative getty) command or the minicom terminal emulator, both

of which enable you to send and receive data on the ttyAMA0 device. The mini-

com program enables you to dynamically change the serial settings while it is

executing (e.g., number of bits in a frame, number of stop bits, parity settings)

by pressing Ctrl+A followed by Z, as illustrated in Figure 8-15(b). Install and

execute minicom using the following commands:

pi@erpi ~ $ sudo apt install minicom

pi@erpi ~ $ sudo minicom -b 115200 -o -D /dev/ttyAMA0

Welcome to minicom 2.7

OPTIONS: I18n

Compiled on Jan 12 2014, 05:42:53.

Port /dev/ttyAMA0, 18:28:58

Press CTRL-A Z for help on special keys

At this point, you should press Ctrl+A followed by Z and then E to turn on

local Echo. Now when the RPi is wired as in Figure 8-15(a), and you press a key,

you should see the following output when you type letters:

hheelllloo RRaassppbbeerrrryy PPii

Whichever key you press is transmitted in binary form (as in Figure 8-14)

from the TXD output, and is also echoed on the console. When the character

is received on the RXD input, it is then displayed on the terminal. Therefore, if

you can see the characters appearing twice for the keys that you are pressing,

then the simple UART test is working correctly. You can verify this by briefl y

disconnecting one end of the TXD-RXD loopback wire in Figure 8-15(a), where-

upon the key presses will only appear once.

The Analog Discovery has an interpreter that can be used for analyzing

serial data communication. The Logic Analyzer can be connected in parallel to

the TXD and RXD lines in order to analyze the transfer of data from the RPi

to another device. An example of the resulting signals is displayed in Figure 8-16

for the loopback test in Figure 8-15(a) when only the letter “h” is being transmit-

ted. The start and stop bits can be observed, along with the eight-bit data as it

is sent, LSB fi rst, from the TXD pin to the RXD pin, with a sample bit-period of

8.7 μs. At a baud rate of 115,200, the effective byte rate will be somewhat lower,

due to the overhead of transmitting start, stop, and parity bits.

mailto:getty@ttyAMA0.service

352 Part II ■ Interfacing, Controlling, and Communicating

c08.indd 08:39:49:PM 05/12/2016 Page 352

Figure 8-16: Logic Analyzer display of the loopback serial transmission of the letter “h”

Chapter 6 describes the use of GPIO one-wire communication (bit-banging),

and this chapter describes SPI and I2C communication. However, using a UART

connection is probably the most straightforward approach, and it has the addi-

tional advantage that there can be some degree of physical distance between

the two controllers. Table 8-4 lists some advantages and disadvantages of using

a UART in comparison to using I2C or SPI.

Table 8-4: Advantages and Disadvantages of UART Communication

ADVANTAGES DISADVANTAGES

Simple, single-wire transmission and single-

wire reception of data with error checking.

The typical maximum data rate is low

compared to SPI (typically 460.8 kb/sec).

Easy interface for interconnecting embedded

devices and desktop computers, etc., espe-

cially when that communication is external to

the device and/or over a signifi cant distance—

some tens of feet. I2C and SPI are not suited for

external/distance communication.

Because it is asynchronous, the clock on

both devices must be accurate, particu-

larly at higher baud rates. You should

investigate Controller Area Network

(CAN) buses for high-speed external

asynchronous data transfer.

Can be directly interfaced to popular RS-232

physical interfaces, enabling long-distance

communication (15 meters or greater).

The longer the cable, the lower the speed.

RS-422/485 allows for 100-meter runs at

greater than 1 Mb/s.

UART settings need to be known in

advance of the transfer, such as the baud

rate, data size, and parity checking type.

UART Examples in C

The next step is to write C code on the RPi that can communicate with the

desktop computer using the USB-to-TTL 3.3 V cable (see Chapter 2).

RPi Serial Client

The C program in Listing 8-9 sends a string to a desktop machine (or any other

device) that is listening to the other end of the connection. It uses the Linux

 Chapter 8 ■ Interfacing to the Raspberry Pi Buses 353

c08.indd 08:39:49:PM 05/12/2016 Page 353

termios library, which provides a general terminal interface that can control

asynchronous communication ports.

Listing 8-9: exploringrpi/chp08/uart/uartC/uart.c

#include<stdio.h>

#include<fcntl.h>

#include<unistd.h>

#include<termios.h>

#include<string.h>

int main(int argc, char *argv[]){

 int file, count;

 if(argc!=2){

 printf("Please pass a string to the program, exiting!\n");

 return -2;

 }

 if ((file = open("/dev/ttyAMA0", O_RDWR | O_NOCTTY | O_NDELAY))<0){

 perror("UART: Failed to open the device.\n");

 return -1;

 }

 struct termios options;

 tcgetattr(file, &options);

 options.c_cflag = B115200 | CS8 | CREAD | CLOCAL;

 options.c_iflag = IGNPAR | ICRNL;

 tcflush(file, TCIFLUSH);

 tcsetattr(file, TCSANOW, &options);

 if ((count = write(file, argv[1], strlen(argv[1])))<0){

 perror("UART: Failed to write to the output\n");

 return -1;

 }

 write(file, "\n\r", 2); // new line and carriage return

 close(file);

 return 0;

}

This code uses the termios structure, setting fl ags to defi ne the type of com-

munication that should take place. The termios structure has the following

members:

 ■ tcflag_t c_iflag: Sets the input modes

 ■ tcflag_t c_oflag: Sets the output modes

 ■ tcflag_t c_cflag: Sets the control modes

 ■ tcflag_t c_lflag: Sets the local modes

 ■ cc_t c_cc[NCCS]: Used for special characters

A full description of the termios functionality and fl ag settings is available

by typing man termios at the RPi shell prompt.

pi@erpi ~/exploringrpi/chp08/uart/uartC $ gcc uart.c -o uart

354 Part II ■ Interfacing, Controlling, and Communicating

c08.indd 08:39:49:PM 05/12/2016 Page 354

.../chp08/uart/uartC $ sudo ./uart "Hello desktop!"

.../chp08/uart/uartC $ sudo ./uart "Greetings from the Raspberry Pi..."

.../chp08/uart/uartC $ sudo sh -c "echo hello >> /dev/ttyAMA0"

.../chp08/uart/uartC $ sudo sh -c "echo hello >> /dev/ttyAMA0"

The output appears on the desktop PC as in Figure 8-17 when PuTTY is set

to listen to the correct serial port (e.g., COM11). The C program functionality

is very similar to a simple echo to the terminal device; however, it does have

access to set low-level modes such as the baud rate, parity types, etc.

Figure 8-17: A PuTTY desktop COM terminal that is listening for messages from the Raspberry Pi

RPi LED Serial Server

For some applications it can be useful to allow a desktop computer master to

take control of an RPi slave. In this section a serial server runs on the RPi, and

awaits commands from a desktop serial terminal. Once again, the USB-to-TTL

3.3 V cable is used; however, it is important to note that a similar setup could be

developed with wireless technologies, such as Bluetooth, infrared transmitter/

receivers, and serial ZigBee (see Chapter 13).

In this example, the RPi is connected to a simple LED circuit and the USB-to-

TTL cable, as illustrated in Figure 8-18(a). When the PuTTY client on the desktop

computer issues simple string commands such as LED on and LED off, as illus-

trated in Figure 8-18(b), the hardware LED that is attached to the RPi performs

a corresponding action. Importantly, this program permits safe remote control

of the RPi, as it does not allow the serial client access to any other functionality

on the RPi—in effect, the serial server behaves like a shell that only has three

commands!

(a) (b)

Figure 8-18: (a) The LED serial server circuit, and (b) PuTTY on the PC communicating to the RPi

LED serial server

 Chapter 8 ■ Interfacing to the Raspberry Pi Buses 355

c08.indd 08:39:49:PM 05/12/2016 Page 355

The source code for the serial server is provided in Listing 8-10. The example

uses wiringPi to control the LED circuit (see Chapter 6). Ensure that you remember

to shut down the serial-getty service on the RPi before running this program.

If you have rebooted the RPi, then the service will have restarted. On execution,

the server displays the following output:

pi@erpi .../chp08/uart/server $ gcc server.c -o server -lwiringPi

pi@erpi .../chp08/uart/server $ sudo ./server

RPi Serial Server running

LED on

Server>>>[Turning the LED on]

LED off

Server>>>[Turning the LED off]

quit

Server>>>[goodbye]

It is possible to disable the serial-getty service permanently on the RPi using

systemctrl disable. You can then add a new service entry for the server code

in this section so that it starts on boot. If your intention is to run this program

as a service, then you should, of course, remove the client-controlled “quit”

functionality!

Listing 8-10: /exploringrpi/chp08/uart/server/server.c

#include<stdio.h>

#include<fcntl.h>

#include<unistd.h>

#include<termios.h>

#include<string.h>

#include<stdlib.h>

#include<wiringPi.h>

#define LED_GPIO 17

// Sends a message to the client and displays the message on the console

int message(int client, char *message){

 int size = strlen(message);

 printf("Server>>>%s\n", (message+1)); // print message with new line

 if (write(client, message, size)<0){

 perror("Error: Failed to write to the client\n");

 return -1;

 }

 write(client, "\n\rERPi>", 7); // display a simple prompt

 return 0; // \r for a carriage return

}

// Checks to see if the command is one that is understood by the server

int processCommand(int client, char *command){

 int val = -1;

 if (strcmp(command, "LED on")==0) {

 val = message(client, "\r[Turning the LED on]");

 digitalWrite(LED_GPIO, HIGH); // turn the physical LED on

 }

 else if(strcmp(command, "LED off")==0) {

356 Part II ■ Interfacing, Controlling, and Communicating

c08.indd 08:39:49:PM 05/12/2016 Page 356

 val = message(client, "\r[Turning the LED off]");

 digitalWrite(LED_GPIO, LOW); // turn the physical LED off

 }

 else if(strcmp(command, "quit")==0) { // shutting down server!

 val = message(client, "\r[goodbye]");

 }

 else { val = message(client, "\r[Unknown command]"); }

 return val;

}

int main(int argc, char *argv[]) {

 int client, count=0;

 unsigned char c;

 char *command = malloc(255);

 wiringPiSetupGpio(); // initialize wiringPi

 pinMode(LED_GPIO, OUTPUT); // the LED is an output

 if ((client = open("/dev/ttyAMA0", O_RDWR | O_NOCTTY | O_NDELAY))<0){

 perror("UART: Failed to open the file.\n");

 return -1;

 }

 struct termios options;

 tcgetattr(client, &options);

 options.c_cflag = B115200 | CS8 | CREAD | CLOCAL;

 options.c_iflag = IGNPAR | ICRNL;

 tcflush(client, TCIFLUSH);

 fcntl(STDIN_FILENO, F_SETFL, O_NONBLOCK); // make reads non-blocking

 tcsetattr(client, TCSANOW, &options);

 if (message(client, "\n\rRPi Serial Server running")<0) {

 perror("UART: Failed to start server.\n");

 return -1;

 }

 // Loop forever until the quit command is sent from the client or

 // Ctrl-C is pressed in the server's terminal window

 do {

 if(read(client,&c,1)>0) {

 write(STDOUT_FILENO,&c,1);

 command[count++]=c;

 if(c=='\n') {

 command[count-1]='\0'; // replace \n with \0

 processCommand(client, command);

 count=0; // reset the command string

 }

 }

 if(read(STDIN_FILENO,&c,1)>0) { // can send from stdin to client

 write(client,&c,1);

 }

 } while(strcmp(command,"quit")!=0);

 close(client);

 return 0;

}

 Chapter 8 ■ Interfacing to the Raspberry Pi Buses 357

c08.indd 08:39:49:PM 05/12/2016 Page 357

UART Applications - GPS

A low-cost Global Positioning System (GPS) module has been chosen as an example

device to demonstrate interconnection to RPi UART devices. The GY-GPS6MV2

breakout board (~$10) uses the u-blox NEO-6M series GPS module (tiny.cc/

erpi807). It can be powered at 3.3 V and therefore can be connected directly to

the RPi’s UART pins.

Figure 8-19 illustrates the RPi UART connection to the GPS module. As with

all UART connections, ensure that you connect the transmit pin of the RPi to

the receive pin of the device, and the receive pin of the RPi to the transmit pin

of the device.

Figure 8-19: RPi UART connection to the GPS module

The GPS module is set for 9600 baud by default, so to connect to the module

you can use the following (remember to ensure that the serial-getty service

is not running):

pi@erpi ~ $ sudo minicom -b 9600 -o -D /dev/ttyAMA0

Welcome to minicom 2.7

OPTIONS: I18n

Compiled on Jan 12 2014, 05:42:53.

Port /dev/ttyAMA0, 23:31:46

Press CTRL-A Z for help on special keys

$GPRMC,133809.00,A,5323.12995,N,00615.36410,W,1.015,,190815,,,A*60

$GPVTG,,T,,M,1.015,N,1.879,K,A*21

$GPGGA,133809.00,5323.12995,N,00615.36410,W,1,08,1.21,80.2,M,52.9,M,,*73

$GPGSA,A,3,21,16,18,19,26,22,07,27,,,,,2.72,1.21,2.44*06

$GPGSV,4,1,14,04,07,227,17,07,24,306,16,08,33,278,09,13,05,018,*7A

$GPGSV,4,2,14,15,04,048,08,16,61,174,25,18,39,096,31,19,35,275,21*78

$GPGSV,4,3,14,20,12,034,08,21,36,061,23,22,29,142,21,26,32,159,12*71

$GPGSV,4,4,14,27,75,286,26,30,10,334,*75

$GPGLL,5323.12995,N,00615.36410,W,133809.00,A,A*78

The GPS module outputs NEMA 0183 sentences, which can be decoded to

provide information about the sensor’s position, direction, velocity, etc. There

358 Part II ■ Interfacing, Controlling, and Communicating

c08.indd 08:39:49:PM 05/12/2016 Page 358

is a lot of work involved in decoding the sentences, so it is best to use a client

application to test the performance of your sensor. For example:

pi@erpi ~ $ sudo apt install gpsd-clients

pi@erpi ~ $ sudo gpsmon /dev/ttyAMA0

This results in the output shown in Figure 8-20 that provides an intuitive display

of the NEMA 0183 sentences. An LED on the module fl ashes at a rate of 1 PPS

(pulse per second) when it is capturing valid data. This pulse is extremely accurate

and can therefore be used as a calibration method for other applications. The

gpsmon application was executed in my offi ce, which overlooks a courtyard, so

I was surprised that the low-cost sensor achieved line of sight with 11 satellites.

Walter Dal Mut (@walterdalmut) has made a C library available for interfac-

ing to GPS sensors. The library can be easily integrated within your project to

utilize GPS, as follows:

pi@erpi ~ $ git clone git://github.com/wdalmut/libgps

pi@erpi ~ $ cd libgps/

pi@erpi ~/libgps $ make

pi@erpi ~/libgps $ sudo make install

pi@erpi ~/libgps $ ls /usr/lib/libgps*

/usr/lib/libgps.a

Figure 8-20: The gpsmon output display

Once the library has been installed, you can use a straightforward C program

to identify the RPi’s GPS information, as in Listing 8-11.

Listing 8-11: /chp08/uart/gps/gps_test.c

#include<stdio.h>

#include<stdlib.h>

#include<gps.h>

int main() {

 gps_init(); // initialize the device

git://github.com/wdalmut/libgps

 Chapter 8 ■ Interfacing to the Raspberry Pi Buses 359

c08.indd 08:39:49:PM 05/12/2016 Page 359

 loc_t gps; // a location structure

 gps_location(&gps); // determine the location data

 printf("The RPi location is (%lf,%lf)\n", gps.latitude, gps.longitude);

 printf("Altitude: %lf m. Speed: %lf knots\n", gps.altitude, gps.speed);

 return 0;

}

You can build and execute the code as follows:

.../chp08/uart/gps $ gcc gps_test.c -o gps_test -lgps -lm

.../chp08/uart/gps $ sudo ./gps_test

The RPi location is (53.385511,-6.256224)

Altitude: 85.900000 m. Speed: 0.060000 knots

You can enter the co-ordinate pair in maps.google.com to fi nd my offi ce at

Dublin City University (tiny.cc/erpi813)!

Logic-Level Translation

As noted throughout this chapter, it is important that you are cognizant of the

voltage levels used in communicating with the RPi. If you connect a device that

uses 5 V logic levels, then when the device is sending a high state to the RPi, it

will apply a voltage of 5 V to the RPi’s input pins. This would likely permanently

damage the RPi. Many embedded systems have overvoltage-tolerant inputs,

but the RPi does not. Therefore, logic-level translation circuitry is required if you

want to connect the buses to 5 V or 1.8 V logic-level circuits.

For unidirectional data buses, like four-wire SPI, logic-level translation can be

achieved using a combination of diodes (using their ~0.6 V forward-voltage drop

characteristic) combined with resistors, or transistors. However, bidirectional data
buses like the I2C bus are more complex because the level must be translated in

both directions on a single line. This requires circuits that use devices such as

N-channel MOSFETs (e.g., the BSS138). They are available in surface-mounted

packages and, unfortunately, there are very few through-hole alternatives.

Fortunately, this is a common problem and there are straightforward unidi-

rectional and bidirectional breakout board solutions available from several

suppliers, including the following:

 ■ SparkFun Bi-directional Logic Level Converter (BOB-12009), which uses

the BSS138 MOSFET (~$3)

 ■ Adafruit Four-Channel Bi-directional Level Shifter (ID:757), which uses

the BSS138 MOSFET (1.8 V to 10 V shifting) (~$4)

 ■ Adafruit Eight-Channel Bi-directional Logic Level Converter (ID:395; ~$8),

which uses the TI TXB0108 Voltage-Level Translator that automatically

senses direction (1.2–3.6 V or 1.65–5.5 V translation). Note that it does not

360 Part II ■ Interfacing, Controlling, and Communicating

c08.indd 08:39:49:PM 05/12/2016 Page 360

work well with I2C due to the pull-up resistors required. However, it can

switch at frequencies greater than 10 MHz.

 ■ Watterott Four-Channel Level Shifter (20110451), which uses the BSS138

MOSFET (~$2)

Some of these products are displayed in Figure 8-21. With the exception of

the Adafruit eight-channel converter, they all use BSS138 MOSFETs. A small

test was performed to check the switching frequency of these devices, as dis-

played in Figure 8-22, and it is clear from the oscilloscope traces that there are

data-switching performance limitations when using these devices that you must

factor into your circuit design. In this test, the 3.3 V input is switching a 5 V level

output using a square wave, and it is clear that the output signal is distorted at

higher frequencies. For example, when switching at 1 MHz, the distortion means

that the output signal does not actually reach a 5 V level.

Figure 8-21: Adafruit four-channel, Adafruit eight-channel, and Watterott four-channel logic-

level translators

Figure 8-22: Switching BSS138-based translators from 3.3 V to 5 V logic levels at 50 kHz,

200 kHz, and 1 MHz

 Chapter 8 ■ Interfacing to the Raspberry Pi Buses 361

c08.indd 08:39:49:PM 05/12/2016 Page 361

For further information on logic-level shifting techniques in I2C-bus design,

see the application notes from NXP (AN97055), which are linked on the chapter

web page and also available at tiny.cc/erpi808.

Summary

After completing this chapter, you should be able to do the following:

 ■ Describe the most commonly used buses or interfaces that are available

on the RPi, and choose the correct bus to use for your application.

 ■ Confi gure the RPi to enable I2C, SPI, and UART capabilities.

 ■ Attach circuits to the RPi that interface to its I2C bus, and use the Linux

I2C-tools to communicate with those circuits.

 ■ Build circuits that interface to the SPI bus using shift registers, and write

C code that controls low-level SPI communication.

 ■ Write C/C++ code that interfaces to and “wraps” the functionality of

devices attached to the I2C and SPI buses.

 ■ Communicate between UART devices using both Linux tools and custom

C code.

 ■ Build a basic distributed system that uses UART connections to the RPi

to allow it to be controlled from a desktop PC.

 ■ Interface to a low-cost GPS sensor using a UART connection.

 ■ Add logic-level translation circuitry to your circuits in order to commu-

nicate between devices with different logic-level voltages.

Further Reading

Documents and links for further reading have been listed throughout this

chapter, but here are some further reference documents:

 ■ The I2C Manual, Jean-Marc Irazabal and Steve Blozis, Philips Semiconductors,

TecForum at DesignCon 2003 in San Jose, CA, on January 27, 2003, at

tiny.cc/erpi809.

 ■ The Linux I2C Subsystem, at i2c.wiki.kernel.org.

 ■ Serial Programming Guide for POSIX Operating Systems, 5th ed., Michael R.

Sweet, 1994–1999, at tiny.cc/erpi810.

 ■ Serial Programming HOWTO, Gary Frerking, Revision 1.01, at tiny.cc/

erpi811 .

363

c09.indd 03:13:41:PM 05/20/2016 Page 363

This chapter describes how the input/output interface capabilities of the Raspberry

Pi (RPi) can be enhanced and extended using low-cost modules, integrated circuits

(ICs), and USB devices. The RPi is a competent interfacing and physical comput-

ing device, but analog interfacing functionality is absent, and other input/output

capabilities may need to be expanded for your applications. This chapter begins

by describing how you can utilize the RPi’s buses to add analog-to-digital and

digital-to-analog conversion capabilities to the RPi. The chapter then describes

how you can expand the number of available pulse-width modulation (PWM)

outputs and general-purpose inputs/outputs (GPIOs) on the RPi. The chapter

fi nishes with a discussion on the use of USB-to-TTL devices, which can be

used to expand the number of available serial UART devices. This chapter also

provides you with further experience of interfacing to SPI and I2C bus devices.

Equipment Required for This Chapter:

 ■ Raspberry Pi (ideally an RPi 2/3)

 ■ Analog-to-digital converter ICs (e.g., the MCP3208)

 ■ Digital-to-analog converter ICs (e.g., the MCP4725, MCP4921/2)

 ■ PWM expander module (e.g., the Adafruit PCA9685)

 ■ GPIO expander ICs (MCP23017, MCP23S17)

 ■ USB UART device (e.g., CP2102 or CH340G compatible)

 C H A P T E R

9

Enhancing the Input/Output
Interfaces on the RPi

364 Part II ■ Interfacing, Controlling, and Communicating

c09.indd 03:13:41:PM 05/20/2016 Page 364

Further details on this equipment and chapter are available at www.exploringrpi

.com/chapter9/.

Introduction

The onboard input/output capabilities of the RPi are described in detail

in Chapters 6 and 8, where it is made clear that certain functionality is

multiplexed—for example, enabling the SPI bus or I2C bus reduces the number

of available GPIOs. In addition, the RPi does not have onboard analog-to-digital

conversion (ADC) or digital-to-analog conversion (DAC) capabilities. This is a

weakness of the RPi in comparison to other SBCs such as the BeagleBone Black,

which has multiplexed onboard support for 7 ADC channels, 4 UART devices,

65 GPIOs, and 8 PWM outputs. This chapter aims to address this weakness

using low-cost, widely available modules, ICs, and USB devices.

An alternative way to address this weakness is to use input/output expansion

HATs (Hardware Attached on Top). The Gertboard ($60–$65), which is illustrated

in Figure 9-1, is a popular choice. It has 12 buffered input/outputs, 6 open-

collector drivers, an 18 V 2 A motor controller, an Arduino microcontroller, a

two-channel DAC, and a two-channel ADC. See tiny.cc/erpi901 for the full

manual. Alternatives to the Gertboard include the PiFace Digital (www.piface

.org.uk) and the GrovePi (www.dexterindustries.com/GrovePi/).

Expansion HATs are useful for prototyping work, and their functionality is

described in detail by their manuals. Therefore, expansion HATs are not inves-

tigated in this book; rather, this chapter focuses on using discrete components

and modules to provide the required expanded input/output functionality. This

approach is typically more complex, but it has advantages in terms of cost, avail-

ability, and implementation footprint. It is also an important learning exercise

that reinforces the bus interfacing techniques, which are described in Chapter 8.

Analog-to-Digital Conversion

The concept of analog-to-digital conversion (ADC) is introduced in Chapter 4, even

though the RPi does not have onboard ADC capabilities. This section describes

how you can add an external ADC to your RPi using multichannel SPI ADCs

that retail from $1 to $3. Adding ADC capabilities to the RPi means that it can

then interface directly to thousands of types of analog sensors, some examples

of which are described in this chapter and in Chapter 10.

Several other SBCs, including the BeagleBone, have internal ADC circuitry

that can be easily damaged by incorrect usage (e.g., sourcing/sinking excessive

http://www.exploringrpi
http://www.piface.org.uk
http://www.piface.org.uk
http://www.dexterindustries.com/GrovePi
http://www.exploringrpi.com/chapter9/

 Chapter 9 ■ Enhancing the Input/Output Interfaces on the RPi 365

c09.indd 03:13:41:PM 05/20/2016 Page 365

current). Therefore, replaceable external ADCs are a good choice for prototyping

work, even when an internal ADC is available.

Figure 9-1: The Gertboard attached to the RPi GPIO header

SPI Analog-to-Digital Converters (ADCs)

There are ADCs available that can be used with the I2C bus (e.g., the ADS1015),

but the SPI bus is preferable for this application, especially for sampling a sensor

output at moderately high data rates. This section focuses on two families of SPI

ADCs that are produced by Microchip, the MCP300x 10-bit and the MCP320x 12-bit

families. Each of these families has discrete ICs with different numbers of input

channels—for example, the MCP320x has one-channel (MCP3201), two-channel

(MCP3202), four-channel (MCP3204), and eight-channel (MCP3208) variants.

366 Part II ■ Interfacing, Controlling, and Communicating

c09.indd 03:13:41:PM 05/20/2016 Page 366

The MCP3208 SPI ADC

The MCP3208 is the most capable device in the two families of ADCs, as it sup-

ports eight 12-bit successive approximation ADC channels. It is chosen for this

discussion for that reason and the fact that it is a low-cost (~$3) device that is

widely available in PDIP form. It is suitable for interfacing to the RPi because

it can be powered at 3.3 V and has an SPI interface. It is capable of sampling at

~75 thousand samples per second (kSPS) and has a differential nonlinearity

of ±1 LSB. By default, the MCP3208 supports eight single-ended inputs, but it

can be programmed to provide four pseudo-differential input pairs.1 Table 9-1

describes the input/output pins of the 16-pin IC. The full datasheet is available

at tiny.cc/erpi902.

N O T E A successive approximation ADC uses an analog voltage comparator to

compare the analog input voltage to an estimated digital value that is passed through

a DAC. The result of the analog comparison is used to update the estimated digital

value, which is stored in a successive approximation register (SAR). The process contin-

ues iteratively until all the bits (12 in the case of a 12-bit ADC) are weighted and com-

pared to the input. Successive approximation ADCs are popular because they provide

a good balance of speed, accuracy, and cost; however, the higher the resolution, the

slower the ADC performance.

Table 9-1: Input/Output Pins for the MCP3208

IC PINS PIN TITLE DESCRIPTION

Pins 1-8 CH0-CH7 The eight ADC input channels.

Pin 9 DGND Digital ground—connected to the internal digital ground.
Can be connected to the RPi GND.

Pin 10 CS/SHDN Chip Select/Shutdown—used to initiate communica-
tion with the device when pulled low. When pulled high
it ends the conversation. Must be pulled high between
conversions.

Pin 11 DIN (MOSI) Used to confi gure the ADC by selecting the input to use,
and whether to use single-ended or diff erential inputs.

Pin 12 DOUT (MISO) The data output sends the results of the ADC back to the
RPi. The data bit changes on the falling edge of the clock
cycle.

1 Single-ended ADC inputs share a common reference ground. Differential inputs are applied
to the ADC in pairs (IN+, IN−), which are compared against each other to determine the ADC
value. This is particularly beneficial for the common-mode rejection of coupled noise, which
could cause single-ended inputs to exceed their range. Note that there is also a MCP330x family
of 13-bit differential input SPI ADCs that can also be used in the way that is described in this
section.

 Chapter 9 ■ Enhancing the Input/Output Interfaces on the RPi 367

c09.indd 03:13:41:PM 05/20/2016 Page 367

IC PINS PIN TITLE DESCRIPTION

Pin 13 CLK The SPI clock is used to synchronize communication. A clock
rate of greater than 10 KHz should be maintained to avoid
introducing linearity errors.

Pin 14 AGND Analog ground—connected to the internal analog circuit
GND.

Pin 15 VREF Reference voltage input.

Pin 16 VDD Voltage Supply (2.7 V–5.5 V). Can be connected directly to
the RPi 3.3 V supply rail, but not to the 5 V supply without
adding logic-level translation circuitry to the DOUT pin.

Wiring the MCP3208 to the RPi

Figure 9-2 illustrates how the MCP3208 can be connected directly to the RPi

using its SPI bus. The fi gure also includes an ADC input example that is used

to test the circuit.

Figure 9-2: A general SPI ADC configuration for the RPi with an example LDR circuit attached to
Channel 0 of the MCP3208 IC

Communicating with the MCP3208

The ADC functionality is controlled by the RPi using the MOSI line to the DIN

pin and the resulting sample data is returned on the MISO line from the DOUT

pin. Figure 9-2 illustrates the bits that must be written to and read from the

MCP320x and MCP300x ADCs to complete a transaction. Essentially, the RPi

368 Part II ■ Interfacing, Controlling, and Communicating

c09.indd 03:13:41:PM 05/20/2016 Page 368

must identify which channel (0–7) it wants to read, and whether the circuit is

confi gured for single-ended or differential inputs:

 ■ The channel is selected using a three-bit identifi er (23 = 8), as illustrated

on the right side of Figure 9-3.

 ■ The example circuits in this section utilize single-ended inputs, so the

Single/Diff bit is 1. However, by setting the bit to 0 you can use the inputs

as four differential pairs (CH0/CH1, CH2/CH3, CH4/CH5, and CH6/CH7).

For example, 000 sets CH0 as IN+ and CH1 is IN−, 001 sets CH1 as IN+

and CH0 as IN−, and 010 sets CH2 as IN+ and CH3 as IN−, etc.

The data transaction takes 24 serial clock (SCLK) cycles. The RPi writes low

bits followed by a start bit (high), the SGL/Diff bit (high for a single-ended

confi guration), and the three channel-select bits. The write takes place on the

rising edge of the clock signal. The MCP320x then sends 12 bits of data back to

the RPi on the falling edge of the clock signal (delayed by 3.5 clock cycles). The

signal patterns required for the MCP300x are also identifi ed at the bottom of

Figure 9-3. They are almost the same, but because 10 bits are returned rather

than 12 bits, there are two fewer leading lows on the MOSI (DIN) line.

Figure 9-3: Reading data from the 12-bit MCP320x and the 10-bit MCP300x families of SPI ADCs

ADC Application: An Analog Light Meter

Figure 9-2 includes an example light-dependent resistor (LDR) circuit, which

demonstrates how you can connect an analog sensor to the MCP3208. LDRs

have a resistance that is dependent on the ambient light level; the brighter the

room, the lower the resistance and vice versa. This circuit is designed in a volt-

age divider confi guration, where a low resistance value on the LDR will cause

a greater proportion of the supply voltage (3.3 V) to drop across the paired

resistor (the 4.7 kΩ resistor in Figure 9-2), resulting in a higher voltage level at

 Chapter 9 ■ Enhancing the Input/Output Interfaces on the RPi 369

c09.indd 03:13:41:PM 05/20/2016 Page 369

CH0 of the MCP3208. Therefore, if the room is bright then a high ADC digital

value is expected.

To achieve a full range (i.e., from ~0 V to ~3.3 V) on CH0, it is essential that

a suitable pairing resistor value R is chosen. For a typical LDR voltage divider

circuit, a good rule of thumb is to use the equation R R RMIN MR AX×RMIN , where

RMAX (maximum resistance) is the measured resistance of the LDR when it is

covered (e.g., with your fi nger) and RMIN (minimum resistance) is the measured

resistance of the LDR when a light source (e.g., cellphone torch app) is close to

its surface. In this example, the resistance of the LDR was 98 kΩ when covered

and 220 Ω when the light source was close. The preceding formula thus gives a

value for R of 4,643 Ω, so a 4.7 kΩ resistor provides a suitable pairing.

Listing 9-1 provides a code example that uses the MCP3208 circuit as illus-

trated in Figure 9-2. The LDR circuit is connected to CH0 and is sampled using

a single-ended confi guration.

Listing 9-1: /exploringrpi/chp09/ldr/ldrExample.cpp

#include <iostream>

#include "bus/SPIDevice.h"

using namespace exploringRPi;

int main(){

 std::cout << "Starting the RPi LDR ADC Example" << std::endl;

 SPIDevice *busDevice = new SPIDevice(0,0);

 busDevice->setSpeed(5000000);

 busDevice->setMode(SPIDevice::MODE0);

 unsigned char send[3], receive[3];

 send[0] = 0b00000110; // Start bit=1, SGL/Diff=1 and D2=0

 send[1] = 0b00000000; // MSB 00 is D1=0, D0=0 for channel 0

 busDevice->transfer(send, receive, 3);

 // MCP320X: use full second byte and the four LSBs of the first byte

 int value = ((receive[1]&0b00001111)<<8)|receive[2];

 std::cout << "LDR value is " << value << " out of 4095." << std::endl;

 return 0;

}

The code in Listing 9-1 uses the SPIDevice class that is described in Chapter 8

to send a request on the MOSI line and to read the response on the MISO line.

The program can be built and executed as follows:

pi@erpi ~/exploringrpi/chp09/ldr $ g++ -o ldrExample ldrExample.cpp →

 bus/SPIDevice.cpp bus/BusDevice.cpp

pi@erpi ~/exploringrpi/chp09/ldr $./ldrExample

Starting the RPi LDR ADC Example

LDR value is 3952 out of 4095.

pi@erpi ~/exploringrpi/chp09/ldr $./ldrExample

Starting the RPi LDR ADC Example

LDR value is 207 out of 4095.

The light source was close to the LDR when the program was fi rst executed,

and the LDR was covered on the second occasion.

370 Part II ■ Interfacing, Controlling, and Communicating

c09.indd 03:13:41:PM 05/20/2016 Page 370

The circuit confi guration in Figure 9-2 can be used for resistance-based sen-

sors, where a voltage/current is required for sensor excitation, and the resistance

of the sensor varies in proportion to the quantity under measurement. Some

such sensors include: resistance thermometers, strain gages, moisture sensors,

pressure sensors, light sensors, displacement sensors, etc.

This code in Listing 9-1 can be easily adapted to read from all eight of the

channels by altering the three channel select bits, as described in Figure 9-3.

For example, if the LDR circuit was connected to CH7 (111), then the send bytes

would be send[0]=0b00000111 and send[1]=0b11000000 for the MCP3208.

Testing the SPI ADC Performance

The previous ADC example clearly works well for applications where occasional

sampling is required; however, it is important to be aware of the limitations of

this circuit under embedded Linux.

According to its datasheet (tiny.cc/erpi902), the MCP3208 is capable of

sampling at a rate of 100 kSPS at VDD = 5 V and 50 kSPS at VDD = 2.7 V, which

is interpolated to ~63 kSPS at VDD = 3.3 V. However, to achieve this rate would

require the RPi to write/read 63,000 requests to the MCP3208 every second (and

a SCLK rate of at least 24 bits 63,000 = 1.5 MHz). Essentially, a request would

have to be sent every 16 μs, and the requests would have to be perfectly spaced

in time, because otherwise the captured data would suffer from sample-clock

jitter. This is a particular problem for embedded Linux applications, because

the kernel has to balance the requests for analog sampling along with other

processes that are running on the board; this can cause the sample-clock to

deviate from a truly periodic signal (i.e., jitter). This topic is described in some

detail in Chapter 6 and Chapter 7 when testing is performed on the preemption

performance of the RPi. The histogram plot in Figure 6-10(a) is indicative of the

sample-clock jitter problems that you can expect.

To test the performance of this confi guration, a known input signal can be

applied to one of the input channels, whereupon the captured sample data can

be compared against the known input signal. You can use the Analog Discovery

Waveform Generator for this simple test. It can generate a sinusoidal input signal

and the sampled output can be inspected visually.

Listing 9-2 provides a short program that captures 200 ADC samples as

quickly as possible, and then outputs the results to the terminal window. The

output of the program can be piped into the Gnuplot tool so that the sampled

data can be plotted.

 Chapter 9 ■ Enhancing the Input/Output Interfaces on the RPi 371

c09.indd 03:13:41:PM 05/20/2016 Page 371

GNUPLOT

Gnuplot is a powerful command-line graphing tool that can be used to graph func-
tions and plot data directly on the RPi. It can be confi gured to display on-screen cus-
tom plots, or to save the output plot to a fi le. You can display the plot using virtual
network connections (VNCs) or headful displays, which are described in Chapter 14.
However, this short feature describes how you can save the plot to a fi le, which can be
transferred to a desktop machine.

Using the following steps you can ensure that Gnuplot is installed on the RPi, and
then use it to output a plot of sin(x) in both vector-mapped postscript (PS) fi le and bit-
mapped PNG image form:

pi@erpi ~ $ sudo apt install gnuplot

pi@erpi ~/tmp $ gnuplot

 G N U P L O T Version 4.6 patchlevel 6 . . .

gnuplot> set term postscript

Terminal type set to 'postscript' . . .

gnuplot> set output "sinx.ps"

gnuplot> plot [-pi: pi] sin(x)

gnuplot> set term png

Terminal type set to 'png' . . .

gnuplot> set output "sinx.png"

gnuplot> plot [-2*pi:2*pi] sin(x)

gnuplot> exit

pi@erpi ~/tmp $ ls

sinx.png sinx.ps

pi@erpi ~/tmp $ ps2pdf sinx.ps sinx.pdf

pi@erpi ~/tmp $ ls

sinx.pdf sinx.png sinx.ps

These plots are available in the /chp09/gnuplot/ directory. You can view the
results of these calls directly on the book’s Github repository at tiny.cc/erpi903.

Gnuplot is used in Chapter 5 to display histogram plots and in this section it is
used to visually inspect the data that is captured by the ADC circuit. Gnuplot can be
called using scripts, which is demonstrated in the example that follows in this section
(Listing 9-3). For detailed information on the use of Gnuplot, see: www.gnuplot
.info and www.gnuplot.info/docs_4.0/gpcard.pdf.

Listing 9-2: /chp09/spiADC/ADCmulti.cpp

#include <iostream>

#include "bus/SPIDevice.h"

#define SAMPLES 200

using namespace exploringRPi;

http://www.gnuplot.info
http://www.gnuplot.info/docs_4.0/gpcard.pdf
http://www.gnuplot.info

372 Part II ■ Interfacing, Controlling, and Communicating

c09.indd 03:13:41:PM 05/20/2016 Page 372

int main(){

 short data[SAMPLES]; // output preceeded by # ignored by gnuplot

 std::cout << "# Starting RPi SPI ADC Example" << std::endl;

 SPIDevice *busDevice = new SPIDevice(0,0);

 busDevice->setSpeed(5000000);

 busDevice->setMode(SPIDevice::MODE0);

 unsigned char send[3], receive[3];

 send[0] = 0b00000110; // Reading single-ended input from channel 0

 send[1] = 0b00000000;

 for(int i=0; i<SAMPLES; i++) {

 busDevice->transfer(send, receive, 3);

 data[i] = ((receive[1]&0b00001111)<<8)|receive[2];

 }

 for(int i=0; i<SAMPLES; i++) { // print after data captured

 std::cout << i << " " << data[i] << std::endl;

 }

 busDevice->close();

 std::cout << "# End of RPi SPI ADC Example" << std::endl;

 return 0;

}

The program in Listing 9-2 is not called directly; instead, it is called by the

short script in Listing 9-3, which plots the resulting sample data to a PDF format

fi le, so that it can be easily viewed.

Listing 9-3: /exploringrpi/chp09/spiADC_MCP3208/plot

#!/bin/bash

echo "Capturing 200 samples from the memory and dumping to capture.dat"

./ADCmulti > capture.dat

echo "Plotting the data to a PS file"

gnuplot <<_EOF_

set term postscript enhanced color

set output 'plot.ps'

set title 'Exploring RPi Plot'

plot 'capture.dat' with linespoints lc rgb 'blue'

EOF

echo "Converting the PS file to a PDF file"

ps2pdf plot.ps plot.pdf

If the current CPU frequency profile is set to be adaptive (e.g., the

ondemand governor), problems would arise with this test. The test has a signifi cant

CPU load that would cause the governor to increase the CPU frequency, which

would alter the ADC sample-clock rate as the test is taking place. Therefore, it is

important to fi rst set the governor to use a profi le that fi xes the CPU frequency,

regardless of the CPU load:

pi@erpi ~ $ sudo cpufreq-set -g performance

pi@erpi ~ $ cpufreq-info | grep "current CPU frequency"

 current CPU frequency is 1000 MHz ...

pi@erpi ~ $ cd ~/exploringrpi/chp09/spiADC

 Chapter 9 ■ Enhancing the Input/Output Interfaces on the RPi 373

c09.indd 03:13:41:PM 05/20/2016 Page 373

pi@erpi ~/exploringrpi/chp09/spiADC $./plot

Capturing 200 samples from the memory and dumping to capture.dat

Plotting the data to a PS file

Converting the PS file to a PDF file

pi@erpi ~/exploringrpi/chp09/spiADC $ ls -l *.dat *.pdf

-rw-r--r-- 1 pi pi 1294 Aug 23 21:29 capture.dat

-rw-r--r-- 1 pi pi 6514 Aug 23 21:29 plot.pdf

The results are available in the plot.pdf fi le. The test can then be repeated for

different input frequencies, providing results such as those in Figure 9-4. You

can also view these plots from the chp09/spiADC/results folder.

At 1 GHz the overclocked RPi 2 displays impressive results, as illustrated in

Figure 9-4(a). The plot displays 200 samples of a 500 Hz sinusoidal input sig-

nal, which took 0.00525 seconds to capture. This means that each sample took

26.25 μs—a sample rate of 39.1kSPS. Unfortunately, this approach suffers from

occasional jitter (as illustrated in Figure 9-4(b)), which is diffi cult to overcome

at high sample rates. At lower rates (e.g., 5kSPS) the signal could be oversampled
and the results averaged. Finally, Figure 9-4(c) illustrates the problems that

arise if the sample clock rate is insuffi cient to properly sample an input signal.

((a) () (b)b)

(c)

Figure 9-4: (a) Plot of a data capture of a 500 Hz sinusoidal input signal; (b) example of sample-
clock jitter; (c) data capture of a 5 kHz sinusoidal input signal

The C Library for BCM2835 (Advanced)

There is an alternative library to wiringPi that provides strong memory-mapped

support for RPi SPI devices. As discussed in Chapter 6, memory-mapped code is

specifi c to the RPi platform only, whereas the earlier code in this chapter can be

generally applied to all embedded Linux devices. The advantage of bypassing

the Linux OS and accessing the registers on the RPi directly is that greater I/O

performance can be achieved, which improves the quality of the sampled data.

374 Part II ■ Interfacing, Controlling, and Communicating

c09.indd 03:13:41:PM 05/20/2016 Page 374

The C Library for BCM28352 is written by Mike McCauley and is available at

(tiny.cc/erpi904). You should identify the most recent version of the library

by visiting the website, and then you can download, build, and install it using

the following steps:

pi@erpi ~ $ wget http://www.airspayce.com/mikem/bcm2835/bcm2835-1.45.tar.gz

pi@erpi ~ $ ls -l *.gz

-rw-r--r-- 1 pi pi 251081 Aug 5 04:40 bcm2835-1.45.tar.gz

pi@erpi ~ $ tar zxvf bcm2835-1.45.tar.gz

pi@erpi ~ $ cd bcm2835-1.45/

pi@erpi ~/bcm2835-1.45 $./configure

pi@erpi ~/bcm2835-1.45 $ make

pi@erpi ~/bcm2835-1.45 $ sudo make check

pi@erpi ~/bcm2835-1.45 $ sudo make install

pi@erpi ~/bcm2835-1.45 $ ls -l /usr/local/lib/*bcm*

-rw-r--r-- 1 root staff 47982 Aug 24 01:47 /usr/local/lib/libbcm2835.a

The code in Listing 9-4 demonstrates how Listing 9-2 can be adapted to utilize

the BCM2835 C Library. In addition, the code is adapted to use the maximum

system priority, and memory paging is disabled for the memory associated with

the resulting binary executable. Memory paging is a common cause of latency,

which is expressed in the output as lost samples or noise.

Listing 9-4: /chp09/bcm2835/adc_bcm2835.cpp

/** Based on the spi.c example at www.airspayce.com/mikem/bcm2835/ **/

#include <bcm2835.h>

#include <iostream>

#include <string.h>

#include <sys/mman.h>

#define SAMPLES 2000

using namespace std;

int main() {

 short data[SAMPLES];

 if (!bcm2835_init()) {

 cout << "Failed to intialize the bcm2835 module" << endl;;

 return 1;

 }

 // Set the maximum possible priority and switch from regular Linux

 // round-robin scheduling to FIFO fixed-priority scheduling

 struct sched_param sp;

 sp.sched_priority = sched_get_priority_max(SCHED_FIFO);

 if (sched_setscheduler(0, SCHED_FIFO, &sp)<0) { // change scheduling

 cout << "Failed to switch from SCHED_RR to SCHED_FIFO" << endl;

 return 1;

 }

 // lock the process' memory into RAM, preventing page swapping

 if (mlockall(MCL_CURRENT|MCL_FUTURE)<0) { // lock cur & future pages

2 Despite the name, this library also works with the BCM2836 and BCM2837 SoCs on the RPi 2
and RPi 3.

 Chapter 9 ■ Enhancing the Input/Output Interfaces on the RPi 375

c09.indd 03:13:41:PM 05/20/2016 Page 375

 std::cout << "Failed to lock the memory." << std::endl;

 return 1;

 }

 bcm2835_spi_begin();

 bcm2835_spi_setBitOrder(BCM2835_SPI_BIT_ORDER_MSBFIRST);

 bcm2835_spi_setDataMode(BCM2835_SPI_MODE3);

 bcm2835_spi_setClockDivider(BCM2835_SPI_CLOCK_DIVIDER_64); // limit!

 bcm2835_spi_chipSelect(BCM2835_SPI_CS0);

 bcm2835_spi_setChipSelectPolarity(BCM2835_SPI_CS0, LOW);

 for(int i=0; i<SAMPLES; i++) {

 char msg[3] = { 0b00000110, 0x00, 0x00 };

 for(int x=0; x<700; x++) { }; // hacked delay - do not optimize

 bcm2835_spi_transfern(msg, 3);

 data[i]=((msg[1]&0b00001111)<<8)|msg[2];

 }

 for(int i=0; i<SAMPLES; i++) {

 cout << i << " " << data[i] << endl;

 }

 bcm2835_spi_end(); // clean up SPI

 bcm2835_close(); // close the driver

 munlockall(); // unlock the process memory

 return 0;

}

The code in Listing 9-4 can be built and executed as follows:

pi@erpi .../chp09/bcm2835 $ g++ adc_bcm2835.cpp -o adc -lbcm2835

pi@erpi .../chp09/bcm2835 $ sudo ./adc

The output is displayed in Figure 9-5, where the results are impressive for an

embedded Linux device. Figure 9-5(a) shows minimal jitter and Figure 9-5(b)

demonstrates that sampling can take place over an extended period of at least

one million samples, without suffering from noticeable latency problems. Note

that the plot in Figure 9-5(b) consists of 1 million discrete points; the fi neness of

the resulting plot lines indicates a good quality sampling result.

(a) (b)

Figure 9-5: (a) Plot of 2,000 samples captured using the SPI ADC with the BCM2835 C library;
(b) plot of 1 million samples using the same library

376 Part II ■ Interfacing, Controlling, and Communicating

c09.indd 03:13:41:PM 05/20/2016 Page 376

Clearly, the BCM2835 C library improves the overall sampling performance,

albeit using RPi-specifi c code.

One signifi cant limitation of using an SPI ADC as described in this section

is that the sample rate is diffi cult to determine, and it is dependent on the CPU

frequency of the RPi. In this example, the sample rate is set by altering the

number of iterations in the empty for loop, which creates a blocking delay. An

external sample clock is required to resolve this limitation. One such option is

to use the RTC module that is described in Chapter 8, which has a confi gurable

clock output. Alternatively, a clock generator from Chapter 6 could be used.

Once the clock is attached to a GPIO, you can replace the empty for loop with

code that reads the GPIO and waits for it to change state (i.e., on a rising or a

falling edge). The data can be sampled on the GPIO state transition, and the

cycle would repeat for the next sample. This proposed circuit confi guration

would result in a more precise sampling-clock period.

Digital-to-Analog Conversion

Digital-to-analog conversion (DAC) enables a digital device to output an analog

voltage level, which is specifi ed using a digital value; this is the opposite of ADC.

In this section, DAC capabilities are added to the RPi using both the I2C and

the SPI buses. The SPI approach is more suitable for signal generation, but the

I2C approach is useful in particular for the generation of a software-controlled

DC voltage level.

An I2C Digital-to-Analog Converter

The MCP4725 is a single-channel 12-bit DAC with built-in EEPROM memory.

It is a surface mounted device (SOT-23) so a breakout board, such as the one

that is available from Adafruit ($5), is required for prototyping work. The built-

in EEPROM memory allows the desired output level to be permanently stored.

Therefore, when power is applied to the device it will output the voltage that

is specifi ed by the stored value, without requiring any input from the RPi. See

the datasheet at tiny.cc/erpi905.

Figure 9-6 illustrates how the Adafruit breakout board can be connected to the

RPi using an I2C bus. This circuit can be used to output a software-controlled

voltage level for applications such as setting a point-voltage level, sensor cali-

bration, and offset trimming.

The A0 pin on the MCP4725 allows the address of the device to be set. If it

is left fl oating or tied to GND then the address is set at 0x62. Alternatively, the

address is 0x63 if the input is tied high. This addressing option facilitates the con-

nection of two such devices to the same I2C bus.

 Chapter 9 ■ Enhancing the Input/Output Interfaces on the RPi 377

c09.indd 03:13:41:PM 05/20/2016 Page 377

Figure 9-6: The MCP4725 I2C DAC with an optional op-amp circuit that improves the output
current range

To set the analog output level you simply send the digital value to the device in

a hexadecimal format. It is a 12-bit DAC, therefore there are 4,096 steps between

0 V and 3.3 V—010 to 409510, which is 0x0000 to 0x0FFF in hexadecimal form.

For example, to output a voltage level of 1 V, you must set a decimal value of

(1 4096) ÷ 3.3 V = 124110 = 0x04D9 in hexadecimal. Similarly, 2 V→0x09B0

and 3 V→0x0E8B. You must then write both bytes, MSB fi rst, to the device. For

example, to set the DAC output voltage to be 1 V, 2 V, 3 V, and then 3.3 V, use the

following steps respectively:

pi@erpi ~ $ i2cset -y 1 0x62 0x04 0xD8

pi@erpi ~ $ i2cset -y 1 0x62 0x09 0xB0

pi@erpi ~ $ i2cset -y 1 0x62 0x0E 0x8B

pi@erpi ~ $ i2cset -y 1 0x62 0x0F 0xFF

The I2CDevice class from Chapter 8 can be used to build a DACDriver class,

as defi ned in Listing 9-5. This class wraps the functionality of the MCP4725

device with methods for setting the output level, and for defi ning the DC output

impedance as either 1 Ω (DISABLE), 1 kΩ, 100 kΩ, or 500 kΩ.

Listing 9-5: /exploringrpi/chp09/i2cDAC/DACDriver.h

class DACDriver:protected I2CDevice{

public: // the power-down mode

 enum PD_MODE { DISABLE, GND_1K, GND_100K, GND_500K };

private:

 unsigned int I2CBus, I2CAddress;

 unsigned int lastValue;

 int setOutput(unsigned int value, DACDriver::PD_MODE mode);

public:

 DACDriver(unsigned int I2CBus=1, unsigned int I2CAddress=0x62);

 virtual int powerDown(DACDriver::PD_MODE mode = GND_500K);

 virtual int wake();

 virtual int setOutput(unsigned int value);

 virtual int setOutput(float percentage);

 virtual int setOutput(unsigned int waveform[], int size, int loops=1);

 virtual unsigned int getLastValue() { return lastValue; }

 virtual ~DACDriver();

};

378 Part II ■ Interfacing, Controlling, and Communicating

c09.indd 03:13:41:PM 05/20/2016 Page 378

The maximum current that you can source or sink to the output of the DAC

depends on the output voltage, but varies in the range 12 mA to 16 mA (see

Figure 2-16 in the datasheet). However, you must also be cognizant of the total

demand for current from the RPi’s 3.3 V supply.

An optional circuit extension is provided on the right side of Figure 9-6, which

describes the addition of a MCP6002 dual op-amp in DIP form. One of the two

op-amps in this IC is used in a voltage-follower confi guration (as described in

Chapter 4), which means that the output voltage of the op-amp (1Out) mirrors

the input voltage (1IN+) that is set by the DAC. Importantly, the current on the

output is supplied by the MCP6002, and not by the DAC. At room temperature,

the MCP6002 can source or sink a maximum of 21.5 mA with a power supply

of 5 V (see Figure 2-13 in the MCP6002 datasheet). Alternative op-amp devices

can further extend this range.

Listing 9-6 provides a short code example that can be used to output a 50%

voltage level on the output (i.e., 1.65 V in this example). The program then turns

off the output until a key is pressed. The DAC maintains its output voltage level

even after the program terminates, or even if the RPi is restarted.

Listing 9-6: /chp09/i2cDAC/dacTestApp.cpp (segment)

int main() {

 DACDriver *driver = new DACDriver(1,0x62);

 driver->setOutput(50.0f); // 50% (i.e., 2048)

 cout << "The output is " << driver->getLastValue() << endl;

 cout << "Press ENTER to sleep the DAC..." << endl;

 getchar();

 driver->powerDown(DACDriver::GND_100K); // leave blank for 500K

 cout << "Press ENTER to wake the DAC..." << endl;

 getchar();

 driver->wake();

 cout << "DAC is on and maintains value on exit" << endl;

 return 0;

}

Listing 9-6 can be built and executed as follows:

pi@erpi ~/exploringrpi/chp09/i2cDAC $./build

pi@erpi ~/exploringrpi/chp09/i2cDAC $./dactest

The output is 2048

Press ENTER to sleep the DAC...

Press ENTER to wake the DAC...

DAC is on and maintains value on exit

A separate example is provided in the same directory (dacSignalTest.cpp)

that demonstrates how to use the I2C DAC to output a sine wave signal. The

application generates a sine wave of ~30 Hz for a sine wave period that consists

of 100 discrete samples. The output is limited by the speed of the I2C bus; a

similar example is presented for an SPI DAC, which can achieve much greater

output frequencies.

 Chapter 9 ■ Enhancing the Input/Output Interfaces on the RPi 379

c09.indd 03:13:41:PM 05/20/2016 Page 379

An SPI Digital-to-Analog Converter

The MCP4921 is a low-cost ($2) single-channel 12-bit SPI DAC that is available

in DIP form (see tiny.cc/erpi906). It is part of a family of Microchip SPI DACs

that also contains an 8-bit (MCP4901) and a 10-bit (MCP4911) variant. The family

of DACs supports 2.7 V to 5.5 V supply operation with rail-to-rail outputs (i.e.,

from GND to VDD), and an SPI data clock frequency of up to 20 MHz.

Figure 9-7(a) illustrates how the MCP4921 can be connected to the SPI bus

on the RPi. The DAC does not send data back to the RPi, so there is no MISO

connection required. Once again, you could use the “optional” circuit that is

illustrated in Figure 9-6 to extend the output current range; however, choosing

an SPI device means that you are less likely to be using the device as a voltage

source, and more likely to be using it as a signal/waveform generator.

(a) (b)

Figure 9-7: (a) Connecting to the MCP4921 SPI DAC; (b) the SPI message format for the
MCP4921/11/01

The SPI message format for the full family of devices is illustrated in

Figure 9-7(b). There is a leading 0, followed by three confi guration bits, and

then the data value that describes the desired DAC output—the value varies in

bit length according to the DAC that is used. The three confi guration bits are:

 ■ The Buffer bit: Identifi es whether the output should be buffered (1) or

unbuffered (0). The active-low LDAC input can be used to transfer the

input value that is stored in a latch register to the output. By tying this

pin to GND, the output is automatically set on the rising edge of the

SPI_CE0_N chip-select (CS) signal and the Buffer bit should be set to 0.

 ■ The Output Gain bit: A selectable gain control (1 = 1 VREF or 0 = 2 VREF).

The output voltage cannot exceed the supply voltage VDD, and because

VREF = VDD in this example, this bit is set to 1.

 ■ The Shutdown bit: A bit that allows the DAC to be shut down using

software (e.g., to conserve power). 0 = shutdown, 1 = on.

380 Part II ■ Interfacing, Controlling, and Communicating

c09.indd 03:13:41:PM 05/20/2016 Page 380

The datasheet for this device provides excellent additional advice and sample

circuits on how it can be used effectively (see tiny.cc/erpi906)

A code example is provided in Listing 9-7 that generates a sine wave using

100 samples per period. The sine wave is biased by +2,047 so that it oscillates

between 0 and 4,095, rather than being centered on zero. This code is written for

the MCP4921 but it can be adapted for the other DACs in the family by changing

the gain, bias, and by shifting the DAC value left by two bits for the MCP4911,

or by four bits for the MCP4901.

Listing 9-7: /chp09/spiDAC/DACTest.cpp

#include <iostream>

#include <math.h>

#include "bus/SPIDevice.h"

using namespace exploringRPi;

int main() { // mask = (MSB) 0 (BUF) 0 (GA) 1 (SHDN) 1

 unsigned char mask = 0b00110000;

 std::cout << "Starting RPi SPI DAC Example" << std::endl;

 SPIDevice *busDevice = new SPIDevice(0,0);

 busDevice->setSpeed(20000000); // max for MCP49xx family

 busDevice->setMode(SPIDevice::MODE0); // using SPI mode 0

 // calculate a 12-bit sine wave function using 100 samples per period

 unsigned short fn[100]; // using 16-bit data

 float gain = 2047.0f; // gain of 1.65 V

 float phase = 0.0f; // phase not important here

 float bias = 2048.0f; // center on 1.65 V

 float freq = 2.0f * 3.14159f / 100.0f; // 2*Pi/period (real pi!)

 for (int i=0; i<100; i++) { // calculate sine waveform

 fn[i] = (unsigned short)(bias + (gain * sin((i * freq) + phase)));

 }

 unsigned char send[2]; // sending 16-bits in total

 for(int x=0; x<10000; x++) { // send 10,000 periods

 for(int i=0; i<100; i++) { // 100 samples per period

 send[0] = mask | fn[i]>>8; // first 4 bits as above

 send[1] = fn[i] & 0x00FF; // remaining 8 lsbs of sample

 busDevice->transfer(send, NULL, 2);// send the data

 }

 }

 busDevice->close();

 std::cout << "End of RPi SPI DAC Example" << std::endl;

 return 0;

}

On execution this results in the output as illustrated in Figure 9-8(a), which is

captured using an oscilloscope that is attached to the VOUT pin of the MCP4921.

The DAC is outputting a sine wave of 269.5 Hz, where each cycle is made up of

100 samples. Therefore, the DAC is processing 26,950 samples per second (SPS).

 Chapter 9 ■ Enhancing the Input/Output Interfaces on the RPi 381

c09.indd 03:13:41:PM 05/20/2016 Page 381

(a) (b)

Figure 9-8: (a) The SPI DAC output signal; (b) the SPI DAC output using the C Library for
BCM2835

A further code example is provided in the chp09/spiDAC/bcm2835/ directory

that utilizes the BCM2835 C Library to send the samples to the SPI DAC. The

output of this code is displayed in Figure 9-8(b), where you can see that the

frequency of the sine wave is 1.75 kHz, which means that the DAC is processing

175,000 SPS when a memory-mapped approach is used that is specifi c to the RPi.

Adding PWM Outputs to the RPi

The concept of pulse-width modulation (PWM) is introduced in Chapter 4, and

its use with the RPi is described in detail in Chapter 6. PWM outputs can be

used to control the brightness of LEDs or to control servo motors (as described

in Chapter 6), by adjusting the duty cycle of a control signal. Unfortunately, the

number of onboard hardware PWM outputs on the RPi is limited, which may

constrain your development projects. However, you can add PWM outputs to

the RPi using I2C PWM controllers.

There are many types of PWM controllers available, such as the popular

TLC5940, but such devices often require external oscillators and timers, greatly

increasing the complexity of an implementation for the RPi. The PCA9685 does

not require any external timing circuitry as it has a 25 MHz internal oscillator,

therefore it is chosen as the focus of this discussion. It is a 16-channel 12-bit

PWM controller that interfaces to an I2C bus. It can output a signal frequency

of between 24 Hz and 1,526 Hz, where each of the 16 outputs can be adjusted to

have an individual duty cycle (0%–100%). It is packaged as a surface-mounted

TSSOP28, which has 0.65 mm between each of the 28 pins. For prototyping

work you must either purchase it on a ready-made module from suppliers such

as Adafruit (~$15), or you can purchase a 0.65 mm to 0.1″ adapter board. The

Adafruit module is used in this discussion as it is well designed and it can be

easily interfaced to the RPi, as illustrated in Figure 9-9.

382 Part II ■ Interfacing, Controlling, and Communicating

c09.indd 03:13:41:PM 05/20/2016 Page 382

W A R N I N G Do not confuse the VCC and V+ inputs on the Adafruit PCA9685 mod-

ule or you could damage your RPi. VCC is a 3.3 V logic-level supply and V+ is the motor

supply voltage (e.g., often 5 V).

(a) (b)

Figure 9-9: The Adafruit PCA9685 16-channel 12-bit PWM driver

The top of the Adafruit module has terminal block connectors with reverse-

polarity protection that facilitate the connection of an external motor power

supply. The motor power supply should not exceed 5.5 V. (At that voltage level,

it can be safely controlled using 3.3 V logic levels.) Ideally, the module should

be powered using an external power supply, because servo motors can cause

signifi cant noise on the RPi supply line. However, if you are only connecting one

servo motor to the board, you should be able to use the RPi 5 V supply. There

is a space on the Adafruit module for an electrolytic smoothing capacitor (e.g.,

470 μF) that can be sized according to the number and total requirement of the

attached servo motors. Each of the 16 outputs has an onboard 220 Ω resistor,

which simplifi es its use in driving LEDs and servo motors. In addition to typi-

cal I2C bus connections, there is an Output Enable (OE) input. If this value is

set high, the PWM outputs are disabled.

It is possible to attach 62 of these modules to a single I2C bus, because each

board can be assigned an address by bridging the six Alternative Address (A5–A0)

contact points with solder.3 Attaching 62 of these boards to the same bus gives you

3 Six solder bridges provides 26 = 64 possible addresses; however, the chip has a special feature
that allows you to reset all outputs by using a different I2C address called Software Reset (0x06)
and to control all outputs using an I2C address called LED All Call (enabled by default at I2C
address 0x70). Therefore, these two addresses are not available for use and so the total is reduced
from 64 to 62. Do not solder bridge to select address 0x70.

 Chapter 9 ■ Enhancing the Input/Output Interfaces on the RPi 383

c09.indd 03:13:41:PM 05/20/2016 Page 383

the possibility of controlling up to 992 servo motors using a single bus on the RPi!

Figure 9-10 captures the output that results from a call to i2cdump on the device

address, which is at I2C bus address 0x40 by default.

Figure 9-10 also illustrates the registers that can be used to control the output

of the PCA9685. There are two mode registers (0x00 and 0x01) that control the

behavior of the device, using bit patterns that are described at the bottom of

Figure 9-10. The mode registers are followed by four address registers (0x02–0x05),

which if enabled by Mode1 allow multiple PCA9685 modules to respond to a

single “virtual” I2C address, because if they were a single device. For example,

you could potentially control all the servos that are attached to Channel0 on

multiple modules using a single call to a single sub-address that is enabled

on each of the boards. Writing to the All Call I2C address (0x70) affects all the

modules on the bus unless they have set the Mode1 bit so as to ignore write

requests to the All Call address.

Figure 9-10: Registers for the PCA9685 16-channel 12-bit PWM controller

The address registers are followed by 16 quadruples of addresses—one qua-

druple for each of the output channels. For example, Channel0 occupies the four

addresses 0x06 to 0x09, where the fi rst two addresses are used to store the 12-bit

“on time” value and the last two addresses are used to store the 12-bit “off time.”

Both 12-bit values are stored in Little Endian byte order. The “on time” is the

time after which the signal goes high and the “off time” is the time after which

the signal goes low. These values do not represent the time for which the output

is high and the output is low. The advantage of the PCA9685 timing format is

that a phase shift can be introduced into the output signal.

For example, to use the Linux i2c-tools to set up two PWM signals, as illus-

trated in Figure 9-11:

384 Part II ■ Interfacing, Controlling, and Communicating

c09.indd 03:13:41:PM 05/20/2016 Page 384

 1. The fi rst has a 20% duty cycle and a phase shift of 25% on Channel0: the

“turn on” time is 0.25 4,096 = 1,024 (0x0400) and the “turn off” time is

0.45 4,096 = 1,843 (0x0733). Therefore, these values must be written to

the registers (0x06 to 0x09) as follows:

pi@erpi ~ $ i2cset -y 1 0x40 0x06 0x00

pi@erpi ~ $ i2cset -y 1 0x40 0x07 0x04

pi@erpi ~ $ i2cset -y 1 0x40 0x08 0x33

pi@erpi ~ $ i2cset -y 1 0x40 0x09 0x07

 2. The second has a duty cycle of 33% and a phase shift of 0% on Channel1:

the “turn on” time is therefore 0 (0x0000) and the “turn off” time is

0.33 4,096 = 1,352 (0x0548). Therefore, these values must be written to

the registers (0x0a to 0x0d) as follows:

pi@erpi ~ $ i2cset -y 1 0x40 0x0a 0x00

pi@erpi ~ $ i2cset -y 1 0x40 0x0b 0x00

pi@erpi ~ $ i2cset -y 1 0x40 0x0c 0x48

pi@erpi ~ $ i2cset -y 1 0x40 0x0d 0x05

You many also need to set the Mode1 state to enable the outputs (see the bottom

of Figure 9-10). For example, to set Mode1 to disable restart (1), use the internal

clock (0), enable auto increment (1), disable sleep (0), disable all sub-addresses

(000), and enable All Call (1), the 0x00 register should be set to 10100001, which

is 0xA1 in hexadecimal:

pi@erpi ~ $ i2cset -y 1 0x40 0x00 0xA1

You can verify these settings in the output signal that is captured in Figure 9-11,

where the scope is attached to Channel0 and Channel1 of the PCA9685. A volt-

age offset is applied to Channel1 so that it is visible in the fi gure—both signals

vary between 0 V and 3.3 V.

Figure 9-11: Example PWM output of Channel0 and Channel1 of the PCA9685

 Chapter 9 ■ Enhancing the Input/Output Interfaces on the RPi 385

c09.indd 03:13:41:PM 05/20/2016 Page 385

Code is provided in the /chp09/pwmDriver/ directory as an example of how

you can wrap the PCA9685 module with a class. Listing 9-8 provides a description

of the methods that are available in the class and the code implementation is in

the pwmDriver.cpp fi le. This class utilizes the I2CDevice class that is described

in Chapter 8.

In particular, it is worth noting the code that is used to set the PWM channel

output values (from PWMDriver::setOutput()):

writeRegister((LED0_ON_L + (4*outputNumber)), (timeOn & 0xFF));

writeRegister((LED0_ON_H + (4*outputNumber)), (timeOn >> 8));

writeRegister((LED0_OFF_L + (4*outputNumber)), (timeOff & 0xFF));

writeRegister((LED0_OFF_H + (4*outputNumber)), (timeOff >> 8));

This code performs the same function as was just performed manually using

the Linux i2c-tools calls. Rather than maintain a full list of registers, the code

offsets the address by four times the desired output number. For example, to

set the “turn on” LSB for Channel5, the calculation is LED0_ON_L + (5 4) =

0x06 + 2010 = 0x1A. You can confi rm this result in Figure 9-10 by locating the

fi rst register address of Channel5.

Listing 9-8: /chp09/pwmDriver/pwmDriver.h (segment)

class PWMDriver:protected I2CDevice{

private:

 unsigned int I2CBus, I2CAddress;

public:

 PWMDriver(unsigned int I2CBus=1, unsigned int I2CAddress=0x40);

 virtual int reset();

 virtual int sleep();

 virtual int wake() { reset(); }

 virtual int setOutput(unsigned int outputNumber, float dutyCycle,

 float phaseOffset=0.0f); // 0-15, 0.0-100, 0.0f

 virtual int setOutputFullyOn(unsigned int outputNumber) {

 setOutput(outputNumber, 100.0f); }

 virtual int setOutputFullyOff(unsigned int outputNumber) {

 setOutput(outputNumber, 0.0f); }

 virtual int setFrequency(float frequency); // between 24 and 1526Hz

 virtual float getFrequency();

 virtual ~PWMDriver();

};

Listing 9-8 also contains code to adjust the frequency of the PWM signal,

which is common to all outputs. The PRE_SCALE register (0xFE, see the

PCA9685 datasheet 7.3.5) defi nes the frequency at which all the outputs modulate.

386 Part II ■ Interfacing, Controlling, and Communicating

c09.indd 03:13:41:PM 05/20/2016 Page 386

This is determined by the formula: pre-scale value = round (25 MHz ÷ (4,096

frequency)) – 1. The code in Listing 9-8 contains a function that performs this

calculation for the desired frequency.

Listing 9-9 provides an example program that uses the PWMDriver class to set

the PWM frequency and output a signal on Channel0 and Channel1.

Listing 9-9: chp09/pwmDriver/pwmTestApp.cpp (segment)

int main() {

 PWMDriver driver(1, 0x40);

 driver.reset();

 driver.setFrequency(100.0f);

 float frequency = driver.getFrequency();

 cout << "The frequency is currently: " << frequency << endl;

 driver.setOutput(0, 12.5); // channel, duty cycle

 driver.setOutput(1, 25.0, 12.5); // channel, duty cycle, phase shift

 cout << "Press Enter to sleep the outputs..." << endl;

 getchar();

 driver.sleep();

 cout << "The outputs are now off" << endl;

 cout << "Press Enter to wake the outputs..." << endl;

 getchar();

 driver.wake();

 cout << "The outputs are now on" << endl;

 return 0;

}

The program in Listing 9-9 can be built and executed as follows, and results

in the output in Figure 9-12. Importantly, this output signal continues even after

the pwmtest program terminates.

pi@erpi ~/exploringrpi/chp09/pwmDriver $./build

pi@erpi ~/exploringrpi/chp09/pwmDriver $./pwmtest

The frequency is currently: 99.3896

Press Enter to sleep the outputs...

The outputs are now off

Press Enter to wake the outputs...

The outputs are now on

Figure 9-12: Output of Listing 9-9

 Chapter 9 ■ Enhancing the Input/Output Interfaces on the RPi 387

c09.indd 03:13:41:PM 05/20/2016 Page 387

This section fi nishes with a Servo class that uses the PWMDriver class to sim-

plify the use of servo motors with the PCA9685 module. The class in Listing 9-10

contains a calibration method, which allows the output to be tailored specifi cally

for each individual motor.

Listing 9-10: chp09/pwmDriver/Servo.h (segment)

class Servo {

private:

 PWMDriver *pwmDriver; // pointer to the PCA9685 driver

 int outputNumber; // the output on the PCA9685 breakout

 float minDutyCycle, maxDutyCycle, zeroDutyCycle; // duty cycles

 float plusMinusRange; // servo range (+/-)

 float angleStepSize; // calculated

public:

 Servo(PWMDriver *pwmDriver, int outputNum, float plusMinusRange=90.0f);

 virtual int calibrate(float minDutyCycle, float maxDutyCycle);

 virtual int setAngle(float angle);

 virtual ~Servo();

};

The code in Listing 9-11 uses the class in Listing 9-10 to sweep a servo motor

(with range ±90°) on Channel15 to –90° and then back to +90°.

Listing 9-11: chp09/pwmDriver/servoTestApp.cpp (segment)

int main() {

 PWMDriver *driver = new PWMDriver(1, 0x40); // bus 1, device 0x40

 driver->reset(); // remove prev state

 driver->setFrequency(50.0f); // freq for all PWMs

 Servo *servo = new Servo(driver, 15, 90.0); // channel 15, ±90°

 servo->calibrate(2.85, 11.75); // manual calculation

 for(int i=-90; i<90; i+=2){ // from left to right

 servo->setAngle(i); // in degrees

 usleep(10000); // 10ms sleep per step

 }

 for(int i=90; i>-90; i-=2){ // from right to left

 servo->setAngle(i);

 usleep(10000);

 }

 driver->sleep(); // remove holding torque

 return 0;

}

Extending the RPi GPIOs

The use of the RPi GPIOs is described in detail in Chapter 6, where it is discussed

that there is a maximum of 26 GPIOs accessible via the GPIO header on the RPi

3/2/B+/A+, and 17 on earlier models. The number of available GPIOs reduces

388 Part II ■ Interfacing, Controlling, and Communicating

c09.indd 03:13:41:PM 05/20/2016 Page 388

signifi cantly if you require the I2C bus, SPI bus, or UART devices. Fortunately, it

is possible to use low-cost I/O expanders, such as the Microchip 16-bit MCP23017

I2C I/O Expander and the 16-bit MCP23S17 SPI Expander, which are both avail-

able in PDIP form for $1–$2.

Figure 9-13(a) illustrates the connection of the MCP23017 to the I2C bus, and

Figure 9-13(b) illustrates the connection of the MCP23S17 to the SPI bus. These

are different physical devices, but their pin layouts are consistent, which assists

with design for possible bus interchange. In fact, both devices are described by

a single datasheet: tiny.cc/erpi907.

(a() () (b))

Figure 9-13: Adding GPIOs to the RPi using the: (a) MCP23017 I2C GPIO expander, and
(b) MCP23S17 SPI GPIO expander

There are some physical features of each device that should be noted:

 ■ The MCP23017 has three address pins (A0–A2) that allow up to eight ICs

to be connected to a single I2C bus, which facilitates the addition of up

to 128 GPIOs to each I2C bus. The device supports 100 kHz, 400 kHz, and

1.7 MHz bus speeds.

 ■ The MCP23S17 also has three address pins (A0–A2) that are used to address

separate devices which have been daisy chained together as a single

SPI device (discussed shortly). This facilitates the addition of up to 256

GPIOs to the single SPI bus on the RPi by using both chip select pins. The

MCP23S17 supports SPI bus speeds of up to 10 MHz.

 Chapter 9 ■ Enhancing the Input/Output Interfaces on the RPi 389

c09.indd 03:13:41:PM 05/20/2016 Page 389

It is worth noting up front that these are capable devices that are surprisingly

complex. For example: the GPIO pins can be confi gured as inputs/outputs,

internal pull-up/pull-down resistor confi guration is possible, input polarity is

selectable, and different types of interrupt conditions can be confi gured. This

is all useful functionality that can greatly improve the I/O capabilities of the RPi

(and of other embedded devices), so it is worth the effort involved in becoming

familiar with their confi guration and use.

The internal register confi guration of both devices is consistent. They have

two banks of registers (A and B), each associated with eight confi gurable GPIOs.

In addition, the devices have two interrupt pins (INTA and INTB) that can be

confi gured to react to a programmable set of input conditions.

The illustrations in Figure 9-13 each include three test circuits that are used

in this section to help explain the capability of these devices:

 ■ A pushbutton circuit is connected to GPA7, which is confi gured shortly

to have an internal pull-up resistor enabled.

 ■ An LED circuit is connected to GPB7, which is confi gured to be an output.

The LED lights when GPB7 is high.

 ■ An LED circuit is connected to the interrupt pin, INTA, which is used to

test the interrupt capabilities of the devices.

The I2C device is investigated fi rst, because the Linux i2c-tools (see Chapter 8)

are very useful for familiarizing yourself with the registers on a new device.

The MCP23017 and the I2C Bus

The MCP23017 appears on the bus at address 0x20 by default. You can alter

this address by tying A0, A1, and A2 high or low. For example, if A0 and A1

are tied to the 3.3 V line, then the device address becomes 0x23. In the default

confi guration, as in Figure 9-13(a) you can verify the device address:

pi@erpi ~ $ i2cdetect -y 1

 0 1 2 3 4 5 6 7 8 9 a b c d e f

00: -- -- -- -- -- -- -- -- -- -- -- -- --

10: -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- --

20: 20 -- -- -- -- -- -- -- -- -- -- -- -- -- -- ...

The registers can then be displayed as in Figure 9-14 using the i2cdump com-

mand. This fi gure identifi es the name and role of each of the registers, which

are organized into pairs so as to align against the two 8-bit ports (Port A and

Port B) on the devices.

390 Part II ■ Interfacing, Controlling, and Communicating

c09.indd 03:13:41:PM 05/20/2016 Page 390

Figure 9-14: The MCP23x17 registers

To become familiar with the use of these devices a good starting point is to

use the i2cset and i2cget commands to control the LED circuit and the push-

button circuit, both of which are illustrated in Figure 9-13(a).

Controlling the GPIO LED Circuit

The output LED is attached to Port B Pin 7 (GPB7) as in Figure 9-13(a). To set the

state of the LED, you fi rst need to perform the following steps:

 ■ Set the IOCONB confi guration and control register state (0x0B) to be 0x3A,

as determined on the right side of Figure 9-14:

pi@erpi ~ $ i2cset -y 1 0x20 0x0B 0x3A

 ■ Set GPB7 in the IODIRB (0x01) direction register to be in output mode by

setting bit 7 to be low (note that the following call will set all eight GPB

pins to be outputs):

pi@erpi ~ $ i2cset -y 1 0x20 0x01 0x00

 ■ To light the LED that is attached to GPB7 you can set bit 7 on the OLATB

output latch register (0x15) high. You can then read the current Port B

state using the GPIOB register (0x13) as follows:

 Chapter 9 ■ Enhancing the Input/Output Interfaces on the RPi 391

c09.indd 03:13:41:PM 05/20/2016 Page 391

pi@erpi ~ $ i2cset -y 1 0x20 0x15 0x80

pi@erpi ~ $ i2cget -y 1 0x20 0x13

0x80

 ■ At this point the LED is lighting and the GPIO bit 7 (0b10000000 = 0x80)

is set. The LED can be turned off by setting bit 7 low:

pi@erpi ~ $ i2cset -y 1 0x20 0x15 0x00

pi@erpi ~ $ i2cget -y 1 0x20 0x13

0x00

Note that all the operations above affect all the GPB input/outputs. For example,

turning the LED off by writing the value 0x00 also sets GPB0–GPB6 low. To solve

this problem you can read in the current state of the outputs using the GPIOB

registers (0x13), modify the value of the desired bit, and then write it back to

the OLATB register (0x15). For example, if a read of GPIOB returned 0x03, then

GPB0 and GPB1 are high. To retain this state and to set GPB7 high you should

OR the two values together (i.e., 0x03|0x80), which results in a value of 0x83.

If this value is written to OLATB, all three pins are now set high (GPB0, GPB1,

and GPB7).

Reading the GPIO Button State

To read the pushbutton state that is attached to Bank A pin 7 (GPA7) you can

use a similar method:

 ■ Set the IOCONA control register to be 0x3A, as illustrated on the right

side of Figure 9-14:

pi@erpi ~ $ i2cset -y 1 0x20 0x0A 0x3A

 ■ Set GPA7 to be an input using the IODIRA register (0x00):

pi@erpi ~ $ i2cset -y 1 0x20 0x00 0x80

 ■ Set GPA7 to be in a pull-up mode using the GPPUA input pull-up con-

fi guration register (0x0C):

pi@erpi ~ $ i2cset -y 1 0x20 0x0C 0x80

 ■ Read the Port A state using the GPIOA input register (0x12):

pi@erpi ~ $ i2cget -y 1 0x20 0x12

0x80

pi@erpi ~ $ i2cget -y 1 0x20 0x12

0x00

When the button is not pressed the state is 0b10000000 (0x80) and when

the button is pressed the state is 0b00000000 (0x00), indicating that the

button circuit is working correctly and that it has a pull-up confi guration.

392 Part II ■ Interfacing, Controlling, and Communicating

c09.indd 03:13:41:PM 05/20/2016 Page 392

An Interrupt Confi guration Example (Advanced)

The devices can be programmed to activate an interrupt output (INTA or INTB)

when one of two confi gurable conditions arises:

 1. The input state changes from its current state, where a mask can be set

using the GPINTENx register to check or ignore individual bits.

 2. The input state differs from a defi ned value, which is set using the DEFVALx

register.

The INTA and INTB output pins can be confi gured to activate individually

or they can be programmed to both activate if either port causes the interrupt.

The use of interrupts is best explained with an example, which is once again

illustrated in Figure 9-13(a). In this example, the device is confi gured so that

if the pushbutton that is attached to GPA7 is pressed (or released), the LED

attached to the INTA pin will light.

 ■ Set up the pushbutton to be input, as described in the previous example.

Remember that the button is in a pull-up confi guration, so that when the

button is not pressed that the output is as follows:

pi@erpi ~ $ i2cget -y 1 0x20 0x12

0x80

 ■ Set the GPINTENA interrupt-on-change control register (0x04) to enable

GPB7. The DEFVALA default interrupt-on-change compare value (0x06)

should be set to 0x80, and the INTCONA interrupt control register

(0x08) should also be set to 0x80:

pi@erpi ~ $ i2cset -y 1 0x20 0x04 0x80

pi@erpi ~ $ i2cset -y 1 0x20 0x06 0x80

pi@erpi ~ $ i2cset -y 1 0x20 0x08 0x80

 ■ Reading the output clears the interrupt. If the INTA LED is currently

lighting then displaying the Port A state using the GPIOA input register

(0x12) should cause it to turn off:

pi@erpi ~ $ i2cget -y 1 0x20 0x12

0x80

 ■ Pressing the button at this point should trigger the interrupt and cause

the INTA LED to light. You can then use the INTFA interrupt fl ag register

(0x0E) to identify which input caused the interrupt, and you can use the

INTCAPA capture register (0x10) to determine the Port A state when

the interrupt occurred:

pi@erpi ~ $ i2cget -y 1 0x20 0x0E

0x80

 Chapter 9 ■ Enhancing the Input/Output Interfaces on the RPi 393

c09.indd 03:13:41:PM 05/20/2016 Page 393

pi@erpi ~ $ i2cget -y 1 0x20 0x10

0x00

 ■ Reading the value of INTCAPA clears the interrupt. So, it is once again

ready to trigger an interrupt when the button is pressed.

Clearly you do not need such a complex arrangement to trigger an LED when

a button is pressed! However, it is possible to confi gure the device so that a

particular bit pattern on all the Port A and Port B pins is used to trigger the

interrupt. My tests indicate that in this example the LED lights 190 ns after

the button is pressed, which is extremely fast in comparison to the response

times reported for the RPi GPIOs in Chapter 6. Clearly, it is possible to build

a hardware circuit using logic gates that can react to a bit pattern even more

quickly, but it is important to remember that this behavior is software confi gu-

rable and can be changed dynamically at run time.

A code example is introduced shortly to facilitate the structured use of these

devices.

The MCP23S17 and the SPI Bus

The MCP23S17 SPI version of the MCP23017 I2C device has the same register

confi guration and therefore the input/output circuits that are illustrated in

Figure 9-13(a) and Figure 9-13(b) are identical.

The registers on the SPI device are accessed using the same techniques as

described in Chapter 8. However, there is one important difference in the way

that this device operates in comparison to other SPI bus devices examined to

this point—it implements a custom internal device addressing architecture.

Figure 9-15 illustrates how up to eight MCP23S17 devices can be attached to a

single SPI bus as a single SPI device. The address lines A0–A2 are used to assign

each device a unique 3-bit hardware address, which each device uses to decide

whether it should act upon or ignore messages on the bus.

As illustrated in Figure 9-15 all the devices share the same MOSI, MISO, CLK,

and CS lines, which means that all data read/write requests are simultaneously

sent to all the daisy-chained devices. Each device must identify which requests

it should act upon and which requests it should ignore based on its hardware-

defi ned address (A0–A2), and addressing information that is contained within

the SPI data message. Therefore, the structure of the SPI message is different

than those that are described in Chapter 8. For example, each write request must

contain the device address, the register address, and the data to write to the

register address. Figure 9-16 illustrates an example data write transaction tak-

ing place, which has the form: “on device 000 set the IOCONA control register

(0x0A) to have the value 0x3A.”

394 Part II ■ Interfacing, Controlling, and Communicating

c09.indd 03:13:41:PM 05/20/2016 Page 394

Figure 9-15: Daisy chaining up to eight MCP23S17s as a single SPI bus device

Figure 9-16: An SPI write request to the MCP23S17 at device address 000 to set the IOCONA
register to 0x3A

A C++ Class for the MCP23x17 Devices

A C++ class that simplifi es the use of the MCP23x17 devices is provided in

Listing 9-12, and is available in the /chp09/gpioExpander/ directory. The class

wraps the register functionality that is illustrated in Figure 9-14 and provides

a framework for accessing the general functionality and interrupt functionality

of the MCP23017 and MCP23S17 devices.

Listing 9-12: /chp09/gpioExpander/gpioExpander.h (segment)

class GPIOExpander {

private:

 I2CDevice *i2cDevice;

 SPIDevice *spiDevice;

 Chapter 9 ■ Enhancing the Input/Output Interfaces on the RPi 395

c09.indd 03:13:41:PM 05/20/2016 Page 395

 bool isSPIDevice;

 unsigned char spiAddress; configRegister;

public:

 enum PORT { PORTA=0, PORTB=1 };

 int writeDevice(unsigned char address, unsigned char value);

 unsigned char readDevice(unsigned char address);

 GPIOExpander(I2CDevice *i2cDevice);

 GPIOExpander(SPIDevice *spiDevice, unsigned char address=0x00);

 // 16-bit -- PORTA is LSB (8-bits), PORTB is MSB (8-bits)

 virtual int setGPIODirections(PORT port, unsigned char value);

 virtual int setGPIODirections(unsigned short value);

 virtual unsigned char getOutputValues(PORT port);

 virtual unsigned short getOutputValues();

 virtual std::string getOutputValuesStr();

 virtual int setOutputValues(PORT port, unsigned char value);

 virtual int setOutputValues(unsigned short value);

 virtual unsigned char getInputValues(PORT port);

 virtual unsigned short getInputValues();

 virtual std::string getInputValuesStr();

 virtual int setInputPolarity(PORT port, unsigned char value);

 virtual int setInputPolarity(unsigned short value);

 // Pull-up resistors for the input ports -- 100k Ohm value

 virtual int setGPIOPullUps(PORT port, unsigned char value);

 virtual int setGPIOPullUps(unsigned short value);

 virtual int updateConfigRegister(unsigned char value);

 virtual int setInterruptOnChange(PORT port, unsigned char value);

 virtual int setInterruptOnChange(unsigned short value);

 // Get the value on the port when interrupt occurs

 virtual unsigned char getInterruptCaptureState(PORT port);

 virtual unsigned short getInterruptCaptureState();

 virtual std::string getInterruptCaptureStateStr();

 // Sets if the interrupt is configured on change or on comparison

 virtual int setInterruptControl(PORT port, unsigned char value);

 virtual int setInterruptControl(unsigned short value);

 // Sets the default comparison register

 virtual int setDefaultCompareValue(PORT port, unsigned char value);

 virtual int setDefaultCompareValue(unsigned short value);

 // Get the interrupt flag register

 virtual unsigned char getInterruptFlagState(PORT port);

 virtual unsigned short getInterruptFlagState();

 virtual std::string getInterruptFlagStateStr();

 virtual void dumpRegisters(); ...

};

396 Part II ■ Interfacing, Controlling, and Communicating

c09.indd 03:13:41:PM 05/20/2016 Page 396

An example is provided in Listing 9-13 that uses the GPIOExpander class to

perform the same test operations as described with the Linux i2c-tools, to control

the circuit that is illustrated in Figure 9-13.

Listing 9-13: /chp09/gpioExpander/example.cpp

int main(){

 cout << "Starting the GPIO Expander Example" << endl;

 SPIDevice *spiDevice = new SPIDevice(0,0);

 spiDevice->setSpeed(10000000); // MCP23S17 bus speed

 spiDevice->setMode(SPIDevice::MODE0);

// I2CDevice *i2cDevice = new I2CDevice(1, 0x20); // for an I2C device

// GPIOExpander gpio(i2cDevice); // for an I2C device

 GPIOExpander gpio(spiDevice, 0x00); // SPI dev. addr. 000

 cout << "The GPIO Expander was set up successfully" << endl;

 // PORTA are inputs and PORTB are outputs -- can mix bits

 gpio.setGPIODirections(GPIOExpander::PORTA, 0b11111111); // input=1

 gpio.setGPIODirections(GPIOExpander::PORTB, 0b00000000); // output=0

 gpio.setGPIOPullUps(GPIOExpander::PORTA, 0b10000000); // pullup GPA7

 gpio.setInputPolarity(GPIOExpander::PORTA, 0b00000000); // non-inverted

 // Example: get the values of PORTA and set PORTB accordingly

 unsigned char inputValues = gpio.getInputValues(GPIOExpander::PORTA);

 cout << "The values are in the form [B7,..,B0,A7,..,A0]" << endl;

 cout << "The PORTA values are: [" << gpio.getInputValuesStr() << "]\n";

 cout << "Setting PORTB to be " << (int)inputValues << endl;

 gpio.setOutputValues(GPIOExpander::PORTB, inputValues);

 // Example: attach on-change interrupt to GPIOA GPA7

 cout << "Interrupt flags[" << gpio.getInterruptFlagStateStr() << "]\n";

 cout << "Capture state[" << gpio.getInterruptCaptureStateStr() << "]\n";

 gpio.setInterruptControl(GPIOExpander::PORTA, 0b00000000); // on change

 gpio.setInterruptOnChange(GPIOExpander::PORTA, 0b10000000); // to GPA7

 gpio.dumpRegisters(); // display the registers

 cout << "End of the GPIO Expander Example" << endl;

}

The code example reads the state of the Port A inputs and sets Port B accord-

ingly (remember that GPA7 is in a pull-up confi guration, so it is high when the

button is not pressed). In addition, an interrupt-on-change confi guration is set for

INTA, which lights the LED that is attached to INTA when the button is pressed:

pi@erpi ~/exploringrpi/chp09/gpioExpander $./example

Starting the GPIO Expander Example

The GPIO Expander was set up successfully

The values are in the form [B7,..,B0,A7,..,A0]

The PORTA values are: [1000000010000000]

Setting PORTB to be 128

Interrupt flags[0000000000000000]

Capture state[0000000000000000]

Register Dump:

Register IODIRA : 255 B: 0

 Chapter 9 ■ Enhancing the Input/Output Interfaces on the RPi 397

c09.indd 03:13:41:PM 05/20/2016 Page 397

Register IPOLA : 0 B: 0

Register GPINTENA: 128 B: 0

Register DEFVALA : 0 B: 0

Register INTCONA : 0 B: 0

Register IOCONA : 58 B: 58

Register GPPUA : 128 B: 0

Register INTFA : 0 B: 0

Register INTAPA : 0 B: 0

Register GPIOA : 128 B: 128

Register OLATA : 0 B: 128

End of the GPIO Expander Example

pi@erpi ~/exploringrpi/chp09/gpioExpander $

At this point, the program has run to completion, but it is important to note that

the interrupt will still trigger at any future point. The MCP23x17 is programmed

to handle the interrupt independently of the RPi.

If the button is pressed, the interrupt is triggered and a call to the display

program in the same directory displays the register states. In this example, the

interrupt fl ag register (INTFA) indicates that GPA7 caused the interrupt (i.e.,

12810 = 0b10000000):

pi@erpi ~/exploringrpi/chp09/gpioExpander $./display

Starting the SPI GPIO Expander Example

Register Dump:

Register IODIRA : 255 B: 0

Register IPOLA : 0 B: 0

Register GPINTENA: 128 B: 0

Register DEFVALA : 0 B: 0

Register INTCONA : 0 B: 0

Register IOCONA : 58 B: 58

Register GPPUA : 128 B: 0

Register INTFA : 128 B: 0

Register INTAPA : 0 B: 0

Register GPIOA : 128 B: 128

Register OLATA : 0 B: 128

End of the GPIO Expander Example

The display program reads the GPIOx registers, so the interrupt is once

again primed, even without executing the example program again. Also, if you

hold the pushbutton and simultaneously execute the display program, then

the interrupt is triggered when you release the button, which demonstrates that

an interrupt-on-change condition is confi gured.

Adding UARTs to the RPi

As described in Chapter 8, UART devices provide a mechanism for serial com-

munication to discrete modules such as GPS units, microprocessors, micro-

controllers, sensor modules, actuator modules, and much more. In addition,

UARTs can be combined with line driver hardware, such as RS-485 modules,

to communicate over long distances—RS-485 supports a network of up to

398 Part II ■ Interfacing, Controlling, and Communicating

c09.indd 03:13:41:PM 05/20/2016 Page 398

32 devices communicating at distances of up to 4,000 ft (1,200 m) using a single

pair of twisted-pair wires and a common ground connection4.

Unfortunately, there is only one full onboard UART on the RPi, which is

accessible via the GPIO header. In addition, it is typically confi gured as a serial

console, which is a very useful function. It is possible to use the SPI or I2C bus

to add UART devices to the RPi. For example, the SparkFun SC16IS750 module

($15) supports high-speed (up to 921,600 baud) communication using the NXP

chip of the same name. You can interface this device to the RPi using approaches

similar to those described in this chapter. However, a much easier solution is

to use the USB ports on the RPi and USB-to-TTL converters, which have Linux

driver support.

There are several low-cost USB-to-TTL converters available, many of which

have stable Linux driver support. Figure 9-17(a) illustrates three such devices

that are available from as little as $1–$2. They can be attached directly to the

RPi USB ports as in Figure 9-17(b); however, be careful to ensure that the pins

from one adapter do not touch the pins or the tracks on the base of the adapter

that is inserted into an adjacent USB slot.

(a) (b)

Figure 9-17: (a) Three low-cost USB-to-TTL converters, and (b) three such devices attached to
the RPi

Modern Linux kernels support USB hot plugging, which allows USB devices

to be plugged in to the RPi after it has booted. The kernel then loads the correct

LKM for the device. You can use the dmesg command to display system-level

driver messages, which can help you in diagnosing any device driver problems.

For example, when the YP-02 USB-to-TTL module is plugged into the RPi, the

following messages are displayed:

pi@erpi ~ $ uname -a

Linux erpi 4.1.5-v7+ #809 SMP PREEMPT Thu Aug 13 00:50:56 BST 2015 armv71

pi@erpi ~ $ dmesg

[97660.915863] usb 1-1.5:new full-speed USB device number 4 using dwc_otg

4 See tiny.cc/erpi908 for further details.

 Chapter 9 ■ Enhancing the Input/Output Interfaces on the RPi 399

c09.indd 03:13:41:PM 05/20/2016 Page 399

[97661.019017] usb 1-1.5:New USB device found,idVendor=1a86,idProduct=7523

[97661.019044] usb 1-1.5:New USB device strings: Mfr=0,Product=2,SerNum=0

[97661.019062] usb 1-1.5:Product: USB2.0-Serial

[97661.055002] usbcore:registered new interface driver usbserial

[97661.056961] usbcore:registered new interface driver usbserial_generic

[97661.057231] usbserial:USB Serial support registered for generic

[97661.060665] usbcore:registered new interface driver ch341

[97661.061478] usbserial:USB Serial support registered for ch341-uart

[97661.061600] ch341 1-1.5:1.0:ch341-uart converter detected

[97661.067149] usb 1-1.5:ch341-uart converter now attached to ttyUSB0

You can then list the attached USB devices using the lsusb command, where-

upon a new device is displayed:

pi@erpi ~ $ lsusb

...

Bus 001 Device 004:ID 1a86:7523 QinHeng Elec HL-340 USB-Serial adapter

There are also new LKMs loaded that are associated with this device:

pi@erpi ~ $ lsmod | grep ch34

ch341 4921 0

usbserial 22429 1 ch341

The process results in a new “teletype” terminal device in the /dev/ directory.

You can see below that the dialout group has read/write access to this device,

and you can confi rm the current user’s membership of this group using the id

command:

pi@erpi ~ $ ls -l /dev/ttyUSB*

crw-rw---T 1 root dialout 188, 0 Aug 30 15:40 /dev/ttyUSB0

pi@erpi ~ $ id

uid=1000(pi) gid=1000(pi) groups=1000(pi), 4(adm), 20(dialout), 24(cdrom),

 27(sudo), 29(audio), 44(video), 46(plugdev), 60(games), 100(users),

 106(netdev), 996(gpio), 997(i2c), 998(spi), 999(input)

With three devices plugged into the RPi, as in Figure 9-17(b), each USB device

has its own device entry in the /dev/ directory:

pi@erpi ~ $ lsusb

Bus 001 Device 004: ID 1a86:7523 QinHeng Elec HL-340 USB-Serial adapter

Bus 001 Device 006: ID 1a86:7523 QinHeng Elec HL-340 USB-Serial adapter

Bus 001 Device 005: ID 10c4:ea60 Cygnal Integrated Products, CP210x UART ...

pi@erpi ~ $ ls -l /dev/ttyUSB*

crw-rw---T 1 root dialout 188, 0 Aug 30 15:40 /dev/ttyUSB0

crw-rw---T 1 root dialout 188, 1 Aug 30 15:44 /dev/ttyUSB1

crw-rw---T 1 root dialout 188, 2 Aug 30 15:44 /dev/ttyUSB2

Several of the available USB devices have built-in logic-level translation circuitry,

which is very useful for interfacing to both 3.3 V and 5 V tolerant devices. For,

example the YP-02 has a jumper that you can move to bridge its VCC and 5 V

pins, or the VCC and 3 V3 pins, as illustrated in Figure 9-18(a). The Baite module

has a slider selector switch on its side that can be used to select either logic level.

400 Part II ■ Interfacing, Controlling, and Communicating

c09.indd 03:13:41:PM 05/20/2016 Page 400

USB DEVICES AND UDEV RULES

When you plug out the USB device that is associated with /dev/ttyUSB0, then the
other device names will be updated to close any numbering “gaps”:

pi@erpi ~ $ ls -l /dev/ttyUSB*

crw-rw---T 1 root dialout 188, 0 Aug 30 15:40 /dev/ttyUSB0

crw-rw---T 1 root dialout 188, 1 Aug 30 16:49 /dev/ttyUSB1

This can cause diffi culty for your software applications, because they will not be
aware of the update (e.g., a serial motor controller could become connected to a serial
sensor module). You can solve this problem using udev rules. Each USB device has a
vendor and a product ID, and sometimes a unique serial number. This information
can be used to construct a rule that associates the USB adapter with a custom device
name. You can fi nd the adapter’s details using lsusb (as above) and/or by using the
udevadm command:

pi@erpi ~ $ sudo udevadm info -a -n /dev/ttyUSB1 | grep idVendor

 ATTRS{idVendor}=="10c4" ...

pi@erpi ~ $ sudo udevadm info -a -n /dev/ttyUSB1 | grep idProduct

 ATTRS{idProduct}=="ea60" ...

pi@erpi ~ $ sudo udevadm info -a -n /dev/ttyUSB1 | grep serial

 ATTRS{serial}=="0001" ...

You can then write a rule to create a custom device entry when the USB adapter is
plugged in. For example, if a motor was attached to the CP210x device (ID 10c4:ea60)
you could write the following rule to create a custom device entry (note that == is for
comparison, and = is for assignment):

pi@erpi /etc/udev/rules.d $ sudo nano 98-erpi.rules

pi@erpi /etc/udev/rules.d $ more 98-erpi.rules

SUBSYSTEM=="tty", ATTRS{idVendor}=="10c4", ATTRS{idProduct}=="ea60", →

ATTRS{serial}=="0001", SYMLINK+="erpi_motor"

On reboot a new device appears in /dev/ that is automatically linked to the correct
ttyUSBx device whenever the CP210x device is plugged in:

pi@erpi ~ $ ls -l /dev/er*

lrwxrwxrwx 1 root root 7 Jan 1 1970 /dev/erpi_motor -> ttyUSB1

The symbolic link is automatically removed if the device is plugged out and will
appear again if the device is reinserted (hot plugged). Clearly, you should use the /
dev/erpi_motor symbolic link within your code.

The serial number can usually be used to distinguish between two identical
devices. Unfortunately, these low-cost adapters often do not have unique serial num-
bers. There are tools available to write serial numbers onto USB devices, but they can

 Chapter 9 ■ Enhancing the Input/Output Interfaces on the RPi 401

c09.indd 03:13:41:PM 05/20/2016 Page 401

destroy the devices. An alternative solution is to use the physical USB slot to identify
the device, but it is not straightforward. Please see: tiny.cc/erpi909 for more
information on writing udev rules. If your device does not have a defi nite serial num-
ber, or you cannot seem to get the udev rule to work correctly when adding the appar-
ent serial number for your device, try to remove that portion from the udev rules fi le.
For example, for the YP-02 adapter in Figure 9-17(a), use:

SUBSYSTEM=="tty", ATTRS{idVendor}=="1a86", ATTRS{idProduct}=="7523", →

SYMLINK+="erpi_serial"

With two devices attached to the RPi, you can test them by opening two ter-

minal windows to the RPi and connecting the TXD output of one module to the

RXD input of the other module and vice versa, as illustrated in Figure 9-18(a).

There is no need to connect the GND connections, as they are both plugged

into the same device in this example. Start a minicom session in each terminal

window, each connecting to the alternate ttyUSB device. Remember to turn

on local echo (Ctrl+A Z E). These devices often support high baud rates—for

example, the following test is performed at 921,600 baud. In the fi rst terminal

window type:

(a) (b)

Figure 9-18: (a) The UART device loopback test, and (b) The UART output displaying “Hello” at
115,200 baud

pi@erpi ~ $ minicom -b 921600 -o -D /dev/ttyUSB0

Welcome to minicom 2.7

OPTIONS: I18n

Compiled on Jan 12 2014, 05:42:53.

Port /dev/ttyUSB0, 15:40:38

Press CTRL-A Z for help on special keys

Hello from the first minicom session

Hello from the second minicom session

And, simultaneously in a second terminal window:

pi@erpi ~ $ minicom -b 921600 -o -D /dev/ttyUSB1

Welcome to minicom 2.7

402 Part II ■ Interfacing, Controlling, and Communicating

c09.indd 03:13:41:PM 05/20/2016 Page 402

OPTIONS: I18n

Compiled on Jan 12 2014, 05:42:53.

Port /dev/ttyUSB1, 16:49:18

Press CTRL-A Z for help on special keys

Hello from the first minicom session

Hello from the second minicom session

This test performed correctly at the supported baud rates of: 115.2 kbps,

230.4 kbps, 460.8 kbps, 500 kbps, 576 kbps, 921.6 kbps, 1 Mbps, 1.152 Mbps, 1.5 Mbps,

2 Mbps, 2.5 Mbps, 3 Mbps, and 4 Mbps. The interconnector length was less than

6 inches, but still the devices performed very well.

THE DEFAULT TERMINAL LINE SETTINGS

It is possible to defi ne a default baud rate for a terminal device using the set terminal
line settings command, stty. For example, you can get the current device baud rate
and then set it to be 115,200 using the following steps:

pi@erpi ~ $ stty < /dev/ttyUSB0

speed 4000000 baud; line = 0;

min = 1; time = 5; ignbrk -brkint -icrnl -imaxbel -opost -onlcr

-isig -icanon -iexten -echo -echoe -echok -echoctl -echoke

pi@erpi ~ $ stty -F /dev/ttyUSB0 115200

pi@erpi ~ $ stty < /dev/ttyUSB0

speed 115200 baud; line = 0;

min = 1; time = 5; ignbrk -brkint -icrnl -imaxbel -opost -onlcr

-isig -icanon -iexten -echo -echoe -echok -echoctl -echoke

After you have confi gured the device with the new baud rate, you can write to and
read from the devices directly by using the device entry. For example, this command
will listen for incoming traffi c from the /dev/ttyUSB1 device:

pi@erpi ~ $ cat /dev/ttyUSB1

Hello from the second terminal

This output results from the following commands that are entered in a second ter-
minal window:

pi@erpi ~ $ stty -F /dev/ttyUSB1 115200

pi@erpi ~ $ echo "Hello from the second terminal" > /dev/ttyUSB0

Note that the string was sent to the ttyUSB0 device but it is displayed after it is
received by the ttyUSB1 device. The logic analyzer displays this communication tak-
ing place in Figure 9-18(b). Note that if the baud rates are mismatched, you will not get
a valid transfer of information between the two devices.

 Chapter 9 ■ Enhancing the Input/Output Interfaces on the RPi 403

c09.indd 03:13:41:PM 05/20/2016 Page 403

Summary

After completing this chapter, you should be able to do the following:

 ■ Extend the input/output capability of the RPi to include analog inputs

by using SPI ADCs.

 ■ Interface simple resistance-based sensors, where a voltage/current is

required for sensor excitation.

 ■ Extend the input/output capability of the RPi to include analog outputs

using both I2C and SPI DACs.

 ■ Expand the number of PWMs available on the RPi using a low-cost SPI

module.

 ■ Increase the number of available GPIOs on the RPi using both I2C and SPI

GPIO expanders, and utilize the interrupt functionality that is available

on such devices.

 ■ Increase the number of available serial UART devices on the RPi using

low-cost USB-to-TTL devices.

405

c10.indd 03:13:30:PM 05/20/2016 Page 405

In this chapter, you learn how to build on your knowledge of general-purpose

input/output (GPIO) and bus interfacing. In particular, you can combine hard-

ware and software to provide the Raspberry Pi (RPi) with the ability to interact

with its physical environment in the following three ways: First, by controlling

actuators such as motors, the RPi can affect its environment, which is very

important for applications such as robotics and home automation. Second, the

RPi can gather information about its physical environment by communicat-

ing with sensors. Third, by interfacing to display modules, the RPi can pres-

ent information. This chapter explains how each of these interactions can be

performed. Physical interaction hardware and software provides you with the

capability to build advanced projects (for example, to build a robotic platform

that can sense and interact with its environment). The chapter fi nishes with a

discussion on how you can create your own C/C++ code libraries and utilize

them to build highly scalable projects.

Equipment Required for This Chapter:

 ■ Raspberry Pi, DMM, and oscilloscope

 ■ DC motor and H-bridge interface board (e.g., DRV8835)

 ■ Stepper motor, EasyDriver interface board, and a 5 V relay

 ■ MCP3208 SPI ADC, op-amp (MCP6002/4), diodes, and resistors

C H A P T E R

10

Interacting with the
Physical Environment

406 Part II ■ Interfacing, Controlling, and Communicating

c10.indd 03:13:30:PM 05/20/2016 Page 406

 ■ TMP36 temperature sensor and Sharp infrared distance sensor

 ■ ADXL335 three-axis analog accelerometer

 ■ 74HC595 serial shift registers

 ■ LCD character display module, MAX7219 seven-segment display module,

SSD1306 OLED dot-matrix module

Further details on this chapter are available at www.exploringrpi.com/

chapter10/.

Interfacing to Actuators

Electric motors can be controlled by the RPi to make physical devices move or

operate. They convert electrical energy into mechanical energy that can be used

by devices to act upon their surroundings. A device that converts energy into

motion is generally referred to as an actuator. Interfacing the RPi to actuators

provides a myriad of application possibilities, including robotic control, home

automation (watering plants, controlling blinds), camera control, unmanned

aerial vehicles (UAVs), 3D printer control, and many more.

Electric motors typically provide rotary motion around a fi xed axis, which

can be used to drive wheels, pumps, belts, electric valves, tracks, turrets, robotic

arms, and so on. In contrast to this, linear actuators create movement in a straight

line, which can be very useful for position control in computer numerical control

(CNC) machines and 3D printers. In some cases, they convert rotary motion

into linear motion using a screw shaft that translates a threaded nut along its

length as it rotates. In other cases, a solenoid moves a shaft linearly through the

magnetic effects of an electric current.

Three main types of motors are commonly used with the RPi: servo motors,

DC motors, and stepper motors. A summary comparison of these motor types

is provided in Table 10-1. Interfacing to servo motors (a.k.a precision actuators)
through the use of PWM outputs is discussed in Chapter 6, so this section

focuses on interfacing to DC motors and stepper motors.

Table 10-1: Summary Comparison of Common Motor Types

SERVO MOTOR DC MOTOR STEPPER MOTOR

Typical
application

When high torque,
accurate rotation is
required.

When fast, con-
tinuous rotation is
required.

When slow and accurate
rotation is required.

Control
hardware

Position is controlled
through pulse
width modulation
(PWM). No controller
required. May require
PWM tuning.

Speed is often
controlled through
PWM. Additional
circuitry required
to manage power
requirements.

Typically requires a
controller to energize
stepper coils. The RPi can
perform this role, but
an external controller is
preferable and safer.

http://www.exploringrpi.com
http://www.exploringrpi.com/chapter10/

 Chapter 10 ■ Interacting with the Physical Environment 407

c10.indd 03:13:30:PM 05/20/2016 Page 407

SERVO MOTOR DC MOTOR STEPPER MOTOR

Control
type

Closed-loop, using a
built-in controller.

Typically closed-loop
using feedback from
optical encoders.

Typically open-loop,
because movement is
precise and steps can be
counted.

Features Known absolute
position. Typically,
limited angle of
rotation.

Can drive very large
loads. Often geared
to provide very high
torque.

Full torque at standstill.
Can rotate a large load
at very low speeds.
Tendency to vibrate.

Example
applications

Steering controllers,
camera control, and
small robotic arms.

Mobile robot
movement, fans,
water pumps, and
electric cars.

CNC machines, 3D
printers, scanners, linear
actuators, and camera
lenses.

High-current inductive loads are challenging to interface with the RPi; they

invariably require more current than the RPi can supply, and they generate

voltage spikes that can be extremely harmful to the interfacing circuitry. The

applications discussed in this section often require a secondary power supply,

which could be an external battery pack in the case of a mobile platform or a

high-current supply for powerful motors. The RPi needs to be isolated from

these supplies; as a result, generic motor controller boards are described here

for interfacing to DC motors and stepper motors. Circuitry is also carefully

designed for interfacing to relay devices.

DC Motors

DC motors are used in many applications, from toys to advanced robotics. They

are ideal motors to use when continuous rotation is required, such as in the

wheels of an electric vehicle. Typically, they have only two electrical terminals

to which a voltage is applied. The speed of rotation and the direction of rota-

tion can be controlled by varying this voltage. The tendency of a force to rotate

an object about its axis is called torque, and for a DC motor, torque is generally

proportional to the current applied.

The higher the gear ratio, the slower the rotation speed, and the higher the stall

torque. For example, the DC motor in Figure 10-1(a) has a no-load speed of 80

revolutions per minute (rpm) and a stall torque of 250 oz·in (18 kg·cm).1 Similarly, if

a 70:1 gear ratio is used, the rotation speed becomes 150 rpm, but the stall torque

1 DC motor datasheets often do not use SI units, which would be newton-meters (N·m) in this
case. It is therefore important to understand the meaning of 250 oz·in: Imagine that you fixed a
1-inch metal bar to the motor shaft at 90 degrees to the direction of rotation, and rotated the shaft
until the bar is horizontal to the surface of the Earth. Should you attach a weight of greater than
250 ounces to the end of the 1-inch bar, this motor would not be able to rotate its shaft; this is
called its stall torque limit. Because 250 ounces = 7.08738 kg and 1 inch = 2.54 cm, the conversion
to metric units is 7.08738 × 2.54 = 18.002 kg·cm (i.e., the torque effect of 18 kg at the end of a 1cm
bar is equivalent to 7.08738 kg at the end of a 1-inch bar—the law of the lever). Also note that
70 × 150 rpm = 131.25 × 80 rpm = 10,500 rpm (the 1:1 rotation speed of the motor). See tiny
.cc/erpi1002.

408 Part II ■ Interfacing, Controlling, and Communicating

c10.indd 03:13:30:PM 05/20/2016 Page 408

reduces to 200 oz·in (14.4 kg·cm). The DC motor in Figure 10-1(a) has a free-run

current of 300 mA at 12 V, but it has a stall current of 5 A—a large current that

must be factored into the circuit design.

Most DC motors require more current than the RPi can supply; therefore,

you might be tempted to drive them from the RPi by simply using a transistor

or FET. Unfortunately, this will not work well, due to a phenomenon known

as inductive kickback, which results in a large voltage spike that is caused by the

inertia of current fl owing through an inductor (i.e., the motor’s coil windings)

being suddenly switched off. Even for modest motor power supplies, this large

voltage could exceed 1 kV for a very short period of time. The FETs discussed

in Chapter 4 cannot have a drain-source voltage of greater than 60 V and will

therefore be damaged by such large voltage spikes.

(a) (b)

Figure 10-1: (a) A 12 V DC motor with an integrated 131¼:1 gearbox ($40), and (b) an integrated
counts per revolution (CPR) Hall Effect sensor shaft encoder

One solution is to place a Zener diode across the drain-source terminals of

the FET (or collector-emitter of a transistor). The Zener diode limits the voltage

across the drain-source terminals to that of its reverse breakdown voltage. The

downside of this confi guration is that the ground supply has to sink a large cur-

rent spike, which could lead to the type of noise in the circuit that is discussed

in Chapter 4. With either of these types of protection in place, it is possible to

use an RPi PWM output to control the speed of the DC motor. With a PWM

duty cycle of 50%, the motor will rotate at half the speed that it would if directly

connected to the motor supply voltage.

The DC motor in Figure 10-1 has a 64 counts per revolution (CPR) quadra-

ture encoder that is attached to the motor shaft, which means that there are

64 × 131.25 = 8,400 counts for each revolution of the geared motor shaft.

Shaft encoders are often used with DC motors to determine the position and

speed of the motor. For example, the encoder has an output as illustrated in

Figure 10-2(a) when rotating clockwise and Figure 10-2(b) when rotating coun-

terclockwise. The frequency of the pulses is proportional to the speed of the

motor, and the order of the rising edges in the two output signals describes

the direction of rotation. Note that the Hall Effect sensor must be powered,

so four of the six motor wires are for the encoder: A output (yellow), B output

(white), encoder power supply (blue), GND (green). The remaining two wires

are for the motor power supply (red and black).

 Chapter 10 ■ Interacting with the Physical Environment 409

c10.indd 03:13:30:PM 05/20/2016 Page 409

(a)(a) (b(b))

Figure 10-2: The output from the shaft encoder in Figure 10-1(b) when rotating: (a) clockwise,
and (b) counterclockwise

For bidirectional motor control, a circuit confi guration called an H-bridge can

be used, which has a circuit layout in the shape of the letter H, as illustrated in

Figure 10-3. Notice that it has Zener diodes to protect the four FETs. To drive the

motor in a forward (assumed to be clockwise) direction, the top-left and bottom-

right FETs can be switched on. This causes a current to fl ow from the positive

to the negative terminal of the DC motor. When the opposing pair of FETs is

switched on, current fl ows from the negative terminal to the positive terminal

of the motor and the motor reverses (turns counterclockwise). The motor does

not rotate if two opposing FETs are switched off (open circuit).

Figure 10-3: Simplified H-bridge description

This circuit could be combined with the PCA9685 PWM board that is described

in Chapter 9, so that four of its outputs could be connected to the H-bridge circuit.

Particular care would have to be taken to ensure that the two FETs on the left

side or the right side of the circuit are not turned on at the same time, because

this would result in a large current (shoot-through current)—the motor supply

would effectively be shorted (VM to GND). Because high-current capable power

supplies are often used for the motor power supply, this is very dangerous,

because it could even cause a power supply or a battery to explode! An easier

and safer approach is to use an H-bridge driver that has already been packaged

in an IC, such as the SN754410, a quadruple high-current half-H driver, which

can drive 1 A at 4.5 V to 36 V per driver (see tiny.cc/erpi1001).

410 Part II ■ Interfacing, Controlling, and Communicating

c10.indd 03:13:30:PM 05/20/2016 Page 410

Driving Small DC Motors (up to 1.5 A)

There are many more recently introduced drivers that can drive even larger

currents using smaller package sizes than the SN754410. In this example, a

DRV8835 dual low-voltage motor driver carrier on a breakout board ($4) from

www.pololu.com is used, as illustrated in Figure 10-4. The DRV8835 itself is

only 2 mm × 3 mm in dimension and can drive 1.5 A (max) per H-bridge at

a motor supply voltage up to 11 V. It can be driven with logic levels of 2 V to

7 V, which enables it to be used directly with the RPi. Note that you will need a

more recent RPi to drive two motors from this board as you require two PWM

channels. For older RPi models or for more than two motors, you can integrate

the PCA9685 PWM board that is described in Chapter 9.

Figure 10-4: Driving a DC motor using an example H-bridge driver breakout board

The DRV8835 breakout board can be connected to the RPi as illustrated in

Figure 10-4. This circuit uses four pins from the RPi:

 ■ The PWM0 and PWM1 pins provide PWM outputs from the RPi that can

be used to control the rotation speed of each of the two motors, because

they are connected to the AENABLE and BENABLE inputs on the DRV8835.

 ■ The GPIO22 and GPIO4 outputs can be used to set whether the motor

is rotating clockwise or counterclockwise, because it is connected to the

APHASE and BPHASE inputs of the DRV8835.

The motor power supply voltage is set according to the specifi cation of the

DC motor that is chosen. By tying the Mode pin high, the DRV8835 is placed in

PHASE/ENABLE mode, which means that one input is used for direction and

the other is used for determining the rotation speed.

W A R N I N G The DRV8835 IC can get hot enough to burn, even while operating

within its normal operating parameters. This is a common characteristic of motor

driver ICs—so be careful! Heat sinks can be added to dissipate heat, and they have

the added advantage of extending the constant run time, because thermal protection

circuitry will shut motor driver ICs down to prevent them from overheating when

driving large loads.

http://www.pololu.com

 Chapter 10 ■ Interacting with the Physical Environment 411

c10.indd 03:13:30:PM 05/20/2016 Page 411

Listing 10-1 provides a source code example that uses the wiringPi library

to control the DC motor circuit in Figure 10-4. This program rotates Motor A

in a notional forward direction at 50% of the available maximum speed for

5 seconds. It then reverses the motor at full speed for 5 seconds. The program

then rotates Motor B forward at 75% of the available maximum speed for

5 seconds and then backward at 25% for 5 seconds.

Listing 10-1: /chp10/drv8835/motor.cpp

#include <iostream>

#include <unistd.h>

#include <wiringPi.h>

using namespace std;

#define APHASE 15 // physical pin for GPIO22

#define AENABLE_PWM1 33 // physical pin for PWM1

#define BPHASE 7 // physical pin for GPIO4

#define BENABLE_PWM0 12 // physical pin for PWM0

int main() { // must be run as root

 wiringPiSetupPhys(); // use the physical pin numbers

 pinMode(APHASE, OUTPUT); // controls direction

 pinMode(AENABLE_PWM1, PWM_OUTPUT); // speed - only on RPi B+/A+/2

 pinMode(BPHASE, OUTPUT); // controls direction

 pinMode(BENABLE_PWM0, PWM_OUTPUT); // PWM output used for speed

 pwmSetMode(PWM_MODE_MS); // use a fixed frequency

 pwmSetRange(128); // range is 0-128

 pwmSetClock(15); // gives a precise 10kHz signal

 cout << "Motor A: Rotate forward at 50% for 5 seconds" << endl;

 digitalWrite(APHASE, LOW); // notional foward

 pwmWrite(AENABLE_PWM1, 64); // duty cycle of 50% (64/128)

 usleep(5000000);

 cout << "Motor A: Rotate backward at 100% for 5 seconds" << endl;

 digitalWrite(APHASE, HIGH); // notional backward

 pwmWrite(AENABLE_PWM1, 128); // duty cycle of 100% (64/128)

 usleep(5000000);

 pwmWrite(AENABLE_PWM1, 0); // Motor A off - duty cycle of 0%

 cout << "Motor B: Rotate forward at 75% for 5 seconds" << endl;

 digitalWrite(BPHASE, LOW); // notional foward

 pwmWrite(BENABLE_PWM0, 96); // duty cycle of 75% (96/128)

 usleep(5000000);

 cout << "Motor B: Rotate Backward at 25% for 5 seconds" << endl;

 digitalWrite(BPHASE, HIGH); // notional backward

 pwmWrite(BENABLE_PWM0, 32); // duty cycle of 25% (35/128)

 usleep(5000000);

 cout << "End of Program turn off both motors" << endl;

 pwmWrite(BENABLE_PWM0, 0); // Motor B off - duty cycle of 0%

 return 0; // would keep going after exit

}

The code in Listing 10-1 can be built and executed as follows:

pi@erpi:~/exploringrpi/chp10/drv8835 $ g++ motor.cpp -o motor -lwiringPi

pi@erpi ~/exploringrpi/chp10/drv8835 $ sudo ./motor

412 Part II ■ Interfacing, Controlling, and Communicating

c10.indd 03:13:30:PM 05/20/2016 Page 412

Motor A: Rotate forward at 50% for 5 seconds

Motor A: Rotate backward at 100% for 5 seconds

Motor B: Rotate forward at 75% for 5 seconds

Motor B: Rotate Backward at 25% for 5 seconds

End of Program turn off both motors

Driving Larger DC Motors (greater than 1.5 A)

The Pololu Simple Motor Controller family ($30–$55), illustrated in Figure 10-5(a),

supports powerful brushed DC motors with continuous currents of up to 23 A

and maximum voltages of 34 V. It supports USB, TTL serial, analog, and hobby

radio-control (RC) PWM interfaces. The controller uses 3.3 V logic levels, but

it is also 5 V tolerant.

Despite its name, this is an advanced controller that can be confi gured with

settings such as maximum acceleration/deceleration, adjustable starting speed,

electronic braking, over-temperature threshold/response, etc., which makes it a

good choice for larger-scale robotic applications. The controller can be confi gured

using a Windows GUI application, as illustrated in Figure 10-5(b), or by using a

Linux command-line user interface. The Windows confi guration tool can also

be used to monitor motor temperature and voltage conditions and control the

speed settings, braking, PWM, communications settings, and so on over USB,

even while the motor is connected to the RPi with a TTL serial interface.

(a(a) () (b)b)

Figure 10-5: (a) The Pololu Simple Motor Controller, and (b) the associated motor configuration
tool

The 3.3 V TTL serial interface is likely the best option for embedded appli-

cations, as it can be used directly with a UART device. A low-cost USB UART

device can be utilized for communication, as described in Chapter 8.

 Chapter 10 ■ Interacting with the Physical Environment 413

c10.indd 03:13:30:PM 05/20/2016 Page 413

pi@erpi ~ $ lsusb

Bus 001 Device 004: ID 1a86:7523 QinHeng Ele. HL-340 USB-Serial adapter

pi@erpi ~ $ ls -l /dev/ttyUSB0

crw-rw---T 1 root dialout 188, 0 Jan 1 1970 /dev/ttyUSB0

N O T E Connect a power supply to the Simple Motor Controller board before

attempting serial communication. The power supply must be suffi cient for the con-

troller board, or the red LED will fl ash to indicate an error state. Also, confi gure the

controller using a Windows machine before connecting it to the RPi and choose a fi xed

baud rate of 115,200, rather than choosing the auto-negotiate option.

The Simple Motor Controller can be confi gured to be in a serial ASCII mode,

whereupon it can be controlled using a UART device from the RPi with minicom.

For example, with ASCII mode enabled and a fi xed baud rate of 115,200 (8N1)

set in the Input Settings tab (see Figure 10-5(b)), the RPi can connect directly

to the motor controller and issue text-based commands to control the motor,

such as V (version), F (forward), B (brake), R (reverse), GO (exit safe-start mode),

X (stop), etc. See the comprehensive manual for the full list of commands (tiny

.cc/erpi1003):

pi@erpi ~ $ sudo minicom -b 115200 -o -D /dev/ttyUSB0

V

!161 01.04

GO

.

F 50%

.

B

?

GO

.

R 25%

.

The Simple Motor Controller can also be controlled directly using the C/C++

UART communications code that is described in Chapter 8. The confi guration

tool can be used to set the serial TTL mode to be Binary mode with a baud

rate of 115,200. Assuming the motor controller is attached to /dev/ttyUSB0 (as

above), the motor.c code example in the /chp10/simple/ directory can be used

to control the motor directly:

pi@erpi ~/exploringrpi/chp10/simple $ gcc motor.c -o motor

pi@erpi ~/exploringrpi/chp10/simple $ sudo ./motor

Starting the motor controller example

Error status: 0x0000

Current Target Speed is 0.

Setting Target Speed to 3200.

414 Part II ■ Interfacing, Controlling, and Communicating

c10.indd 03:13:30:PM 05/20/2016 Page 414

Stepper Motors

Unlike DC motors, which rotate continuously when a DC voltage is applied,

stepper motors normally rotate in discrete fixed-angle steps. For example,

the stepper motor that is used in this chapter rotates with 200 steps per revolu-
tion, and therefore has a step angle of 1.8º. The motor steps each time a pulse is

applied to its input, so the speed of rotation is proportional to the rate at which

pulses are applied.

Stepper motors can be positioned very accurately, because they typically have

a positioning error of less than 5% of a step (i.e., typically ±0.1º). The error does

not accumulate over multiple steps, so stepper motors can be controlled in an

open-loop form, without the need for feedback. Unlike servo motors, but like

DC motors, the absolute position of the shaft is not known without the addition

of devices like rotary encoders, which often include an absolute position refer-

ence that can be located by performing a single shaft rotation.

Stepper motors, as illustrated in Figure 10-6(a), have toothed permanent mag-

nets that are fi xed to a rotating shaft, called the rotor. The rotor is surrounded by

coils (grouped into phases) that are fi xed to the stationary body of the motor (the
stator). The coils are electromagnets that, when energized, attract the toothed

shaft teeth in a clockwise or counterclockwise direction, depending on the order

in which the coils are activated, as illustrated in Figure 10-6(b) for full-step drive:

 ■ Full step: Two phases always on (max torque).

 ■ Half step: Double the step resolution. Alternates between two phases on

and a single phase on (torque at about 3/4 max).

 ■ Microstep: Uses sine and cosine waveforms for the phase currents to step

the motor rather than the on/off currents illustrated in Figure 10-6(b) and

thus allows for higher step resolutions (though the torque is signifi cantly

reduced).

(a) (b)

Figure 10-6: (a) Stepper motor external and internal structure, and (b) full- and half-step drive
signals

 Chapter 10 ■ Interacting with the Physical Environment 415

c10.indd 03:13:30:PM 05/20/2016 Page 415

The EasyDriver Stepper Motor Driver

An easy way to generate the stepper motor pulse signals is to use a stepper-

motor driver board. The EasyDriver board (illustrated in Figure 10-7) is a low-

cost (~$15) open-hardware stepper motor driver board that is widely available.

It can be used to drive four-, six- and eight-wire stepper motors, as illustrated

in Figure 10-8. The board has an output drive capability of between 7 V and

30 V at ±750 mA per phase. The board uses the Allegro A3967 Microstepping

Driver with Translator, which allows for full, half, quarter, and one-eighth step

microstepping modes. In addition, the board can be driven with 5 V or 3.3 V

logic levels, which makes it an ideal board for the RPi. For 3.3 V logic control

levels, there is a jumper (SJ2) that has to be bridged with solder.

W A R N I N G Do not disconnect a motor from the EasyDriver board while it is pow-

ered, because it may destroy the board.

Figure 10-7: Driving a stepper motor using the open-hardware EasyDriver board

The merit in examining this board is that many boards can be used for higher-

powered stepper motors that have a very similar design.

N O T E If you don’t have access to a datasheet for a stepper motor (e.g., you res-

cued it from an old printer), you can determine the connections to the coils by short-

ing pairs of wires and rotating the motor. If there is noticeable resistance to rotation

for a particular shorted pairing, you have identifi ed the connections to a coil. You

cannot determine the coils using the colors of the wires alone, because there is no

standard format.

416 Part II ■ Interfacing, Controlling, and Communicating

c10.indd 03:13:30:PM 05/20/2016 Page 416

An RPi Stepper Motor Driver Circuit

The EasyDriver board can be connected to the RPi, as illustrated in Figure 10-8,

using GPIOs for each of the control signals. The pins are described in

Figure 10-7, and a table is provided in the fi gure for the MS1/MS2 inputs. A C++

class called StepperMotor is available that accepts alternative GPIO numbers.

Figure 10-8: Driving a stepper motor using the RPi and the EasyDriver interface board

Controlling a Stepper Motor Using C++

Listing 10-2 presents the description of a class that can be used to control the

EasyDriver driver board using fi ve RPi GPIO pins. This code can be adapted

to drive most types of stepper driver boards.

Listing 10-2: /chp10/stepper/motor/StepperMotor.h (Segment)

class StepperMotor {

public:

 enum STEP_MODE { STEP_FULL, STEP_HALF, STEP_QUARTER, STEP_EIGHT };

 enum DIRECTION { CLOCKWISE, COUNTERCLOCKWISE };

private:

 // The GPIO pins MS1, MS2 (microstep options), STEP (low->high step)

 // SLP (sleep - active low) and DIR (direction)

 GPIO *gpio_MS1, *gpio_MS2, *gpio_STEP, *gpio_SLP, *gpio_DIR;

 ...

public:

 StepperMotor(GPIO *ms1, GPIO *ms2, GPIO *step, GPIO *sleep,

 GPIO *dir, int speedRPM = 60, int stepsPerRev=200);

 StepperMotor(int ms1, int ms2, int step, int sleep,

 int dir, int speedRPM = 60, int stepsPerRev=200);

 virtual void step();

 virtual void step(int numberOfSteps);

 Chapter 10 ■ Interacting with the Physical Environment 417

c10.indd 03:13:30:PM 05/20/2016 Page 417

 virtual int threadedStepForDuration(int numOfSteps, int dur_ms);

 virtual void threadedStepCancel() { this->threadRunning=false; }

 virtual void rotate(float degrees);

 virtual void setDirection(DIRECTION direction);

 virtual DIRECTION getDirection() { return this->direction; }

 virtual void reverseDirection();

 virtual void setStepMode(STEP_MODE mode);

 virtual STEP_MODE getStepMode() { return stepMode; }

 virtual void setSpeed(float rpm);

 virtual float getSpeed() { return speed; }

 virtual void setStepsPerRevolution(int steps) { stepsPerRev=steps; }

 virtual int getStepsPerRevolution() { return stepsPerRev; }

 virtual void sleep();

 virtual void wake();

 virtual bool isAsleep() { return asleep; }

 ...

};

The library code is used in Listing 10-3 to create a StepperMotor object, and

rotate the motor counterclockwise 10 times at full-step resolution. It then uses

a threaded step function to microstep the stepper motor clockwise for one full

revolution over fi ve seconds at one-eighth step resolution.

Listing 10-3: /chp10/stepper/stepper.cpp

#include <iostream>

#include <unistd.h>

#include "motor/StepperMotor.h"

using namespace std;

using namespace exploringRPi;

int main(){

 cout << "Starting RPi Stepper Motor Example:" << endl;

 // using 5 GPIOs, RPM=60 and 200 steps per revolution

 // MS1=17, MS2=24, STEP=27, SLP=4, DIR=22

 StepperMotor m(17,24,27,4,22,60,200);

 m.setDirection(StepperMotor::COUNTERCLOCKWISE);

 m.setStepMode(StepperMotor::STEP_FULL);

 m.setSpeed(100); //rpm

 cout << "Rotating 10 times 100 rpm co-clockwise, full step" << endl;

 m.rotate(3600.0f); //in degrees

 cout << "Finished regular (non-threaded) rotation)" << endl;

 m.setDirection(StepperMotor::CLOCKWISE);

 cout << "Performing 1 threaded rev in 5s using micro-step:" << endl;

 m.setStepMode(StepperMotor::STEP_EIGHT);

 if(m.threadedStepForDuration(1600, 5000)<0){

 cout << "Failed to start the Stepper Thread" << endl;

 }

 cout << "Thread should now be running..." << endl;

 for(int i=0; i<10; i++){ // sleep for 10 seconds.

 usleep(1000000);

418 Part II ■ Interfacing, Controlling, and Communicating

c10.indd 03:13:30:PM 05/20/2016 Page 418

 cout << i+1 << " seconds has passed..." << endl;

 }

 m.sleep(); // cut power to the stepper motor

 cout << "End of Stepper Motor Example" << endl;

}

After calling the associated build script, the program can be executed and

should result in the following output:

pi@erpi ~/exploringrpi/chp10/stepper $ sudo ./stepper

Starting RPi Stepper Motor Example:

Rotating 10 times 100 rpm co-clockwise, full step

Finished regular (non-threaded) rotation)

Performing 1 threaded rev in 5s using micro-step:

Thread should now be running...

1 seconds has passed...

2 seconds has passed...

...

10 seconds has passed...

End of Stepper Motor Example

It is important to note that the threaded revolution completes the revolution

after fi ve seconds. The counter continues for a further 5 seconds, during which

time a holding torque is applied. The fi nal call to m.sleep() removes power

from the stepper motor coils, thus removing holding torque.

It is possible to further reduce the number of pins that are used in this motor

controller example by using 74HC595 ICs and the SPI bus. That topic is discussed

in the section “Interfacing to Display Modules,” later in this chapter.

Relays

Traditional relays are electromechanical switches that are typically used to control

a high-voltage/high-current signal using a low-voltage/low-current signal. They

are constructed to enable a low-powered circuit to apply a magnetic force to an

internal movable switch. The internal switch can turn on or turn off a second

circuit that often contains a high-powered DC or AC load. The relay itself is

chosen according to the power requirements; whether the circuit is designed so

that the high-powered circuit is normally powered or normally disabled; and

the number of circuits being switched in parallel.

Electromechanical relays (EMRs) are prone to switch bounce and mechani-

cal fatigue, so they have a limited life span, particularly if they are switched

constantly at frequencies of more than a few times per minute. Rapid switching

of EMRs can also cause them to overheat. More recent, solid-state relays (SSRs)

are electronic switches that consist of FETs, thyristors, and opto-couplers. They

have no moving parts and therefore have longer life spans and higher maxi-

mum switching frequencies (about 1 kHz). The downside is that SSRs are more

expensive, and they are prone to failure (often in the switched “on” state) due

to overloading or improper wiring. They are typically installed with heat sinks

and fast-blow fuses on the load circuit.

 Chapter 10 ■ Interacting with the Physical Environment 419

c10.indd 03:13:30:PM 05/20/2016 Page 419

EMRs and SSRs are available that can switch very high currents and voltages.

That makes them particularly useful for applications like smart home installa-

tions, for the control of mains-powered devices, motor vehicle applications for

switching high-current DC loads, and powering high-current inductive loads

in robotic applications. Importantly, wiring mains applications are for expert

users only, because even low currents coupled with high voltages can be fatal.

Seek local professional advice if dealing in any way with high currents or

high voltages, including, but not limited to, AC mains voltages.

W A R N I N G The circuit in Figure 10-9 is intended for connection to low-voltage

supplies only (e.g., 12 V supplies). High voltages can be extremely dangerous to human

health, and only suitably trained individuals with appropriate safety equipment and

taking professional precautions should wire mains-powered devices. Suitable insula-

tion, protective enclosures, or additional protective devices such as fuses or circuit

breakers (possibly including both current-limiting circuit breakers and earth-leakage

circuit breakers) may be required to prevent creating either a shock or a fi re hazard.

Seek advice from a qualifi ed electrician before installing mains-powered home auto-

mation circuitry.

Figure 10-9(a) illustrates the type of circuit that can be used to interface the

RPi to a relay. It is important that the relay chosen is capable of being switched

at 5 V and that, like the motor circuit, a fl yback diode is placed in parallel to

the relay’s inductive load to protect the FET from damage. Pololu (www.pololu

.com) sells a small SPDT relay kit (~$4), as illustrated in Figure 10-9(b), that can

be used to switch 8 A currents at 30 V DC using an Omron G5LE power relay.

The breakout board contains a BSS138 FET, the fl yback diode, and LEDs that

indicate when the relay is switched to enable—that is, close the circuit connected

to the normally open (NO) output. Figure 10-9(b) also illustrates a low-cost four

relay breakout board.

The relays on both boards can be connected to a regular GPIO for control.

For example, if the relay were connected as shown in Figure 10-9(a), to GPIO 4,

it can be switched using the following steps:

pi@erpi /sys/class/gpio $ echo 4 > export

pi@erpi /sys/class/gpio $ cd gpio4

pi@erpi /sys/class/gpio/gpio4 $ echo out > direction

pi@erpi /sys/class/gpio/gpio4 $ cat value

0

pi@erpi /sys/class/gpio/gpio4 $ echo 1 > value

pi@erpi /sys/class/gpio/gpio4 $ echo 0 > value

N O T E Occasionally, changes to the udev rules on your board can mean that the

GPIOs are no longer owned by the pi user, but by the root user. You can fi x the udev

rules fi les, but it is useful to note that you can use the sudo tool to direct an output to

root. For example, to perform the last command above where the entries are owned

by root, you can use the following call:

http://www.pololu.com
http://www.pololu.com

420 Part II ■ Interfacing, Controlling, and Communicating

c10.indd 03:13:30:PM 05/20/2016 Page 420

pi@erpi /sys/class/gpio/gpio4 $ ls -l value

-rw-r--r-- 1 root root 4096 Sep 16 00:16 value

pi@erpi /sys/class/gpio/gpio4 $ sudo sh -c "echo 0 > value"

(a) (b)

Figure 10-9: (a) Controlling a relay using the RPi, and (b) example relay breakout boards

Interfacing to Analog Sensors

A transducer is a device that converts variations in one form of energy into pro-

portional variations in another form of energy. For example, a microphone is an

acoustic transducer that converts variations in sound waves into proportional

variations in an electrical signal. In fact, actuators are also transducers, because

they convert electrical energy into mechanical energy.

Transducers, the main role of which is to convert information about the

physical environment into electrical signals (voltages or currents), are called

sensors. Sensors may contain additional circuitry to further condition the elec-

trical signal (e.g., by fi ltering out noise or averaging values over time), and this

combination is often referred to as an instrument. The terms sensor, transducer,
and instrument are in fact often used interchangeably, so too much should not

be read into the distinctions between them. Interfacing to sensors enables you

to build an incredibly versatile range of project types using the RPi, some of

which are described in Table 10-2.

Table 10-2: Example Analog Sensor Types and Applications

MEASURE APPLICATIONS EXAMPLE SENSORS

Temperature Smart home, weather
monitoring

TMP36 temperature sensor. MAX6605
low-power temperature sensor

Light Level Home automation, display
contrast adjustment

Mini photocell/photodetector
(PDV-P8001)

Distance Robotic navigation, revers-
ing sensing

Sharp infrared proximity sensors (e.g.,
GP2D12)

 Chapter 10 ■ Interacting with the Physical Environment 421

c10.indd 03:13:30:PM 05/20/2016 Page 421

MEASURE APPLICATIONS EXAMPLE SENSORS

Touch User interfaces, proximity
detection

Capacitive touch

Acceleration Determine orientation,
impact detection

Accelerometer (ADXL335). Gyroscope
(LPR530) detects change in orientation

Sound Speech recording and
recognition, UV meters

Electret microphone (MAX9814), MEMS
microphone (ADMP401)

Magnetic Fields Noncontact current
measurement, home secu-
rity, noncontact switches

100 A Non-invasive current sensor (SCT-
013-000). Hall eff ect and reed switches.
Linear magnetic fi eld sensor (AD22151)

Motion
detection

Home security, wildlife
photography

PIR Motion Sensor (SE-10)

The ADXL345 I2C/SPI digital accelerometer is discussed in Chapter 8, and

Table 10-2 identifi es another accelerometer, the ADXL335, which is an analog

accelerometer. Essentially, the ADXL345 digital accelerometer is an analog sen-

sor that also contains fi ltering circuitry, analog-to-digital conversion, and input/

output circuitry. It is quite often the case that both analog and digital sensors

are available that can perform similar tasks. Table 10-3 provides a summary

comparison of digital versus analog sensors.

Table 10-3: Comparison of Typical Digital and Analog Sensor Devices

DIGITAL SENSORS ANALOG SENSORS

ADC is handled by the sensor, freeing up
limited microcontroller ADC inputs

Provide continuous voltage output and
capability for very fast sampling rates

The real-time issues surrounding embedded
Linux, such as variable sampling periods, are
not as signifi cant

Typically less expensive, but may require
external components to confi gure the
sensor parameters

Often contain advanced fi lters that can be
confi gured and controlled via registers

Output is generally easy to understand
without the need for complex datasheets

Bus interfaces allow for the connection of
many sensor devices

Relatively easy to interface

Less susceptible to noise

Digital sensors typically have more advanced features (e.g., the ADXL345 has

double-tap and free-fall detection), but at a greater cost and level of complexity.

Many sensors are not available in a digital package, so it is very important to

understand how to connect analog sensors to the RPi using the SPI ADC cir-

cuit that is described in Chapter 9. Ideally, the analog sensor that you connect

should not have to be sampled at a rate of thousands of times per second, or it

will add signifi cant CPU overhead.

422 Part II ■ Interfacing, Controlling, and Communicating

c10.indd 03:13:30:PM 05/20/2016 Page 422

Linear Analog Sensors

In Chapter 9, a fi rst example is provided of using the MCP3208 SPI ADC to

interface to a light-dependent resistor (LDR). The LDR is a resistance-based sen-

sor, where a voltage/current is required for sensor excitation, and the resistance

of the sensor varies in proportion to the quantity under measurement.

The TMP36 (tiny.cc/erpi1004) is a low-cost precision analog temperature

sensor that provides a voltage output which is linearly proportional to the tem-

perature. The TMP36 has a range of –40°C to +125°C, and a typical accuracy

of ±1°C at +25°C. It can be powered at between 2.7 V and 5.5 V and is available

in a three-pin TO-92 package, which makes it suitable for prototyping work.

Analog sensors with confi gurable linear voltage outputs can be easily attached

to the RPi SPI ADC combination. The TMP36 provides an output of 750 mV

at 25ºC. It has a linear output, where the output scale factor is 10mV/ºC. This

means that the minimum output voltage is 0.75 V – (65 × 0.01 V) = 0.1 V and the

maximum output voltage is 0.75 V + (100 × 0.01 V) = 1.75 V. The sensor output

current will be between 0 μA and 50 μA, depending on the input impedance

of the device to which it is attached. The high input impedance of the MCP3208

ADC means that current supplied is only a few nanoamps.

The C/C++ code required to convert the ADC value to a temperature in

degrees Celsius is expressed in C code as follows:

float getTemperature(int adc_value) { // from the datasheet

 float cur_voltage = adc_value * (3.30f/4096.0f); // Vcc = 3.3V, 12-bit

 float diff_degreesC = (cur_voltage-0.75f)/0.01f; // how many 0.1V steps?

 return (25.0f + diff_degreesC);

}

The TMP36 datasheet provides details on how the sensor can be wired using

twisted-pair cable to be physically distant from the RPi itself. Such a confi gura-

tion would allow the sensor to be used for external temperature monitoring

applications. It is also important to note that analog sensors such as the TMP36

can be combined with op-amp circuits to build analog differential thermom-

eters (e.g., to measure the difference in temperature between two locations) or

to create an over/under-temperature interrupt signal—you do not have to write

code for every application! Such circuits are described in the TMP36 datasheet

(tiny.cc/erpi1004).

Figure 10-10 illustrates the circuit that can be used to connect the TMP36 to the

RPi via the MCP3208 family of SPI ADCs. You can use a 10-bit MCP3008 ADC,

but you will have to change the value in the temperature calculation code above

from 4,096 (i.e., 212) to 1,024 (i.e., 210), and adjust the send[0] and send[1] bytes

as described in Chapter 9. The full code example is available in Listing 10-4.

This code uses the SPIDevice C++ class that is described in Chapter 8.

Listing 10-4: /chp10/tmp36/tmp36.cpp

#include <iostream>

#include "bus/SPIDevice.h"

using namespace exploringRPi;

 Chapter 10 ■ Interacting with the Physical Environment 423

c10.indd 03:13:30:PM 05/20/2016 Page 423

using namespace std;

float getTemperature(int adc_value) { // from the TMP36 datasheet

 float cur_voltage = adc_value * (3.30f/4096.0f); // Vcc = 3.3V, 12-bit

 float diff_degreesC = (cur_voltage-0.75f)/0.01f;

 return (25.0f + diff_degreesC);

}

int main(){

 cout << "Starting the RPi TMP36 example" << endl;

 SPIDevice *busDevice = new SPIDevice(0,0);

 busDevice->setSpeed(5000000);

 busDevice->setMode(SPIDevice::MODE0);

 unsigned char send[3], receive[3];

 send[0] = 0b00000110; // Reading single-ended input from channel 0

 send[1] = 0b00000000; // Use 0b00000001 and 0b10000000 for MCP3008

 busDevice->transfer(send, receive, 3);

 float temp = getTemperature(((receive[1]&0b00001111)<<8)|receive[2]);

 float fahr = 32 + ((temp * 9)/5); // convert deg. C to deg. F

 cout << "Temperature is " << temp << "°C (" << fahr << "°F)" << endl;

 busDevice->close();

 return 0;

}

Figure 10-10: The RPi SPI ADC circuit and its connection to the TMP36 analog temperature sensor

This code can be built and executed as follows:

pi@erpi ~/exploringrpi/chp10/tmp36 $./build

pi@erpi ~/exploringrpi/chp10/tmp36 $./tmp36

Starting the RPi TMP36 example

Temperature is 23.1543°C (73.6777°F)

Nonlinear Analog Sensors

Sharp infrared distance measurement sensors are very useful for robotic naviga-

tion applications (e.g., object detection and line following) and proximity switches

(e.g., automatic faucets and energy-saving switches). These sensors can also be

attached to servo motors and used to calculate range maps (e.g., on the front of a

424 Part II ■ Interfacing, Controlling, and Communicating

c10.indd 03:13:30:PM 05/20/2016 Page 424

mobile platform). They work well in indoor environments but have limited use

in direct sunlight. They have a response time of ~39 ms, so at 25–26 readings

per second, they will not provide dense range images. Figure 10-11(a) shows

two aspect views of a low-cost sensor, the Sharp GP2D12 (tiny.cc/erpi1005).

(a) (b)

Figure 10-11: (a) Sharp infrared distance measurement sensor, and (b) its analog output
response

This is a good analog sensor integration example because three problems

need to be resolved, which occur generally with other sensors:

 1. The sensor response in Figure 10-11(b) is highly nonlinear, so that two dif-

ferent distances can give the same sensor output. Thus you need to fi nd a

way to disambiguate the sensor output. For example, if the sensor output is

1.5 V, it could mean that the detected object is either 5 cm or 17 cm from the

sensor. A common solution to this problem is to mount the sensor so that it

is physically impossible for an object to be closer than 10 cm from the sensor.

This problem is not examined in further detail and it is assumed here that

the detected object cannot be closer than 10 cm from the sensor.

 2. The output signal is prone to high-frequency noise. A simple fi rst-order low-

pass RC averaging fi lter can be designed to solve this problem. Alternatively,

you could simply digitally average the sample values over time in your

program code.

 3. Even for the assumed distances of 10 cm or greater, the relationship between

distance and voltage output is still nonlinear. A curve-fi tting process can

be employed to solve this problem if a linear relationship is required

(e.g., threshold applications do not require a linear relationship—just a

set value).

Despite the fact that the sensor is powered using a 5 V supply, the output

voltage range from 0 V to 2.6 V is well within range for the SPI ADC when

the voltage reference is 3.3 V. If it were outside the 0 V to 3.3 V range, a fi xed-

value voltage divider could be designed to limit the output voltage.

To solve the second problem, the circuit in Figure 10-12(a) includes a simple

single-order low-pass RC fi lter to remove high-frequency signal noise. An RC

 Chapter 10 ■ Interacting with the Physical Environment 425

c10.indd 03:13:30:PM 05/20/2016 Page 425

pair needs to be created to suit the equation RC fcff=1 / (2)π × , where the cutoff

sampling frequency, fc, which has been experimentally determined as ~52

Hz in this case2. A capacitor value of 1 μF is chosen and the resistor value is

determined to be approximately 3.3 kΩ, using the RC equation, as illustrated

in Figure 10-12(a).

()(a) (b(b))

Figure 10-12: (a) An RPi circuit for connecting to the Sharp GP2D12 sensor; (b) the plot of the
gnuplot fitted functions

To solve the fi nal problem, a small test rig can be set up to calibrate the dis-

tance sensor. A measuring tape can be placed at the front of the sensor and a

large object can be positioned at varying distances from the sensor, between

10 cm and 80 cm. In my case, this provided the raw data for the table in

Figure 10-12(b), which is plotted on the graph with the + markers.

This raw data is not suffi ciently fi ne to determine the distance value repre-

sented by an ADC measurement intermediate between the values correspond-

ing to the + markers. Therefore, curve fi tting can be employed to provide an

expression that can be implemented in program code. The data can be supplied

to the curve fi tting tools that are freely available on the Wolfram Alpha website

at www.wolframalpha.com. Using the command string

exponential fit {3925,10}, {2790,15}, {2200,20}, {1755,25}, {1528,30}, →

{1273,40}, {851,50}, {726,60}, {620,70}, {528,80}

results in the expression distancett e= 115.804 -0.000843107v (see tiny.cc/erpi1006).

The following feature describes how you can perform the same task using

gnuplot, the results of which are captured in Figure 10-12(b).

2 The sample rate is a maximum of 25 to 26 readings per second for this sensor. A simple passive
first-order low-pass filter allows frequency signals from 0 Hz to the cut-off frequency fc to pass,
while greatly attenuating higher-frequency signals (including noise). The Nyquist sampling the-
orem states that the sampling frequency should be at least twice the highest frequency contained in the
signal (fs ≥ 2×fc). However, you cannot just set the cutoff frequency to be half of the sample rate,
as it will not perform well for such applications. For an excellent article entitled “What Nyquist
Didn’t Say, and What to Do About It,” by Tim Wescott, please see www.wescottdesign
.com/articles/Sampling/sampling.pdf.

http://www.wolframalpha.com
http://www.wescottdesign
http://www.wescottdesign.com/articles/Sampling/sampling.pdf

426 Part II ■ Interfacing, Controlling, and Communicating

c10.indd 03:13:30:PM 05/20/2016 Page 426

FITTING DATA TO A CURVE USING GNUPLOT

In addition to plotting data, gnuplot can also be used to fi t data to a curve using the
nonlinear least-squares (NLLS) Marquardt-Levenberg algorithm. For example, the data
in Figure 10-12(b) can be fi tted to a function of the form 1/x using the following steps:

pi@erpi ~/exploringrpi/chp10/sharp $ more data

9925 10

2790 15

...

pi@erpi ~/exploringrpi/chp10/sharp $ gnuplot

 G N U P L O T

 Version 4.6 patchlevel 6 ...

gnuplot> f(x) = a + b/x

gnuplot> fit f(x) "data" using 1:2 via a,b

...

Final set of parameters Asymptotic Standard Error

a = 1.19894 +/- 1.415 (118%)

b = 42466.4 +/- 1335 (3.144%)

...

The best fi t function is therefore: f ()x ()x1.19894 , where x is the
captured ADC input value. The plot of the fi tted function with respect to the calibra-
tion data is available in Figure 10-12(b).

You can also use gnuplot to fi t the data against a function with the form of an expo-
nential decay by continuing on from the previous steps. Providing an initial estimate
of the c and d values can help the NLLS algorithm converge on a valid solution. For
this, you can use the values that are identifi ed by the output of Wolfram Alpha, or
appropriate estimate values:

gnuplot> g(x) = c * exp(-x * d)

gnuplot> c = 115

gnuplot> d = 0.0008

gnuplot> fit g(x) "data" using 1:2 via c,d

...

Final set of parameters Asymptotic Standard Error

c = 115 +/- 7.632 (6.637%)

d = 0.000836107 +/- 7.244e-05 (8.664%)

...

gnuplot> set term postscript

gnuplot> set output "fittings.ps"

gnuplot> plot "data" using 1:2, f(x), g(x)

gnuplot> exit

pi@erpi ~/exploringrpi/chp10/sharp $ ps2pdf fittings.ps

pi@erpi ~/exploringrpi/chp10/sharp $ ls fittings*

fittings.pdf fittings.ps

The best fi t function is therefore: g e x()x = 115 -0.000836107 , where x is the captured
ADC input value The standard error values in this case are lower and Figure 10-12(b)
indicates that the exponential decay function provides a slightly better fi t, particularly
at close distances.

 Chapter 10 ■ Interacting with the Physical Environment 427

c10.indd 03:13:30:PM 05/20/2016 Page 427

Note that this process can be used for many analog sensor types to provide

an expression that can be used to interpolate between the measured sensor

values. What type of fi tting curve best fi ts the data will vary according to the

underlying physical process of the sensor. For example, you could use a linear fi t

to derive an expression for the LDR described in Chapter 9. A C++ code example

can be written to read in the ADC value and convert it into a distance as shown

in Listing 10-5, where an exponential fi x expression is coded on a single line.

Listing 10-5: /chp10/sharp/sharp.cpp (Segment)

...

int main(){

 cout << "Starting the RPi GP2D12 sensor example" << endl;

 SPIDevice *busDevice = new SPIDevice(0,0);

 busDevice->setSpeed(5000000);

 busDevice->setMode(SPIDevice::MODE0);

 for(int i=0; i<1000; i++) {

 unsigned char send[3], receive[3];

 send[0] = 0b00000110; // Reading single-ended input from channel 0

 send[1] = 0b00000000;

 busDevice->transfer(send, receive, 3);

 int raw = ((receive[1]&0b00001111)<<8)|receive[2];

 float distance = 115.804f * exp(-0.000843107f * (float)raw);

 cout << "The distance is: " << distance << " cm" << '\r' << flush;

 usleep(100000);

 }

 busDevice->close();

 return 0;

}

When the code example is executed, it continues to output the distance of a

detected object in centimeters, for about 100 seconds:

pi@erpi ~/exploringrpi/chp10/sharp $./build

pi@erpi ~/exploringrpi/chp10/sharp $./sharp

Starting the RPi GP2D12 sensor example

The distance is: 16.117 cm

Listing 10-6 is a segment of code that performs the distance calculation using

the three different curve-fi tted approximations.

Listing 10-6: /chp10/sharp/sharpfi t.cpp (Segment)

...

 cout << "Raw value is " << (int)raw << endl;

 float distance = 115.804f * exp(-0.000843107f * (float)raw);

 cout << "Estimate 1 (Wolfram): " << distance << " cm" << endl;

 distance = 1.19894f + (42466.4f / (float)raw);

 cout << "Estimate 2 (1/x) : " << distance << " cm" << endl;

 distance = 115.0f * exp(-0.000836107f * (float)raw);

 cout << "Estimate 3 (exp dec): " << distance << " cm" << endl;

...

428 Part II ■ Interfacing, Controlling, and Communicating

c10.indd 03:13:30:PM 05/20/2016 Page 428

The program gives the following output:

pi@erpi ~/exploringrpi/chp10/sharp $./sharpfit

Starting the RPi GP2D12 sensor example

Raw value is 1462

Estimate 1 (Wolfram): 33.76 cm

Estimate 2 (1/x) : 30.2457 cm

Estimate 3 (exp dec): 33.8705 cm

This result aligns with the plot in Figure 10-12(b), where the second estimate

(f(x)) is lower than the third estimate (g(x)) for an ADC input value of 1,462.

If the speed of execution of such code is vital in the application, then it is

preferable to populate a lookup table (LUT) with the converted values. This

means that each value is calculated once, either at the initialization stage of the

program, or perhaps during code development, rather than every time a reading

is made and has to be converted. When the program is in use, the subsequent

memory accesses (for reading the LUT) are much more effi cient than the cor-

responding fl oating-point calculations. This is possible because a 12-bit ADC

can only output 4,096 unique values, and it is not unreasonable to store an array

of the 4,096 possible outcomes in the memory associated with the program.

DISTANCE SENSING AND THE RASPBERRY PI

Two low-cost distance sensors are described in detail in this book: The Sharp infra-
red distance measurement sensor is described in this chapter, and the HC-SR04
ultrasonic distance sensor is described in Chapter 11. Both of these sensors have
quite limited precision and sample rates. Infrared sensors have a narrow beam, but
are prone to sunlight interference. Ultrasonic sensors perform well in sunlight but
do not work well with sound-absorbing materials and are prone to ghost echo (e.g.,
sound refl ections that hit more than one surface). These low-cost sensors perform
well for obstacle avoidance applications, but for precision applications such as
spatial mapping you could investigate LiDAR (light detection and ranging) sensors.
The laser-based LIDAR-Lite v2 ($115) sensor from www.pulsedlight3d.com has a
40 meter range capability, 1 cm resolution, ±2.5 cm accuracy, and is capable of 500
readings per second. It can be interfaced to the RPi using its I2C bus.

Analog Sensor Signal Conditioning

One of the problems with analog sensors is that they may have output signal

voltage levels quite different from those required by the RPi. Signal condition-
ing is the term used to describe the manipulation of an analog signal so that it

is suitable for the next stage of processing. To condition a sensor output as an

input to the RPi SPI ADC, this often means ensuring that the signal’s range is

typically between 0 V and 3.3 V.

http://www.pulsedlight3d.com

 Chapter 10 ■ Interacting with the Physical Environment 429

c10.indd 03:13:30:PM 05/20/2016 Page 429

Scaling Using Voltage Division

The voltage divider circuit in Figure 10-13(a) can be used to condition a sensor

output voltage. If the output voltage from the sensor is greater than 3.3 V but

not less than 0 V, a voltage divider circuit can be used to linearly reduce the

voltage to remain within a 0 V to 3.3 V range, which is then passed into the SPI

ADC device.

A voltage divider circuit will load the sensor output impedance and it may

be necessary to use a unity-gain buffer (for example a MCP6002 op-amp in a

voltage follower confi guration, as illustrated in Figure 10-13(b)). The MCP6002

will act as a buffer that prevents the sensor circuit from exceeding the maximum

input impedance of the ADC. (Remember that ideal voltage follower circuits

have infi nite input impedance and zero output impedance.) Remember also

that resistors have a manufacturing tolerance (often 5%–10% of the resistance

value), which will affect the scaling accuracy of the voltage division circuit. You

may need to experiment with combinations or use a potentiometer to adjust the

resistance ratio. With multi-op-amp packages, unused inputs should be connected

as shown in Figure 10-13(b) (in light gray) to avoid random switching noise.

This circuit works well for linearly scaling down an input signal, but it would

not work for a zero-centered or negatively biased input signal. For that, a more

general and slightly more complex op-amp circuit is required.

(a) (b)

Figure 10-13: (a) A voltage divider with a low-pass filter, and (b) the MCP6002 dual op-amp in a
voltage-follower configuration

Signal Off setting and Scaling

Figure 10-14(a) provides a general op-amp circuit that can be used to set the gain

and offset of an input signal. It is designed as an adjustable prototyping circuit

430 Part II ■ Interfacing, Controlling, and Communicating

c10.indd 03:13:30:PM 05/20/2016 Page 430

to use in conjunction with an oscilloscope to design a fi xed-signal conditioning

circuit for your particular application. Some notes on this circuit:

 ■ The Vcc− input of the op-amp is tied to GND, which is representative of

the type of circuit that is built using the RPi, as a −5 V rail is not readily

available.

 ■ The 3.3 V level can be provided by the analog voltage reference on the

SPI ADC.

 ■ A 100 nF decoupling capacitor can be used on the VIN input to remove the

DC component of the incoming sensor signal. However, for many sensor

circuits the DC component of the sensor signal is important and should

not be removed.

Figure 10-14: (a) A general op-amp signal conditioning circuit that inverts the input, (b)
conditioned output when Vin is 0 V to 5 V, (c) conditioned output when Vin is –5 V to +5 V, and (d)
conditioned and amplified output when the input signal is 1.9 V to 2.1 V

The circuit in Figure 10-14(a) amplifi es (or attenuates), offsets, and inverts the

input signal according to the settings of the potentiometers:

 ■ The gain is set using the adjustable gain potentiometer, where V G VINVV−VV =G .

 ■ The offset is set using the adjustable offset potentiometer. This can be

used to center the output signal at 1.65 V if desired.

 Chapter 10 ■ Interacting with the Physical Environment 431

c10.indd 03:13:30:PM 05/20/2016 Page 431

 ■ The output voltage is approximately. V V V offsetoutVV IN=V = −offset+ −V VV VV ()G VINVV As

such, the output is an inverted and scaled version of the input signal.

 ■ The inversion of the signal (you can see that the output is at a maximum

when the input is at a minimum) is a consequence of the circuit used.

Noninverting circuits are possible, but they are more diffi cult to confi g-

ure. The inversion can easily be corrected in software by subtracting the

received ADC input value from 4,095.

In Figure 10-14(b), (c), and (d) the offset voltage is set to 1.65 V and the gain is

adjusted to maximize the output signal (between 0 V and 3.3 V) without clip-

ping the signal. In Figure 10-14(b) the gain and offset are adjusted to map a 0 V

to +5 V signal to a 3.3 V to 0 V inverted output signal. In Figure 10-14(c) a −5 V to

+5 V signal is mapped to a 3.3 V to 0 V signal. Finally, in Figure 10-14(d) a

1.9 V to 2.1 V input signal is mapped to a 3.3 V to 0 V output. The last case is

applied to an example application in the next section.

The MCP6002 is a dual op-amp package, and it is used because the MCP6001

is not readily available in a DIP package. You could use the MCP6002 to condi-

tion two separate sensor signals.

Interfacing to an Analog Accelerometer

Similar to the ADXL345 digital accelerometer, the ADXL335 is a three-axis

analog accelerometer that can use the static acceleration of gravity to measure

tilt, or the dynamic acceleration of movement to measure vibration, motion, or

impact. Unlike the ADXL345, the ADXL335 has three analog outputs, one for

each axis, which can be confi gured using capacitors to defi ne the bandwidth

of the device. You will typically purchase this device on a breakout board that

will defi ne this bandwidth at manufacture. The module can be powered with

a 1.8 V to 3.6 V supply. The datasheet is available at tiny.cc/erpi1007.

When measuring tilt, the x-axis output provides ~1.30 V at 0º, ~1.64 V at 90º,

and ~1.98 V at 180º. This means that the output signal of the breakout board is

centered on 1.64 V and has a variation of ±0.34 V. A circuit can be designed as

shown in Figure 10-15 to map the center point to 1.65 V and to extend the varia-

tion over the full 3.3 V range of the MCP3208. This is not strictly necessary, but

it is a useful task for experimenting with analog signal conditioning.

Unfortunately, there are output impedance problems with this particular

ADXL335 breakout board, and the voltage divider circuit in the conditioning

circuit will not function correctly. A buffer circuit is therefore required, and an

op-amp in voltage follower confi guration can be used. The MCP6002 is perfect

for this application, because one of its op-amps can be used as a unity-gain buf-

fer and the second can be used for the purpose of signal conditioning.

432 Part II ■ Interfacing, Controlling, and Communicating

c10.indd 03:13:30:PM 05/20/2016 Page 432

Figure 10-15: The ADXL335 analog accelerometer and its connection to the RPi with further
signal conditioning

This overall circuit is a little complex and it may be overkill, because the

amplifi cation of a signal does not necessarily improve the information content

of that signal—noise is amplifi ed along with the signal. It is quite possible that

the 12-bit ADC performs just as well over a linearly scaled 1.3 V to 1.98 V range

as it does over the full 0 V to 3.3 V range for this particular sensor. However,

it is important that you are exposed to the process of offsetting and scaling a

signal using op-amps, because it is required for many sensor types, particularly

those that are centered on 0 V, such as microphone audio signals. You can see the

amplifi ed signal on the bottom left side of Figure 10-15. It is important to note

that the signal conditioning circuit used results in an inverted output, which is

corrected easily using software.

The adxl335 program can be used to print out the digitized x-axis acceleration

value. In my case, the program prints out the raw ADC value 2,272 at rest (+90º),

568 at 0º, and 3,973 at +180º. More values could be used to improve the quality

of the fi t. A simple linear interpolation is therefore used in the code example

so that it provides the output in degrees:

pi@erpi ~/exploringrpi/chp10/adxl335 $ more data

Simple calibration data

568 0

2272 90

3973 180

pi@erpi ~/exploringrpi/chp10/adxl335 $ gnuplot

 G N U P L O T ...

gnuplot> y(x) = m*x + c

gnuplot> fit y(x) "data" using 1:2 via m,c

...

Final set of parameters Asymptotic Standard Error

m = 0.0528634 +/- 2.689e-05 (0.05087%)

c = -30.0528 +/- 0.0716 (0.2382%) ...

 Chapter 10 ■ Interacting with the Physical Environment 433

c10.indd 03:13:30:PM 05/20/2016 Page 433

The equation of a line, y(x) = mx + c, can then be used in the source code to

convert the raw ADC value into the acceleration value that it represents:

float angle = (0.0528634 * raw) - 30.0528;

cout << "The tilt angle is " << angle << " degrees" << endl;

The full source code example is available in the chp10/adxl335 directory,

and it is executed as follows:

pi@erpi ~/exploringrpi/chp10/adxl335 $./adxl335

Starting the RPi ADXL335 example

The raw value is: 2263

The tilt angle is 89.5771 degrees

The circuit in Figure 10-15 can be extended using an MCP6004 quad op-amp

package to support the y-axis and z-axis acceleration values, and the software

can be extended to read these values from the CH1 and CH2 inputs on the

MCP3204 SPI ADC.

Interfacing to Local Displays

The RPi can be attached to computer monitors and digital televisions using

the HDMI output connector. In addition, LCD HATs can be attached to the RPi

GPIO header connector. The downsides of such displays are that they may not

be practical or they may be overly expensive for certain applications. When a

small amount of information needs to be relayed to a user, a simple LED can be

used; for example, the RPi onboard power and activity LEDs are useful indica-

tors that the board continues to function. For more complex information, two

possibilities are to interface to low-cost LED displays and low-cost character

LCD modules.

In Chapter 8, an example is provided for driving seven-segment displays

using SPI and 74HC595 serial shift register ICs. That is a useful educational

exercise, but the wiring can quickly become impractical for multiple digits. In

the following sections more advanced solutions are described for adding low-

cost onboard display to the RPi.

MAX7219 Display Modules

The Maxim Integrated MAX7219 is a serially interfaced 8-digit LED display

driver that is widely available and built in to very low-cost multi-seven-segment

display modules. The module in Figure 10-16(a) ($2–$3) is a 5 V 8-digit red

LED display that contains the MAX7219 IC, which can be interfaced using SPI.

The datasheet for the IC is available at tiny.cc/erpi1008.

The module can be connected to the RPi using its SPI bus, which in this case

is connected to the SPI_CE1_N enable pin, as illustrated in Figure 10-16(a). This

434 Part II ■ Interfacing, Controlling, and Communicating

c10.indd 03:13:30:PM 05/20/2016 Page 434

allows the character LCD module in the next section to be simultaneously con-

nected to the same bus. Note that the module is powered using the 5 V line,

but is controlled using 3.3 V logic levels. Do not connect the DOUT line on the

module directly back to the RPi MISO input!

(a) (b)

Figure 10-16: (a) The MAX7219 8-digit 7-segment display module, and (b) a summary register
table for the MAX7219

In decode mode the module can display eight digits consisting of the numeric

values 0–9 (with a point), the letters H, E, L, P, a space, and a dash. The decode

mode can also be disabled, permitting each of the seven segments to be con-

trolled directly. For example, the following steps that use the summary list of

registers in Figure 10-16(b) can be used to test that the module is confi gured

correctly by sending pairs of bytes to the device—the register address and data

value to write:

 1. Turn on the module and then place the module in test mode (i.e., all

segments on):3

pi@erpi ~ $ echo -ne "\x0C\x01" > /dev/spidev0.1

pi@erpi ~ $ echo -ne "\x0F\x01" > /dev/spidev0.1

 2. Take the module out of test mode (return to its previous state):

pi@erpi ~ $ echo -ne "\x0F\x00" > /dev/spidev0.1

 3. Change to 8 segment mode, and display the number 6.5 using the last two

digits (i.e., on the RHS):

pi@erpi ~ $ echo -ne "\x09\xFF" > /dev/spidev0.1

pi@erpi ~ $ echo -ne "\x01\x05" > /dev/spidev0.1

pi@erpi ~ $ echo -ne "\x02\x86" > /dev/spidev0.1

 4. Display the words “Hello Pi” (as in Figure 10-16(a)):

pi@erpi ~ $ echo -ne "\x08\x0C" > /dev/spidev0.1

pi@erpi ~ $ echo -ne "\x07\x0B" > /dev/spidev0.1

pi@erpi ~ $ echo -ne "\x06\x0D" > /dev/spidev0.1

pi@erpi ~ $ echo -ne "\x05\x0D" > /dev/spidev0.1

3 As discussed with the echo command: -n means do not output a trailing newline character,
-e means enable interpretation of backslash escape sequences, and \xHH means a byte with
a hexadecimal value HH. Writing to /dev/spidev0.1 uses the SPI_CE1_N rather than the
SPI_CE0_N enable pin on the RPi.

 Chapter 10 ■ Interacting with the Physical Environment 435

c10.indd 03:13:30:PM 05/20/2016 Page 435

pi@erpi ~ $ echo -ne "\x04\x00" > /dev/spidev0.1

pi@erpi ~ $ echo -ne "\x03\x0F" > /dev/spidev0.1

pi@erpi ~ $ echo -ne "\x02\x0E" > /dev/spidev0.1

pi@erpi ~ $ echo -ne "\x01\x01" > /dev/spidev0.1

 5. Adjust the LED intensity to its darkest and to its brightest:

pi@erpi ~ $ echo -ne "\x0A\x00" > /dev/spidev0.1

pi@erpi ~ $ echo -ne "\x0A\x0F" > /dev/spidev0.1

 6. Turn off the module:

pi@erpi ~ $ echo -ne "\x0C\x00" > /dev/spidev0.1

The code in Listing 10-7 uses the SPIDevice class from Chapter 8 to create a

high-speed counter. The display module is very responsive at an SPI bus speed of

10 MHz, updating the display 1,000,000 times in approximately 18 seconds. The

output of the program in Listing 10-7 is displayed in Figure 10-17. The display

is counting quickly, so the blurred digits on the right-hand side are caused by

the update speed of the count relative to the camera shutter speed.

Listing 10-7: chp10/max7219/max7219.cpp

#include <iostream>

#include "bus/SPIDevice.h"

using namespace exploringRPi;

using namespace std;

int main(){

 cout << "Starting the RPi MAX7219 example" << endl;

 SPIDevice *max = new SPIDevice(0,1);

 max->setSpeed(10000000); // max speed is 10MHz

 max->setMode(SPIDevice::MODE0);

 // turn on the display and disable test mode -- just in case:

 max->writeRegister(0x0C, 0x01); // turn on the display

 max->writeRegister(0x0F, 0x00); // disable test mode

 max->writeRegister(0x0B, 0x07); // set 8-digit mode

 max->writeRegister(0x09, 0xFF); // set decode mode on

 for(int i=1; i<9; i++){ // clear all digits to be dashes

 max->writeRegister((unsigned int)i, 0x0A);

 }

 for(int i=0; i<=100000; i++){ // count to 100,000

 int val = i; // need to display each digit

 unsigned int place = 1; // the current decimal place

 while(val>0){ // repeatedly divide and get remainder

 max->writeRegister(place++, (unsigned char) val%10);

 val = val/10;

 }

 }

 max->close();

 cout << "End of the RPi MAX7219 example" << endl;

 return 0;

}

436 Part II ■ Interfacing, Controlling, and Communicating

c10.indd 03:13:30:PM 05/20/2016 Page 436

Figure 10-17: The MAX7219 eight-digit seven-segment display counting due to Listing 10-7

Character LCD Modules

Character LCD modules are LCD dot-matrix displays that feature preprogrammed

font tables so that they can be used to display simple text messages without the

need for complex display software. They are available in a range of character

rows and columns (commonly 2 × 8, 2 × 16, 2 × 20, and 4 × 20) and usually

contain an LED backlight, which is available in a range of colors. Recently,

OLED (organic LED) versions and E-paper (e-ink) versions have been released

that provide for greater levels of display contrast.

To understand the use of a character LCD module, you should study its data-

sheet. While most character LCD modules have common interfaces (often using

a Hitachi HD44780 controller), the display modules from Newhaven have some

of the best datasheets. The datasheet for a typical Newhaven display module is

available at tiny.cc/erpi1009. It is recommended that the datasheet be read

in conjunction with this discussion. The datasheet for the HD44780 controller

is available at tiny.cc/erpi1010. The following code works for all character

LCD modules that are based on this controller.

Character LCD modules are available with integrated I2C and SPI interfaces,

but the majority of modules are available with an 8-bit and 4-bit parallel inter-

face. By adding a 74HC595 serial-shift register to the circuit, it is possible to

develop a custom SPI interface, which provides greater fl exibility in the choice

of modules. A generic character LCD module can be attached to the RPi using

the wiring confi guration illustrated in Figure 10-18.

You can interface to character LCD modules using either an 8-bit or a 4-bit

mode, but there is no difference in the functionality available with either mode.

The 4-bit interface requires fewer interface connections, but each 8-bit value has

to be written in two steps—the lower 4 bits (lower nibble) followed by the higher

4 bits (upper nibble).
To write to the character LCD module, two lines are required: the RS line

(register select signal) and the E line (operational enable signal). The circuit in

Figure 10-18 is designed to use a 4-bit interface, because it requires only 6 lines,

rather than the 10 lines that are required with the 8-bit interface. This means

that a single 8-bit 74HC595 can be used to interface to the module when it is

in 4-bit mode. The downside is that the software is slightly more complex to

write, because each byte must be written in two nibbles. The 4-bit interface uses

the inputs DB4–DB7, whereas the 8-bit interface requires the use of DB0–DB7.

 Chapter 10 ■ Interacting with the Physical Environment 437

c10.indd 03:13:30:PM 05/20/2016 Page 437

W A R N I N G Do not attempt to read data from this display module directly into

the RPi, because it uses 5 V logic levels.

It is possible to read data values from the display, but it is not required in this

application; therefore, the R/W (read/write select signal) is tied to GND to place

the display in write mode. The power is supplied using VCC (5 V) and VSS (GND).

VEE sets the display contrast level and must be at a level between VSS and VCC.

A 10 kΩ multi-turn potentiometer can be used to provide precise control over

the display contrast. Finally, the LED+ and LED– connections supply the LED

backlight power.

Figure 10-18: SPI interfacing to character LCD modules using a 74HC595 8-bit serial shift register

The display character address codes are illustrated on the module in

Figure 10-18. Using commands (on pg. 6 of the datasheet), data values can be sent

to these addresses. For example, to display the letter A in the top-left corner, the

following procedure can be used with the 4-bit interface:

 ■ Clear the display by sending the value 00000001 to D4-D7. This value

should be sent in two parts: the lower nibble (0001), followed by the higher

nibble (0000). The E line is set high then low after each nibble is sent.

A delay of 1.52 ms (datasheet pg. 6) is required. The module expects a

command to be sent when the RS line is low. After sending this command,

the cursor is placed in the top left corner.

 ■ Write data 01000001 = 6510 = A (datasheet pg. 9) with the lower nibble sent

fi rst, followed by the upper nibble. The E line is set high followed by low

after each nibble is sent. The module expects data to be sent when the RS

line is set high.

A C++ class is available for you to use in interfacing the RPi to display modules

using SPI. The class assumes that the 74HC595 lines are connected as shown

in Figure 10-18 and the data is represented as in Table 10-4. The code does not

use bits 2 (QD) and 3 (QC) on the 74HC595, so it is possible for you to repurpose

438 Part II ■ Interfacing, Controlling, and Communicating

c10.indd 03:13:30:PM 05/20/2016 Page 438

these for your own application. For example, one pin could be connected to

the gate of a FET and used to switch the backlight on and off. The class defi ni-

tion is provided in Listing 10-8 and the implementation is in the associated

LCDCharacterDisplay.cpp fi le.

Table 10-4: Mapping of the 74HC595 Data Bits to the Character LCD Module Inputs, as Required
for the C++ LCDCharacterDisplay Class

BIT 7

MSB BIT 6 BIT 5 BIT 4 BIT 3 BIT 2
BIT
1

BIT
0

LSB

Character
LCD module

D7 D6 D5 D4 Not used Not
used

E RS

74HC595 pins QH QG QF QE QD QC QB QA

Listing 10-8: /chp10/character/display/LCDCharacterDisplay.h

class LCDCharacterDisplay {

private:

 SPIDevice *device;

 int width, height;

 ...

public:

 LCDCharacterDisplay(SPIDevice *device, int width, int height);

 virtual void write(char c);

 virtual void print(std::string message);

 virtual void clear();

 virtual void home();

 virtual int setCursorPosition(int row, int column);

 virtual void setDisplayOff(bool displayOff);

 virtual void setCursorOff(bool cursorOff);

 virtual void setCursorBlink(bool isBlink);

 virtual void setCursorMoveOff(bool cursorMoveOff);

 virtual void setCursorMoveLeft(bool cursorMoveLeft);

 virtual void setAutoscroll(bool isAutoscroll);

 virtual void setScrollDisplayLeft(bool scrollLeft);

 virtual ~LCDCharacterDisplay();

};

The constructor requires an SPIDevice object and details about the width and

height of the character display module (in characters). The constructor provides

functionality to position the cursor on the display and to describe how the cur-

sor should behave (e.g., blinking or moving to the left/right). This class can be

used as shown in Listing 10-9 to create an LCDCharacterDisplay object, display

a string, and display a count from 0 to 10,000 on the module.

 Chapter 10 ■ Interacting with the Physical Environment 439

c10.indd 03:13:30:PM 05/20/2016 Page 439

Listing 10-9: /chp10/character/character.cpp

#include <iostream>

#include <sstream>

#include "display/LCDCharacterDisplay.h"

using namespace std;

using namespace exploringRPi;

int main(){

 cout << "Starting LCD Character Display Example" << endl;

 SPIDevice *busDevice = new SPIDevice(0,0);

 busDevice->setSpeed(1000000); // access to SPI Device object

 ostringstream s; // using to combine text and ints

 LCDCharacterDisplay display(busDevice, 20, 4); // a 20x4 display

 display.clear(); // Clear the character LCD module

 display.home(); // Move to the (0,0) position

 display.print(" Exploring RPi");

 display.setCursorPosition(1,3);

 display.print("by Derek Molloy");

 display.setCursorPosition(2,0);

 display.print("www.exploringrpi.com");

 for(int x=0; x<=10000; x++){ // Do this 10,000 times

 s.str(""); // clear the ostringstream object

 display.setCursorPosition(3,7); // move the cursor to second row

 s << "X=" << x; // construct a string with an int

 display.print(s.str()); // print the string X=***

 }

 cout << "End of LCD Character Display Example" << endl;

 return 0;

}

The code example in Listing 10-9 can be built and executed using the fol-

lowing steps:

pi@erpi ~/exploringrpi/chp10/character $./build

pi@erpi ~/exploringrpi/chp10/character $./character

Starting LCD Character Display Example

End of LCD Character Display Example

The count incrementally updates on the display and fi nishes with the output

illustrated in Figure 10-19.

It takes 22 seconds to display a count that runs from 0 to 10,000, which is

approximately 455 localized screen updates per second. This means that you

could potentially connect many display modules to a single SPI bus and still

achieve reasonable screen refresh rates. At its maximum refresh rate, the top

command gives the following output:

 PID USER PR NI VIRT RES SHR S %CPU %MEM TIME+ COMMAND

 309 root 20 0 0 0 0 S 32.8 0.0 1:02.55 spi0

 4120 pi 20 0 3304 784 688 D 32.8 0.1 0:05.72 character

440 Part II ■ Interfacing, Controlling, and Communicating

c10.indd 03:13:30:PM 05/20/2016 Page 440

This indicates that the character program and its associated spi0 device are

utilizing 65.6% of the available CPU time at this extreme module display refresh

rate of 455 updates per second. To be clear, the display maintains its current

display state without any RPi overhead, and refresh is only required to change

the display contents.

Figure 10-19: Output from Listing 10-9 on a 4 × 20 and a 2 × 16 inverted RGB character display
module4

OLED Dot-Matrix Display

Organic LED (OLED) dot-matrix displays are one other popular type of graphic

displays that can be easily connected to the RPi. In particular, displays that utilize

the Solomon Systech SSD1306 driver can be interfaced directly to an I2C or SPI

bus. Figure 10-20 illustrates two such display modules: the fi rst is a 1.3″ SPI/I2C

module from Adafruit ($24) and the second is a generic 0.96″ I2C only module

($4). In both case, the screens have a display resolution of 128 × 64 pixels. See

tiny.cc/erpi1011 for the SSD1306 datasheet.

Figure 10-20: Connection to two OLED dot-matrix displays using the I2C bus

4 Note that the JHD204A module has a built-in fixed-value resistor to set the contrast, therefore a
connection to VEE is not required. The RGB character display module (NHD-0216K1Z-NS(RGB))
has three separate LED backlight connections for red, green, and blue. Pay particular attention to
the voltage levels specified in the datasheet for these three channels.

 Chapter 10 ■ Interacting with the Physical Environment 441

c10.indd 03:13:30:PM 05/20/2016 Page 441

As other display examples in this chapter all use SPI, this section utilizes

the I2C bus. However, the code that follows can be tailored for either I2C or SPI

devices. The two example modules can be connected to the I2C bus as illustrated

in Figure 10-20. Note that the Adafruit module requires that SJ1 and SJ2 on the

back of the board are bridged with solder to select the I2C interface mode. The

Adafruit board appears at the I2C address 0x3d and the generic board appears at

the I2C address 0x3c. Note that different versions of the Adafruit board appear

interchangeably at 0x3c and 0x3d. With the circuit wired as in Figure 10-20, a

call to i2cdetect gives the following output:

pi@erpi ~ $ i2cdetect -y -r 1

 0 1 2 3 4 5 6 7 8 9 a b c d e f ...

30: -- -- -- -- -- -- -- -- -- -- -- -- 3c 3d -- -- ...

These devices have advanced controllers and therefore the easiest way to

use them is to install a library—the Adafruit SSD1306 OLED display driver

for Raspberry Pi by Charles-Henri Hallard (www.hallard.me). The repository

includes the Adafruit graphics library, which can be used to draw shapes on

the display (e.g., the box surrounding the time in Figure 10-20, and the bitmap

Adafruit star logos). The library can be installed as follows:

pi@erpi ~ $ git clone https://github.com/hallard/ArduiPi_OLED

pi@erpi ~ $ cd ArduiPi_OLED/

pi@erpi ~/ArduiPi_OLED $ ls

Adafruit_GFX.cpp autogen.sh hwplatform README.mono.md

Adafruit_GFX.h bcm2835.c Makefile Wrapper.cpp

ArduiPi_OLED.cpp bcm2835.h mono

ArduiPi_OLED.h examples README.bananapi.md

ArduiPi_OLED_lib.h glcdfont.c README.md

To build the library, you must install the libi2c-dev package as follows:
pi@erpi ~/ArduiPi_OLED $ sudo apt install libi2c-dev i2c-tools

W A R N I N G Note that the libi2c-dev package will confl ict with the existing i2c

headers that are used to develop other code in this book. You can remove this pack-

age at any stage using sudo apt remove libi2c-dev. It would be best if you

remove this package after you build the ArduiPi_OLED library and have tested that it

is working.

The library can then be built and deployed using a call to make:

pi@erpi ~/ArduiPi_OLED $ sudo make

g++ -Wall -fPIC -fno-rtti -Ofast -mfpu=vfp -mfloat-abi=hard ...

[Install Library]

[Install Headers]

pi@erpi ~/ArduiPi_OLED $ ls /usr/local/lib/libAr*

/usr/local/lib/libArduiPi_OLED.so /usr/local/lib/libArduiPi_OLED.so.1.0

/usr/local/lib/libArduiPi_OLED.so.1

http://www.hallard.me

442 Part II ■ Interfacing, Controlling, and Communicating

c10.indd 03:13:30:PM 05/20/2016 Page 442

You can then test that it is working by building and running the demonstra-

tion programs that are included:

pi@erpi ~/ArduiPi_OLED $ cd examples/

pi@erpi ~/ArduiPi_OLED/examples $ ls

Makefile oled_demo.cpp teleinfo-oled.cpp

pi@erpi ~/ArduiPi_OLED/examples $ make

...

pi@erpi ~/ArduiPi_OLED/examples $ sudo ./oled_demo --verbose --oled 3

oled_demo v1.1

-- OLED params --

Oled is : Adafruit I2C 128x64

This demonstration provides multiple examples, including the stars display

in Figure 10-20. To run the demonstration and to use this library on the Adafruit

device at the I2C address 0x3d, you must edit the ArduiPi_OLED_lib.h fi le and

alter the value of ADAFRUIT_I2C_ADDRESS to 0x3d. Then rebuild the library.

Listing 10-10 provides the code for the clock display in Figure 10-20. The generic

display module that is illustrated in Figure 10-20 displays the text “Exploring

RPi” in yellow, and the clock date and time in a blue color. This is not a true

multi-color display; rather, the pixels have a single fi xed color with a yellow band

at the top and the remainder of the display in blue—the color of the individual

pixels cannot be changed.

Listing 10-10: /chp10/oled/oledTest.cpp

#include "ArduiPi_OLED_lib.h"

#include "ArduiPi_OLED.h"

#include "Adafruit_GFX.h"

#include <stdio.h>

#include <ctime>

int main(){

 ArduiPi_OLED display;

 if(!display.init(OLED_I2C_RESET, OLED_ADAFRUIT_I2C_128x64)){

 perror("Failed to set up the display\n");

 return -1;

 }

 printf("Setting up the I2C Display output\n");

 display.begin();

 display.clearDisplay();

 display.setTextSize(1);

 display.setTextColor(WHITE);

 display.setCursor(27,5);

 display.print("Exploring RPi");

 time_t t = time(0);

 struct tm *now = localtime(&t);

 display.setCursor(35,18);

 display.printf("%2d/%2d/%2d", now->tm_mon, now->tm_mday,

 (now->tm_year+1900));

 Chapter 10 ■ Interacting with the Physical Environment 443

c10.indd 03:13:30:PM 05/20/2016 Page 443

 display.setCursor(21,37);

 display.setTextSize(3);

 display.printf("%02d:%02d", now->tm_hour, now->tm_min);

 display.drawRect(16, 32, 96, 32, WHITE);

 display.display();

 display.close();

 printf("End of the I2C Display program\n");

 return 0;

}

This code can be built and executed as follows:

pi@erpi .../chp10/oled $ g++ oledTest.cpp -o oledTest -lArduiPi_OLED

pi@erpi .../chp10/oled $ sudo ./oledTest

Setting up the I2C Display output

End of the I2C Display program

The ArduiPi OLED library uses the C Library for BCM2835 that is described

in Chapter 9. This library is not compatible with the WiringPi library and it is

diffi cult to use these libraries together in the same project. It is possible to use

the C Library for BCM2835 to perform much the same tasks as the WiringPi

library. To illustrate this, a further example is available in the code repository

(oledDHT.cpp) that uses the C Library for BCM2835 to communicate with the

Aosong AM2302 single-wire temperature and humidity sensor that is described

in Chapter 6.

The circuit in Figure 10-21(a) can be used to connect both the Aosong AM230x

(and DHT) sensors to the RPi along with an OLED dot-matrix display. The

program code is available in the /chp10/oled/ directory and when executed it

will result in the display as in Figure 10-21(b). The display alternates between

the current room humidity value and the current room temperature value. It

continues until the program is stopped by using Ctrl C.

(a) (b)

Figure 10-21: An OLED dot-matrix temperature and humidity sensing and display example

444 Part II ■ Interfacing, Controlling, and Communicating

c10.indd 03:13:30:PM 05/20/2016 Page 444

Building C/C++ Libraries

In this chapter, a number of different actuators, sensors, and display devices

are interfaced to the RPi using standalone code examples. Should you embark

upon a grand design project, it will quickly become necessary to combine such

code examples together into a single software project. In addition, it would not

be ideal if you had to recompile every line of code in the project each time that

you made a change. To solve this problem, you can build your own libraries

of C/C++ code, and to assist you in this task, you can use makefi les, and better

still, CMake.

Makefi les

As the complexity of your C/C++ projects grows, an IDE such as Eclipse can

be used to manage compiler options and program code interdependencies.

However, there are occasions when command-line compilation is required;

and when projects are complex, a structured approach to managing the build

process is necessary. A good solution is to use the make program and makefi les.
The process is best explained by using an example. To compile a hello.cpp

and a test.cpp program within a single project without makefi les, the build

script can be as follows:

pi@erpi ~/exploringrpi/chp10/makefiles $ more build

#!/bin/bash

g++ -o3 hello.cpp -o hello

g++ -o3 test.cpp -o test

The script works perfectly fi ne; however, if the project’s complexity neces-

sitated separate compilation, then this approach lacks structure. Following is a

simple Makefile that could be used instead (it is very important to use the Tab

key to indent the lines with the <Tab> marker below):

pi@erpi ~/exploringrpi/chp10/makefiles $ more Makefile

all: hello test

hello:

<Tab> g++ -o3 hello.cpp -o hello

test:

<Tab> g++ -o3 test.cpp -o test

pi@erpi ~/exploringrpi/chp10/makefiles $ rm hello test

pi@erpi ~/exploringrpi/chp10/makefiles $ make

g++ -o3 hello.cpp -o hello

g++ -o3 test.cpp -o test

If the make command is issued in this directory, the Makefile fi le is detected

and a call to “make all” will automatically be invoked. That will execute the

 Chapter 10 ■ Interacting with the Physical Environment 445

c10.indd 03:13:30:PM 05/20/2016 Page 445

commands under the hello: and test: labels, which build the two programs.

However, this Makefile does not add much in the way of structure, so a more

complete version is required, such as this:

pi@erpi ~/exploringrpi/chp10/makefiles2 $ more Makefile

CC = g++

CFLAGS = -c -o3 -Wall

LDFLAGS =

all: hello test

hello: hello.o

<Tab> $(CC) $< -o $@

hello.o: hello.cpp

<Tab> $(CC) $(CFLAGS) $< -o $@

test: test.o

<Tab> $(CC) $(LDFLAGS) $< -o $@

test.o: test.cpp

<Tab> $(CC) $(CFLAGS) $< -o $@

clean:

<Tab> rm -rf *.o hello test

In this version, the compiler choice, compiler options, and linker options are

defi ned at the top of the Makefile. This enables the options to be easily altered

for all fi les in the project. In addition, the object fi les (.o fi les) are retained,

which dramatically reduces repeated compilation times when there are many

source fi les in the project. There is some shortcut syntax in this Makefile. For

example, $< is the name of the fi rst prerequisite (hello.o in its fi rst use), and

$@ is the name of the target (hello in its fi rst use). The project can now be built

using the following steps:

pi@erpi ~/exploringrpi/chp10/makefiles2 $ ls

hello.cpp Makefile test.cpp

pi@erpi ~/exploringrpi/chp10/makefiles2 $ make

g++ -c -o3 -Wall hello.cpp -o hello.o

g++ hello.o -o hello

g++ -c -o3 -Wall test.cpp -o test.o

g++ test.o -o test

pi@erpi ~/exploringrpi/chp10/makefiles2 $ ls

hello hello.cpp hello.o Makefile test test.cpp test.o

pi@erpi ~/exploringrpi/chp10/makefiles2 $ make clean

rm -rf *.o hello test

pi@erpi ~/exploringrpi/chp10/makefiles2 $ ls

hello.cpp Makefile test.cpp

This description only scratches the surface of the capability of make and

makefi les. You can fi nd a full GNU guide at tiny.cc/erpi1012.

446 Part II ■ Interfacing, Controlling, and Communicating

c10.indd 03:13:30:PM 05/20/2016 Page 446

CMake

Unfortunately, makefi les can become overly complex for tasks such as building

projects that have multiple subdirectories, or projects that are to be deployed

to multiple platforms. Building complex projects is where CMake really shines;

CMake is a cross-platform makefi le generator. Simply put, CMake automatically

generates the makefi les for your project. It can do much more than that too (e.g.,

build MS Visual Studio solutions), but this discussion focuses on the compilation

of library code. The fi rst step is to install CMake on the RPi:

pi@erpi ~/exploringrpi/chp10/cmake $ sudo apt install cmake

pi@erpi ~/exploringrpi/chp10/cmake $ cmake -version

cmake version 3.0.2

A Hello World Example

The fi rst project to test CMake is available in the /chp10/cmake/ directory. It

consists of the hello.cpp fi le and a text fi le called CMakeLists.txt, as provided

in Listing 10-11.

Listing 10-11: /chp10/cmake/CMakeLists.txt

cmake_minimum_required(VERSION 3.0.2)

project (hello)

add_executable(hello hello.cpp)

The CMakeLists.txt fi le in Listing 10-11 consists of three lines:

 ■ The fi rst line sets the minimum version of CMake for this project, which

is major version 3, minor version 0, and patch version 2 in this example.

This version is somewhat arbitrary, but providing a version number allows

for future support for your build environment. Therefore, you should use

the current version of CMake on your system.

 ■ The second line is the project() command that sets the project name.

 ■ The third line is the add_executable() command, which requests that an

executable is to be built using the hello.cpp source fi le. The fi rst argu-

ment to the add_executable() function is the name of the executable to

be built, and the second argument is the source fi le from which to build

the executable.

The Hello World project can now be built by executing the cmake utility, and

by passing to it the directory that contains the source code and the CMakeLists

.txt fi le. In this case, “.” refers to the current directory:

pi@erpi ~/exploringrpi/chp10/cmake $ ls

CMakeLists.txt hello.cpp

 Chapter 10 ■ Interacting with the Physical Environment 447

c10.indd 03:13:30:PM 05/20/2016 Page 447

pi@erpi ~/exploringrpi/chp10/cmake $ cmake .

-- The C compiler identification is GNU 4.6.3

-- The CXX compiler identification is GNU 4.6.3

-- Check for working C compiler: /usr/bin/cc

-- Check for working C compiler: /usr/bin/cc -- works

...

pi@erpi ~/exploringrpi/chp10/cmake $ ls

CMakeCache.txt cmake_install.cmake hello.cpp

CMakeFiles CMakeLists.txt Makefile

CMake identifi ed the environment settings for the RPi Linux device and cre-

ated the Makefile for this project. You can view the content of this fi le, but do

not make edits to it, because any edits will be overwritten the next time that the

cmake utility is executed. You can now use the make command to build the project:

pi@erpi ~/exploringrpi/chp10/cmake $ make

Scanning dependencies of target hello

[100%] Building CXX object CMakeFiles/hello.dir/hello.cpp.o

Linking CXX executable hello

[100%] Built target hello

pi@erpi ~/exploringrpi/chp10/cmake $ ls -l hello

-rwxr-xr-x 1 pi pi 7832 Sep 26 05:19 hello

pi@erpi ~/exploringrpi/chp10/cmake $./hello

Hello from the RPi!

This is a lot of additional effort to build a simple Hello World example, but

as your project scales, this approach can be invaluable.

Building a C/C++ Library

The code that is utilized throughout this book can be grouped together and

organized into a single directory structure so that you can use it within your

project as a library of code. For example, selected code is organized in the

library directory within the repository, as follows:

pi@erpi ~/exploringrpi/library $ tree .

.

├── bus

│ ├── BusDevice.cpp

│ ├── BusDevice.h

│ ├── I2CDevice.cpp

│ ├── I2CDevice.h

│ ├── SPIDevice.cpp

│ └── SPIDevice.h

├── CMakeLists.txt

├── display

│ ├── LCDCharacterDisplay.cpp

│ ├── LCDCharacterDisplay.h

│ ├── SevenSegmentDisplay.cpp

│ └── SevenSegmentDisplay.h

...

448 Part II ■ Interfacing, Controlling, and Communicating

c10.indd 03:13:30:PM 05/20/2016 Page 448

A build directory (which is currently empty) is used to contain the fi nal binary

library and any temporary fi les that are required for the build. The CMakeLists

.txt fi le is created in the library root, as in Listing 10-12.

Listing 10-12: /library/CMakeLists.txt

cmake_minimum_required(VERSION 3.0.2)

project(ExploringRPi)

find_package(Threads)

set(CMAKE_BUILD_TYPE Release)

Only available from version 2.8.9 on

set(CMAKE_POSITION_INDEPENDENT_CODE TRUE)

Bring the headers, such as BusDevice.h into the project

include_directories(bus display gpio motor network sensor)

The file(GLOB...) allows for wildcard additions:

file(GLOB_RECURSE SOURCES "./*.cpp")

Can build statically to ExploringRPi.a using the next line

#add_library(ExploringRPi STATIC ${SOURCES})

Building shared library to ExploringRPi.so using the next line

add_library(ExploringRPi SHARED ${SOURCES})

Specify the use of the pthread library when linking the target

target_link_libraries(ExploringRPi ${CMAKE_THREAD_LIBS_INIT})

install (TARGETS ExploringRPi DESTINATION /usr/lib)

The important features of the CMakeLists.txt fi le in Listing 10-12 are as follows:

 ■ The find_package(Threads) adds pthread support to the build.

 ■ The set(CMAKE_BUILD_TYPE Release) function is used to set the build type.

A Release build will have slightly improved execution performance. The next

call to set() adds the -fPIC compile fl ag to the build, so that the machine

code is not dependent on being located at a specifi c memory address, which

makes it suitable for inclusion in a library.

 ■ The include_directories() function is used to bring the header fi les

into the build environment.

 ■ The file() command is used to add the source fi les to the project. GLOB

(or GLOB_RECURSE) is used to create a list of all the fi les that meet the glob-

bing expression (i.e., “src/*.cpp”) and add them to a variable SOURCES.

 ■ This example uses the add_library() function. The library is built as a

shared library using the SHARED fl ag (other options are: STATIC or MODULE),

and ExploringRPi is used as the name of the shared library.

 Chapter 10 ■ Interacting with the Physical Environment 449

c10.indd 03:13:30:PM 05/20/2016 Page 449

 ■ The last line uses the install() function to defi ne an installation location

for the library (in this case it is the /usr/lib/ directory). Deployment is

invoked using a call to sudo make install in this case.

A STATICALLY LINKED LIBRARY .A

A statically linked library is created at compile time to contain all the code that relates
to the library; essentially, the compiler makes copies of any dependency code, includ-
ing that in other libraries. This results in a library that is typically larger in size than the
equivalent shared library, but because all the dependencies are determined at com-
pile time, there are fewer runtime loading costs, and the library may be more platform
independent. Unless you are certain that you require a static library, you should use
a shared library, because there will be fewer code duplications and the shared library
can be updated (e.g., for bug fi x releases) without recompilation.

To build a static library using CMake, the steps are almost exactly the same as
in Listing 10-12; however, you must use the add_library() line entry that uses
STATIC, rather than the line entry that uses SHARED. The steps that follow will then
result in the creation of a static library with a .a extension:

pi@erpi ~/exploringrpi/library/build $ ls -l *.a

-rw-r--r-- 1 pi pi 141672 Sep 26 05:50 libExploringRPi.a

pi@erpi ~/exploringrpi/library/build $ ar -t libExploringRPi.a

Servo.cpp.o

DCMotor.cpp.o

...

Once the CMakeLists.txt fi le has been created, the library can be built as

follows:

pi@erpi ~/exploringrpi/library $ mkdir build

pi@erpi ~/exploringrpi/library $ cd build

pi@erpi ~/exploringrpi/library/build $ cmake ..

-- The C compiler identification is GNU 4.6.3

-- The CXX compiler identification is GNU 4.6.3

pi@erpi ~/exploringrpi/library/build $ make

Scanning dependencies of target ExploringRPi

[5%] Building CXX object CMakeFiles/ExploringRPi.dir/motor/Servo.cpp.o

...

Linking CXX shared library libExploringRPi.so

[100%] Built target ExploringRPi

pi@erpi ~/exploringrpi/library/build $ ls -l *.so

-rwxr-xr-x 1 pi pi 103944 Sep 26 05:42 libExploringRPi.so

N O T E Ensure that you have removed the libi2c-dev package before building this

library code by using sudo apt remove libi2c-dev.

450 Part II ■ Interfacing, Controlling, and Communicating

c10.indd 03:13:30:PM 05/20/2016 Page 450

The CMakeLists.txt fi le also includes a deployment step, which allows you

to install the library in a suitably accessible location. Shared library locations

can be added to the path, or if you want to make the libraries available for all

users then you can deploy them to the /usr/lib/ directory. For example, the

libExploringRPi.so library can be installed for all users as follows:

pi@erpi ~/exploringrpi/library/build $ sudo make install

[100%] Built target ExploringRPi

Install the project...

-- Install configuration: "Release"

-- Installing: /usr/lib/libExploringRPi.so

pi@erpi ~/exploringrpi/library/build $ ls -l /usr/lib/libExploringRPi.so

-rw-r--r-- 1 root root 103944 Sep 26 05:42 /usr/lib/libExploringRPi.so

This step has to be performed with root access to write to the /usr/

lib/ directory. You will also fi nd a fi le in the build directory, called install_

manifest.txt that describes the locations at which the make install command

applied changes.

Using a Shared (.so) or Static (.a) Library

Once a library has been developed, the next question is how you use the library

in your projects. To simplify this process, CMake can once again be used to

generate the makefi les for your project.

Listing 10-13 provides the source code for a CMakeLists.txt fi le that can be

used to build a program which links to your project library (either dynamically

or statically). The libExploringRPi.so shared library is used for this example.

A short C++ program is available in Listing 10-14 that utilizes the functional-

ity of the shared library, in this case to display a message on an LCD character

display. This code is provided in the directory /chp10/libexample/.

Listing 10-13: /chp10/libexample/CMakeLists.txt

cmake_minimum_required(VERSION 3.0.2)

project (TestERPiLibrary)

#For the shared library:

set (PROJECT_LINK_LIBS libExploringRPi.so)

link_directories(~/exploringrpi/library/build)

#For the static library:

#set (PROJECT_LINK_LIBS libExploringRPi.a)

#link_directories(~/exploringrpi/library/build)

include_directories(~/exploringrpi/library/)

add_executable(libtest libtest.cpp)

target_link_libraries(libtest ${PROJECT_LINK_LIBS})

 Chapter 10 ■ Interacting with the Physical Environment 451

c10.indd 03:13:30:PM 05/20/2016 Page 451

Listing 10-14: /chp10/libexample/libtest.cpp

#include <iostream>

#include <sstream>

#include "display/LCDCharacterDisplay.h"

using namespace exploringRPi;

using namespace std;

int main() {

 cout << "Testing the ERPi library" << endl;

 SPIDevice *busDevice = new SPIDevice(0,0);

 busDevice->setSpeed(1000000); // access to SPI Device object

 ostringstream s; // using to combine text and ints

 LCDCharacterDisplay display(busDevice, 20, 4); // a 20x4 display

 display.clear(); // Clear the character LCD module

 display.home(); // Move to the (0,0) position

 display.print(" Exploring RPi");

 cout << "End of the ERPi library test" << endl;

 return 0;

}

There are only two fi les in the project (Listing 10-13 and Listing 10-14). The

library of code (libExploringRPi.so) and associated header fi les are assumed

to be in the ~/exploringrpi/library/ directory. The following steps can be

used to build the executable.

pi@erpi ~/exploringrpi/chp10/libexample $ ls

CMakeLists.txt libtest.cpp

pi@erpi ~/exploringrpi/chp10/libexample $ mkdir build

pi@erpi ~/exploringrpi/chp10/libexample $ cd build

pi@erpi ~/exploringrpi/chp10/libexample/build $ cmake ..

-- The C compiler identification is GNU 4.6.3

...

pi@erpi ~/exploringrpi/chp10/libexample/build $ make

[100%] Building CXX object CMakeFiles/libtest.dir/libtest.cpp.o

Linking CXX executable libtest

[100%] Built target libtest

pi@erpi ~/exploringrpi/chp10/libexample/build $ ls -l libtest

-rwxr-xr-x 1 pi pi 10840 Sep 26 14:48 libtest

pi@erpi ~/exploringrpi/chp10/libexample/build $./libtest

Testing the ERPi library

End of the ERPi library test

It is important to note that any changes to the libtest.cpp program in

Listing 10-14 will not require re-compilation of the library. Indeed, that is also

true of other C/C++ fi les in the same project. For further information on CMake,

see the www.cmake.org website. In particular, the CMake Documentation Index

provides a very useful list of available commands.

http://www.cmake.org

452 Part II ■ Interfacing, Controlling, and Communicating

c10.indd 03:13:30:PM 05/20/2016 Page 452

Summar y

After completing this chapter, you should be able to do the following:

 ■ Interface to actuators, such as DC motors, stepper motors, and relays.

 ■ Condition a sensor signal so that it can be interfaced to an SPI ADC, which

is attached to the RPi.

 ■ Correctly interface analog sensors such as distance sensors, temperature

sensors, and accelerometers to the RPi.

 ■ Interface to low-cost display modules such as seven-segment displays,

character LCD displays, and OLED dot-matrix displays.

 ■ Utilize makefi les and CMake to build libraries of code that can be used

to build highly scalable C/C++ projects.

453

c11.indd 08:45:48:PM 05/12/2016 Page 453

A key strength of Linux on embedded systems is the vast amount of software

and device drivers that is freely available. Unfortunately, the overhead of running

Linux is problematic for the performance of high-speed interfacing tasks—for

example, generating or sampling bit patterns on general-purpose inputs/outputs

(GPIOs) at high speeds. One solution to this problem is to use dedicated real-

time slave processors and to communicate with them using high-level protocols.

There are many suitable slave processors available, but this chapter is focused

on just one platform: the Arduino. This chapter describes how the Raspberry

Pi (RPi) can interface effectively to the Arduino using UART serial, I2C, and

Serial Peripheral Interface (SPI) communication. Examples are provided of the

Arduino in use as an input/output extender and as a dedicated high-speed

slave processor.

Equipment Required for This Chapter:

 ■ Raspberry Pi (any model)

 ■ An Arduino Uno or equivalent1 (with a logic-level translator) and/or an

Arduino Pro Mini with 3.3 V or 5 V logic levels

1 The majority of examples in this chapter also work on the ARM-based Arduino Due. However,
AVR-based low-level calls do not work correctly (e.g., accessing the TWBR register in Listing

C H A P T E R

11

Real-Time Interfacing

Using the Arduino

454 Part II ■ Interfacing, Controlling, and Communicating

c11.indd 08:45:48:PM 05/12/2016 Page 454

 ■ Sensors: TMP36 analog temperature sensor and an HC-SR04 distance sensor

Further details on this chapter are available at www.exploringrpi.com/

chapter11/.

The Arduino

The Arduino (www.arduino.cc) is a popular, low-cost, and powerful microcon-

troller that can be used as a very capable companion controller for the RPi. The

Arduino platform was designed as an introductory platform for embedded

systems. It is programmed using the Arduino programming language, in the

Arduino development environment, which are both designed to be as user

friendly as possible.

An in-depth introduction to the Arduino is beyond the scope of this book;

instead, this chapter focuses on possible interactions between the Arduino and

the RPi platforms. In particular, the Arduino is used to develop a framework

for RPi applications that distributes high-speed embedded systems workload

to slave processors, while still maintaining high-level control.

N O T E There are videos on getting started with the Arduino on the web page asso-

ciated with this chapter: www.exploringrpi.com/chapter11/.

In addition, a comprehensive book on the Arduino is available in this Wiley mini-

series, called Exploring Arduino, by Jeremy Blum. See www.exploringarduino.com

for more details.

Figure 11-1 illustrates to relative scale two Arduino models. The Arduino UNO

in Figure 11-1(a) is a popular version of the Arduino that contains a replaceable

ATmega IC in a DIP format. The Arduino Pro Mini in Figure 11-1(b) is a smaller,

lower-cost version of the same platform; however, the ATmega IC is surface

mounted and cannot be easily replaced should it be accidentally damaged.

Because the Arduino is open source hardware, it is available in many dif-

ferent forms. However, an open hardware Arduino Pro Mini (ATmega168 or

ATmega328) is chosen as the focus of this chapter for three reasons:

 ■ A 3.3 V version is available, which simplifi es communication with the

RPi, because no logic-level translation circuitry is required. The more

commonplace 5 V version is also used throughout this chapter.

 ■ It is a low-cost, open hardware device ($5–$10) that is only 1.3”× 0.7”

(33 mm × 18 mm) in size; therefore, you can connect several boards to a

single RPi while still maintaining a modest footprint.

11-6 and 11-7). The I2C examples will work correctly if you use the default I2C baud rate of
100 KHz and comment out such low-level calls. The SPI example does not work correctly with
the Due, as it is dependent upon low-level AVR register access.

http://www.exploringrpi.com
http://www.arduino.cc
http://www.exploringrpi.com/chapter11
http://www.exploringarduino.com
http://www.exploringrpi.com/chapter11/

 Chapter 11 ■ Real-Time Interfacing Using the Arduino 455

c11.indd 08:45:48:PM 05/12/2016 Page 455

 ■ There is no USB input on the board (reducing size and cost), but it can be

programmed using the USB-to-Serial TTL devices that are described in

Chapter 1 and Chapter 9.

 ■ The principles described for this board can be easily adapted for any

Arduino model.

(a) (b)

Figure 11-1: Arduino boards (to relative scale): (a) the Arduino UNO, and (b) the Arduino Pro

Mini (3.3 V or 5 V)

W A R N I N G Pay special attention to voltage levels in this chapter. As discussed in

Chapter 8, you have to be very careful when connecting 5 V microcontrollers to the RPi

inputs and outputs. Read the section in Chapter 8 on logic-level translation carefully

before building the interfacing circuits in this chapter. Arduino board models can look

similar but have quite diff erent input/output confi gurations. If you have any doubts,

measure the voltage levels on an output line before connecting it to the RPi.

Figure 11-2 illustrates the Arduino programming environment as it is used to

develop a program to fl ash the onboard LED that is attached to Pin 13 on most

Arduino boards (see Listing 11-1). The program sends the string “Hello from

the Arduino” to the desktop machine when the program begins. An Arduino

sketch has the extension .INO (previous versions used .PDE), but it is essentially

a C++ program that is parsed by the Arduino preprocessor.

The Arduino Pro Mini can be programmed from a desktop machine by

attaching a USB-to-Serial TTL cable/device as illustrated in Figure 11-2. Check

the connections for your board; different models vary slightly. The same cable

can be used to provide serial monitoring capabilities, which is extremely

useful in debugging program code. The low-cost USB-to-Serial TTL devices

described in Chapter 9 can also be used to program the Arduino from the

desktop machine. In addition, several have selectable 5 V/3.3 V levels using

456 Part II ■ Interfacing, Controlling, and Communicating

c11.indd 08:45:48:PM 05/12/2016 Page 456

either a jumper connection or an onboard switch. Use a USB-to-Serial cable/

device that matches the logic-level voltages of your chosen Arduino.

Figure 11-2: The Arduino platform “Hello World” example and the Arduino Pro Mini

programming configuration

Listing 11-1: /chp11/hello/hello.ino

int ledPin = 13; // the Arduino onboard LED

void setup() { // this function runs once on start up

 Serial.begin(9600, SERIAL_8N1); // 8-bit, no parity and 1 stop bit

 pinMode(ledPin, OUTPUT); // the ledPin is an output

 Serial.write("Hello from the Arduino"); // send the message once

}

void loop() { // function loops forever (each 1s)

 digitalWrite(ledPin, HIGH); // set the LED pin high (LED on)

 delay(500); // high/low every second (1Hz flash)

 digitalWrite(ledPin, LOW); // set the LED pin low (LED off)

 delay(500); // sleep for 500ms

}

The setup() function in Listing 11-1 is called once when the program is

started. It confi gures the serial port to use 9,600 baud (8N1 form). The program

fl ashes the onboard LED (attached to Pin 13) forever at a rate of 1 Hz. It does this

using the loop() function, which repeats as fast as it possibly can. In this case,

it is programmed to sleep for 500 ms when the LED is on and 500 ms when the

LED is off, so each loop executes in approximately 1 second.

 Chapter 11 ■ Real-Time Interfacing Using the Arduino 457

c11.indd 08:45:48:PM 05/12/2016 Page 457

N O T E It is very important that you choose the correct Arduino board in the Tools

menu, especially when using the Pro Mini board. If an incorrect board or frequency is

chosen, the code may compile and upload correctly to the board, but the serial com-

munication channel may appear to be corrupt.

You can open the Serial Monitor window in the Arduino development envi-

ronment by pressing the button in the upper-right corner. Choose the baud rate

that corresponds to that in the program code. When a string is entered in the

text fi eld and the Send button is pressed, the string is sent to the Arduino, and

any response is displayed in the text area.

One method of overcoming the real-time limitations of the RPi that are

discussed in earlier chapters is to outsource some of the workload to other

embedded controllers, such as those provided by the Arduino, PIC, and TI

Stellaris platforms. These embedded microcontrollers share common com-

munication interfaces with the RPi that could be used for this task, including

UART devices, I2C, and SPI. The following sections describe how the Arduino

can be used as a slave processor to control different types of circuits and

devices, and how it can be interfaced using these communications protocols.

The same approaches can be used for other microcontroller families.

An Arduino Serial Slave

Using a UART connection between the RPi and an Arduino is probably the

most straightforward method of establishing a slave-processor framework. As

discussed in Chapter 8, UART communication has the advantage that there can

be some degree of physical distance between the two devices.

W A R N I N G Do not connect a 5 V Arduino to the RPi using the UART connection or

you will damage your RPi. The Arduino Pro 3.3 V can be connected directly to the RPi,

but if you are connecting a 5 V device, then be sure to use a logic-level translator or a

simple voltage divider technique.

The RPi typically only has a single UART device available, but more can be

added using USB-to-TTL devices (see Chapter 9). The following examples can use

either the onboard UART device or a USB-to-TTL adapter. However, to use the

onboard UART device you must stop the serial-getty service for the ttyAMA0

device (or ttyS0 for the RPi 3), as described in the UART section in Chapter 8.

A UART Echo Test Example

The Arduino Pro Mini is used to test the UART communication capability of

the RPi, fi rst by using the minicom program and then by writing a C program to

458 Part II ■ Interfacing, Controlling, and Communicating

c11.indd 08:45:48:PM 05/12/2016 Page 458

echo information to/from the Arduino. This approach is further developed to

create a serial client/server command control framework.

Echoing minicom (with LED Flash)

Listing 11-2 provides an Arduino program that waits until serial data is avail-

able on the RXD pin. When it is, the LED is turned on, and a character is read

in from the pin. The character is then written to the Arduino TXD pin. The

program sleeps for 100 ms to ensure that the LED fl ash is visible. The program

then loops in preparation for the next character to be received on the RXD pin.

Listing 11-2: /chp11/uart/echo/echo.ino

int ledPin = 11; // LED that flashes when a key is pressed

void setup() { // called once on start up

 // A baud rate of 115200 (8-bit with no parity and 1 stop bit)

 Serial.begin(115200, SERIAL_8N1);

 pinMode(ledPin, OUTPUT); // the LED is an output

}

void loop() { // loops forever

 byte charIn;

 digitalWrite(ledPin, LOW); // set the LED to be off

 if(Serial.available()){ // a byte has been received

 charIn = Serial.read(); // read the character in from the RPi

 Serial.write(charIn); // send the character back to the RPi

 digitalWrite(ledPin, HIGH); // light the LED

 delay(100); // delay so the LED is visible

 }

}

This program should be uploaded to the Arduino, where it will then execute,

awaiting communication on its RXD pin. This program is stored in the EEPROM

of the Arduino and will begin to execute as soon as power is applied.

W A R N I N G The Arduino Pro Mini is a very useful board but there are many vari-

ants available. You need to manually check the voltages on the Vin and Vcc pins to

verify the logic levels. For example, some 5 V boards take a raw Vin of 5 V but that level

is regulated to a Vcc of 3.3 V, and logic levels are set at 3.3 V.

The next step is to disconnect the USB-to-Serial TTL cable/device and con-

nect the Arduino to the RPi as illustrated in Figure 11-3, ensuring that the

TXD pin on the RPi is connected to the RXD pin on the Arduino, and that

the RXD pin on the RPi is connected to the TXD pin on the Arduino.

 Chapter 11 ■ Real-Time Interfacing Using the Arduino 459

c11.indd 08:45:48:PM 05/12/2016 Page 459

Figure 11-3: UART communication between the RPi and the Arduino UNO/Pro Mini 5 V with a

PWM LED example

When you are modifying the Arduino source code and uploading it to the

Arduino, you should disconnect the UART connection to the RPi each time;

otherwise, the process of programming the Arduino will likely fail.2

N O T E If you are having communication problems, check carefully that you have

selected the correct Arduino board type. Having the incorrect board type (e.g., wrong

clock frequency) can result in consistent errors on only some character transmissions.

Once the Arduino is attached to the RPi, the next step is to open the minicom

program and test the connection. The baud rate is set at 115,200 in the Arduino

code, so the same setting must be passed to the minicom command. If the con-

nection is displaying incorrect data, reduce the baud rate in the Arduino code

and minicom arguments to a lower rate, such as 57,600, 19,200, or 9,600:

pi@erpi ~ $ minicom -b 115200 -o -D /dev/ttyAMA0

Welcome to minicom 2.7

OPTIONS: I18n

Compiled on Jan 12 2014, 05:42:53.

Port /dev/ttyAMA0, 01:09:36

Press CTRL-A Z for help on special keys

HHeelllloo AArrdduuiinnoo

The characters appear twice when the minicom local echo feature is enabled—

once as a result of the local key press and then again after the transmitted

character is echoed by the Arduino. In addition, the LED that is connected to

Arduino Pin 11 in Figure 11-3 fl ashes briefl y each time a key is pressed.

2 You can typically leave the USB-to-Serial TTL cable attached to the Arduino if you do not
connect the (red) power pin from the desktop machine, but you still have to disconnect the RPi
RX/TX pins before programming. There is a discussion at the end of this chapter on program-
ming the Arduino directly from an RPi terminal.

460 Part II ■ Interfacing, Controlling, and Communicating

c11.indd 08:45:48:PM 05/12/2016 Page 460

The Analog Discovery Logic Analyzer can be connected in parallel to the

TXD and RXD lines to analyze the transfer of data from the RPi to the Arduino.

An example of the resulting signals is displayed in Figure 11-4(a) when only

the letter H is being transmitted. The start and stop bits can be observed,

along with the 8-bit data as it is sent, LSB fi rst, from the RPi to the Arduino,

at a sample bit-period of 8.7 μs. At a baud rate of 115,200, the effective byte rate

will be somewhat lower due to the overhead of transmitting start, stop, and

parity bits. The Arduino response delay is the time it takes for the Arduino to

read the character from its RXD input and transmit it back to its TXD output.

Test the voltage levels on the receive line from the Arduino before connecting

it to the RPi directly, as illustrated in Figure 11-4(b).

(a) (b)

Figure 11-4: Analysis of the UART communication between the RPi and the Arduino Pro

Mini: (a) the logic analyzer, and (b) the same letter H on the oscilloscope

UART Echo Example in C

The next step is to write C code on the RPi that can communicate with the

Arduino program. The Arduino code in Listing 11-2 must be adapted slightly

to remove the LED fl ash, because this slows down communication.

The C program in Listing 11-3 sends a string to the Arduino and reads the

responding echo. It uses the Linux termios library (see Chapter 8), which pro-

vides a general terminal interface for the control of asynchronous communica-

tion ports. This example uses the ttyAMA0 UART device. Adapt the source code

accordingly for your chosen device (e.g., ttyUSB0, ttyS0).

Listing 11-3: /chp11/uart/echoC/echo.c

#include<stdio.h>

#include<fcntl.h>

#include<unistd.h>

#include<termios.h> // using the termios.h library

int main(){

 Chapter 11 ■ Real-Time Interfacing Using the Arduino 461

c11.indd 08:45:48:PM 05/12/2016 Page 461

 int file, count;

 if ((file = open("/dev/ttyAMA0", O_RDWR | O_NOCTTY | O_NDELAY))<0) {

 perror("UART: Failed to open the file.\n");

 return -1;

 }

 struct termios options; // the termios structure is vital

 tcgetattr(file, &options); // sets the parameters for the file

 // Set up the communications options:

 // 115200 baud, 8-bit, enable receiver, no modem control lines

 options.c_cflag = B115200 | CS8 | CREAD | CLOCAL;

 options.c_iflag = IGNPAR | ICRNL; // ignore parity errors

 tcflush(file, TCIFLUSH); // discard file information

 tcsetattr(file, TCSANOW, &options); // changes occur immmediately

 unsigned char transmit[20] = "Hello Raspberry Pi!"; // send string

 if ((count = write(file, &transmit, 20))<0){ // transmit

 perror("Failed to write to the output\n");

 return -1;

 }

 usleep(100000); // give the Arduino a chance to respond

 unsigned char receive[100]; // declare a buffer for receiving data

 if ((count = read(file, (void*)receive, 100))<0){ //receive data

 perror("Failed to read from the input\n");

 return -1;

 }

 if (count==0) printf("There was no data available to read!\n");

 else printf("The following was read in [%d]: %s\n",count,receive);

 close(file);

 return 0;

}

This program can be built and executed as follows, where the circuit is wired

as in Figure 11-3:

pi@erpi ~/exploringrpi/chp11/uart/echoC $ gcc echo.c -o echo

pi@erpi ~/exploringrpi/chp11/uart/echoC $./echo

The following was read in [20]: Hello Raspberry Pi!

UART Command Control of an Arduino

The Arduino code in Listing 11-2 is adapted as shown in Listing 11-4 to cre-

ate a simple LED brightness controller on the Arduino slave. The program on

the Arduino expects to receive string commands from a master that have the

format "LED" followed by a space, and then an integer value between 0 and 255.

The integer value defi nes the brightness of an LED that is attached to the PWM

output (Pin 11) on the Arduino. The program checks that the value is within

range and issues an error if it is not. If the command string is not recognized,

the Arduino program echoes it back to the sender. This program will continue

to run on the Arduino forever.

462 Part II ■ Interfacing, Controlling, and Communicating

c11.indd 08:45:48:PM 05/12/2016 Page 462

Listing 11-4: /chp11/uart/command/command.ino

int ledPin = 11; // LED with PWM brightness control

void setup() { // called once on start up

 // A baud rate of 115200 (8-bit with no parity and 1 stop bit)

 Serial.begin(115200, SERIAL_8N1);

 pinMode(ledPin, OUTPUT); // the LED is an output

}

void loop() { // loops forever

 String command;

 char buffer[100]; // stores the return buffer on each loop

 if (Serial.available()>0){ // bytes received

 command = Serial.readStringUntil('\0'); // C strings end with \0

 if(command.substring(0,4) == "LED "){ // begins with "LED "?

 String intString = command.substring(4, command.length());

 int level = intString.toInt(); // extract the int

 if(level>=0 && level<=255){ // is it in range?

 analogWrite(ledPin, level); // yes, write out

 sprintf(buffer, "Set brightness to %d", level);

 }

 else{ // no, error message back

 sprintf(buffer, "Error: %d is out of range", level);

 }

 } // otherwise, unknown cmd

 else{ sprintf(buffer, "Unknown command: %s", command.c_str()); }

 Serial.print(buffer); // send the buffer to the RPi

 }

}

The C program that is provided in Listing 11-5 is a general test program that

sends its command-line argument over the UART connection to the Arduino.

It has the same syntax as the echo example in the previous section.

Listing 11-5: /chp11/uart/command/command.c

#include<stdio.h>

#include<fcntl.h>

#include<unistd.h>

#include<termios.h>

#include<string.h>

int main(int argc, char *argv[]){

 int file, count;

 if(argc!=2){

 printf("Invalid number of arguments, exiting!\n");

 return -2;

 }

 if ((file = open("/dev/ttyAMA0", O_RDWR | O_NOCTTY | O_NDELAY))<0){

 perror("UART: Failed to open the file.\n");

 return -1;

 }

 struct termios options;

 Chapter 11 ■ Real-Time Interfacing Using the Arduino 463

c11.indd 08:45:48:PM 05/12/2016 Page 463

 tcgetattr(file, &options);

 options.c_cflag = B115200 | CS8 | CREAD | CLOCAL;

 options.c_iflag = IGNPAR | ICRNL;

 tcflush(file, TCIFLUSH);

 tcsetattr(file, TCSANOW, &options);

 // send the string plus the null character

 if ((count = write(file, argv[1], strlen(argv[1])+1))<0){

 perror("Failed to write to the output\n");

 return -1;

 }

 usleep(100000);

 unsigned char receive[100];

 if ((count = read(file, (void*)receive, 100))<0){

 perror("Failed to read from the input\n");

 return -1;

 }

 if (count==0) printf("There was no data available to read!\n");

 else {

 receive[count]=0; //There is no null character sent by the Arduino

 printf("The following was read in [%d]: %s\n",count,receive);

 }

 close(file);

 return 0;

}

This program can be built and executed as follows, whereupon the LED

changes brightness according to the integer value supplied. In addition, the

transfer of data can be observed on the logic analyzer, as in Figure 11-5:

pi@erpi ~/exploringrpi/chp11/uart/command $ gcc command.c -o command

pi@erpi ~/exploringrpi/chp11/uart/command $./command "LED 255"

The following was read in [21]: Set brightness to 255

pi@erpi ~/exploringrpi/chp11/uart/command $./command "LED 50"

The following was read in [20]: Set brightness to 50

pi@erpi ~/exploringrpi/chp11/uart/command $./command "LED 0"

The following was read in [19]: Set brightness to 0

pi@erpi ~/exploringrpi/chp11/uart/command $./command "LED 400"

The following was read in [26]: Error: 400 is out of range

pi@erpi ~/exploringrpi/chp11/uart/command $./command "rubbish"

The following was read in [24]: Unknown command: rubbish

Figure 11-5: Sending the command “LED 255\0” to the Arduino and receiving the response

string “Set brightness to 255”

464 Part II ■ Interfacing, Controlling, and Communicating

c11.indd 08:45:48:PM 05/12/2016 Page 464

The performance of this code could be improved by defi ning a list of single-

byte commands and responses, to minimize data transfer time. This framework

could be used to create a simple distributed embedded controller platform, and

it is only limited by the number of available UART devices on the RPi.

An Arduino I2C Slave

Chapter 8 describes how digital devices, such as the ADXL345 accelerometer

and a real-time clock, can be attached to the RPi using the I2C bus. It describes

how you can use the bus to control these devices by reading from and writ-

ing to device registers. The Arduino can be confi gured as an I2C slave, which

effectively allows you to create your own I2C digital sensors and controllers.

This architecture is very useful for a number of reasons:

 ■ A large number of Arduino microcontrollers can be connected to a single

RPi using each of its two I2C buses.3

 ■ The Arduino can be intermixed with other I2C devices on the same bus.

Each Arduino can be assigned any address.

 ■ As described in Chapter 8, there is a good framework in place for reading

from and writing to I2C devices by using registers.

 ■ Using the two-wire interface (TWI) on the Arduino allows it to perform other

functions without having to explicitly check for incoming communications.

Relative to SPI or UART serial communications, one disadvantage of I2C is the

maximum data rate; however, a master/slave arrangement typically performs

the high-speed interfacing work on the slave device and only management

commands and status information are passed between the master and the slave

devices. Given these considerations, I2C communication is a strong choice for a

master/slave arrangement, and is therefore the primary focus of this chapter.

An I2C Test Circuit

Figure 11-6 illustrates a test circuit that is used in several of the following sec-

tions to demonstrate the capabilities of the I2C master/slave arrangement. It

uses a TMP36 analog temperature sensor, which is attached to a 10-bit analog

input on the Arduino. In addition, an LED is attached to the PWM output on

Pin 11. Several of the examples that follow in this chapter use this confi guration

3 You can connect up to 112 Arduino microcontrollers per I2C bus, as there are 16 reserved
addresses (111 1xxx and 000 0xxx) out of the 128 possible 7-bit addresses (27). However, the total
interconnection cable length is the most likely limiting factor. See tiny.cc/erpi1101. Also,
remember that the second I2C bus on the RPi does not have onboard pull-up resistors, so add
them as described in Chapter 8.

 Chapter 11 ■ Real-Time Interfacing Using the Arduino 465

c11.indd 08:45:48:PM 05/12/2016 Page 465

to demonstrate how you can read data from the temperature sensor and write

a value to control the LED brightness.

N O T E Despite warnings on logic voltage levels at the beginning of this chapter, it

may be possible to connect a 5 V Arduino to the I2C bus on the RPi. That is because the

RPi has onboard pull-up resistors and the Arduino typically does not. This means that

the high-level voltage that is used during communication is determined by the RPi,

not the Arduino. However, if the Arduino (or other device) has onboard pull-up resis-

tors, you cannot use it without bidirectional logic-level translation hardware, or the

physical removal of the slave device’s pull-up resistors.

A desktop PC (or the RPi itself) can be used to program the Arduino using a

USB-to-TTL cable or one of the USB-to-TTL adapters described in Chapter 9. Do

not connect the voltage supply pin (red) to the TTL adapter, as this confi gura-

tion uses the RPi to power the Arduino. In this example, a 5 V Arduino Pro Mini

is utilized, but you will notice that there is no logic-level translation circuitry

employed. As previously discussed, there are pull-up resistors on the fi rst RPi

I2C bus, and there are no pull-up resistors on this particular Arduino. Therefore,

the Arduino can be safely attached to the RPi because the SDA and SCL lines can

only be pulled high to a maximum of 3.3 V. However, if the Arduino model you

are using has onboard pull-up resistors, this confi guration would damage your

RPi; if in doubt, use a logic-level translator that is compatible with bidirectional

data transfer, such as one of those described at the end of Chapter 8.

Figure 11-6: The Arduino I2C slave test circuit with a TMP36 analog temperature sensor

I2C Register Echo Example

The fi rst example does not require the temperature sensor or LED circuit; instead,

it is a test of I2C communication itself. This section uses Linux i2c-tools on the

RPi to ensure that communication is taking place with the Arduino before

examining a C code example.

466 Part II ■ Interfacing, Controlling, and Communicating

c11.indd 08:45:48:PM 05/12/2016 Page 466

Listing 11-6 is an Arduino sketch that confi gures the Arduino as a slave

device using the Arduino Wire library and the two-wire interface (TWI) of the

ATmega.4 In this example, the setup() function explicitly sets a clock frequency

that aligns with the I2C baud rate of the RPi. You can identify the RPi I2C baud

rate using the following call:

pi@erpi ~ $ sudo cat /sys/module/i2c_bcm2708/parameters/baudrate

100000

The setup() function confi gures the Arduino to have the arbitrary I2C

bus address of 0x44. It then registers two communication listener functions:

receiveRegister(), which is called whenever data is written to the device

using the I2C bus; and respondData(), which is called whenever data is

read from the device. Importantly, you do not need to call these functions

directly from the loop() function; instead, they are called automatically.

Listing 11-6: /chp11/i2c/echo/echo.ino

#include <Wire.h> // Uses the Two-Wire Interface (TWI)

const byte slaveAddr = 0x44; // the slave address of the Arduino

int registerAddr; // the shared register addr variable

void setup() { // the setup function -- called once

 TWBR=100000L; // the i2c clk freq: 100000L = 100kHz

 Wire.begin(slaveAddr); // set Arduino as an I2C slave device

 Wire.onReceive(receiveRegister); // register receive listener below

 Wire.onRequest(respondData); // register respond listener below

}

void loop() {

 delay(1000); // loop each second

}

void receiveRegister(int x){ // handler called when data available

 registerAddr = Wire.read(); // read in one-byte address from RPi

}

void respondData(){ // handler that is called on response

 Wire.write(registerAddr); // i.e., send the data back to the RPi

}

In this example, the Arduino code reads the request byte that comes from the

RPi master (into the registerAddr variable) and writes it back as the response.

This means that the Arduino echoes the address value that is requested as the

response data, which is a useful fi rst test application.

4 There is a detailed description of the Arduino Wire library at tiny.cc/erpi1102.

 Chapter 11 ■ Real-Time Interfacing Using the Arduino 467

c11.indd 08:45:48:PM 05/12/2016 Page 467

When the Arduino is attached to the RPi as described in Figure 11-6 (even

without the LED and temperature sensor), a call to the i2cdump command results

in the following output:

pi@erpi ~ $ i2cdetect -y 1

 0 1 2 3 4 5 6 7 8 9 a b c d e f

...

40: -- -- -- -- 44 -- -- -- -- -- -- -- -- -- -- --

...

pi@erpi ~ $ i2cdump -y 1 0x44 b

 0 1 2 3 4 5 6 7 8 9 a b c d e f 0123456789abcdef

00: 00 01 02 03 04 05 06 07 08 09 0a 0b XX 0d 0e 0f .???????????X???

10: 10 11 12 13 14 15 16 17 18 19 1a 1b 1c 1d 1e 1f ????????????????

20: 20 21 22 23 24 25 26 27 28 29 2a 2b 2c 2d 2e 2f !"#$%&'()*+,-./

30: 30 31 32 33 34 35 36 37 38 39 3a 3b 3c 3d 3e 3f 0123456789:;<=>?

40: 40 41 42 43 44 45 46 47 48 49 4a 4b 4c 4d 4e 4f @ABCDEFGHIJKLMNO

...

f0: f0 f1 f2 f3 f4 f5 f6 f7 f8 f9 fa fb fc fd fe ff ???????????????.

You can see from this output that the Arduino program is designed to simply

respond with the address that is requested. So, when the RPi requests the data

at address 0x0A, the Arduino returns the data value 0x0A. This is a useful test

to perform before continuing to the next section.

I2C Temperature Sensor Example

The next example uses the Arduino as an I2C slave device that wraps the TMP36

analog temperature sensor with a digital interface.

In this example, the Arduino uses its 10-bit ADC to read the analog output

of the TMP36 sensor, and then calculates the temperature in degrees Celsius by

using the formula that is provided in the TMP36 datasheet. The temperature

is then stored in two byte values: one for the whole value part, and one for the

fractional part of the temperature.

This example is similar to the TMP36 example in Chapter 10, except that all

the processing is performed on the Arduino slave processor, rather than on the

RPi. In fact, the Arduino also performs the conversion from degrees Celsius

to degrees Fahrenheit and makes the converted value available at two further

register addresses. The importance of this example is that the same approach

can be applied to any analog sensor attached to the Arduino, facilitating you

in building your own digital sensors.

Listing 11-7 provides the Arduino sketch that interfaces to the TMP36 analog

temperature sensor that is attached to pin A0 (analog input 0) as illustrated in

Figure 11-6. The Arduino calculates the temperature every 5 seconds and stores

the Celsius value in bytes data[0] and data[1], and the Fahrenheit value in

468 Part II ■ Interfacing, Controlling, and Communicating

c11.indd 08:45:48:PM 05/12/2016 Page 468

bytes data[2] and data[3]. The indexes of these data[] values align with the

register values that are requested by the RPi and returned by the respondData()

listener function.

Listing 11-7: /chp11/i2c/i2cTMP36/i2cTMP36.ino

#include <Wire.h> // uses the Two-Wire Interface (TWI)

const byte slaveAddr = 0x44; // the slave address of the Arduino

int registerAddr; // the shared register addr variable

const int analogInPin = A0; // analog input for the TMP36

int data[4]; // the data registers 0x00 to 0x03

void setup(){

 TWBR=100000L; // set the i2c clk freq e.g. 100000L

 Wire.begin(slaveAddr); // set up the Arduino as an I2C slave

 Wire.onReceive(receiveRegister); // register receive listener below

 Wire.onRequest(respondData); // register respond listener below

}

void loop(){ // update registers every five seconds

 int adcValue = analogRead(analogInPin); // using a 10-bit ADC

 float curVoltage = adcValue * (5.0f/1024.0f); // Vcc = 5.0V, 10-bit

 float tempC = 25.0 + ((curVoltage-0.75f)/0.01f); // from datasheet

 float tempF = 32.0 + ((tempC * 9)/5); // deg. C to F

 data[0] = (int) tempC; // whole deg C (0x00)

 data[1] = (int) ((tempC - data[0])*100); // fract C (0x01)

 data[2] = (int) tempF; // whole deg F (0x02)

 data[3] = (int) ((tempF - data[2])*100); // fract F (0x03)

 delay(5000); // delay 5 seconds

}

void receiveRegister(int x){ // passes the number of bytes

 registerAddr = Wire.read(); // read in the one-byte address

}

void respondData(){ // respond function

 byte dataValue = 0x00; // default response value is 0x00

 if ((registerAddr >= 0x00) && (registerAddr <0x04)){

 dataValue = data[registerAddr];

 }

 Wire.write(dataValue); // send the data back to the RPi

}

Note that the two listener functions act independently of the loop() function,

only called upon when the RPi makes a request. In other words, the loop()

function does not need to explicitly check for a data request on each iteration,

which was necessary in the UART example.

Once the code is compiled and deployed to the Arduino, you can then use

the i2cdump command to view the register values:

pi@erpi ~ $ i2cdump -y 1 0x44 b

 0 1 2 3 4 5 6 7 8 9 a b c d e f 0123456789abcdef

00: 17 49 4a 47 00 00 00 00 00 00 00 00 00 00 00 00 ?IJG............

 Chapter 11 ■ Real-Time Interfacing Using the Arduino 469

c11.indd 08:45:48:PM 05/12/2016 Page 469

10: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

...

pi@erpi ~ $ i2cget -y 1 0x44 0x00 b

0x17

pi@erpi ~ $ i2cget -y 1 0x44 0x01 b

0x49

The values are in hexadecimal form; therefore, the temperature value in this

example is 23.73°C10 (i.e., 17.49°C16), which is 74.71°F10 (i.e., 4A.47°F16) as displayed

in the i2cdump output at addresses 0×02 and 0×03.

I2C Temperature Sensor with a Warning LED

The next example builds on the previous example with the addition of a warning

LED that lights when the room temperature exceeds a user-defi ned threshold.

The importance of this example is that it demonstrates how you can send data

to the Arduino from the RPi—in effect, by writing a value to a register on the

I2C device. Figure 11-6 illustrates the warning LED circuit for this example.

From the perspective of the RPi, the whole-number alert threshold value is

stored at address 0x04 on the Arduino. For example, if the value 0x20 is written to

the address 0x04, then the warning LED will remain off unless the temperature

exceeds 0x20 = 32°C. This value is appropriate for testing, as you can achieve

this temperature by holding the TMP36 sensor with your fi ngers.

Listing 11-8 is the Arduino sketch required to read the alert threshold value

from the RPi and to store it in the byte data[4]. The receiveRegister(int x)

listener function checks to see if the RPi is accessing register 0x04 and if exactly

two bytes of data have been passed (i.e., the address and value). If so, then the

second byte (the value) that is passed is stored in data[4]. The example also

contains some commented-out code to write to the Arduino serial console. You

can enable these lines of code to help you in debugging any changes.

Listing 11-8: /chp11/i2c/i2cTMP36warn/i2cTMP36warn.ino

#include <Wire.h> // uses the Two-Wire Interface (TWI)

const byte slaveAddr = 0x44; // the slave address of the Arduino

int registerAddr; // the shared register address variable

const int analogInPin = A0; // analog input pin for the TMP36

int data[5]; // the data registers 0x00 to 0x04

int alertTemp = 0xFF; // alert temperature not set by default

int ledPin = 11; // the warning light LED

void setup(){

 pinMode(ledPin, OUTPUT); // LED provides a visible temp alert

 TWBR=100000L; // set the i2c clk freq e.g. 400000L

 Wire.begin(slaveAddr); // set up the Arduino as an I2C slave

 Wire.onReceive(receiveRegister); // register receive listener below

 Wire.onRequest(respondData); // register respond listener below

 //Serial.begin(115200, SERIAL_8N1); // remove for debug

}

470 Part II ■ Interfacing, Controlling, and Communicating

c11.indd 08:45:48:PM 05/12/2016 Page 470

void loop(){ // update registers every five seconds

 int adcValue = analogRead(analogInPin); // using a 10-bit ADC

 //Serial.print("\nThe ADC value is: "); // remove for debug

 //Serial.print(adcValue); // remove for debug

 float curVoltage = adcValue * (3.3f/1024.0f); // Vcc = 3.3V, 10-bit

 float tempC = 25.0 + ((curVoltage-0.75f)/0.01f); // from datasheet

 float tempF = 32.0 + ((tempC * 9)/5); // deg. C to deg. F

 data[0] = (int) tempC; // whole deg C (0x00)

 data[1] = (int) ((tempC - data[0])*100); // fract deg C (0x01)

 data[2] = (int) tempF; // whole deg F (0x02)

 data[3] = (int) ((tempF - data[2])*100); // fract deg F (0x03)

 data[4] = alertTemp; // alert tmp C (0x04)

 if (tempC > alertTemp) { // test alert?

 digitalWrite(ledPin, HIGH); // yes, set LED on

 }

 else {

 digitalWrite(ledPin, LOW); // else LED off

 }

 delay(5000);

}

void receiveRegister(int x){ // passes the number of bytes

 registerAddr = Wire.read(); // read in the one-byte address

 if(registerAddr==0x04 && x==2){ // if writing the alert value

 alertTemp = Wire.read(); // read in the alert temperature

 }

}

void respondData(){ // respond function

 byte dataValue = 0x00; // default response value is 0x00

 if ((registerAddr >= 0x00) && (registerAddr <= 0x04)){

 dataValue = data[registerAddr];

 }

 Wire.write(dataValue); // send the data back to the RPi

}

Once this program is uploaded to the Arduino the Linux i2c-tools can be

used to query the registers. You can see a fi fth register at 0x04, which has the

initial value of 0xFF:

pi@erpi ~ $ i2cdump -y 1 0x44 b

 0 1 2 3 4 5 6 7 8 9 a b c d e f 0123456789abcdef

00: 1b 3f 51 4a ff 00 00 00 00 00 00 00 00 00 00 00 ??QJ?...........

...

You can alter this value using the i2cset command, as follows:

pi@erpi ~ $ i2cget -y 1 0x44 0x04

0xff

pi@erpi ~ $ i2cset -y 1 0x44 0x04 0x20

pi@erpi ~ $ i2cget -y 1 0x44 0x04

0x20

These transactions are captured by the logic analyzer in Figure 11-7. In my

case, the LED is currently off because the room temperature is approximately

 Chapter 11 ■ Real-Time Interfacing Using the Arduino 471

c11.indd 08:45:48:PM 05/12/2016 Page 471

27°C; however, once the sensor is pinched between my fi ngers, the temperature

quickly rises above 32°C (0x20) and the warning LED turns on.

Figure 11-7: Writing to and reading from the 0x04 register that has been created on the Arduino

Importantly, the code in the loop() function continues completely indepen-

dently of the RPi. For example, it can take a few seconds for the LED to turn on

or off after a new temperature threshold is set. That is because the main loop

in the Arduino code has a 5-second delay between readings, and the threshold

comparison takes place at the end of the loop. It is important that you keep the

listener functions (i.e., receiveRegister() and respondData()) as short as pos-

sible, because otherwise I2C communication may be somewhat unresponsive.

Arduino Slave Communication Using C/C++

C/C++ code examples for reading from and writing to I2C devices are presented

in Chapter 8, but another example is provided here for completeness. Listing 11-9

is a C program for reading from and/or writing to the Arduino slave device.

Listing 11-9: chp11/i2c/i2cTMP36/i2cTMP36.c

#include<stdio.h>

#include<fcntl.h>

#include<sys/ioctl.h>

#include<linux/i2c.h>

#include<linux/i2c-dev.h>

#define BUFFER_SIZE 5 //0x00 to 0x04

int main(int argc, char **argv){

 int file, i, alert=0xFF;

 // check if alert temperature argument passed

 if(argc==2){ // convert argument string to int value

472 Part II ■ Interfacing, Controlling, and Communicating

c11.indd 08:45:48:PM 05/12/2016 Page 472

 if (sscanf(argv[1],"%i",&alert)!=1) {

 perror("Failed to read the alert temperature\n");

 return 1;

 }

 if (alert>255 || alert<0) {

 perror("Alert temperature is outside of range\n");

 return 1;

 }

 }

 if((file=open("/dev/i2c-1", O_RDWR)) < 0){

 perror("failed to open the bus\n");

 return 1;

 }

 if(ioctl(file, I2C_SLAVE, 0x44) < 0){

 perror("Failed to connect to the Arduino\n");

 return 1;

 }

 char rec[BUFFER_SIZE], send;

 for(i=0; i<BUFFER_SIZE; i++){ // sending char by char

 send = (char) i;

 if(write(file, &send, 1)!=1){

 perror("Failed to request a register\n");

 return 1;

 }

 if(read(file, &rec[i], 1)!=1){

 perror("Failed to read in the data\n");

 return 1;

 }

 }

 printf("The temperature is %d.%d°C", rec[0], rec[1]);

 printf(" which is %d.%d°F\n", rec[2], rec[3]);

 printf("The alert temperature is %d°C\n", rec[4]);

 if(alert!=0xFF) {

 char alertbuf[] = {0x04, 0}; // writing alert to 0x04

 alertbuf[1] = (char) alert; // value read as argument

 printf("Setting alert temperature to %d°C\n", alert);

 if(write(file, alertbuf, 2)!=2){

 perror("Failed to set the alert temperature!\n");

 return 1;

 }

 }

 close(file);

 return 0;

}

This program can be built and executed as follows:

pi@erpi ~/exploringrpi/chp11/i2c/i2cTMP36warn $ gcc i2cTMP36.c -o i2cTMP36

pi@erpi ~/exploringrpi/chp11/i2c/i2cTMP36warn $./i2cTMP36

The temperature is 17.67°C which is 63.81°F

The alert temperature is 30°C

 Chapter 11 ■ Real-Time Interfacing Using the Arduino 473

c11.indd 08:45:48:PM 05/12/2016 Page 473

pi@erpi ~/exploringrpi/chp11/i2c/i2cTMP36warn $./i2cTMP36 40

The temperature is 17.67°C which is 63.81°F

The alert temperature is 30°C

Setting alert temperature to 40°C

pi@erpi ~/exploringrpi/chp11/i2c/i2cTMP36warn $./i2cTMP36

The temperature is 17.67°C which is 63.81°F

The alert temperature is 40°C

When an argument is provided, the program converts the value from a string

to an integer and writes it to the register 0x04 on the Arduino using the I2C bus.

This value then becomes the alert threshold temperature that triggers the LED

to light should it be exceeded. If no argument is provided, the program displays

the properly formatted current state of the Arduino slave device.

An I2C Ultrasonic Sensor Application

The HC-SR04 is a very low-cost ($2) ultrasonic sensor that you can use to deter-

mine the distance to an obstacle using the speed of sound. The sensor has a

range of approximately 1” (2.5 cm) to 13’ (4 m). Unlike the IR distance sensor

that is used in Chapter 10, it is not affected by sunlight, but it does not perform

well with soft materials that do not refl ect sound well (e.g., clothing and soft

furnishings). Figure 11-8 illustrates how this sensor can be connected to the RPi

via an Arduino UNO. The use of the Arduino UNO is purely illustrative, and

a 5 V Arduino PRO mini can equivalently be used.

Figure 11-8: The HC-SR04 ultrasonic distance sensor circuit

Figure 11-9 illustrates how interaction takes place with this sensor. A 10 μs

trigger pulse is sent to the Trig input of the sensor; the sensor then responds on

its Echo output with a pulse that has a width that corresponds to the distance of

an obstacle (approximately 150 μs to 25 ms, or 38 ms if no obstacle is in range). The

maximum number of samples per second is approximately 20 for a single sensor.

474 Part II ■ Interfacing, Controlling, and Communicating

c11.indd 08:45:48:PM 05/12/2016 Page 474

Figure 11-9: The signal response of the HC-SR04

It is possible, but diffi cult to get accurate results directly from Linux user

space using regular GPIOs with this sensor. There are UART versions of this

sensor that contain a microcontroller, but they are much more expensive. The

solution that is presented here is fast enough to allow you to connect several

such sensors to a single Arduino—a single trigger signal could be sent to many

sensors simultaneously, and different Arduino GPIOs could be used to measure

the response signals from each sensor. Listing 11-10 is the Arduino code for this

example. The code builds on Listing 11-8 with code to generate the trigger pulse

and read the width of the echo pulse response.

Listing 11-10: /chp11/i2c/sr04/sr04.ino

#include <Wire.h> // uses the Two-Wire Interface (TWI)

const byte slaveAddr = 0x55; // the slave address of the Arduino

int registerAddr; // the shared register addr variable

int triggerPin = 2; // connected to trig

int echoPin = 3; // connected to echo

int ledPin = 13; // the onboard LED

byte data[4]; // the data registers 0x00 to 0x03

void setup() {

 // Serial.begin(115200); // for debugging

 pinMode(triggerPin, OUTPUT); // the pin to send a 10us pulse

 pinMode(echoPin, INPUT); // the response pin to measure

 pinMode(ledPin, OUTPUT); // the onboard LED indicator

 TWBR=100000L; // set the i2c clk freq e.g., 100000L

 Wire.begin(slaveAddr); // set up the Arduino as an I2C slave

 Wire.onReceive(receiveRegister); // register receive listener below

 Wire.onRequest(respondData); // register respond listener below

}

void loop() { // loop 20 times per second

 int duration; // the response pulse width

 float distancecm, distancein; // the converted value

 Chapter 11 ■ Real-Time Interfacing Using the Arduino 475

c11.indd 08:45:48:PM 05/12/2016 Page 475

 digitalWrite(triggerPin, HIGH); // send the 10us pulse

 delayMicroseconds(10);

 digitalWrite(triggerPin, LOW);

 duration = pulseIn(echoPin, HIGH); // measure response pulse (in us)

 distancecm = (float) duration / 58.0; // time converted to cm

 data[0] = (int) distancecm; // whole part (0x00)

 data[1] = (int) ((distancecm - data[0])*100); // fract part (0x01)

 distancein = (float) duration / 148.0; // time converted to in

 data[2] = (int) distancein; // whole part (0x02)

 data[3] = (int) ((distancein - data[2])*100); // fract part (0x03)

 // code that can be added for debugging the program

 // Serial.print(distancecm); Serial.println(" cm");

 // Serial.print(distancein); Serial.println(" inches");

 digitalWrite(ledPin, LOW); // LED off

 delay(50); // 20 samples per second

 digitalWrite(ledPin, HIGH); // give a slight flash

}

void receiveRegister(int x){ // passes the number of bytes

 registerAddr = Wire.read(); // read in the one-byte address

}

void respondData(){ // respond function

 byte dataValue = 0x00; // default response value is 0x00

 if ((registerAddr >= 0x00) && (registerAddr <0x04)){

 dataValue = data[registerAddr];

 }

 Wire.write(dataValue); // send the data back to the RPi

}

Once this program is built and uploaded to the Arduino, it can be tested from

the RPi using the following calls:

pi@erpi ~ $ i2cdetect -y 1

 0 1 2 3 4 5 6 7 8 9 a b c d e f

...

50: -- -- -- -- -- 55 -- -- -- -- -- -- -- -- -- --

...

pi@erpi ~ $ i2cdump -y 1 0x55 b

 0 1 2 3 4 5 6 7 8 9 a b c d e f 0123456789abcdef

00: 0a 1b 04 02 00 00 00 00 00 00 00 00 00 00 00 00 ????............

...

With a one-line script you can fi nd the decimal value represented by these

registers using the following calls. (Ensure that you use a ` rather than a ' in

wrapping the i2cget call; it is often on the keyboard directly below Esc.)

pi@erpi ~ $ printf "Distance is %d.%02d cm\n" `i2cget -y 1 0x55 0x00` →

 `i2cget -y 1 0x55 0x01`

Distance is 10.27 cm

pi@erpi ~ $ printf "Distance is %d.%02d inches\n" `i2cget -y 1 0x55 0x02` →

 `i2cget -y 1 0x55 0x03`

Distance is 4.02 inches

476 Part II ■ Interfacing, Controlling, and Communicating

c11.indd 08:45:48:PM 05/12/2016 Page 476

The C program in Listing 11-9 can be adapted to read the register values for

the HC-SR04 Arduino program. Such a program would easily be able to com-

municate with the RPi over I2C and read the calculated register values at the

maximum rate possible for the sensor (a rate of ~20 Hz).

An Arduino SPI Slave

A third way of interfacing the RPi with the Arduino is by using it as an SPI

slave. This method of interfacing can be used for applications that require very

fast high-level interaction between the RPi and the Arduino, as communication

is only limited by the clock frequency of the Arduino (e.g., typically 8 MHz or

16 MHz). A 3.3 V Arduino can be connected to the RPi as illustrated in Figure 11-10.

Note that logic-level translation hardware is required if you are interfacing to

a 5 V Arduino using SPI.

Figure 11-10: The Arduino as an SPI slave

The Arduino has strong support for applications in which it is the SPI master,

but it does not have the same level of support for applications in which it acts

as an SPI slave. Low-level operations are required, and therefore this approach

is best avoided, particularly if an I2C approach will suffi ce. For completeness,

a code example is provided in Listing 11-11 that establishes the Arduino as an

SPI slave device.

Listing 11-11: /chp11/spi/spi.ino

// Based on example code that is provided by Nick Gammon

// See: http://www.gammon.com.au/ for further details

#include <SPI.h>

#define MISO 12

volatile int count, lastcount;

void setup () {

 Serial.begin (115200); // for serial output debug

 Chapter 11 ■ Real-Time Interfacing Using the Arduino 477

c11.indd 08:45:48:PM 05/12/2016 Page 477

 SPCR |= _BV(SPE); // turn on SPI in slave mode

 pinMode(MISO, OUTPUT); // Send on the MISO line

 SPI.setClockDivider(SPI_CLOCK_DIV16); // A 1 MHz clock

 SPI.attachInterrupt(); // now turn on interrupts

 Serial.println("Setup complete"); // debug message

}

void loop() {

 if (count>lastcount) { // demonstrate data sharing

 Serial.print("Count is now: ");

 Serial.println(count); // use the serial console for debug

 //SPI.transfer(count); // only if reading back values

 lastcount=count; // get ready for the next increment loop

 }

}

ISR (SPI_STC_vect) { // The SPI interrupt routine

 Serial.print("ISR invoked: Received (int)");

 byte c = SPDR; // get a byte from the SPI Data Register

 Serial.println((int)c); // print out the integer equivalent value

 count++;

 Serial.println("End of ISR");

}

Once the code has been uploaded to the Arduino and the circuit constructed

as in Figure 11-10, the connection can be tested using the following calls:

pi@erpi ~ $ echo -ne "\x41\x01" > /dev/spidev0.0

pi@erpi ~ $ echo -ne "\x41\x02" > /dev/spidev0.0

pi@erpi ~ $ echo -ne "\x41\x03" > /dev/spidev0.0

Where the Arduino Serial Console displays the following output:

Setup complete

ISR invoked: Received (int)1

End of ISR

Count is now: 1

ISR invoked: Received (int)2

End of ISR

Count is now: 2

ISR invoked: Received (int)3

End of ISR

Count is now: 3

This output demonstrates that data values are being passed from the RPi

terminal shell to the Arduino SPI slave. Note that the leading byte is simply

ignored in this code example.

Finally, Listing 11-12 is a short C example program that demonstrates how

you can send data to the Arduino SPI slave using the wiringPi library.

Listing 11-12: /chp11/spi/spi.c

#include <stdio.h>

#include <wiringPiSPI.h>

478 Part II ■ Interfacing, Controlling, and Communicating

c11.indd 08:45:48:PM 05/12/2016 Page 478

int main() {

 char data[2] = {0, 99};

 wiringPiSPISetupMode(0, 1000000, 0);

 wiringPiSPIDataRW (0, data, 2) ;

 printf("Transaction complete...\n");

 return 0;

}

The code can be built and executed on the RPi using the following:

pi@erpi ~/exploringrpi/chp11/spi $ gcc spi.c -o spi -lwiringPi

pi@erpi ~/exploringrpi/chp11/spi $./spi

Transaction complete...

Execution results in the following display on the Arduino Serial Console:

Setup complete

ISR invoked: Received (int)99

End of ISR

Count is now: 1

The integer value 99 is passed successfully from the C program to the Arduino

SPI slave device.

Programming the Arduino from the RPi Command Line

The Arduino can be programmed directly from the RPi with the Arduino devel-

opment environment (illustrated in Figure 11-2) by using an attached display

or a virtual network connection (see Chapter 14). However, it would also be

useful to be able to build Arduino programs at the shell terminal and deploy

them directly to the Arduino. For example, this facility would allow you to do

the following:

 ■ Remotely connect to the RPi using only a Secure Shell (SSH) terminal and

remotely alter the behavior of an Arduino that is attached to the RPi via

a UART connection

 ■ Dynamically change the behavior of an Arduino during the day. For

example, the Arduino might have one dedicated task in the morning and

could be programmed dynamically to take on another task in the evening

(see cron jobs in Chapter 12).

It is indeed possible to program an Arduino that is attached to the RPi by

using a command-line interface (CLI) with the following steps:

 1. First install the full suite of Arduino tools on the RPi:

pi@erpi ~ $ sudo apt install gcc-avr avr-libc avrdude arduino

Reading package lists... Done

 Chapter 11 ■ Real-Time Interfacing Using the Arduino 479

c11.indd 08:45:48:PM 05/12/2016 Page 479

 2. You can then install a make script that has been written by Tim Marston

(www.ed.am/about), which you can download from his website:

pi@erpi ~ $ mkdir arduino

pi@erpi ~ $ cd arduino/

pi@erpi ~/arduino $ wget http://ed.am/dev/make/arduino-mk/arduino.mk

...

pi@erpi ~/arduino $ ls -l

-rw-r--r-- 1 pi pi 16835 Mar 4 2013 arduino.mk

 3. You need to rename the script to be a Makefi le and you can use the blink

.ino example from the code repository. The example blinks the onboard

LED at 10 Hz to make it obvious that these steps have worked correctly:

pi@erpi ~/arduino $ ln -s arduino.mk Makefile

pi@erpi ~/arduino $ cp ~/exploringrpi/chp11/cli/blink.ino .

pi@erpi ~/arduino $ ls -l

total 24

-rw-r--r-- 1 pi pi 16835 Mar 4 2013 arduino.mk

-rw-r--r-- 1 pi pi 401 Oct 6 01:24 blink.ino

lrwxrwxrwx 1 pi pi 10 Oct 6 01:23 Makefile -> arduino.mk

 4. Identify the set of available boards:

pi@erpi ~/arduino $ make boards

Available values for BOARD:

uno Arduino Uno

...

pro5v328 Arduino Pro or Pro Mini (5V, 16 MHz) w/ ATmega328

pro5v Arduino Pro or Pro Mini (5V, 16 MHz) w/ ATmega168

pro328 Arduino Pro or Pro Mini (3.3V, 8 MHz) w/ ATmega328

pro Arduino Pro or Pro Mini (3.3V, 8 MHz) w/ ATmega168

 5. Set the environment variables for the build and then invoke the make

command:

pi@erpi ~/arduino $ export BOARD=pro5v

pi@erpi ~/arduino $ export ARDUINODIR=/usr/share/arduino

pi@erpi ~/arduino $ export SERIALDEV=/dev/ttyUSB0

pi@erpi ~/arduino $ make

...

pi@erpi ~/arduino $ ls

arduino.mk blink.hex blink.ino blink.o Makefile

 6. You can then upload the Arduino binary code in the blink.hex fi le to the

Arduino as follows:5

pi@erpi ~/arduino $ make upload

Uploading to board...

stty -F /dev/ttyUSB0 hupcl

/usr/bin/avrdude -DV -p atmega168 -P /dev/ttyUSB0 -c arduino -b 19200 -U

flash:w:blink.hex:i

5 You may have to press the reset button to place the device in programming mode. This step
could be automated by gating the reset input (see Figure 11-1) on the Arduino using a FET that
is attached to an RPi GPIO.

http://www.ed.am/about

480 Part II ■ Interfacing, Controlling, and Communicating

c11.indd 08:45:48:PM 05/12/2016 Page 480

avrdude: AVR device initialized and ready to accept instructions

Reading | ## | 100% 0.01s

avrdude: Device signature = 0x1e9406

avrdude: reading input file "blink.hex"

avrdude: writing flash (1018 bytes):

Writing | ## | 100% 0.69s

avrdude: 1018 bytes of flash written

avrdude: safemode: Fuses OK (E:00, H:00, L:00)

avrdude done. Thank you.

For full details on the make script, see www.ed.am/dev/make/arduino-mk.

Summ ary

After completing this chapter, you should be able to do the following:

 ■ Interface the RPi to the Arduino using a UART serial connection to create

a master/slave communications framework.

 ■ Interface the RPi to the Arduino using the I2C bus and use a register-based

framework to read and write values to/from the Arduino.

 ■ Build high-speed, real-time interfacing application examples that utilize

the I2C register-based framework.

 ■ Use SPI to create a simple communications framework between the RPi

and a slave Arduino.

 ■ Program an Arduino using an RPi command-line interface.

http://www.ed.am/dev/make/arduino-mk

c12.indd 08:44:35:PM 05/12/2016 Page 481

Par t

III
Advanced Interfacing

and Interaction

In This Part

 Chapter 12: The Internet of Things

Chapter 13: Wireless Communication and Control

Chapter 14: Raspberry Pi with a Rich User Interface

Chapter 15: Images, Video, and Audio

Chapter 16: Kernel Programming

c12.indd 08:44:35:PM 05/12/2016 Page 482

483

c12.indd 08:44:35:PM 05/12/2016 Page 483

This chapter describes how the Raspberry Pi can be used as a core building

block of the Internet of Things (IoT). In this chapter, you are introduced to the

concepts of network programming, the IoT, and the connection of sensors to

the Internet. Several different communications architectures are described:

The fi rst architecture confi gures the RPi to be a web server that uses various

server-side scripting techniques to display sensor data. Next, custom C/C++

code is described that can push sensor data to the Internet and to platform as a

service (PaaS) offerings, such as ThingSpeak and the IBM Bluemix IoT service

(using MQTT). Finally, a client/server pair for high-speed Transmission Control

Protocol (TCP) socket communication is described. The latter part of the chapter

introduces some techniques for managing distributed RPi sensors, and physical

networking topics: setting the RPi to have a static IP address; and using Power

over Ethernet (PoE) with the RPi. By the end of this chapter, you should be able

to build your own full-stack IoT devices.

Equipment Required for This Chapter:

 ■ Raspberry Pi (any model with an Internet connection)

 ■ Sensors: temperature sensor (optional)

Further details on this chapter are available at www.exploringrpi.com/

chapter12/.

 C H A P T E R

12

The Internet of Things

http://www.exploringrpi.com
http://www.exploringrpi.com/chapter12/

c12.indd 08:44:35:PM 05/12/2016 Page 484

484 Part III ■ Advanced Interfacing and Interaction

The Internet of Things (IoT)

The terms Internet of Things (IoT) and cyber-physical systems (CPS) are broadly used

to describe the extension of the web and the Internet into the physical realm, by

the connection of distributed embedded devices. Presently, the Internet is largely

an internet of people; the IoT concept envisions that if physical sensors and

actuators can be linked to the Internet, then a whole new range of applications

and services are possible. For example, if sensors in a home environment could

communicate with each other and the Internet, they could be “smart” about how

they function—a home heating system that could retrieve the weather forecast

may be more effi cient and could provide a more comfortable environment.

Within smart homes, IoT devices should be able to automate laborious tasks;

manage security; and improve energy effi ciency, accessibility, and convenience.

However, the IoT also has broad application to many large-scale industries, such

as energy management, healthcare, transport, and logistics.

In Chapter 10, interaction with the physical environment is discussed in

detail. When the physical world can be acted upon by devices that are attached

to the Internet, such as actuators, the devices are often called CPS. The terms

IoT and CPS are often used interchangeably, with certain industries such as

smart manufacturing favoring the term CPS. However, it is not unreasonable

to consider a CPS to be a constituent building block, which when combined

with web sensors and large-scale communications frameworks forms the IoT.

In this chapter, the implementation of several software communication archi-

tectures that can be used to realize IoT or CPS is described. Figure 12-1 illustrates

a summary of the different communication architectures that are implemented

in this chapter.

Each of the architectures in Figure 12-1 has a different structure, and each

can be applied to different communications applications:

 1. The RPi web server: An RPi that is connected to a sensor and running

a web server can be used to present information to the web when it is

requested to do so by a web browser. Communications take place using

the Hypertext Transfer Protocol (HTTP).

 2. The RPi web client: An RPi can initiate contact with a web server using

HTTP requests to send and receive data. A C/C++ program is written that

uses TCP sockets to build a basic web browser, which can communicate

over HTTP, or if necessary, securely over secure HTTP (HTTPS).

 3. The RPi TCP client/server: A custom C++ client and server are presented

that can intercommunicate at high speeds with a user-defi ned communi-

cations protocol.

 4. The RPi web sensor using a PaaS: Code is written to enable the RPi to

use HTTP and MQTT to send data to, and receive data from, web services

 Chapter 12 ■ The Internet of Things 485

c12.indd 08:44:35:PM 05/12/2016 Page 485

such as ThingSpeak and IBM Bluemix IoT. This code enables you to build

large arrays of sensors that can intercommunicate and store data on remote

servers. In addition, these web services can be used to visualize the data

that is stored.

Figure 12-1: Different software communication architectures implemented in this chapter

Before examining these communication architectures, you need a thing to

connect to the Internet, for which you can use any sensor from earlier in the

book, and/or the RPi itself.

The RPi as an IoT Sensor

This book is fi lled with examples of sensors and actuators that you can use

to create things. For example, the RPi can be turned into a thing by attaching a

TMP36 temperature sensor (see Chapter 9) or the DHT temperature and humidity

486 Part III ■ Advanced Interfacing and Interaction

c12.indd 08:44:35:PM 05/12/2016 Page 486

sensor (see Chapter 6). However, for simplicity the CPU temperature sensor on

board the RPi is used primarily as the IoT sensor in this chapter.

You can read the current RPi CPU temperature and GPU temperature as follows:

pi@erpi ~ $ cat /sys/class/thermal/thermal_zone0/temp

35780

pi@erpi ~ $ /opt/vc/bin/vcgencmd measure_temp

temp=35.2'C

The CPU temperature value is a fl oating-point value that is scaled by 1000

and returned as an integer value; the value above is actually 35.78°C (96.4°F).

Out of interest, you can format this value correctly, directly at the Linux shell

prompt, using the awk command:

pi@erpi ~ $ awk '{printf("CPU temperature: %2.2f Celsius\n", $1/1000)}' →

 /sys/class/thermal/thermal_zone0/temp

CPU temperature: 35.78 Celsius

The Linux device driver for the CPU temperature sensor on the RPi also

includes a trip point that can detect a critical over-temperature condition. You

can see the properties of the device as follows:

pi@erpi ~ $ cd /sys/class/thermal/thermal_zone0

pi@erpi /sys/class/thermal/thermal_zone0 $ ls

mode policy temp trip_point_0_type uevent

passive subsystem trip_point_0_temp type

pi@erpi /sys/class/thermal/thermal_zone0 $ cat trip_point_0_type

hot

pi@erpi /sys/class/thermal/thermal_zone0 $ cat trip_point_0_temp

85000

It is unlikely that this point will be reached under normal operating condition

as, in line with most modern microprocessors, the CPU frequency is lowered

automatically should the temperature rise excessively.

ARE LOW COST RPI CPU HEATSINKS USEFUL?

There are many low-cost RPi CPU heatsinks available, and several use unbranded

thermal bonding adhesives. A test was performed to evaluate the benefi ts of adding a

heatsink such as the one in Figure 12-2(a), which uses high-quality 3M bonding adhe-

sive. A short script is used for the test (the gnuplot script is also provided in the same

directory):

pi@erpi ~/exploringrpi/chp12/thermal $ more record_temp.sh

#!/bin/bash

TEMPERATURE="/sys/class/thermal/thermal_zone0/temp"

 Chapter 12 ■ The Internet of Things 487

c12.indd 08:44:35:PM 05/12/2016 Page 487

COUNT=0

echo "#Temperature Recordings" > data

bash while loop

while [$COUNT -lt 40]; do

 echo $COUNT " " `cat $TEMPERATURE` >> data

 let COUNT=COUNT+1

 sleep 10

done

The test was performed at a room temperature of approximately 24°C (75°F) and an

RPi 2 that is overclocked at 1 GHz is used (with a performance governor). A single CPU

load is provided by running the software performance test in Chapter 5, using the

/chp05/performance/run script. The temperature sensor readings are captured

over 400 seconds and displayed in Figure 12-2(b). It is clear that the heatsink reduces

the CPU temperature by approximately 2°C, whether the RPi 2 is, or is not, under load.

The thermal trip point is 85°C, so it is hardly worth the eff ort of attaching the heatsink.

However, if the RPi is placed in a case then this temperature rises rapidly. For example,

the case confi guration in Figure 1-10(a) (with a heatsink) causes the unburdened CPU

temperature to rise to 40°C; a well-ventilated case is likely more important than a

heatsink!

(a)(a) (b)(b)

Figure 12-2: (a) A low-cost heatsink, and (b) the temperature plot from a CPU load test with

and without a heatsink attached

The RPi as a Sensor Web Server

One signifi cant advantage of an embedded Linux device over more traditional

embedded systems is the vast amount of open source software that is avail-

able. In this section, a web server is installed and confi gured on the RPi. It is a

straightforward process compared to the steps involved for a typical non-Linux

488 Part III ■ Advanced Interfacing and Interaction

c12.indd 08:44:35:PM 05/12/2016 Page 488

embedded platform. In fact, one of the more diffi cult challenges is choosing

which Linux web server to use! There are low-overhead servers available such

as lighttpd, Boa, Monkey, and Nginx, and there are full-featured web servers

such as the popular Apache server.

The Nginx web server is a lightweight server that has an overhead that is

suitable for running on the RPi. Running a web server on the RPi provides you

with a number of application possibilities, including the following:

 ■ Present general web content to the world.

 ■ Integrate sensors and display their values to the world.

 ■ Integrate sensors and use it to intercommunicate between devices.

 ■ Provide web-based interfaces to tools that are running on the RPi.

Nginx

The Nginx server is currently available through the Raspbian distribution. You

can use the following commands to install it:

pi@erpi ~ $ sudo apt update

pi@erpi ~ $ sudo apt install nginx

pi@erpi ~ $ sudo reboot

N O T E On some RPi Nginx versions you must edit the /etc/nginx/sites-

available/default confi guration fi le and comment out the entry "listen

[::]:80 default_server;" using a # character. Also, if you have installed

Apache on your RPi then you must stop it before installing Nginx; for example, by

using sudo service apache2 stop.

The Nginx web server runs on port number 80 by default. A port number is an

identifi er that can be combined with an IP address to provide an endpoint for a

communications session. It is effectively used to identify the software service

that is required by a client. For example, you can fi nd out the IP address of your

RPi, and the list of services that are listening to ports on the RPi by using the

network statistics (netstat) command:

pi@erpi ~ $ hostname -I

192.168.1.116

pi@erpi ~ $ sudo netstat -tlpn

Active Internet connections (only servers)

Proto Recv-Q Send-Q Local Address Foreign Addr State PID/Program name

tcp 0 0 0.0.0.0:80 0.0.0.0:* LISTEN 2299/nginx

tcp 0 0 0.0.0.0:22 0.0.0.0:* LISTEN 2253/sshd

Therefore, when a network request is received for port 80, it is directed to the

Nginx web server application. The usual port number for unsecured web traffi c

is 80; this is assumed when you enter a URL in your web browser. You can also

 Chapter 12 ■ The Internet of Things 489

c12.indd 08:44:35:PM 05/12/2016 Page 489

see that traffi c for port 22 is directed to the Secure Shell (SSH) server. You can

test the confi guration of your Nginx server using the following:

pi@erpi ~ $ sudo nginx -t

nginx: the configuration file /etc/nginx/nginx.conf syntax is ok

nginx: configuration file /etc/nginx/nginx.conf test is successful

You can also get information about changes that you make to the server

confi guration before you perform a server restart, as follows:

pi@erpi ~ $ sudo service nginx configtest

[ok] Testing nginx configuration:.

pi@erpi ~ $ sudo service nginx restart

[ok] Restarting nginx: nginx.

Both of these tests are particularly useful in identifying confi guration problems.

Confi guring an Nginx Web Server

Nginx can be confi gured using the fi les in /etc/nginx/ where the core con-

fi guration fi les are as follows:

 ■ nginx.conf is the main confi guration fi le for the server.

 ■ The sites-available directory contains the confi guration fi les for any

virtual sites, and the sites-enabled directory should contain a symbolic

link to a confi guration fi le in the sites-available directory, to activate

a site. Most of the confi guration changes are performed on the default

fi le entry in the sites-available directory.

In addition to the confi guration fi les, the functionality of Nginx can be fur-

ther extended (e.g., to provide Python support) with the use of modules. You

can identify the current modules that have been compiled into Nginx using

the following:

pi@erpi ~ $ nginx -V

nginx version: nginx/1.6.2

TLS SNI support enabled ...

Creating Web Pages and Web Scripts

To create a simple web page for the RPi web server, you can use the nano editor

and some basic HTML syntax as follows:

pi@erpi /var/www/html $ sudo nano index.html

pi@erpi /var/www/html $ more index.html

<HTML><TITLE>RPi First Web Page</TITLE>

<BODY><H1>RPi First Page</H1>

The Raspberry Pi test web page.

</BODY></HTML>

490 Part III ■ Advanced Interfacing and Interaction

c12.indd 08:44:35:PM 05/12/2016 Page 490

Now when you connect to the web server on the RPi using a web browser,

you will see the output displayed as in Figure 12-3. You can use the local IP

address of the RPi, or the Zeroconf name (e.g., raspberrypi.local).

Figure 12-3: The first web page from the Nginx server

Web pages are ideal for the presentation of static web content, and by using an

editor like KompoZer, CoffeeCup, or Notepad++ you can quickly build HTML

content for a personal web server. You could then use the port forwarding

functionality of your home router, and a dynamic DNS service, to share your

static web content with the world.

More advanced dynamic web content can also be developed for the RPi that

interfaces to the physical environment for such tasks as reading sensor data

or actuating motors. One relatively straightforward method of doing this is to

use Common Gateway Interface (CGI) scripts. Unlike Apache, Nginx does not

have support for simple CGI scripts by default. Therefore, to install them, use

the following steps:

 1. Install fcgiwrap and a sample confi guration fi le:

pi@erpi ~ $ sudo apt install fcgiwrap

pi@erpi ~ $ sudo cp /usr/share/doc/fcgiwrap/examples/nginx.conf →

/etc/nginx/fcgiwrap.conf

pi@erpi ~ $ cd /etc/nginx/sites-available

pi@erpi /etc/nginx/sites-available $ sudo nano default

 2. Add the following highlighted line to the Nginx default fi le (note the use

of a semicolon to delimit lines):

server {

 listen 80 default_server;

 include /etc/nginx/fcgiwrap.conf;

...

 3. Then restart the server (should errors arise, use sudo nginx -t):

pi@erpi /etc/nginx/sites-available $ sudo service nginx configtest

[ok] Testing nginx configuration:.

pi@erpi /etc/nginx/sites-available $ sudo service nginx restart

[ok] Restarting nginx: nginx.

 Chapter 12 ■ The Internet of Things 491

c12.indd 08:44:35:PM 05/12/2016 Page 491

 4 The /etc/nginx/fcgiwrap.conf fi le places the CGI root at the default

directory location of /usr/lib/cgi-bin/. A simple script can be created

at that location (see /chp12/cgi-bin/test.cgi):

pi@erpi ~/exploringrpi/chp12/cgi-bin $ sudo mkdir /usr/lib/cgi-bin/

pi@erpi ~/exploringrpi/chp12/cgi-bin $ sudo cp test.cgi /usr/lib/cgi-bin/

pi@erpi ~/exploringrpi/chp12/cgi-bin $ cd /usr/lib/cgi-bin/

pi@erpi /usr/lib/cgi-bin $ more test.cgi

#!/bin/bash

echo "Content-type: text/html"

echo ""

echo '<html><head>'

echo '<meta charset="UTF-8">'

echo '<title>Hello Raspberry Pi</title></head>'

echo '<body><h1>Hello Raspberry Pi</h1><para>'

hostname

echo ' has been up '

uptime

echo '</para></html>'

 5. The script must then be made executable, and it can be tested as follows:

pi@erpi /usr/lib/cgi-bin $ sudo chmod a+x test.cgi

pi@erpi /usr/lib/cgi-bin $./test.cgi

Content-type: text/html

<html><head>

<meta charset="UTF-8">

<title>Hello Raspberry Pi</title></head>

<body><h1>Hello Raspberry Pi</h1><para>

erpi

 has been up

 05:51:30 up 2:30, 2 users, load average: 0.00, 0.01, 0.05

</para></html>

The script is quite verbose, but you can see that it is very easy to call system

commands (e.g., hostname and uptime) from within it directly. When the script is

tested in the terminal window, its output displays HTML source code. However,

when this output is viewed using a web browser, as in Figure 12-4, the HTML

is rendered correctly.

Figure 12-4: A simple CGI script example

492 Part III ■ Advanced Interfacing and Interaction

c12.indd 08:44:35:PM 05/12/2016 Page 492

As well as calling Linux system commands, you can also execute programs

that have been written in C/C++. To demonstrate this capability, the AM2301/2302

(DHT) one-wire sensor circuit can be connected to the RPi as in Figure 6-19. The

dht.cpp program in Listing 6-14 is adapted for this chapter so that it only outputs

the temperature and humidity values in an HTML format when it is executed:

pi@erpi ~/exploringrpi/chp12/dht $ sudo ./dht

<div><h3>The temperature is 25.1°C</h3></div>

<div><h3>The humidity is 42.3%</h3></div>

This new dht binary executable can then be copied to the /usr/local/bin

directory so that it is “permanently” installed on the RPi:

pi@erpi ~/exploringrpi/chp12/dht $ sudo cp dht /usr/local/bin

pi@erpi ~/exploringrpi/chp12/dht $ cd /usr/local/bin/

pi@erpi /usr/local/bin $ sudo chown root:root dht

pi@erpi /usr/local/bin $ sudo chmod ugo+s dht

pi@erpi /usr/local/bin $ ls -l dht

-rwsr-sr-x 1 root root 9360 Oct 11 15:36 dht

The CGI script can then be modifi ed to output the temperature value directly

from the sensor as follows (see chp12/cgi-bin/temperature.cgi):

pi@erpi /usr/lib/cgi-bin $ more temperature.cgi

#!/bin/bash

echo "Content-type: text/html"

echo ""

echo '<html><head>'

echo '<meta charset="UTF-8">'

echo '<title>Pi Weather Sensor</title></head>'

echo '<body><h1>Pi Weather Sensor</h1><para>'

/usr/local/bin/dht

echo '</para></html>'

This script results in the output displayed in Figure 12-5. If you are experi-

encing diffi culties with your CGI scripts, the Nginx log fi les that can help you

diagnose problems are stored in /var/log/nginx/.

Figure 12-5: Weather sensor web page

W A R N I N G CGI scripts can be structured to accept data from the web by using

form fi elds. To do so, you must fi lter the input to avoid potentially damaging cross-site

scripting. In particular, you should fi lter out the characters <>&*?./ from form fi eld entry.

 Chapter 12 ■ The Internet of Things 493

c12.indd 08:44:35:PM 05/12/2016 Page 493

PHP on the RPi

CGI scripts work very well for the short scripts used in the last section; they are

lightweight and easy to edit. However, as well as security concerns (e.g., attacks

via URL manipulations), they do not scale very well (e.g., for interfacing with

databases). One alternative is to use the PHP server-side scripting language.

PHP is a reasonably lightweight open source scripting language with a C-like

syntax that can be written directly within HTML pages. It can be installed

within Nginx as follows:

pi@erpi ~ $ sudo apt install php5-common php5-cli php5-fpm

Also, you should ensure that you have the following entries in the default

site confi guration fi le (in /etc/nginx/sites-available/):

location ~ \.php$ {

 fastcgi_pass unix:/var/run/php5-fpm.sock;

 fastcgi_index index.php;

 include fastcgi_params;

 fastcgi_param SCRIPT_FILENAME $document_root/$fastcgi_script_name;

}

Then restart the server:

pi@erpi /etc/nginx/sites-available $ sudo service nginx configtest

[ok] Testing nginx configuration:.

pi@erpi /etc/nginx/sites-available $ sudo service nginx restart

[ok] Restarting nginx: nginx.

A PHP program can then be written as shown in Listing 12-1 and placed in

the /var/www/html/ directory. Similarly to the CGI script, it interfaces to the

DHT sensors by executing the dht program, resulting in the output shown in

Figure 12-6 (see chp12/php/hello.php).

Listing 12-1: /var/www/html/hello.php

<?php $temperature = shell_exec('/usr/local/bin/dht'); ?>

<?php $cpu_temp = (float)

 file_get_contents('/sys/class/thermal/thermal_zone0/temp'); ?>

<html><head><title>RPi PHP Test</title></head>

 <body>

 <h1>Hello from the Raspberry Pi</h1>

 <div>Your IP address is: <?php echo $_SERVER['REMOTE_ADDR']; ?></div>

 <div><?php echo $temperature ?></div>

 <div><h3>The CPU temperature is: <?php echo $cpu_temp/1000 ?>°C</h3></div>

 </body>

</html>

N O T E To enter a Unicode symbol using nano you can press Ctrl-Shift-u and then

type the Unicode value, e.g., 00b0 for degrees (°). Then press Enter and the symbol will

appear. Also, 00a9=©, 00b1=±, 00b5=μ, 00d7=×, and 00f7=÷.

494 Part III ■ Advanced Interfacing and Interaction

c12.indd 08:44:35:PM 05/12/2016 Page 494

Figure 12-6: A PHP web-based weather sensor

GNU Cgicc Applications (Advanced)

The Common Gateway Interface (CGI) allows a web browser to pass environ-

ment and application information to a script/program using HTTP POST or

GET requests. Almost all programming languages can be used to build CGI

applications, because their only role in the transaction is to parse the input that

is sent to them by the server, and to construct a suitable HTML output response.

The GNU Cgicc is a C++ library for building CGI applications. It is powerful

and it greatly simplifi es the process of building applications that allow you to

interact with the RPi over the Internet using a HTML form-based interface. It

could be argued that this is a “dated approach” to solving the problem of hav-

ing an embedded system web server interact with a web browser client—it has

been around since the 1990s. To some extent that is true. There are powerful

alternatives available such as Java servlets, Node.js, Dart, and PHP; however,

this approach:

 ■ Has a low overhead on the RPi, as the code is compiled rather than

interpreted

 ■ Permits direct access to system calls

 ■ Can interface readily with hardware using code libraries such as wiringPi

The downside is that it is not really suitable for novice programmers, the output

format syntax can be verbose, and session management is complex. Even with

that, it is worth pointing out that some large-scale web applications, including

those by Google and Amazon, do use C++ on their servers for performance-critical

systems. The RPi is not a high-end server, so any performance optimizations

are always welcome, perhaps even at the cost of added complexity.

Cgicc can be downloaded and installed using the following steps:

pi@erpi ~ $ mkdir cgicc

pi@erpi ~ $ cd cgicc

pi@erpi ~/cgicc $ wget ftp://ftp.gnu.org/gnu/cgicc/cgicc-3.2.16.tar.gz

pi@erpi ~/cgicc $ tar xvf cgicc-3.2.16.tar.gz

pi@erpi ~/cgicc $ cd cgicc-3.2.16/

pi@erpi ~/cgicc/cgicc-3.2.16 $./configure --prefix=/usr

ftp://ftp.gnu.org/gnu/cgicc/cgicc-3.2.16.tar.gz

 Chapter 12 ■ The Internet of Things 495

c12.indd 08:44:35:PM 05/12/2016 Page 495

pi@erpi ~/cgicc/cgicc-3.2.16 $ make

pi@erpi ~/cgicc/cgicc-3.2.16 $ sudo make install

pi@erpi ~/cgicc/cgicc-3.2.16 $ ls /usr/lib/libcgi*

/usr/lib/libcgicc.a /usr/lib/libcgicc.so /usr/lib/libcgicc.so.3.2.10

/usr/lib/libcgicc.la /usr/lib/libcgicc.so.3

As an example application, Cgicc can be used to control an LED that is

attached to a GPIO on the RPi. Using the circuit from Figure 6-2, the LED can

be attached to the RPi on GPIO 17 and a web interface can be developed, as

illustrated in Figure 12-7 to control the LED using only a web browser; the

interface can be used from anywhere in the world!

Figure 12-7: The LED Cgicc form post example

Listing 12-2 provides a form POST example. The form can contain elements such

as check boxes, radio components, buttons, and text fi elds. The code dynamically

generates the HTML web form in Figure 12-7 and updates the page output to

display the current state of the LED by selecting the appropriate radio component.

The listing uses Cgicc functions such as HTTPHTMLHeader(), html(), and body()

to generate the HTML content for the output. In addition, the example demon-

strates how to interact with radio buttons, within HTML forms. It is important

that the form data is parsed at the beginning of the program code, as the form

data that was previously submitted needs to be propagated into the new output.

Clearly, the fi rst time this form is requested there is no data present and the

code at the beginning of the program assigns a default value (e.g., cmd="off").

If this is not performed then the program will result in a segmentation fault.

From that point onward, the form output needs to maintain the state and that

is why these values appear in the HTML generation code.

Listing 12-2: /chp12/cgicc/led.cpp

#include <iostream> // for the input/output

#include <stdlib.h> // for the getenv call

#include <sys/sysinfo.h> // for the system uptime call

#include <cgicc/Cgicc.h> // the Cgicc headers

#include <cgicc/CgiDefs.h>

#include <cgicc/HTTPHTMLHeader.h>

#include <cgicc/HTMLClasses.h>

#include <wiringPi.h>

#define LED_GPIO 17

496 Part III ■ Advanced Interfacing and Interaction

c12.indd 08:44:35:PM 05/12/2016 Page 496

using namespace std;

using namespace cgicc;

int main(){

 Cgicc form; // the CGI form object

 wiringPiSetupGpio(); // uses wiringPi - see Chp.6.

 pinMode(LED_GPIO, OUTPUT); // GPIO17 is used as an output

 string cmd; // the Set LED command

 // get the state of the form that was submitted - script calls itself

 bool isStatus = form.queryCheckbox("status");

 form_iterator it = form.getElement("cmd"); // the radio command

 if (it == form.getElements().end() || it->getValue()==""){

 cmd = "off"; // if it is invalid use "off"

 }

 else { cmd = it->getValue(); } // otherwise use submitted value

 char *value = getenv("REMOTE_ADDR"); // The remote IP address

 // generate the form but use states that are set in the submitted form

 cout << HTTPHTMLHeader() << endl; // Generate the HTML form

 cout << html() << head() << title("LED Example") << head() << endl;

 cout << body() << h1("Exploring RPi POST LED Example") << endl;;

 cout << "<form action=\"/cgi-bin/led.cgi\" method=\"POST\">\n";

 cout << "<div>Set LED: <input type=\"radio\" name=\"cmd\" value=\"on\""

 << (cmd=="on" ? "checked":"") << "/> On ";

 cout << "<input type=\"radio\" name=\"cmd\" value=\"off\""

 << (cmd=="off" ? "checked":"") << "/> Off ";

 cout << "<input type=\"submit\" value=\"Set LED\" />";

 cout << "</div></form>";

 // process the form data to change the LED state

 if (cmd=="on") digitalWrite(LED_GPIO, HIGH); // turn on

 else if (cmd=="off") digitalWrite(LED_GPIO, LOW); // turn off

 else cout << "<div> Invalid command! </div>"; // not possible

 cout << "<div> The CGI REMOTE_ADDR value is " << value << "</div>";

 cout << body() << html();

 return 0;

}

You can build and deploy this application as follows:

pi@erpi .../chp12/cgicc $ g++ led.cpp -o led.cgi -lcgicc -lwiringPi

pi@erpi .../chp12/cgicc $ sudo cp led.cgi /usr/lib/cgi-bin/

pi@erpi .../chp12/cgicc $ sudo chmod +s /usr/lib/cgi-bin/led.cgi

As described at the end of Chapter 6, you must enable the setuid bit on pro-

grams that utilize wiringPi to control GPIOs.

This example just scratches the surface of what can be performed using CGI

and C++ on the RPi. For complex applications, you may be better placed to

examine other frameworks, but for simple high-performance web interfaces,

the GNU Cgicc library provides a perfectly appropriate solution.

It is worth noting that there is one important limitation with the current

example. It is a single session solution—if two users access the led.cgi script

 Chapter 12 ■ The Internet of Things 497

c12.indd 08:44:35:PM 05/12/2016 Page 497

at the same time, the LED state that is displayed will be inconsistent. For more

complex applications, session management is very important.

For more information on the Cgicc library, see the GNU Cgicc library docu-

mentation at tiny.cc/erpi1201. By browsing the Class List, you will see that

the library is capable of handling cookies, fi le transfers, and much more.

LAMP AND MEAN

In addition to web servers, it is possible to install a database such as MySQL onto the

RPi, forming a LAMP (Linux, Apache/Nginx, MySQL, PHP) server. This allows you to fur-

ther install content management systems (CMSs) such as WordPress or Drupal, allow-

ing you to create advanced web content that can even include hardware interaction.

MEAN is a full-stack JavaScript framework for web application development that

consists of MongoDB, Express, AngularJS, and Node.js. Essentially, MEAN is a more

modern version of LAMP. MEAN is lightweight enough to be deployed on the RPi and

provide a full framework for application development; however, developing software

for a full MEAN framework is beyond what is possible in this text. A simple Node.js

with Express example is presented here to get you started.

Node.js is fi rst introduced in Chapter 5. Express (expressjs.com) is a fast, mini-

malist web framework for Node.js that can be used to build feature-rich web applica-

tions. To install Express using the following steps, you must fi rst ensure that Node.js is

up-to-date:

pi@erpi:~ $ sudo su

root@erpi:/home/pi# curl -sL https://deb.nodesource.com/setup_5.x | bash -

root@erpi:/home/pi# apt install -y nodejs

root@erpi:/home/pi# exit

exit

pi@erpi:~ $ node -v

v5.9.0

pi@erpi ~ $ mkdir express

pi@erpi ~ $ cd express/

pi@erpi ~/express $ sudo npm install express --save

pi@erpi ~/express $ cp ~/exploringrpi/chp12/express/* .

pi@erpi ~/express $ ls -l

total 8

-rw-r--r-- 1 pi pi 322 Oct 14 03:31 hello.js

drwxr-xr-x 3 pi pi 4096 Oct 14 03:21 node_modules

pi@erpi ~/express $ more hello.js

var express = require('express');

var app = express();

app.get('/', function (req, res) {

 res.send('Hello from the RPi!');

});

Continues

498 Part III ■ Advanced Interfacing and Interaction

c12.indd 08:44:35:PM 05/12/2016 Page 498

LAMP AND MEAN continued

var server = app.listen(5050, function () {

 var host = server.address().address;

 var port = server.address().port;

 console.log('Application listening at http://%s:%s', host, port);

});

The Node.js code results in an Express server that listens for connections on port

5050. You can use a web browser to connect to the server, as illustrated in Figure 12-8.

pi@erpi:~/express $ node hello.js

Application listening at http://:::5050

Figure 12-8: Express hello world example

To really appreciate the power of this framework you need to investigate the

use of express-generator, AngularJS, and MongoDB. See www.mean.io for further

information.

A C/C++ Web Client

Installing a web server on an RPi provides it with a simple, intuitive way to

present information to a client web browser application. It is important to under-

stand that the distinction between a client and a server is nothing to do with the

hardware capability of the interconnected devices; rather, it relates to the role

of each device at that particular point in time. For example, when retrieving a

web page from the RPi using its Nginx web server, a desktop computer’s web

browser is a client of the RPi’s web server. Table 12-1 provides a summary of

the characteristics of the two types of application, which when used together

is termed the client/server model.

Table 12-1: Characteristics of Server Versus Client Applications

SERVER APPLICATIONS CLIENT APPLICATIONS

Special-purpose applications that are

typically dedicated to one service

Typically become a client temporarily, but per-

form other computation locally

Typically invoked on system startup and

they attempt to run forever

Typically invoked by a user for a single session

http://www.mean.io

 Chapter 12 ■ The Internet of Things 499

c12.indd 08:44:35:PM 05/12/2016 Page 499

SERVER APPLICATIONS CLIENT APPLICATIONS

Wait passively, and potentially forever,

for contact from client applications

Actively initiate contact with the server. The cli-

ent must know the address of the server.

Accept contact from client applications Can access several servers simultaneously

Typically run on a shared machine Typically run on a local machine

When the RPi acts as a server, it waits passively for a connection from a cli-

ent machine, but there are many cases when the RPi might need to actively

contact a server on another machine. In such cases, the RPi must act as a client

of that server. At this point in the book you have already used many such client

network applications on the RPi, such as ping, wget, ssh, sftp, and so on, and

these applications can be used within shell scripts. However, it would also be

useful if you could generate client requests from within C/C++ code, and for

this you can use network sockets.

Network Communications Primer

A socket is a network endpoint that is defi ned using an IP address and a port

number. An IP address (version 4) is simply a 32-bit number, which is repre-

sented as four eight-bit values (e.g., 192.168.1.116), and a port number is a 16-bit

unsigned integer (0–65,535) that can be used to enable multiple simultaneous

communications to a single IP address. Ports under 1,024 are generally restricted

to root access in order to prevent users from hijacking core services (e.g., 80 for

HTTP, 20/21 for FTP, 22 for SSH, 443 for HTTPS).

The description of a socket must also defi ne the socket type, indicating whether

it is a stream socket or a datagram socket. Stream sockets use the Transmission

Control Protocol (TCP), which provides for reliable transfer of data where the

time of transmission is not a critical factor. Its reliability means that it is used

for services such as HTTP, e-mail (SMTP), and FTP, where data must be reliably

and correctly transferred. The second type of socket is a datagram socket that

uses the User Datagram Protocol (UDP), which is less reliable but much faster

than TCP, as there is no error checking for packets. Time-critical applications

such as Voice over IP (VoIP) use UDP, as errors in the data will be presented in

the output as noise, but the conversation will not be paused awaiting lost data

to be re-sent.

When communication is established between two network sockets, it is called

a connection. Data can then be sent and received on this connection using write

and read functions. It is important to note that a connection could also be cre-

ated between two processes (programs) that are running on a single machine

and thus used for interprocess communication.

500 Part III ■ Advanced Interfacing and Interaction

c12.indd 08:44:35:PM 05/12/2016 Page 500

A C/C++ Web Client

Full C/C++ support for socket communication can be added to your program

by including the sys/socket.h header fi le. In addition, the sys/types.h header

fi le contains the data types that are used in system calls, and the netint/in.h

header fi le contains the structures needed for working with Internet domain

addresses.

Listing 12-3 is the C source code for a basic web browser application that can

be used to connect to a HTTP web server, retrieve a web page, and display it in

raw HTML form—like a regular web browser, but without the pretty rendering.

The code performs the following steps:

 1. The server name is passed to the program as a string argument. The

program converts this string into an IP address (stored in the hostent

structure) using the gethostbyname() function.

 2. The client creates a TCP socket using the socket() system call.

 3. The hostent structure and a port number (80) are used to create a sock-

addr_in structure that specifi es the endpoint address to which to con-

nect the socket. This structure also sets the address family to be IP-based

(AF_INET) and the network byte order.

 4. The TCP socket is connected to the server using the connect() system

call; the communications channel is now open.

 5. An HTTP request is sent to the server using the write() system call and

a fi xed-length response is read from the server using the read() system

call. The HTML response is displayed.

 6. The client disconnects and the socket is closed using close().

Listing 12-3: /chp12/webbrowser/webbrowser.c

#include <stdio.h>

#include <sys/socket.h>

#include <sys/types.h>

#include <netinet/in.h>

#include <netdb.h>

#include <strings.h>

int main(int argc, char *argv[]) {

 int socketfd, portNumber, length;

 char readBuffer[2000], message[255];

 struct sockaddr_in serverAddress; // describes endpoint to connect socket

 struct hostent *server; // stores information about host name

 // The command string for a HTTP request to get / (often index.html)

 sprintf(message, "GET / HTTP/1.1\r\nHost: %s\r\nConnection: close\r\n\r\n",

 argv[1]);

 printf("Sending the message: %s", message);

 Chapter 12 ■ The Internet of Things 501

c12.indd 08:44:35:PM 05/12/2016 Page 501

 if (argc<=1) { // must pass the hostname

 printf("Incorrect usage, use: ./webbrowser hostname\n");

 return 2;

 }

 // gethostbyname accepts a string name and returns a host name structure

 server = gethostbyname(argv[1]);

 if (server == NULL) {

 perror("Socket Client: error - unable to resolve host name.\n");

 return 1;

 }

 // create the socket of IP address type, SOCK_STREAM for TCP connections

 socketfd = socket(AF_INET, SOCK_STREAM, 0);

 if (socketfd < 0) {

 perror("Socket Client: error opening TCP IP-based socket.\n");

 return 1;

 }

 // clear the data in the serverAddress sockaddr_in struct

 bzero((char *) &serverAddress, sizeof(serverAddress));

 portNumber = 80;

 serverAddress.sin_family = AF_INET; //set the address family to be IP

 serverAddress.sin_port = htons(portNumber); //set port number to 80

 bcopy((char *)server->h_addr,(char *)&serverAddress.sin_addr.s_addr,

 server->h_length); //set address to the resolved hostname address

 // try to connect to the server

 if (connect(socketfd, (struct sockaddr *) &serverAddress,

 sizeof(serverAddress)) < 0) {

 perror("Socket Client: error connecting to the server.\n");

 return 1;

 }

 // send the HTTP request string

 if (write(socketfd, message, sizeof(message)) < 0){

 perror("Socket Client: error writing to socket");

 return 1;

 }

 // read the HTTP response to a maximum of 2000 characters

 if (read(socketfd, readBuffer, sizeof(readBuffer)) < 0){

 perror("Socket Client: error reading from socket");

 return 1;

 }

 printf("**START**\n%s\n**END**\n", readBuffer); // display response

 close(socketfd); // close the socket

 return 0;

}

This code can be built and executed as follows. In this example, the simple

web page from the local RPi Nginx web server is requested, by using localhost,

which essentially means “this device” and it uses the Linux loopback virtual
network interface (lo) which has the IP address 127.0.0.1:

pi@erpi ~/exploringrpi/chp12/webbrowser $ gcc webbrowser.c -o webbrowser

pi@erpi ~/exploringrpi/chp12/webbrowser $./webbrowser localhost

Sending the message: GET / HTTP/1.1

Host: localhost

Connection: close

502 Part III ■ Advanced Interfacing and Interaction

c12.indd 08:44:35:PM 05/12/2016 Page 502

START

HTTP/1.1 200 OK

Server: nginx/1.6.2

Date: Sun, 11 Oct 2015 23:16:09 GMT

Content-Type: text/html

Content-Length: 118

Last-Modified: Sun, 11 Oct 2015 03:27:20 GMT

Connection: close

ETag: "5619d718-76"

Accept-Ranges: bytes

<HTML><TITLE>RPi First Web Page</TITLE>

<BODY><H1>RPi First Page</H1>

The Raspberry Pi test web page.

</BODY></HTML>

END

The example works correctly, returning the index.html fi le from /var/www/. It

can also connect to other web servers (e.g., call ./webbrowser www.google.com).

Secure Communication Using OpenSSL

One of the limitations of the TCP socket application in the previous section is

that all communications are sent “in the clear” across IP networks. This may

not be of concern for home networks, but if your client and server are on dif-

ferent physical networks, the data that is transferred can be easily viewed on

intermediary networks. Sometimes it is necessary to communicate securely

between a client and a server (for example, if you are sending a username and

password to an online service). In addition, particular care should be taken in

applications where the RPi can actuate motors or relays; a malicious attack could

cause physical destruction. One way to implement secure communications is

to use the OpenSSL toolkit.

OpenSSL (www.openssl.org) is a toolkit that implements the Secure Sockets

Layer (SSL), Transport Layer Security (TLS) protocols, and a cryptography

library. This library can be installed using the following:

pi@erpi ~ $ sudo apt install openssl libssl-dev

OpenSSL is a complex and comprehensive toolkit that can be used to encrypt

all types of communications. This section presents one example application

to illustrate its use. For this example, the C/C++ web client code is modifi ed to

support SSL communications as shown in Listing 12-4. The code involved in

this example is the same as in Listing 12-3, except for the following:

 1. The TCP socket connection is formed to the HTTP secure (i.e., HTTPS)

port, which is port 443 by default.

 2. The SSL library is initialized using the SSL_Library_init() function.

http://www.google.com
http://www.openssl.org

 Chapter 12 ■ The Internet of Things 503

c12.indd 08:44:35:PM 05/12/2016 Page 503

 3. An SSL context object is used to establish the TLS/SSL connection. The

security and certifi cate options can be set in this object.

 4. The network connection is assigned to an SSL object and a handshake is

performed using the SSL_connect() function.

 5. The SSL_read() and SSL_write() functions are used.

 6. The SSL_free() function is used to shut down the TLS/SSL connection,

freeing the socket and SSL context objects.

Listing 12-4: / chp12/webbrowserSSL/webbrowserSSL.c (segment)

/*** After the connection to the server is formed: ***/

// Register the SSL/TLS ciphers and digests

SSL_library_init();

// Create an SSL context object to establish TLS/SSL enabled connections

SSL_CTX *ssl_ctx = SSL_CTX_new(SSLv23_client_method());

// Attach an SSL Connection to the socket

SSL *conn = SSL_new(ssl_ctx); // create an SSL structure for an SSL session

SSL_set_fd(conn, socketfd); // Assign a socket to an SSL structure

SSL_connect(conn); // Start an SSL session with a remote server

// send data across a SSL session

if (SSL_write(conn, message, sizeof(message)) < 0){ ... }

// read data scross a SSL session

if (SSL_read(conn, readBuffer, sizeof(readBuffer)) < 0){ ... }

printf("**START**\n%s\n**END**\n", readBuffer); //display the response

SSL_free(conn); //free the connection

close(socketfd); //close the socket

SSL_CTX_free(ssl_ctx); //free the SSL context

The full source code is in the /chp12/webbrowserSSL/ directory. It can be

compiled and tested using the following commands:

.../chp12/webbrowserSSL $ gcc webbrowserSSL.c -o webbrowserSSL -lcrypto -lssl

.../chp12/webbrowserSSL $./webbrowserSSL www.google.ie

The application can successfully communicate with the SSL port (443) on

secured web servers (e.g., www.google.com). The current code does not verify

the authenticity of the server owner, but it does encrypt communications.

The RPi as a “Thing”

Earlier in this chapter a web server is confi gured on the RPi so that it can present

weather information to the Internet. This mechanism is very useful, as it provides

a snapshot in time of sensor outputs. In order to provide trend data, it would

be possible to store the data in fl at fi les or to install a lightweight database on

the RPi (e.g., MongoDB). PHP charting tools such as phpChart and pChart could

be used to visually represent the data.

http://www.google.com
http://www.google.com

504 Part III ■ Advanced Interfacing and Interaction

c12.indd 08:44:35:PM 05/12/2016 Page 504

An alternative way of performing the collection and visualization of web

sensor information is to connect the RPi to online data aggregation services,

which enable you to push sensor data to the cloud, directly from the RPi. In

this section, online services are utilized directly from within C/C++ programs

that are executing on the RPi. This enables you to develop very lightweight

operations that can leverage Internet services in order to intercommunicate

between several different RPi boards on different networks. It also enables the

collection of sensor data from many RPi “web sensors” at the same time on

different physical networks.

ThingSpeak

ThingSpeak is an open source IoT application and API that can be used to store

data from web sensors (things). Using HTTP, the sensors can push numeric or

alphanumeric data to the server, where it can be processed and visualized. The

ThingSpeak application can be installed on a server that is running the Ruby
on Rails web application framework and an SQL database.

In this example, the RPi pushes CPU temperature data to a hosted free ser-

vice at www.thingspeak.com, where data can also be visualized as shown in

Figure 12-9. Once you set up an account, you can then create a new channel,

which provides you with read and write API keys for your channel. To upload

data to your ThingSpeak channel, you must replace the API key highlighted

in the C++ code example in Listing 12-6 with your own write API key. This can

be found under the API Keys tab in your account settings.

Figure 12-9: A ThingSpeak web sensor example

A C++ SocketClient class is available for this example. This class simply wraps

the C code that is used for the C/C++ web browser application in Listing 12-3.

The class interface defi nition is provided in Listing 12-5.

http://www.thingspeak.com

 Chapter 12 ■ The Internet of Things 505

c12.indd 08:44:35:PM 05/12/2016 Page 505

Listing 12-5: /chp12/thingSpeak/network/SocketClient.h

class SocketClient {

private:

 int socketfd;

 struct sockaddr_in serverAddress;

 struct hostent *server;

 std::string serverName;

 int portNumber;

 bool isConnected;

public:

 SocketClient(std::string serverName, int portNumber);

 virtual int connectToServer();

 virtual int disconnectFromServer();

 virtual int send(std::string message);

 virtual std::string receive(int size);

 bool isClientConnected() { return this->isConnected; }

 virtual ~SocketClient();

};

The code example in Listing 12-6 uses this SocketClient class. The example

reads the temperature sensor and pushes it to the hosted ThingSpeak server

using an HTTP POST request.

Listing 12-6: /chp12/thingSpeak/thingSpeak.cpp

#include <iostream>

#include <sstream>

#include <fstream>

#include <stdlib.h>

#include "network/SocketClient.h"

#define CPU_TEMP "/sys/class/thermal/thermal_zone0/temp"

using namespace std;

using namespace exploringRPi;

int getCPUTemperature() {

 int cpuTemp;

 fstream fs;

 fs.open(CPU_TEMP, fstream::in);

 fs >> cpuTemp;

 fs.close();

 return cpuTemp;

}

int main(){

 ostringstream head, data;

 cout << "Starting ThingSpeak Example" << endl;

 SocketClient sc("thingspeak.com",80);

 data << "field1=" << getCPUTemperature() << endl;

 sc.connectToServer();

 head << "POST /update HTTP/1.1\n"

506 Part III ■ Advanced Interfacing and Interaction

c12.indd 08:44:35:PM 05/12/2016 Page 506

 << "Host: api.thingspeak.com\n"

 << "Connection: close\n"

 << "X-THINGSPEAKAPIKEY: ZHBQFC97APOXERPI\n"

 << "Content-Type: application/x-www-form-urlencoded\n"

 << "Content-Length:" << string(data.str()).length() << "\n\n";

 sc.send(string(head.str()));

 sc.send(string(data.str()));

 string rec = sc.receive(1024);

 cout << "[" << rec << "]" << endl;

 cout << "End of ThingSpeak Example" << endl;

 return 0;

}

To send data to the server at regular time intervals, POSIX threads and sleep()

calls can be added to the code in Listing 12-6. However, an easier alternative is

to use the Linux cron time-based job scheduler.

The Linux Cron Scheduler

The Linux cron daemon (named after Chronos, the Greek god of time) is a highly

confi gurable utility for scheduling tasks to be performed at specifi c times and

dates. It is typically used for system administration tasks, such as backing up

data, clearing temporary fi les, rotating log fi les, updating package repositories,

or building software packages during off-peak times.

When sensors or actuators are interfaced to the RPi, cron can also be very useful

for applications such as logging data from these sensors at fi xed intervals over

long periods of time. On the RPi, you could use the scheduler for tasks such as

collecting sensor data, building a stepper-motor clock, time-lapse photography,

setting security alarms, and so on.

System crontab

Cron wakes once every minute and checks its confi guration fi les, called crontabs,
to see if any commands are scheduled to be executed. It can be used to schedule

tasks to run with a maximum frequency of once per minute down to a mini-

mum frequency of once per year. Confi guration fi les for cron can be found in

the /etc directory:

pi@erpi /etc $ cd cron.<Tab><Tab>

cron.d/ cron.daily/ cron.hourly/ cron.monthly/ cron.weekly/

The crontab fi le contains scheduling instructions for the cron daemon, accord-

ing to the crontab fi elds that are listed in Table 12-2. Each line of the crontab

fi le specifi es the time at which the command fi eld should execute. A wildcard

value (*) is available. For example, if it is placed in the hour fi eld, the command

should execute at each and every hour of the day.

 Chapter 12 ■ The Internet of Things 507

c12.indd 08:44:35:PM 05/12/2016 Page 507

Table 12-2: Crontab Fields

FIELD RANGE DESCRIPTION

m 0–59 The minute fi eld

h 0–23 The hour fi eld

dom 1–31 Day of the month fi eld

mon 1–12 or name Month of the year (fi rst three letters can be used)

dow 0–7 or name 0 or 7 is Sunday (fi rst three letters can be used)

user Can specify the user that executes the command

command The command to be executed at this point in time

Ranges are permitted (e.g., 1-5 for Monday to Friday) and so are lists of times

(e.g., 1, 3, 5). In addition, strings can be used in place of the fi rst fi ve fi elds: @reboot,

@yearly, @annually, @monthly, @weekly, @daily, @midnight, and @hourly. The

following custom crontab fi le in Listing 12-7 provides some examples. There

are comments in the fi le to explain the functionality of the entries.

Listing 12-7: /etc/crontab

/etc/crontab: system-wide crontab

SHELL=/bin/sh

PATH=/usr/local/sbin:/usr/local/bin:/sbin:/bin:/usr/sbin:/usr/bin

m h dom mon dow user command

Go to bed message, every night at 1am, sent to all users using wall

0 1 * * * root echo Go to bed! | wall

Extra reminder, every work day night (i.e. 1:05am Monday-Friday)

5 1 * * 1-5 root echo You have work in the morning! | wall

Perform a task each day (same as 0 0 * * *). Clear the /tmp directory

@daily root rm -r /tmp/*

The following are present in the default Debian crontab file:

17 * * * * root cd / && run-parts --report /etc/cron.hourly

25 6 * * * root test -x /usr/sbin/anacron || (cd / && run-parts →

--report /etc/cron.daily) ...

Examples are added to the crontab fi le to send messages and to clear the

/tmp directory (see the comments). You can also specify that a command should

be executed every 10 minutes by using */10 in the minutes fi eld.

You may have also noticed other entries in the crontab fi le that refer to an

anacron command. Anacron (anachronistic cron) is a specialized cron utility for

devices, such as laptop computers, that are not expected to be running 24/7. If

regular cron were confi gured to back up fi les every week but the RPi happened

to be powered off at that exact moment, the backup would never be performed.

508 Part III ■ Advanced Interfacing and Interaction

c12.indd 08:44:35:PM 05/12/2016 Page 508

However, with anacron the backup will be performed when the RPi next boots

(i.e., jobs are queued). You can install anacron using the following:

pi@erpi ~ $ sudo apt install anacron

Now there will be a new /etc/anacrontab fi le that performs the same role

as crontab does for cron. The confi guration fi le for anacron can be found in

/etc/init/anacron.conf.

One problem with having both cron and anacron installed on one system

is that it is possible for cron to run a job that anacron has already run, or vice

versa. That is the reason for the crontab entries at the end of Listing 12-7. These

entries ensure that run-parts is executed only if anacron is not installed on the

RPi. This is tested by the call to test -x /usr/sbin/anacron, which returns 0

if the anacron command is present, and 1 if it is not. Calling echo $? displays

the output value.

An alternative to adding an entry directly to the crontab fi le is to add a script

to one of the directories: cron.daily, cron.hourly, cron.monthly, or cron

.weekly in the /etc directory. Any scripts in these directories are executed by

cron. For example, you could create a script in the cron.hourly directory to

update the temperature on ThingSpeak as follows:

pi@erpi .../chp12/thingSpeak $ sudo cp thingSpeak /usr/local/bin

pi@erpi .../chp12/thingSpeak $ cd /etc/cron.hourly/

pi@erpi /etc/cron.hourly $ sudo nano thingSpeakCPU

pi@erpi /etc/cron.hourly $ more thingSpeakCPU

#!/bin/bash

/usr/local/bin/thingSpeak

pi@erpi /etc/cron.hourly $ sudo chmod a+x thingSpeakCPU

An alternative to this is to execute the binary directly within the user account

using user crontab, which is described in the next section.

User crontab

Each user account can have its own crontab. These fi les are placed in the /var/

spool/cron/crontabs directory, but they should not be edited in this location.

The following creates a crontab for the pi user:

pi@erpi ~ $ crontab -e

no crontab for pi - using an empty one

crontab: installing new crontab

You can edit the user crontab fi le to upload the RPi CPU temperature to

ThingSpeak every 15 minutes by adding the following line:

m h dom mon dow command

*/15 * * * * /usr/local/bin/thingSpeak > /dev/null 2>&1

 Chapter 12 ■ The Internet of Things 509

c12.indd 08:44:35:PM 05/12/2016 Page 509

The end of this command redirects the standard output to /dev/null. The call

2>&1 redirects the standard error to the standard output, and therefore also to

/dev/null. If this were not present, then by default the output of the thingSpeak

command would be e-mailed to the system administrator (if mail is confi gured

on the RPi). You can back up your crontab fi le as follows:

pi@erpi ~ $ crontab -l > crontab-backup

pi@erpi ~ $ ls -l crontab-backup

-rw-r--r-- 1 pi pi 952 Oct 12 04:37 crontab-backup

To reinstate this backup fi le with crontab use the following:

pi@erpi ~ $ crontab crontab-backup

The administrator account can control which users have access to cron by

placing either a cron.allow or a cron.deny fi le in the /etc directory. Under

Debian/Raspbian all users can have their own crontab by default. Use the

 following to remove this capability:

pi@erpi /etc$ more cron.deny

pi

pi@erpi ~ $ crontab -e

You (pi) are not allowed to use this program (crontab)

With the crontab entry above, the thingSpeak program uploads CPU tem-

perature data to the ThingSpeak server every 15 minutes, as illustrated in the

plot in Figure 12-9. ThingSpeak also supports MATLAB server-side code execu-

tion. For example, Figure 12-10 illustrates a short MATLAB program to convert

the most recent temperature from degrees Celsius to degrees Fahrenheit. The

example is structured to populate the converted result into another ThingSpeak

data channel.

Figure 12-10: A ThingSpeak MATLAB example

510 Part III ■ Advanced Interfacing and Interaction

c12.indd 08:44:35:PM 05/12/2016 Page 510

Sending E-mail from the RPi

It can be very useful to send e-mail directly from the RPi so that detected sys-

tem problems are relayed to a potentially remote administrator. In addition, it

is useful for an e-mail to be sent when a sensor event occurs—for example, an

e-mail could be sent if the room temperature exceeds 30ºC. There are many mail

client applications, but if you are using a secure Simple Mail Transfer Protocol
(SMTP) server, like Gmail, the ssmtp program works well. Install ssmtp using

the following command:

pi@erpi ~ $ sudo apt install ssmtp mailutils

Confi gure the e-mail settings in the fi le /etc/ssmtp/ssmtp.conf. For example,

to confi gure your RPi to send e-mail through a Gmail account, replace the

account name and password fi elds in the following:

pi@erpi /etc/ssmtp$ more ssmtp.conf

Config file for sSMTP sendmail

root=myaccountname@gmail.com

mailhub=smtp.gmail.com:587

AuthUser=myaccountname@gmail.com

AuthPass=mysecretpassword

UseTLS=YES

UseSTARTTLS=YES

rewriteDomain=gmail.com

hostname= myaccountname@gmail.com

You should be aware that the default permissions for this fi le will allow any

user on the RPi to read your password. You should therefore adjust the fi le

attributes as follows:

pi@erpi:/etc/ssmtp $ sudo chmod o-r ssmtp.conf

pi@erpi:/etc/ssmtp $ ls -l ssmtp.conf

-rw-r----- 1 root root 698 Mar 26 19:16 ssmtp.conf

GMAIL SECURIT Y SETTINGS

To use Gmail as the e-mail relay for your RPi it may be necessary for you to reduce the

security settings of your Gmail account. To do this, go to myaccount.google.com/
security and select the “Allow less secure apps” option to be ON, as illustrated in

Figure 12-11. In addition, you may have to use a password without characters that

would typically need to be escaped (e.g., # or “”). Remember that it is easy to set up a

specifi c Gmail account just for your RPi.

mailto:myaccountname@gmail.com
mailto:myaccountname@gmail.com
mailto:myaccountname@gmail.com

 Chapter 12 ■ The Internet of Things 511

c12.indd 08:44:35:PM 05/12/2016 Page 511

Figure 12-11: The Gmail settings security option

The settings can be tested by sending an e-mail from the terminal:

pi@erpi ~ $ ssmtp toname@destination.com

To: toname@destination.com

From: myaccountname@gmail.com

Subject: Testing 123

Hello World!

^d

Typing Ctrl+D at the end of the message sends the e-mail. An alternative to

this is to place the message text, which is the same as that just shown (including

the To/From/Subject lines), in a fi le (e.g., ~/.message) and then send it using the

following call:

pi@erpi ~ $ ssmtp toname@destination.com < ~/.message

Or you can use the mail tool directly (from the mailutils package):

pi@erpi ~ $ echo "Test Body" | mail -s "Test Subject" toname@destination.com

All messages are sent using the user Gmail account. This command can be

added to scripts or encapsulated within a C++ program that uses a system()

call, as in Listing 12-8. C or C++ could be used for this example, but C++ strings

make this task more straightforward.

Listing 12-8: /chp12/cppMail/cppMail.cpp

#include <iostream>

#include <sstream>

#include <stdlib.h>

using namespace std;

int main(){

 string to("xxx@yyy.com");

 string subject("Hello Derek");

 string body("Test Message body...");

 stringstream command;

mailto:toname@destination.com
mailto:toname@destination.com
mailto:myaccountname@gmail.com
mailto:toname@destination.com
mailto:toname@destination.comAllmessagesaresentusingtheuserGmailaccount.ThiscommandcanbeaddedtoscriptsorencapsulatedwithinaC++programthatusesas
mailto:toname@destination.comAllmessagesaresentusingtheuserGmailaccount.ThiscommandcanbeaddedtoscriptsorencapsulatedwithinaC++programthatusesas
mailto:toname@destination.comAllmessagesaresentusingtheuserGmailaccount.ThiscommandcanbeaddedtoscriptsorencapsulatedwithinaC++programthatusesas
mailto:xxx@yyy.com

512 Part III ■ Advanced Interfacing and Interaction

c12.indd 08:44:35:PM 05/12/2016 Page 512

 command << "echo \""<< body <<"\" | mail -s \""<< subject <<"\" "<< to;

 int result = system(command.str().c_str());

 cout << "Command: " << command.str() << endl;

 cout << "The return value was " << result << endl;

 return result;

}

When executed, the program in Listing 12-8 outputs the following:

pi@erpi ~/exploringrpi/chp12/cppMail $ g++ cppMail.cpp -o cppMail

pi@erpi ~/exploringrpi/chp12/cppMail $./cppMail

Command: echo "Test Message body..." | mail -s "Hello Derek" xxx@yyy.com

The return value was 0

Here the value 0 indicates success. As well as sending notifi cation messages,

e-mail can be used to trigger other types of events using web services such as

www.ifttt.com, which is discussed in the next section.

If This Then That (IFTTT)

If This Then That (IFTTT) is a web service that enables you to create connections

between online channels, such as Twitter, LinkedIn, Google Calendar, iPhone/

Android Integration, YouTube, and many more. It works by connecting triggers

and actions using the simple statement: “If this then that,” where the trigger is

the this, and the action is the that. For example, “If it is night time then mute my
phone ringer,” or “If the weather forecast is for rain tomorrow then send me an Android
or iOS notifi cation.” These statements are called recipes and they can be activated

in an IFTTT account and even shared with other users.

IFTTT has many triggers, but it does not have web triggers; however, it can

be triggered using an e-mail message that is sent to trigger@recipe.ifttt

.com from a linked Gmail account. Hashtags (e.g., #ERPi) can be used to

 differentiate events, and the subject and body of the e-mail message can be

used as ingredients for the recipe. For example, the recipe in Figure 12-12 states

that: “If a message is sent to trigger@recipe.ifttt.com from X@gmail.com with #ERPi in
the subject then send me an SMS message.” The body of the e-mail can be passed

as an ingredient to the SMS message, which enables personalized messages to

be sent from the RPi via SMS messaging (in many cases at no cost).

If send trigger7@recipe.ifttt.com an email tagged #ERPi from X@gmail.com,

then send me an SMS at 00353xxxxxxxx

The recipe should have the body text:

RPi Sent: {{Body}} {{AttachmentUrl}}

The recipe can then be triggered by sending an e-mail from the RPi:

pi@erpi ~ $ ssmtp trigger@recipe.ifttt.com

To: trigger@recipe.ifttt.com

From: xxxxxx@gmail.com

Subject: #ERPi

Hello Derek!

http://www.ifttt.com
mailto:trigger@recipe.ifttt
mailto:trigger@recipe.ifttt.com
mailto:X@gmail.com
mailto:trigger7@recipe.ifttt.com
mailto:X@gmail.com
mailto:trigger@recipe.ifttt.com
mailto:trigger@recipe.ifttt.com
mailto:xxxxxx@gmail.com

 Chapter 12 ■ The Internet of Things 513

c12.indd 08:44:35:PM 05/12/2016 Page 513

This results in a text message being received that contains the recipe message

and the e-mail body (i.e., "RPi Sent: Hello Derek!").

IFTTT enables you to construct quite sophisticated interactions by simply

sending e-mails from the RPi when certain events occur. For example, if a motion

sensor is triggered, then you can message someone. Certain physical devices can

also be triggered using IFTTT, such as Nest devices, smart phones, Automatic/

Dash car OBD sensors, WeMo switches, Fitbit Flex healthcare devices, Lifx RGB

smart lighting, SmartThings devices, Ubi voice control, and the Quirky+GE

Aros smart air conditioner.

Figure 12-12: Example IFTTT recipe

Some example recipes for the IoT include the following:

 ■ Receive an emergency call if motion is detected

 ■ At sunrise, turn the security lights off

 ■ Remotely set your Nest thermostat to …

 ■ Delay watering your garden if it is going to rain tomorrow

 ■ Every day at … turn the lights on

Large-Scale IoT Frameworks

The ThinkSpeak solution that is presented in this chapter is a useful intro-

duction to hosted platform as a service (PaaS) offerings, and it demonstrates

some underlying communication technologies that are required to connect the

RPi to the IoT. However, connecting single devices to the Internet to log data

does not solve all IoT challenges. In fact, it is only the starting point of the IoT.

514 Part III ■ Advanced Interfacing and Interaction

c12.indd 08:44:35:PM 05/12/2016 Page 514

Figure 12-13 illustrates some of the large-scale interactions required to more

fully realize an IoT.

Figure 12-13: A typical IoT solution architecture

In the not too distant future, the IoT will involve billions of devices interchang-

ing trillions of messages, and this must be performed in a secure and scalable

manner. The challenges involved are immense and some of the world’s largest

cloud solutions providers are involved in the development of solutions. IBM

released the Bluemix IoT service in August 2015, and in October 2015 Amazon

launched the AWS IoT platform for building, managing, and analyzing the IoT.

These are both enterprise-level solutions with price plans that scale according

to usage. For example, Amazon charges $5–$8 per million messages (512 byte

blocks) that are interchanged by IoT devices, which are using its PaaS.

In this section, an enterprise-level IoT PaaS is investigated that uses open

source MQTT messaging APIs to ensure vendor portability.

MQ Telemetry Transport (MQTT)

Message Queueing Telemetry Transport (MQTT) is a lightweight connectivity

protocol for machine-to-machine (M2M) communications. It was conceived in

1999 and has been used by industry since then; however, its applicability to the

emerging IoT domain has placed it fi rmly in the spotlight, and in 2014 MQTT

(version 3.1.1) became an OASIS standard. The lightweight nature of

MQTT means that it can be used with low-level embedded devices and that

it makes effi cient use of network resources, while still providing reliable

transactions. TCP/IP port 1883 is reserved for the MQTT protocol and 8883

is reserved for the protocol over SSL. In addition to SSL, MQTT supports

username/password transactions.

With MQTT a client sends a connect message to a broker (never to another

client) and the broker responds with an acknowledgment message and a status

 Chapter 12 ■ The Internet of Things 515

c12.indd 08:44:35:PM 05/12/2016 Page 515

code (e.g., 0 for success, and 1–5 for different levels of failure). The connection

then persists until the client disconnects. The client sends an MQTT packet that

must contain a client ID, a clean session fl ag that indicates if a persistent ses-

sion is to be created, and a keepalive time interval. The MQTT packet may also

contain a username, password, and a last will message. The last will message

can be used to notify other clients should this client be abruptly disconnected.

The Eclipse Paho project (www.eclipse.org/paho/) provides open source

implementations of MQTT in C/C++, Java, Python, JavaScript, and other languages

that can be used to build small footprint reliable MQTT client applications. In

addition, the Eclipse IoT Working Group (iot.eclipse.org) provides strong

support documentation and tools for developing open source IoT solutions.

To download, build, and install the Paho libraries on the RPi, use the following

steps:

pi@erpi ~ $ sudo apt install libssl-dev

pi@erpi ~ $ git clone http://git.eclipse.org/gitroot/paho/org.ecli →

pse.paho.mqtt.c.git

pi@erpi ~ $ cd org.eclipse.paho.mqtt.c/

pi@erpi ~/org.eclipse.paho.mqtt.c $ make

mkdir -p build/output/samples

mkdir -p build/output/test

echo OSTYPE is Linux ...

pi@erpi ~/org.eclipse.paho.mqtt.c $ sudo make install

pi@erpi ~/org.eclipse.paho.mqtt.c $ ls /usr/local/lib/libpaho*

/usr/local/lib/libpaho-mqtt3a.so /usr/local/lib/libpaho-mqtt3c.so

/usr/local/lib/libpaho-mqtt3a.so.1 /usr/local/lib/libpaho-mqtt3c.so.1

/usr/local/lib/libpaho-mqtt3a.so.1.0 /usr/local/lib/libpaho-mqtt3c.so.1.0

/usr/local/lib/libpaho-mqtt3as.so /usr/local/lib/libpaho-mqtt3cs.so

/usr/local/lib/libpaho-mqtt3as.so.1 /usr/local/lib/libpaho-mqtt3cs.so.1

/usr/local/lib/libpaho-mqtt3as.so.1.0 /usr/local/lib/libpaho-mqtt3cs.so.1.0

IBM Bluemix Internet of Things

IBM Bluemix is an enterprise-grade platform as a service (PaaS) that allows the

development of services on the Cloud using a variety of programming lan-

guages. One such service is the IBM Internet of Things that was released in

August 2015. It facilitates the development of applications on the RPi that can

connect to the PaaS to publish or to consume collected data. This is a commercial

service with a price that scales according to the number of connected devices

and the quantity of transaction traffi c; however, the service is currently free for

investigative usage levels.1 The IBM IoT PaaS supports the MQTT protocol and

REST API for communication.

1 The service is currently free for fewer than 20 active devices, 100 MB of data transfer, and 1 GB
of online data storage per month (October 2015). See: tiny.cc/erpi1202.

http://www.eclipse.org/paho

516 Part III ■ Advanced Interfacing and Interaction

c12.indd 08:44:35:PM 05/12/2016 Page 516

N O T E Several steps are required in setting up an IBM IoT PaaS, and they are likely

subject to change. However, the main steps and concepts should not change signifi -

cantly, so it is useful to present them here. Also, if you do not wish to sign up for an

IBM account, please jump to the section on “Visualize Data Using IBM Quickstart,” as

an account is not required and it will also give you a live demonstration of the service

using your own RPi device.

Begin by registering for an IBM ID at: tiny.cc/erpi1203. The ID that you

are allocated is your e-mail address. Once you have the IBM ID, you can sign

up for the IBM Bluemix free trial2 at tiny.cc/erpi1204 by indicating that you

already have an IBM ID. Complete the e-mail validation, and then log in to the

service, which appears as in Figure 12-14.

Figure 12-14: IBM Bluemix console window3

Use the Create a Space option as in Figure 12-14 to create a space such as

ExploringRPi. Then click the Bluemix Catalog link at the bottom of the page to

create an IoT application, as highlighted in Figure 12-15.

Figure 12-15: The Bluemix application catalog

2 Unlike several other such services, a credit card is not currently required until 30 days have
elapsed (March 2016).
3 For the purpose of developing the content for this book, a temporary Google account
exploringRPi@gmail.com was created. Note that this account is not monitored.

mailto:exploringRPi@gmail.com

 Chapter 12 ■ The Internet of Things 517

c12.indd 08:44:35:PM 05/12/2016 Page 517

Set the service name to be erpi, select the free plan, and press Create. When

the welcome window appears, click Launch Dashboard to connect your devices,

which appears as in Figure 12-16. Here you can see your Organization ID, which

is 4wyix6 in this case.

Figure 12-16: IBM IoT dashboard window

Connect a device by selecting the Add a Device link in Figure 12-16. You must

fi rst create a device type, which you can call RaspberryPi, and enter a short

description. You can leave the remaining template information and optional

Metadata blank. Choose the RaspberryPi device type and press Next. You can

then choose a device ID of erpi01, which is used to identify a specifi c RPi board.

Press Next for the remainder of the options, allowing the service to generate

tokens automatically. Finally, you are presented with a window, as in Figure 12-17,

which lists the device ID and the authentication token. It is very important that

you note this token down as you will not see this value again! You can create

new keys under the ACCESS ➪ API Keys menu option.

Figure 12-17: IoT device configuration

518 Part III ■ Advanced Interfacing and Interaction

c12.indd 08:44:35:PM 05/12/2016 Page 518

You now have everything that you need confi gured so that you can write

code for your RPi device that connects to the IoT PaaS. You can see that the

Connection Log is currently empty, as illustrated in Figure 12-18.

Figure 12-18: Connection Log

An IBM IoT MQTT Node.js Publish Example

The code in Listing 12-9 uses Node.js to read the RPi CPU temperature and send

it to the IBM IoT PaaS using MQTT. The importance of this example is that it

demonstrates how to connect a sensor on the RPi to an IoT service using the

credentials that were received from the steps in the previous section.

N O T E The use of Paho for MQTT in this section should ensure that these code

examples can be utilized for PaaS off erings other than IBM Bluemix. Please alter the

variable values at the top of the code examples to suit your PaaS.

Listing 12-9: chp12/paho/paho.js

// This example uses mqtt.js to upload the CPU temperature to IBM IoT

var mqtt = require('mqtt'); // required module

var fs = require('fs')

var ORG = '4wyix6'; // the organization ID

var TYPE = 'RaspberryPi'; // the device type

var DEVID = 'erpi01'; // the individual device id

var AUTHTOKEN = '5_e30j*GlG)zD(sq!V'; // the private auth token

var PORT = 1883; // reserved MQTT port

var BROKER = ORG + '.messaging.internetofthings.ibmcloud.com';

var URL = 'mqtt://' + BROKER + ':' + PORT;

var CLIENTID = 'd:' + ORG + ':' + TYPE + ':' + DEVID;

var AUTHMETH = 'use-token-auth'; // using token authentication

var client = mqtt.connect(URL, { clientId: CLIENTID,

 username: AUTHMETH, password: AUTHTOKEN });

var TOPIC = 'iot-2/evt/status/fmt/json'; // sending JSON payload

var CPUTEMP = '/sys/class/thermal/thermal_zone0/temp'

console.log(URL);

client.on('connect', function() {

 setInterval(function(){

 Chapter 12 ■ The Internet of Things 519

c12.indd 08:44:35:PM 05/12/2016 Page 519

 var tempStr = 'invalid';

 try {

 tempStr = fs.readFileSync(CPUTEMP, 'utf8');

 }

 catch (err){

 console.log('Failed to Read the CPU Temperature.');

 }

 var temp = parseFloat(tempStr) / 1000;

 console.log('Sending Temp: ' + temp.toString() + '°C to IBM IoT');

 client.publish(TOPIC, '{"d":{"Temp":' + temp.toString() + '}}');

 }, 10000); // publish data every ten seconds

});

To use this code example, you must fi rst install the Node.js MQTT module.

The code can then be executed, whereupon it connects to the IoT PaaS using

the MQTT URL that is displayed by the program. The program reads the CPU

temperature from the RPi sysfs entry and publishes it to the service. At this

point you should be able to see activity on the IoT Console web interface, as

illustrated in Figure 12-19. The data is sent in JavaScript Object Notation (JSON)

format (e.g., {"d": {"Temp" : 32.552}}, and you can see the most recent data

reading at the bottom of Figure 12-19. The d value identifi es the client as a device.

When the paho.js script is executed, the data points appear in the PaaS device

confi guration window, as illustrated in Figure 12-19.

pi@erpi ~/exploringrpi/chp12/paho $ npm install mqtt --save

pi@erpi ~/exploringrpi/chp12/paho $ node paho.js

mqtt://4wyix6.messaging.internetofthings.ibmcloud.com:1883

Sending Temp: 32.552°C to IBM IoT

Sending Temp: 32.552°C to IBM IoT

...

Figure 12-19: IoT PaaS receiving CPU temperature data samples in JSON format

mqtt://4wyix6.messaging.internetofthings.ibmcloud.com:1883

520 Part III ■ Advanced Interfacing and Interaction

c12.indd 08:44:35:PM 05/12/2016 Page 520

An IBM IoT MQTT C++ Publish Example

Listing 12-10 is a C++ MQTT application that publishes the CPU temperature to

the IoT PaaS. The code has the same structure as the Node.js code in Listing 12-9

and performs a very similar function.

Listing 12-10: /chp12/paho/paho.cpp

// Based on the Paho C code example from www.eclipse.org/paho/

#include <iostream>

#include <sstream>

#include <fstream>

#include <string.h>

#include "MQTTClient.h"

#define CPU_TEMP "/sys/class/thermal/thermal_zone0/temp"

using namespace std;

#define ADDRESS "tcp://4wyix6.messaging.internetofthings.ibmcloud.com:1883"

#define CLIENTID "d:4wyix6:RaspberryPi:erpi01"

#define AUTHMETHOD "use-token-auth"

#define AUTHTOKEN "5_e30j*GlG)zD(sq!V"

#define TOPIC "iot-2/evt/status/fmt/json"

#define QOS 1

#define TIMEOUT 10000L

float getCPUTemperature() { // get the CPU temperature

 int cpuTemp; // store as an int

 fstream fs;

 fs.open(CPU_TEMP, fstream::in); // read from the file

 fs >> cpuTemp;

 fs.close();

 return (((float)cpuTemp)/1000);

}

int main(int argc, char* argv[]) {

 MQTTClient client;

 MQTTClient_connectOptions opts = MQTTClient_connectOptions_initializer;

 MQTTClient_message pubmsg = MQTTClient_message_initializer;

 MQTTClient_deliveryToken token;

 MQTTClient_create(&client, ADDRESS, CLIENTID,

 MQTTCLIENT_PERSISTENCE_NONE, NULL);

 opts.keepAliveInterval = 20;

 opts.cleansession = 1;

 opts.username = AUTHMETHOD;

 opts.password = AUTHTOKEN;

 int rc;

 if ((rc = MQTTClient_connect(client, &opts)) != MQTTCLIENT_SUCCESS){

 cout << "Failed to connect, return code " << rc << endl;

 return -1;

 Chapter 12 ■ The Internet of Things 521

c12.indd 08:44:35:PM 05/12/2016 Page 521

 }

 stringstream message;

 message << "{\"d\":{\"Temp\":" << getCPUTemperature() << "}}";

 pubmsg.payload = (char*) message.str().c_str();

 pubmsg.payloadlen = message.str().length();

 pubmsg.qos = QOS;

 pubmsg.retained = 0;

 MQTTClient_publishMessage(client, TOPIC, &pubmsg, &token);

 cout << "Waiting for up to " << (int)(TIMEOUT/1000) <<

 " seconds for publication of " << message.str() <<

 " \non topic " << TOPIC << " for ClientID: " << CLIENTID << endl;

 rc = MQTTClient_waitForCompletion(client, token, TIMEOUT);

 cout << "Message with token " << (int)token << " delivered." << endl;

 MQTTClient_disconnect(client, 10000);

 MQTTClient_destroy(&client);

 return rc;

}

You can build and execute this code example as follows:

pi@erpi ~/exploringrpi/chp12/paho $ g++ paho.cpp -o paho -lpaho-mqtt3c

pi@erpi ~/exploringrpi/chp12/paho $./paho

Waiting for up to 10 seconds for publication of {"d":{"Temp":33.628}}

on topic iot-2/evt/status/fmt/json for ClientID: d:4wyix6:RaspberryPi:erpi01

Message with token 1 delivered.

Execution results in a new data point appearing, as in Figure 12-19.

Visualize Data Using IBM Quickstart

You can use the IBM Quickstart services to visualize the live data that is being

transmitted from your RPi sensor device. The Quickstart services require public

access to your data; therefore, you must change the Organization ID for your

data services to “quickstart” (i.e., from 4wyix6 in my case). In this example,

the Topic string is set to iot-2/evt/temperature/fmt/json to indicate that the

event name is temperature and that a JSON format payload is being transmit-

ted. When the Paho client is executed it sends temperature samples to the IBM

Watson IoT PaaS:

pi@erpi ~/exploringrpi/chp12/paho $ node paho.js

mqtt://quickstart.messaging.internetofthings.ibmcloud.com:1883

Sending Temp: 32.552°C to IBM IoT

Sending Temp: 32.552°C to IBM IoT

...

When you open internetofthings.ibmcloud.com , press on Quickstart, and

enter the device ID (e.g., erpi01). A live visualization of the sample data is visible,

as illustrated in Figure 12-20.

mqtt://quickstart.messaging.internetofthings.ibmcloud.com:1883

522 Part III ■ Advanced Interfacing and Interaction

c12.indd 08:44:35:PM 05/12/2016 Page 522

Figure 12-20: IBM Quickstart receiving CPU temperature data samples in JSON format

It is possible to write client code that subscribes directly to this data stream.

For IBM Quickstart, subscribers connect as an application, rather than a device,
so the client ID begins with an a rather than a d. The second client ID can be

of the form a:quickstart:RaspberryPi:erpi02. For an application to send a

command to a registered device, the topic has the format:

iot-2/type/<type-id>/id/<device-id>/cmd/<command>/fmt/<format>

 ■ <type-id> is the type of the device to which you want to send the mes-

sage (e.g., RaspberryPi).

 ■ <device-id> is the specifi c device ID to which you want to send the mes-

sage (e.g., erpi01).

 ■ <command> is the command string.

 ■ <format> is json in these examples.

To subscribe to the temperature data stream of the erpi01 device, a topic of

the form iot-2/type/RaspberryPi/id/erpi01/evt/temperature/fmt/json can

be used. To be clear, the devices can be virtual and both the device and applica-

tion can be tested using a single RPi. For more information on the connectivity

protocol, see tiny.cc/erpi1206.

The Node.js publisher client can be executed (with the Organization ID set

to quickstart) and simultaneously, the subscribe application (in a separate

terminal window) will receive the data stream messages as below:

pi@erpi ~/exploringrpi/chp12/paho $ node paho.js

mqtt://quickstart.messaging.internetofthings.ibmcloud.com:1883

Sending Temp: 32.552°C to IBM IoT

mqtt://quickstart.messaging.internetofthings.ibmcloud.com:1883

 Chapter 12 ■ The Internet of Things 523

c12.indd 08:44:35:PM 05/12/2016 Page 523

Sending Temp: 32.552°C to IBM IoT

...

pi@erpi ~/exploringrpi/chp12/paho $./subscribe

Subscribing to topic iot-2/type/RaspberryPi/id/erpi01/evt/temperature/fmt/json

 for client a:quickstart:RaspberryPi:erpi02 using QoS 1

 Press Q<Enter> to quit

Message arrived

 topic: iot-2/type/RaspberryPi/id/erpi01/evt/temperature/fmt/json

 message: {"d":{"Temp":32.552}}

Message arrived

 topic: iot-2/type/RaspberryPi/id/erpi01/evt/temperature/fmt/json

 message: {"d":{"Temp":32.552}}

...

This discussion only scratches the surface of what is possible with IoT PaaS

such as IBM Bluemix. Along with brokered intercommunication between devices,

there is support for the actuation of devices using commands. There is also full

support for the deployment of enterprise-level applications on service such as the

IBM Bluemix cloud to process, consume, and visualize the data that is generated.

The C++ Client/Server

The C/C++ client application described earlier in this chapter uses HTTP and

HTTPS to connect to a web server and retrieve a web page. In this section a

TCP server is described, to which a TCP client can connect in order to exchange

information, which does not have to be in HTTP form. The same SocketClient

class that is used earlier in the chapter is reused in this section, and a new class

called SocketServer is described. Figure 12-21 illustrates the steps that take

place during communication in this client/server example:

 1. In Step 1, a TCP server that is running on the RPi at IP address 192.168.1.116

begins listening to a user-defi ned TCP port (54321). The server socket will

listen to this port forever, awaiting contact from a client.

 2. In Step 2, a TCP client application is executed. The client application must

know the IP address and port number of the server to which it is to con-

nect. The client application opens a client socket, using the next available

Linux port allocation. The server, which can be running on a different RPi

(or the same RPi in a different terminal window), accepts a connection

request from the client. It then retrieves a reference to the client IP address

and port number. A connection is formed, and the client writes a message

to this connection, which is “Hello from the client.”

 3. In Step 3, the server reads the message from the connection and sends

back a new message to the client, which is “The Server says thanks!” The

524 Part III ■ Advanced Interfacing and Interaction

c12.indd 08:44:35:PM 05/12/2016 Page 524

client reads the response message and displays it to the terminal. Then

the client and server both close the network sockets. The programs run

asynchronously—in this case running to completion.

Figure 12-21: Client/server example

The full example is provided in the /chp12/clientserver/ directory. The

client.cpp program in Listing 12-11 uses the SocketClient class from the

network subdirectory (see Listing 12-5).

Listing 12-11: /chp12/clientserver/client.cpp

#include <iostream>

#include "network/SocketClient.h"

using namespace std;

using namespace exploringRPi;

int main(int argc, char *argv[]){

 if(argc!=2){

 cout << "Incorrect usage: " << endl;

 cout << " client server_name" << endl;

 return 2;

 }

 cout << "Starting RPi Client Example" << endl;

 SocketClient sc(argv[1], 54321);

 sc.connectToServer();

 string message("Hello from the Client");

 cout << "Sending [" << message << "]" << endl;

 sc.send(message);

 string rec = sc.receive(1024);

 Chapter 12 ■ The Internet of Things 525

c12.indd 08:44:35:PM 05/12/2016 Page 525

 cout << "Received [" << rec << "]" << endl;

 cout << "End of RPi Client Example" << endl;

 return 0;

}

The SocketServer class in Listing 12-12 is new, and it behaves in a quite dif-

ferent manner than the SocketClient class. An object of the class is created

by passing the port number to the constructor. When the listen() method is

called, the program counter will not return from this method call until a con-

nection has been accepted by the server.

Listing 12-12: /chp12/clientserver/network/SocketServer.h

class SocketServer {

private:

 int portNumber;

 int socketfd, clientSocketfd;

 struct sockaddr_in serverAddress;

 struct sockaddr_in clientAddress;

 bool clientConnected;

public:

 SocketServer(int portNumber);

 virtual int listen();

 virtual int send(std::string message);

 virtual std::string receive(int size);

 virtual ~SocketServer();

};

The server.cpp code example in Listing 12-13 creates an object of the

ServerSocket class and awaits a client connection.

Listing 12-13: /chp12/clientserver/server.cpp

#include <iostream>

#include "network/SocketServer.h"

using namespace std;

using namespace exploringRPi;

int main(int argc, char *argv[]){

 cout << "Starting RPi Server Example" << endl;

 SocketServer server(54321);

 cout << "Listening for a connection..." << endl;

 server.listen();

 string rec = server.receive(1024);

 cout << "Received from the client [" << rec << "]" << endl;

 string message("The Server says thanks!");

 cout << "Sending back [" << message << "]" << endl;

 server.send(message);

 cout << "End of RPi Server Example" << endl;

 return 0;

}

526 Part III ■ Advanced Interfacing and Interaction

c12.indd 08:44:35:PM 05/12/2016 Page 526

The code for this example can be built using the build script in the chp12/

clientserver directory. The server can then be executed:

pi@erpi ~/exploringrpi/chp12/clientserver $./server

Starting RPi Server Example

Listening for a connection...

The server will wait at this point until a client request has been received. In

order to execute the client application, a separate terminal session on the same

RPi, another RPi, or a Linux desktop machine can be used.4 The client applica-

tion can be executed by passing the IP address of the server. The port number

(54321) is defi ned within the client program code:

pi@erpi ~/exploringrpi/chp12/clientserver $./client localhost

Starting RPi Client Example

Sending [Hello from the Client]

Received [The Server says thanks!]

End of RPi Client Example

When the client connects to the server, both the client and server execute

simultaneously, resulting in the preceding and following output:

pi@erpi ~/exploringrpi/chp12/clientserver $./server

Starting RPi Server Example

Listening for a connection...

Received from the client [Hello from the Client]

Sending back [The Server says thanks!]

End of RPi Server Example

This code is further improved later in the book to add threading support, and

to enable it to communicate with a better structure than simple strings. However,

it should be clear that this code enables you to intercommunicate between Linux

client/servers that are located anywhere in the world. The client/server pair

communicates by sending and receiving bytes; therefore, communication can

take place at very high data rates and is only limited by the physical network

infrastructure.

IoT Device Management

One of the diffi culties with remote web sensors is that they may be in physically

inaccessible and/or distant locations. In addition, a period of system downtime

may lead to a considerable loss of sensing data. If the problem becomes apparent

you can SSH into the RPi and restart the application or perform a system reboot.

4 When the server terminates it can take a short period of time for the Linux kernel to free the
server socket and TCP port for re-use. This TIME-WAIT state in TCP prevents delayed packets
from one connection being accepted by a later connection. As a result, you may have to wait a
few seconds before the server application will restart, as you will receive an “Address already in
use” error message.

 Chapter 12 ■ The Internet of Things 527

c12.indd 08:44:35:PM 05/12/2016 Page 527

In this section, two quite different management approaches are described: the

fi rst is manual web-based monitoring; the second is automatic, through the use

of Linux watchdog timers.

Remote Monitoring of the RPi

One advantage of installing a web server in this chapter is that it supports

a number of additional open source services. One such example is a remote

monitoring service called Linux-dash. For simplicity, the following steps use

Node.js as the server:

pi@erpi ~ $ sudo apt install php5 curl php5-curl php5-json

pi@erpi ~ $ sudo git clone https://github.com/afaqurk/linux-dash.git

pi@erpi ~ $ cd linux-dash/

pi@erpi ~/linux-dash $ sudo npm install

Then edit the index.js fi le server.listen() entry to choose a suitable port

number (e.g., 81 in this case) that does not confl ict with the port number chosen

for the Nginx server:

pi@erpi:~/linux-dash $ sudo nano server/index.js

pi@erpi ~/linux-dash $ more server/index.js |grep server.listen

server.listen(81);

pi@erpi ~/linux-dash $ sudo node server

Linux Dash Server Started!

These steps result in a service running on the RPi using the chosen port

number that you can view with a web browser at the address of the RPi: e.g.,

http://192.168.1.116:81/ or http://raspberrypi.local:81/, as shown in

Figure 12-22. This approach can help you quickly identify system problems,

such as unusual loads, network traffi c, and so on, but it still requires that you

manually check the web page.

Figure 12-22: RPi remote monitoring using Linux Dash

528 Part III ■ Advanced Interfacing and Interaction

c12.indd 08:44:35:PM 05/12/2016 Page 528

RPi Watchdog Timers

One solution to automatically determine if there has been a signifi cant problem

with your application is to use a watchdog timer. Impressively, the RPi has full

support for a hardware watchdog timer, which can be used to automatically

reset the RPi should it lock up. Having a watchdog timer can be very important

in IoT applications if the RPi is inaccessible or performing an important role

that should not be halted (e.g., an RPi intruder alarm).

You can enable the hardware watchdog functionality by creating a new fi le in

the /etc/modeprobe.d/ directory and by then loading the bcm2708_wdog LKM.

(The nowayout=1 option prevents the watchdog from being stopped once it is

started, and the heartbeat time is set to be 10 seconds in this confi guration.):

pi@erpi /etc/modprobe.d $ more watchdog.conf

options bcm2708_wdog nowayout=1 heartbeat=10

pi@erpi /etc $ sudo modprobe bcm2708_wdog

pi@erpi /etc $ lsmod|grep wdog

bcm2708_wdog 2980 0

This LKM creates a new device entry in /dev:

pi@erpi /dev $ ls -l watchdog

crw------- 1 root root 10, 130 Oct 17 12:53 watchdog

You should enable this module on boot by adding an entry to the /etc/mod-

ules fi le and you can test that it loads by rebooting the RPi:

pi@erpi /etc $ more modules|grep bcm2708_wdog

bcm2708_wdog

pi@erpi ~ $ sudo reboot

pi@erpi ~ $ dmesg|grep watchdog

[6.880679] bcm2708 watchdog, heartbeat=10 sec (nowayout=1)

Once the hardware module is enabled you can install the watchdog timer

daemon under Raspbian. The daemon sends a message (heartbeat) to the watch-

dog device at a fi xed interval. Should the Linux OS become unresponsive, then

the watchdog timer daemon would be unable to fulfi ll this role, whereupon the

RPi hardware watchdog would automatically reboot the board. Once the dae-

mon is installed then a confi guration fi le is made available, which allows you

to confi gure the exact behavior of the watchdog daemon:

pi@erpi ~ $ sudo apt install watchdog chkconfig

pi@erpi /etc $ ls -l watchdog.conf

-rw-r--r-- 1 root root 1126 Oct 17 2014 watchdog.conf

Edit the confi guration fi le to associate the watchdog device and to set a maxi-

mum load level, by uncommenting the desired lines as shown:

pi@erpi /etc $ sudo nano watchdog.conf

pi@erpi /etc $ more watchdog.conf | grep /dev/watchdog

 Chapter 12 ■ The Internet of Things 529

c12.indd 08:44:35:PM 05/12/2016 Page 529

watchdog-device = /dev/watchdog

pi@erpi /etc $ more watchdog.conf |grep max-load-1

max-load-1 = 24

Then it can be started under either SysV init or systemd as follows:

pi@erpi /dev $ sudo chkconfig watchdog on

pi@erpi /dev $ sudo update-rc.d watchdog enable

pi@erpi /etc $ /etc/init.d/watchdog status

[ok] watchdog is running.

pi@erpi /dev $ sudo systemctl start watchdog

pi@erpi /dev $ sudo systemctl enable watchdog

The watchdog service should then run as a process on the RPi:

pi@erpi ~ $ ps aux|grep watchdog

root 2498 0.0 0.1 1828 1736 ? SLs 13:11 0:00 /usr/sbin/watchdog

To test that the watchdog timer is working correctly you can kill the watchdog

daemon. This simulates a real-world condition in which the daemon is prevented

from performing its duties as a result of system problems:

pi@erpi ~ $ sudo kill -9 2498

One alternative to using the watchdog daemon is developing a custom watch-

dog service that is tied specifi cally to your application. An example of such

an application is provided in /chp12/watchdog/watchdog.c. If you build the

principles of this code into an application, then you should “kick the dog” (i.e.,

reset the timer) each time an important block of code executes. For example,

if a sensor value were read every 15 seconds in your code example, then you

would also “kick the dog” each time you read the sensor value. That way, if

the application is unable to connect to the sensor, then the RPi would reboot

automatically. This is probably unnecessary, as a communications failure would

likely be caused by a system-wide issue that would typically result in the Linux

watchdog daemon rebooting the board.

Static IP Addresses

The RPi is confi gured by default to use the Dynamic Host Confi guration Protocol
(DHCP) for the allocation of its wired and wireless IP address. Network rout-

ers typically run a DHCP server that allocates a pool of addresses to devices

attached to the network. While DHCP works well for most devices on a local

network, it can cause diffi culties if you want to make the RPi visible outside a

home fi rewall via port forwarding. This is because DHCP devices may receive a

different IP address each time they boot (depending on the router’s lease time).

Port forwarding (a.k.a. port mapping) means that a particular port on the RPi (e.g.,

port 80) can be mapped to a port that is visible outside your fi rewall, thus mak-

ing a service on the RPi visible to the world. Many router/fi rewalls require the

RPi to have a static IP address to set up a port forward to it.

530 Part III ■ Advanced Interfacing and Interaction

c12.indd 08:44:35:PM 05/12/2016 Page 530

To allocate a static IP address to a network adapter, you can alter the /etc/

network/interfaces confi guration fi le to manually specify the address (e.g.,

192.168.1.33), the network mask, and the network gateway, with the following

format:

pi@erpi /etc/network $ more interfaces

The primary network interface

auto eth0

allow-hotplug eth0

iface eth0 inet static

 address 192.168.1.33

 netmask 255.255.255.0

 gateway 192.168.1.1

The RPi then has a static IP address after reboot:

molloyd@desktop:~$ ssh pi@192.168.1.33

pi@erpi ~ $

The same procedure applies to other adapter entries, such as the wlan0 wire-

less Ethernet adapter. Do not pick an address that is within the DHCP address

pool range or assigned to another device, or it will result in IP confl icts on the

network.

Power over Ethernet (PoE)

One common diffi culty in using the RPi as a web sensor is related to the provi-

sion of power. It is possible to power the RPi using batteries, and there are many

USB battery pack solutions available that can perform this role. For example, the

IntoCircuit Power Castle 11.2 Ah (~$40) is a popular choice that could in theory

power the RPi for ~50 hrs at an average load (this duration will fall dramatically

if Wi-Fi is used). For example, such a battery confi guration could be used for an

RPi mobile robot platform.

When a fi xed installation is required in a remote location (e.g., in a garden,

gate/entrance) where power sockets are not readily available, then Power over
Ethernet (PoE) is a good option. Regular Ethernet cables (Cat 5e or Cat 6) contain

four pairs of wires that are twisted together in order to cancel out electromag-

netic interference from external power sources. Low-cost unshielded twisted-pair
(UTP) cables can therefore transmit data (and power) over long distances of up

to 100 m/328 ft.

For standard Ethernet (100BASE-T), only two of the twisted pair wires are

actually used for data transfer; therefore, the other two pairs are available to

carry power. However, it is also possible to inject a common-mode voltage onto the

pair of wires that carry the data signals. This is possible because Ethernet over

twisted pair (similar to CAN bus, USB, and HDMI) uses differential signaling,

mailto:pi@192.168.1.33

 Chapter 12 ■ The Internet of Things 531

c12.indd 08:44:35:PM 05/12/2016 Page 531

which means that the receiver reads the difference between the two signals,

rather than their voltage level with respect to ground. External interference

affects both of the paired wires in the same way, so its impact is effectively can-

celed out by the differential signaling. PoE can therefore use the network cable

to deliver power to attached devices. This structure is commonly used by VoIP

phones and IP cameras so that they do not need a separate mains power point.

The RPi does not support PoE internally, so two main external options are

available:

 1. Use a pseudo-PoE cabling structure: Adafruit sells a Passive PoE Injector
Cable Set (~$6), illustrated in Figure 12-23, for which you can use a regular

5 V mains supply to inject power into the unused twisted pair wires, and

then draw that power at the other end of the cable. You can use the crimp

tool that is described in Chapter 4 to terminate the DC power connector

with a DuPont connector so that it can be attached to the RPi GPIO header

(e.g., pins 4 and 6). Do not connect such cables to a true PoE switch!

 2. Use a true PoE (IEEE 802.3af) switch: In order to send power over long

distances, PoE switches provide a 48 V DC supply. Therefore, a PoE power
extraction module is required to step down this voltage to a level that is

acceptable by the RPi.

Figure 12-23: AdaFruit pseudo-PoE cable

PoE Power Extraction Modules (PEMs) (Advanced Topic)

One problem with the arrangement in Figure 12-23 is that the 5 V supply volt-

age will drop as the cable length increases due to the impact of cable resistance.

Recently, low-cost network switches have become available that offer PoE func-

tionality. Power extraction modules (PEMs) can be purchased to step down the

48 V DC voltage that is supplied by these switches to lower, fi xed DC levels (e.g.,

3.3 V, 5 V, 12 V). The low-cost ($10–$15) PEM that is used in this section is the

PEM1305 (tiny.cc/erpi1205), which can be used to supply 5 V to the RPi. PoE

532 Part III ■ Advanced Interfacing and Interaction

c12.indd 08:44:35:PM 05/12/2016 Page 532

(802.3af) switches can provide up to 15.4 W of power per attached device. The

IEEE 802.3af standard (IEEE Standards Association, 2012) requires that true-PoE

devices support two types of PoE:

 ■ Type-A PoE: Uses a common-mode DC voltage on the data wires to carry

power. The spare pairs are unused.

 ■ Type-B PoE: Uses the spare pair of wires to carry power. The data pairs

are untouched.

Gigabit Ethernet uses all four pairs of wires to transmit data, so it is likely

that Type-A PoE will be dominant in future PoE network switches.

Figure 12-24 illustrates a circuit that can be used to power the RPi using a PoE

(IEEE 802.3af) supply. The PEM1305 can extract power from type-A and type-

B PoE confi gurations. However, you must connect the module to DC isolation

transformers in order to extract the power from the data wires. To do this, you

can use a MagJack (a jack with integrated magnetics) with center-tapped outputs

(e.g., the Belfuse 0826-1X1T-GJ-F). The MagJack contains the isolation transformers

that are required to provide the 48 V supply to the PoE PEM, and to deliver the

data pair safely to the RPi Ethernet jack at Ethernet signal voltage levels.

The resistor that is placed on the input side of the PEM1305 is used to select

the power output level of the PoE switch—accurately selecting the power out-

put level results in a more power-effi cient implementation. The output voltage

adjustment resistor can further refi ne the PEM output voltage level. The PEM

pin outputs can be connected directly to 5 V Pins (Pin 2 or Pin 4) and the GND

pins (Pin 6) of the RPi GPIO header.

Figure 12-24: True PoE connection for the T-568B wiring scheme

 Chapter 12 ■ The Internet of Things 533

c12.indd 08:44:35:PM 05/12/2016 Page 533

N O T E Be careful in your choice of PoE power extraction module and MagJack.

For example, the PEM1205 module appears to be very similar to the PEM1305, but it

does not have rectifi er bridges on the input, so you would need to add them yourself

(otherwise, the circuit could not handle true Ethernet cross-over cables). Also, many

Ethernet MagJacks do not have center-tap outputs from the isolation transformers

and so are unsuitable for use with PoE PEMs, as the center-tap outputs deliver the 48 V

DC power supply to the PEM.

Summary

After completing this chapter, you should be able to do the following:

 ■ Install and confi gure a web server on the RPi and use it to display static

HTML content.

 ■ Enhance the web server to send dynamic web content that uses CGI scripts

and PHP scripts to interface to RPi sensors.

 ■ Write the code for a C/C++ client application that can communicate using

either HTTP or HTTPS.

 ■ Interface to platform as a service (PaaS) offerings, such as ThingSpeak

and IBM Bluemix IoT, using HTTP and MQTT.

 ■ Use the Linux cron scheduler to structure workfl ow on the RPi.

 ■ Send e-mail messages directly from the RPi and utilize them as a trigger

for web services such as IFTTT.

 ■ Build a C++ client/server application that can communicate at a high

speed and a low overhead between any two TCP devices.

 ■ Manage remote RPi devices, using monitoring software and watchdog

code, to ensure that deployed services are robust.

 ■ Confi gure the RPi to use Wi-Fi adapters and static IP addresses, and wire

the RPi to utilize Power over Ethernet (PoE).

535

c13.indd 06:59:35:PM 05/05/2016 Page 535

This chapter describes how the Raspberry Pi can be confi gured to wirelessly

communicate to the Internet, and to wirelessly interface to devices and sensors

using different communication standards. The chapter begins with a descrip-

tion of how Bluetooth communications can be used to develop a wireless RPi

remote-control framework using mobile apps. Next, a description is provided on

how the RPi can be confi gured to connect to the Internet using USB Wi-Fi adapt-

ers. The discussion on Wi-Fi continues with a description of how the low-cost

NodeMCU (ESP8266) Wi-Fi microcontroller can be used to build a local network

of wireless things, which can communicate sensor values to the RPi and to an IoT

PaaS. The ZigBee protocol is then used to build peer-to-peer wireless networks

that use the popular XBee ZigBee devices. Finally, NFC/RFID is used to build

a simple security access control system. By the end of this chapter you should

be able to choose an appropriate wireless communication standard to suit your

needs and you should be able to build sophisticated wireless IoT applications.

Equipment Required for this Chapter:

 ■ Raspberry Pi (any model)

 ■ RPi 3 or USB Bluetooth adapter (e.g., Kinivo BTD-400)

 ■ Access to an Android mobile device

 ■ RPi 3 or USB Wi-Fi adapter (e.g., Wi-Pi)

C H A P T E R

13

Wireless Communication

and Control

536 Part III ■ Advanced Interfacing and Interaction

c13.indd 06:59:35:PM 05/05/2016 Page 536

 ■ NodeMCU microprocessor (version 2)

 ■ ZigBee modules (ideally the Digi XBee Series 2 ZigBee model)

 ■ An XBee USB Explorer and two XBee-to-breadboard adapters

 ■ An RFID card reader (ideally PN532 NFC compatible)

 ■ TMP36 temperature sensor (or other analog sensors)

Further details on this chapter are available at www.exploringrpi.com/

chapter13/.

Introduction to Wireless Communications

The addition of wireless capabilities to the RPi further enhances its applica-

tion possibilities in areas such as robotics, environmental sensing, and remote

imaging. Impressively, the RPi 3 has onboard wireless capabilities, and by using

USB devices and interfacing communication modules, many different commu-

nication types can be realized on all RPi models. For example, low-cost USB

Wi-Fi and Bluetooth adapters are widely available, many of which have Linux

driver support. In addition, other communication standards such as ZigBee and

near fi eld communication (NFC) can be realized by interfacing modules that have

serial-UART connections.

There is no single best solution for all projects; rather, each of the wireless

communication standards has different advantages and disadvantages:

 ■ Bluetooth is a popular standard for interfacing to computer peripherals,

audio devices, personal area networks (PANs), and mobile devices—all

applications where the data rate is not a critical factor. It has a low cost

and low power consumption profi le, which makes it particularly suitable

for battery-powered devices. Recently, Bluetooth low energy (LE) was

introduced, which aims to support very low-power applications while

maintaining comparable communication ranges.

 ■ Wi-Fi communication is more suitable than Bluetooth for full-scale net-

working applications in which a high data rate is critical; therefore, it is

popular with media-rich Internet-attached devices and laptop computers.

Unfortunately, Wi-Fi has heavy power consumption costs—as much as

40 times the power consumption of Bluetooth for comparable commu-

nication tasks.1

 ■ The ZigBee communication standard can also be utilized by the RPi, usu-

ally by interfacing via a UART device to XBee modules. XBee devices are

designed to have a low power profi le and they can communicate over

1 Rahul Balani, “Energy Consumption Analysis for Bluetooth, WiFi and Cellular Networks,”
Networked and Embedded Systems Laboratory, University of California, Los Angeles, Technical
Report, 2007.

http://www.exploringrpi.com
http://www.exploringrpi.com/chapter13/

 Chapter 13 ■ Wireless Communication and Control 537

c13.indd 06:59:35:PM 05/05/2016 Page 537

signifi cant distances, forming mesh network arrangements to further

extend the network range. Unfortunately, the maximum data rates are

quite limited in comparison to Bluetooth and Wi-Fi; however, the low

communications latency means that the standard is suitable for real-time

control.

 ■ NFC is a short-range radio communication standard that builds on radio
frequency identifi cation (RFID) communications. It supports a communication

range of up to 8 inches and enables very high data rates when the devices

are almost touching (i.e., less than 2 inches). NFC supports communication

with unpowered devices using inductive coupling.

The general characteristics of different wireless standards are summarized

in Table 13-1. Clearly the data rate and communications range are very impor-

tant factors in the choice of module. In this chapter each of these technologies

is interfaced to the RPi so that you have a starting point from which to work.

Table 13-1: Summary Comparison of Diff erent Wireless Standards

BLUETOOTH WIFI ZIGBEE NFC/RFID

Standard IEEE 802.15.1 IEEE 802.11 IEEE 802.15.4 ISO/IEC

Range 10m to 100m 50m to 100m 30m to 100m+ <20cm

Power Low High Very Low Very Low

Data Rate <2.1Mb/s 10 to 300Mb/s <250kb/s Up to 20Mb/s

Topology Star Star Mesh/Star Point-to-point

Organization Bluetooth SIG Wi-Fi Alliance ZigBee Alliance NFC Forum

Bluetooth Communications

Bluetooth is a popular wireless communication system that was created by

Ericsson and is now managed by the Bluetooth Special Interest Group (SIG).

Bluetooth was designed as an open standard to enable very different device

types to communicate wirelessly over short distances. It is often used for the

digital transfer of data for audio headsets, keyboards, computer mice, medical

devices, and many more applications. Only the RPi 3 has support for onboard

Bluetooth, but support can be added to other RPi models using low-cost USB

Bluetooth adapters.

Installing a Bluetooth Adapter

For models other than the RPi 3, the choice of USB Bluetooth adapter is very

important; not every adapter has Linux driver support. Ideally, you should

determine in advance of purchase that there is Linux support and that the device

538 Part III ■ Advanced Interfacing and Interaction

c13.indd 06:59:35:PM 05/05/2016 Page 538

works with the RPi. Unfortunately, that is not always possible; furthermore, as

Linux device driver support is usually chipset-dependent, it may even be the

case that two devices with the same model number and ostensibly the same

functionality have different chipsets, leaving one supported by Linux and the

other not. The USB Bluetooth adapter used in this section is the Kinivo BTD-400

Bluetooth 4.0 USB adapter (~$15), shown in Figure 13-1. It is commonly available,

and the current version uses a Broadcom chipset that has good Linux support.

The fi rst step is to install the packages that are required for Bluetooth con-

nectivity on all RPi models:

pi@erpi ~ $ sudo apt update

pi@erpi ~ $ sudo apt install bluetooth bluez

After installation, the USB adapter can be “hot plugged” into the RPi USB socket.

You can list the USB modules that are currently connected to the RPi using the

following command, where the Broadcom Corp. listing indicates that the USB

adapter has been detected:

pi@erpi ~ $ lsusb

Bus 001 Device 004: ID 0a5c:2198 Broadcom Corp. Bluetooth Device

Figure 13-1: Bluetooth-connected RPi

Checking the LKM

As discussed in Chapter 8, a Linux loadable kernel module (LKM) is a mechanism

for adding code to the Linux kernel at run time. They are ideal for device driv-

ers, enabling the kernel to communicate with the hardware without it having

to know how the hardware works. The alternative to LKMs would be to build

the code for each and every driver into the Linux kernel, which would lead to

an impractical kernel size and constant kernel recompilations. LKMs are loaded

at run time, but they do not exist in user space—they are essentially part of

the kernel. When the Bluetooth adapter is plugged into the RPi (or onboard

Bluetooth is enabled on the RPi 3), you can use the lsmod command to fi nd out

 Chapter 13 ■ Wireless Communication and Control 539

c13.indd 06:59:35:PM 05/05/2016 Page 539

which modules are loaded. For example, with a USB Bluetooth adapter, you can

see the btusb module is loaded:

pi@erpi ~ $ lsmod

Module Size Used by

btusb 29247 0

btbcm 4430 1 btusb

btintel 1381 1 btusb

bluetooth 327442 23 bnep,btbcm,btusb,btintel ...

With onboard Bluetooth on the RPi 3, an hci_uart module is loaded, as the

Bluetooth device is connected to an onboard UART device:

pi@erpi:~ $ lsmod

Module Size Used by

hci_uart 13533 1

btbcm 4196 1 hci_uart

bluetooth 317981 23 bnep,hidp,btbcm,hci_uart ...

The modprobe command enables you to add or remove an LKM to or from

the Linux kernel at run time. However, if everything has worked correctly, the

module should have loaded automatically. You can check dmesg for errors that

may have arisen. Using cat /proc/modules provides similar information about

the modules that are loaded, but it is in a less readable form. You can then test the

status of the Bluetooth service under either SysV init or systemd as follows:

pi@erpi ~ $ /etc/init.d/bluetooth status

[ok] bluetooth is running.

pi@erpi ~ $ systemctl status bluetooth

• bluetooth.service - Bluetooth service

 Loaded: loaded (/lib/systemd/system/bluetooth.service; enabled)

 Active: active (running) since Fri 2015-10-30 03:40:38 UTC; 36s ago

 Docs: man:bluetoothd(8)

 Main PID: 12307 (bluetoothd)

 Status: "Running"

 CGroup: /system.slice/bluetooth.service

 └─12307 /usr/lib/bluetooth/bluetoothd

Confi guring a Bluetooth Adapter

The hcitool command is used to confi gure Bluetooth connections, and if the

dev argument is passed it provides information about the local Bluetooth device:

pi@erpi ~ $ hcitool dev

Devices: hci0 00:02:72:CB:C3:53

This is the hardware device address of the adapter that was connected to my

board. Using this command you can scan for devices, display connections,

display power levels, and perform many more functions—check man hcitool

for more details.

540 Part III ■ Advanced Interfacing and Interaction

c13.indd 06:59:35:PM 05/05/2016 Page 540

At this point, you should be able to scan for Bluetooth devices in the vicinity.

Ensure that the devices are discoverable—that they can be found when a scan

takes place. For example, under Windows you have to explicitly make an adapter

discoverable, by using Windows taskbar ➪ (Bluetooth logo) ➪ right-click ➪ Open

Settings, and enabling “Allow Bluetooth devices to fi nd this computer.” You can

scan for Bluetooth devices in the vicinity of the RPi, and test communication

by sending an echo request using the BlueZ l2ping tool (use CTRL+C to quit):

pi@erpi ~ $ hcitool scan

Scanning 40:E2:30:13:CA:09 HOMEOFFICE-PC

pi@erpi ~ $ sudo l2ping 40:E2:30:13:CA:09

Ping: 40:E2:30:13:CA:09 from 00:02:72:CB:C3:53 (data size 44) ...

0 bytes from 40:E2:30:13:CA:09 id 0 time 4.27ms

0 bytes from 40:E2:30:13:CA:09 id 1 time 17.09ms ...

This means that the adapter on the RPi has discovered my desktop computer,

HOMEOFFICE-PC (the hcitool scan command may activate Bluetooth devices in

nearby rooms that use Bluetooth remote controls—smart televisions may magi-

cally activate!). The RPi can interrogate the available services on the desktop

computer using the following:

pi@erpi ~ $ sdptool browse 40:E2:30:13:CA:09

Browsing 40:E2:30:13:CA:09 ...

Service Name: Service Discovery

Service Description: Publishes services to remote devices

Service Provider: Microsoft ...

This output is followed by a long list of available services, such as an audio

source, audio sink, FTP server, printing service, and so on, each having its own

unique channel number. Chapter 14 examines how you can pair a user-interface

device to the RPi; however, this discussion focuses on how you can send com-

mands to the RPi from a desktop machine, tablet computer, or mobile phone.

Such a framework is suitable for localized wireless remote control of the RPi

for applications such as robotic control or home automation.

Making the RPi Discoverable

If the RPi is to act as a wireless server, it is vital that it is discoverable by the

client machines. The hciconfig command can confi gure the Bluetooth device

(hci0) to enable page and inquiry scans, as follows:

pi@erpi ~ $ hciconfig

hci0: Type: BR/EDR Bus: USB

 BD Address: 00:02:72:CB:C3:53 ACL MTU: 1021:8 SCO MTU: 64:1

 UP RUNNING PSCAN ISCAN

 RX bytes:5520 acl:45 sco:0 events:106 errors:0

 TX bytes:2413 acl:42 sco:0 commands:45 errors:0

pi@erpi ~ $ sudo hciconfig hci0 piscan

pi@erpi ~ $ sudo hciconfig hci0 name RaspberryPi

pi@erpi ~ $ sudo hciconfig hci0 name

hci0: Type: BR/EDR Bus: USB

 Chapter 13 ■ Wireless Communication and Control 541

c13.indd 06:59:35:PM 05/05/2016 Page 541

 BD Address: 00:02:72:CB:C3:53 ACL MTU: 1021:8 SCO MTU: 64:1

 Name: 'RaspberryPi'

A Serial Port Profi le (SPP) is required on the RPi to defi ne how virtual serial

ports are connected via Bluetooth connections. The sdptool can be used to

confi gure a profi le for a serial port (SP) on Bluetooth channel 22, and fi nd details

about available services using the following:

pi@erpi ~ $ sudo sdptool add --channel=22 SP

Serial Port service registered

N O T E To get the next step to work correctly, I had to start the bluetoothd pro-

cess with a --compat option for my adapter. This should be resolved over time.

pi@erpi /lib/systemd/system $ more bluetooth.service

...

ExecStart=/usr/lib/bluetooth/bluetoothd --compat

You must restart the Bluetooth service after making this fi le edit.

pi@erpi ~ $ sudo sdptool browse local

...

Service Name: Serial Port

Service Description: COM Port

Service Provider: BlueZ

Service RecHandle: 0x10005

Service Class ID List: "Serial Port" (0x1101)

Protocol Descriptor List:

 "L2CAP" (0x0100) "RFCOMM" (0x0003) Channel: 22 ...

At this point, a desktop computer or a tablet/phone device can be used to scan

for devices, as illustrated in Figure 13-2(a) (using an Android mobile phone). The

RPi should be detected with the hostname defi ned earlier in this section (i.e.,

RaspberryPi). However, in order to allow for communication between the RPi

and the desktop PC or mobile device, a serial connection needs to be established

to channel 22. The RPi must run a service that can listen for incoming connec-

tions on that specifi c Bluetooth channel, for example, by using the rfcomm tool:

pi@erpi ~ $ sudo rfcomm listen /dev/rfcomm0 22

Waiting for connection on channel 22

You can then use a serial terminal on the desktop machine with the associated

COM port, or you can use a Bluetooth Terminal App (e.g., the app by Qwerty),

as illustrated in Figure 13-2(b), to connect to the RPi rfcomm device (i.e., /dev/

rfcomm0).

A serial terminal can then be opened from the phone or tablet computer, as

illustrated in Figure 13-2(c). When a connection is formed to the RPi, the SSH

window displays the following:

pi@erpi ~ $ sudo rfcomm listen /dev/rfcomm0 22

Waiting for connection on channel 22

Connection from C4:3A:BE:00:D9:9 A to /dev/rfcomm0

Press CTRL-C for hangup

542 Part III ■ Advanced Interfacing and Interaction

c13.indd 06:59:35:PM 05/05/2016 Page 542

(a) (b) (c)

Figure 13-2: An Android mobile phone connecting to the RPi using Bluetooth: (a) device

pairing, (b) a Bluetooth terminal application setup, and (c) terminal communication

Do not stop this service. While the service is listening, open a second SSH

terminal to the RPi. In the second SSH terminal you can cat and echo to the

device associated with the Bluetooth serial connection rfcomm0:

pi@erpi ~ $ cat /dev/rfcomm0

Hello to the Raspberry Pi from an Android phone^C

pi@erpi ~ $ echo "Hello Android Phone from the RPi!" > /dev/rfcomm0

Figure 13-2(c) captures the resulting communication from the mobile device’s

perspective. At this point it is clear that the device is working, and you can con-

nect a minicom terminal to the mobile app or Windows terminal as follows:

pi@erpi ~ $ minicom -b 115200 -o -D /dev/rfcomm0

Welcome to minicom 2.7

OPTIONS: I18n

Port /dev/rfcomm0, 06:01:34

Hello from the Android device

Hello from the RPi

The resulting conversation is bidirectional and a message is sent whenever

the Enter key is pressed. Once you have established serial communication

between two devices, there is no limit to the number of possible applications.

One such application is the command control of the RPi using a graphical user

interface (GUI) that is running on an Android mobile device—this is the topic

of the next section.

 Chapter 13 ■ Wireless Communication and Control 543

c13.indd 06:59:35:PM 05/05/2016 Page 543

Android App Development with Bluetooth

There are many resources available for Bluetooth mobile application development

with both Android and iOS. Mobile apps could be used for projects such as the

remote control of an RPi robotic platform. For example, the app graphical user

interface could have forward, backward, left, and right buttons that send string

messages to a custom serial server that is running on the RPi. Code for such

a server is provided in Chapter 8 in the section titled “RPi LED Serial Server.”

A great place to start with mobile application development is the MIT App

Inventor (appinventor.mit.edu/). It consists of a very innovative web-based

graphical programming language (similar to MIT Scratch) for mobile appli-

cation development. You can pair an Android tablet or phone with the App

Inventor environment and view your code developments live on your mobile

device. The App Inventor API has Bluetooth client and server libraries that can

be integrated with your program code. Figure 13-3 illustrates a full Bluetooth

application running on my mobile phone that was built with App Inventor 2. It

is communicating to a minicom session that is executing on the RPi, while the

rfcomm service is started in a second terminal window. The (real) phone can

communicate directly with the RPi via Bluetooth using the custom-developed

mobile application.

Figure 13-3: An example App Inventor Android application that uses the Bluetooth code library

 to communicate to the RPi

544 Part III ■ Advanced Interfacing and Interaction

c13.indd 06:59:35:PM 05/05/2016 Page 544

This application was based on the Pura Vida Apps code example, which is

available at tiny.cc/erpi1301. The code for the example in Figure 13-3 has

not been made available in the GitHub repository, as it is strongly based on the

code described at that URL. Such a code example can be useful as the basis of an

Android application that is capable of sending commands and receiving data from

the RPi using Bluetooth communication. The receive function is on a 2.5-second

timer, so if the timer triggers halfway through a string being entered, then the

string is received in multiple parts. Applications that are developed with App

Inventor 2 can be distributed like regular applications (e.g., using .apk fi les to

be side-loaded on Android devices). The ERPi_Bluetooth_Chat.apk example

application is available in the /chp13/Android/ directory.

Wi-Fi Communications

Bluetooth is perfectly suited to local wireless remote control of the RPi, but Wi-Fi

is more suitable for high data rate wireless applications. Wi-Fi can also be used

for wireless remote control of the RPi but it requires a complex controller such

as a mobile phone/tablet. There are low-cost Bluetooth remote control devices

available that can be paired with the RPi and used for remote control appli-

cations, as discussed in Chapter 14. However, if you want to connect the RPi

wirelessly to the Internet, then Wi-Fi is the clear solution, despite its complexity

and power consumption cost.

Installing a Wi-Fi Adapter

Various popular low-profi le USB Wi-Fi adapters and the RPi 3 onboard adapter

are tested in this section, with the adapters and summary results illustrated

in Figure 13-4. The table lists indicative performance results that may not be

repeatable, as product revisions and Linux updates may affect the outcomes.

Once a USB Wi-Fi adapter is inserted (hot plugged) into the RPi, you can

confi rm that the network adapter is being detected using the lsusb command,

which should result in an output of the following form:

pi@erpi ~ $ lsusb

Bus 001 Device 004: ID 148f:5370 Ralink Tech, Corp. RT5370 Wireless Adapter

The adapter should be detected by the RPi and its chipset identifi ed. Sometimes

you may need to search for the latest fi rmware that is available for the adapter:

pi@erpi ~ $ sudo apt update

pi@erpi ~ $ apt-cache search RTL8188

firmware-realtek - Binary firmware for Realtek wired and wireless adapters

pi@erpi ~ $ sudo apt install firmware-realtek

 Chapter 13 ■ Wireless Communication and Control 545

c13.indd 06:59:35:PM 05/05/2016 Page 545

(a) (b) (c) (d) (e) (f)

Figure 13-4: A selection of Wi-Fi adapters and test results when they are connected to the RPi

If all goes well, the adapter should appear as wlanX in a call to ifconfig:

pi@erpi ~ $ ifconfig

wlan0 Link encap:Ethernet HWaddr 00:c1:41:39:0b:f2

 UP BROADCAST MULTICAST MTU:1500 Metric:1

 RX packets:0 errors:0 dropped:0 overruns:0 frame:0

 TX packets:0 errors:0 dropped:0 overruns:0 carrier:0

 collisions:0 txqueuelen:1000

 RX bytes:0 (0.0 B) TX bytes:0 (0.0 B)

The adapter can then be configured in the /etc/network/interfaces

confi guration fi le. The default entry under Raspbian is as follows:

auto wlan0

allow-hotplug wlan0

iface wlan0 inet manual

wpa-conf /etc/wpa_supplicant/wpa_supplicant.conf

Because the network connection is likely encrypted, these settings are not

suffi cient, but they will allow you to determine your network settings. By default,

the network adapter should already be active (or “up”):

pi@erpi ~ $ sudo ifup wlan0

ifup: interface wlan0 already configured

You can scan for wireless network access points, which will provide you with

the settings that are required for the next step:

pi@erpi ~ $ sudo iwlist wlan0 scan

wlan0 Scan completed :

 Cell 02 - Address: 98:FC:11:B5:32:96

 Channel:11 Frequency:2.462 GHz (Channel 11)

 Quality=70/70 Signal level=-37 dBm

 Encryption key:on ESSID:"DereksSSID"

546 Part III ■ Advanced Interfacing and Interaction

c13.indd 06:59:35:PM 05/05/2016 Page 546

 Bit Rates:1 Mb/s; 2 Mb/s; 5.5 Mb/s; 11 Mb/s; 9 Mb/s

 18 Mb/s; 36 Mb/s; 54 Mb/s ...

 IE: IEEE 802.11i/WPA2 Version 1

 Group Cipher : TKIP

 Pairwise Ciphers (2) : TKIP CCMP

 Authentication Suites (1) : PSK

Using these settings, you can generate a WPA passphrase using the wireless

access point name (SSID) and network password, as follows:

pi@erpi ~ $ sudo sh -c "wpa_passphrase DereksSSID DereksPrivatePassword →

 >> /etc/wpa_supplicant/wpa_supplicant.conf"

pi@erpi ~ $ sudo more /etc/wpa_supplicant/wpa_supplicant.conf

ctrl_interface=DIR=/var/run/wpa_supplicant GROUP=netdev

update_config=1

network={

 ssid="DereksSSID"

 #psk="DereksPrivatePassword"

 psk=427bd5463a8ad022a6de77c8fbdcecb4d6d9d4b96f982fbc57dbfe97c0a12345

}

You can then add other settings to the generated confi guration fi le (this step is

usually not required). For example:

pi@erpi ~ $ sudo more /etc/wpa_supplicant/wpa_supplicant.conf

ctrl_interface=DIR=/var/run/wpa_supplicant GROUP=netdev

update_config=1

network={

 ssid="DereksSSID"

 key_mgmt=WPA-PSK

 pairwise=CCMP TKIP

 group=CCMP TKIP

 psk=427bd5463a8ad022a6de77c8fbdcecb4d6d9d4b96f982fbc57dbfe97c0a12345

}

The /etc/network/interfaces confi guration fi le settings identify the location

of the wpa_supplicant.conf fi le. If you are testing multiple Wi-Fi adapters (e.g.,

wlan0, wlan1), then they can all be confi gured to use the same wpa_supplicant.

conf fi le. The network adapter interface can be restarted, the confi guration checked,

and then you can activate the wireless network adapter (wlan0), as follows:

pi@erpi ~ $ sudo systemctl restart networking

pi@erpi ~ $ ifconfig -a

wlan0 Link encap:Ethernet HWaddr 00:c1:41:39:0b:f2

 inet addr:192.168.1.108 Bcast:192.168.1.255 Mask:255.255.255.0

 ...

 RX bytes:496576 (484.9 KiB) TX bytes:11275 (11.0 KiB)

pi@erpi ~ $ hostname -I

192.168.1.116 192.168.1.108

The wireless adapter should now have been allocated an IP address via the

wireless access point and the network DHCP service. The auto wlan0 line in

 Chapter 13 ■ Wireless Communication and Control 547

c13.indd 06:59:35:PM 05/05/2016 Page 547

the /etc/network/interfaces fi le causes the wireless interface to start on boot.

You can disable this option until the adapter is fully working.

If these commands fail, then you should use dmesg to check for problems (e.g.,

dmesg|grep wlan0|more). If you receive the message “wpasupplicant daemon

failed to start,” then check the fi le /etc/wpa_supplicant/wpa_supplicant.conf

for any errors, and check that the power supply is suffi cient. If the adapter still

fails to function correctly, then you may need to build drivers for the board.

For example, for Realtek adapters you can download custom driver source code

from www.realtek.com.tw/downloads/ and build them on the RPi. If required,

you can bring the adapter down using ifdown wlan0.

You can get more useful information about your adapter confi guration using

iwconfig:

pi@erpi ~ $ iwconfig wlan0

wlan0 IEEE 802.11bgn ESSID:"DereksSSID"

 Mode:Managed Frequency:2.462 GHz Access Point: 98:FC:11:B5:32:96

 Bit Rate=52 Mb/s Tx-Power=20 dBm ...

Similarly, you can use the following command to present a display of the signal

strength properties, which updates the display every second:

pi@erpi ~ $ watch -n 1 cat /proc/net/wireless

Inter-| sta-| Quality |Discarded packets |Missed| WE

 face | tus |link level noise |nwid crypt frag retry misc|beacon| 22

 wlan0: 0000 70. -37. -256 0 0 0 4 41 0

Alternatively, you can use the wavemon application (sudo apt install wavemon)

to format that data appropriately for a Linux terminal.

One key advantage of Linux on an embedded device is the ease with which a

device can be connected to the Internet using the vast choice of low-cost Wi-Fi

adapters. Clearly the web server code, IoT code, and high-speed client/server

code examples from Chapter 12 are all directly applicable to a wireless RPi

device. Using Wi-Fi you can build untethered IoT devices and robots, typically

for indoor applications, that connect directly to the Internet.

The NodeMCU Wi-Fi Slave Processor

In Chapter 11, the Arduino is used as a slave processor for the RPi, where the

RPi can take control of its GPIOs and read analog values from its ADCs. The

Arduino can be extended with a Wi-Fi shield ($30+), or the Arduino Yún ($75)

can be used to build a wireless slave processor. However, there is a cheaper

option with a small footprint that can be interfaced directly to the RPi as a slave

processor: the NodeMCU.

The NodeMCU (nodemcu.com) uses the low-cost ESP8266 Wi-Fi microcontroller

module ($2–$3) to create a low-cost Lua-based development platform for IoT

applications. The NodeMCU version 2 ($5–$10) is breadboard ready and can be

http://www.realtek.com.tw/downloads

548 Part III ■ Advanced Interfacing and Interaction

c13.indd 06:59:35:PM 05/05/2016 Page 548

programmed over micro USB, which makes it a suitable prototyping platform

for the development of wireless slave devices. Figure 13-5 illustrates the bottom

and top of the NodeMCU processor along with its various input/output capa-

bilities, including ADC, GPIO, PWM, SPI, software-based I2C, and serial UART.

Figure 13-5: The bottom and top views of the low-cost NodeMCU (version 2) Wi-Fi slave

processor

The ESP8266 module itself contains the microcontroller and it is affi xed on top

of the NodeMCU prototyping platform as a tiny daughterboard. It is possible

to use the ESP8266 without the NodeMCU, but the ESP8266 module must be

affi xed to a breakout board to make it breadboard compatible. The documenta-

tion for the NodeMCU is available at tiny.cc/erpi1302, and the datasheet for

the ESP8266 is available at tiny.cc/erpi1303.

Flashing with the Latest Firmware

The NodeMCU implements internal USB-to-UART conversion using the same

CP2102 chipset that appears in Chapter 9. As discussed, there is typically built-

in driver support for this chipset in Linux and Windows.2

The most straightforward method of upgrading the fi rmware on the NodeMCU

is to download the open-source NodeMCU firmware programmer from

github.com/nodemcu/nodemcu-flasher and to download the latest fi rmware

from github.com/nodemcu/nodemcu-firmware/releases. You can choose a

fi rmware release with and without fl oating-point support. The “integer” ver-

sion without fl oating-point support is used in this section because it has a much

lower resource footprint, and it is useful to investigate the limitations of not

having fl oating-point operation support.

2 If device support is not available or requires an update, then see tiny.cc/erpi1310.

 Chapter 13 ■ Wireless Communication and Control 549

c13.indd 06:59:35:PM 05/05/2016 Page 549

The NodeMCU should appear as a device on your host OS, as illustrated for

Windows in Figure 13-6(a). Figure 13-6(b) illustrates the NodeMCU fi rmware

programmer in action. Note that you may have to press the reset button on the

NodeMCU to begin the fi rmware update.

(a) (b)

Figure 13-6: (a) The NodeMCU device profile under Windows, and (b) the NodeMCU firmware

programmer

Connecting the NodeMCU to Wi-Fi

Once the NodeMCU has been fl ashed with the latest fi rmware, you can use

PuTTY or the RPi minicom tool to connect to the device at 9,600 baud. For the

remaining steps in this section, the NodeMCU is attached to the RPi using a

USB-to-micro USB cable. Press the reset button on the NodeMCU after connect-

ing it via USB; you should see the following output:

pi@erpi ~ $ lsusb

Bus 001 Device 009: ID 10c4:ea60 Cygnal Integrated Products, Inc.

CP210x UART Bridge / myAVR mySmartUSB light

pi@erpi ~ $ ls -l /dev/ttyUSB*

crw-rw---- 1 root dialout 188, 0 Oct 24 16:56 /dev/ttyUSB0

pi@erpi ~ $ sudo apt install minicom

pi@erpi ~ $ minicom -b 9600 -o -D /dev/ttyUSB0 -s

Press the reset button on the NodeMCU; a few strange characters may appear.

Do not enable local echo in minicom, and be sure that you disable hardware

fl ow control:

N O T E You must disable hardware fl ow control in minicom to connect to the

NodeMCU device directly from the RPi via USB. You do this by pressing Ctrl+A Z O ➪

Serial port setup ➪ F (to set Hardware Flow Control to No). The -s option can be used

when executing minicom to place you directly in this menu. If the NodeMCU displays

the reset message but remains unresponsive, it is a symptom of incorrect hardware

fl ow control settings.

550 Part III ■ Advanced Interfacing and Interaction

c13.indd 06:59:35:PM 05/05/2016 Page 550

If all goes well, you are now able to issue commands to the NodeMCU using

Lua scripting, which is discussed in Chapter 5. Lua has a very low overhead,

which makes it suitable for use on this device. The fi rst step you should take is

to confi gure the NodeMCU so that it can connect to your Wi-Fi network:

NodeMCU 0.9.6 build 20150704 powered by Lua 5.1.4

lua: cannot open init.lua

> =wifi.sta.getip()

nil

> wifi.setmode(wifi.STATION)

> wifi.sta.config("DereksSSID","DereksPrivatePassword")

> =wifi.sta.getip()

192.168.1.120 255.255.255.0 192.168.1.1

> =wifi.sta.getmac()

18:fe:34:a5:91:91

> =wifi.sta.status()

5

A value of 5 indicates that the NodeMCU “station” now has an IP address.

These settings persist on the NodeMCU, even after it has been power cycled.

Programming the NodeMCU

To upload Lua programs to the NodeMCU from the RPi, you can use the

luatool, which can be downloaded and installed as follows:

pi@erpi ~ $ git clone https://github.com/4refr0nt/luatool

Cloning into 'luatool'...

pi@erpi ~ $ cd luatool/luatool/

pi@erpi ~/luatool/luatool $ ls

init.lua luatool.py main.luav

You can install the tool for all users on the RPi by placing it in the /usr/local/

bin/ directory:

pi@erpi ~/luatool/luatool $ sudo cp luatool.py /usr/local/bin

An example program is provided in /chp13/nodemcu/test/ and in

Listing 13-1 that establishes a simple web server on the NodeMCU. The simple

web server listens for TCP socket connections on port 80, and returns an HTML

“hello world” message to the web client.

Listing 13-1: /chp13/nodemcu/test/main.lua

-- a simple http server

srv=net.createServer(net.TCP)

gpio.mode(1,gpio.INPUT)

srv:listen(80,function(conn)

 conn:on("receive",function(conn,payload) print(payload)

 conn:send("HTTP/1.1 200 OK\n\n")

 conn:send("<html><body><h1> Hello from the NodeMCU.</h1>")

 conn:send("<h2> GPIO 1 = ")

 Chapter 13 ■ Wireless Communication and Control 551

c13.indd 06:59:35:PM 05/05/2016 Page 551

 conn:send(gpio.read(1))

 conn:send("</h2></body></html>")

 conn:on("sent",function(conn) conn:close() end)

 end)

end)

You must disconnect the minicom communications session in order to use the

luatool to upload the program to the NodeMCU device—the two programs

cannot share the same UART device connection. Because the luatool is installed

in the /usr/local/bin/ directory, you can execute it directly from the book’s

repository directory, as follows:

pi@erpi .../chp13/nodemcu/test $ ls

main.lua

pi@erpi .../chp13/nodemcu/test $ luatool.py -p /dev/ttyUSB0 -b 9600

->file.open("main.lua", "w") -> ok

->file.close() -> ok

->file.remove("main.lua") -> ok

->file.open("main.lua", "w+") -> ok

->file.writeline([==[-- a simple http server]==]) -> ok

->file.writeline([==[srv=net.createServer(net.TCP)]==]) -> ok ...

--->>> All done <<<---

After a successful upload, you can once again connect to the NodeMCU using

minicom. The program is named main.lua on the NodeMCU, so the warning

message remains in relation to the absence of init.lua. This is perfectly fi ne—

you should only write an init.lua script that automatically invokes main.lua

on startup when you are certain that it is functioning correctly. For the moment

it is best to manually call the main.lua script as follows so that you can observe

any output errors within the minicom session:

pi@erpi ~ $ minicom -b 9600 -o -D /dev/ttyUSB0 -s

NodeMCU 0.9.6 build 20150704 powered by Lua 5.1.4

lua: cannot open init.lua

> node.restart()

...

NodeMCU 0.9.6 build 20150704 powered by Lua 5.1.4

lua: cannot open init.lua

> =node.info()

0 9 6 10850705 1458415 4096 2 40000000

> =wifi.sta.getip()

192.168.1.120 255.255.255.0 192.168.1.1

You can then execute the program as follows:

> dofile("main.lua")

Once the program has started, you can open a web browser on your

desktop machine and direct it at the IP address of the NodeMCU device

(http://192.168.1.120/ in the example). In addition to the hello message, the

Lua program displays the state of the D1 pin (GPIO 5). If you tie this pin high

(to 3.3 V) or low (to GND), you will see that the web page changes to display

the current GPIO state when the reload button is clicked on the web browser.

http://192.168.1.120/intheexample

552 Part III ■ Advanced Interfacing and Interaction

c13.indd 06:59:35:PM 05/05/2016 Page 552

The NodeMCU Web Server Interface

The NodeMCU can be used as a wireless slave processor for the RPi, whereby

communication takes place over TCP/IP, using the socket-based techniques that

are described in Chapter 12. A circuit is illustrated in Figure 13-7(a) that can be

used to read from a GPIO, write to a GPIO, and read from the 10-bit ADC on

the NodeMCU. The NodeMCU uses 3.3 V logic levels, despite being powered

at 5 V using the Vin pin. However, while the NodeMCU is tethered to the RPi

using the USB cable, no external power supply is required. Remember though

that communication, such as that illustrated in Figure 13-7(b), is taking place

over Wi-Fi, not via the USB cable. Once development is complete, the USB cable

can be removed and the NodeMCU can be powered by an external supply, such

as a 5 V battery, using the Vin and GND pins.

(a) (b)

Figure 13-7: NodeMCU Wi-Fi slave test: (a) the test circuit, and (b) the web page output

The code for this example is provided in Listing 13-2. The program converts the

ADC value presented by the TMP36 sensor into a temperature value; however, it

does this using integer-based calculation only. As discussed, the fi rmware with-

out fl oating-point support has a lower footprint and better performance. Should

you need fl oating-point support, you can download and fl ash the NodeMCU

with the fl oating-point fi rmware, as described previously in this chapter.

The LED fl ashes each time a request is received. Note that it fl ashes twice when

the Chrome browser in Figure 13-7(b) sends a request, as the browser actually

sends two requests: one for the HTML page, and another for the website icon.

Listing 13-2: /chp13/nodemcu/web/main.lua

srv=net.createServer(net.TCP)

gpio.mode(1,gpio.INPUT) -- the button

gpio.mode(7,gpio.OUTPUT) -- the LED

srv:listen(80,function(conn)

 conn:on("receive",function(conn,payload) print(payload)

 gpio.write(7, gpio.HIGH)

 Chapter 13 ■ Wireless Communication and Control 553

c13.indd 06:59:35:PM 05/05/2016 Page 553

 conn:send("HTTP/1.1 200 OK\n\n")

 conn:send("<html><body><h1> Hello RPi from the NodeMCU</h1>")

 conn:send("<div> The device ID is = ")

 conn:send(node.chipid())

 -- using integers only! float version uses more memory

 raw_voltage = adc.read(0) - 233 -- 233 is 25C

 diff_degC = raw_voltage / 6 -- 6 steps is 1C

 temperature = diff_degC + 25 -- add/sub from 25

 conn:send("<div> The temperature is ")

 conn:send(temperature)

 conn:send(" degrees Celsius</div>")

 conn:send("<div> The GPIO 1 Value = ")

 conn:send(gpio.read(1))

 conn:send("</div></body></html>")

 gpio.write(7, gpio.LOW)

 conn:on("sent",function(conn) conn:close() end)

 end)

end)

You can upload this program, start it, and test it using the steps described

in the previous section. You can also test the output directly from the RPi using

the web browser code described in Chapter 12. For example:

pi@erpi ~/exploringrpi/chp12/webbrowser $./webbrowser 192.168.1.120

Sending the message: GET / HTTP/1.1

Host: 192.168.1.120

Connection: close

START

HTTP/1.1 200 OK

<html><body><h1> Hello RPi from the NodeMCU</h1><div> The device ID is

= 10850705<div> The temperature is 23 degrees Celsius</div><div> The

GPIO 1 Value = 0</div></body></html>

END

This provides you with a method of writing code on the RPi that can com-

municate to the NodeMCU slave processor in order to retrieve information over

TCP/IP. However, it would be a better solution if the data was easier to parse

than the HTML output in this example—for this you can use JSON.

JSON

JSON is a lightweight data-interchange format that supports serialization and

deserialization of data values from strings. It is described briefl y in Chapter 12

where a data sample is transmitted from the RPi to the IBM Bluemix IoT ser-

vice using MQ Telemetry Transport (MQTT). It is relatively straightforward to

format a message for transmission, but it is more diffi cult to parse the received

message. In this example, the NodeMCU transmits a JSON message to the RPi

and the RPi must parse the message. JsonCpp is a lightweight C++ library that

554 Part III ■ Advanced Interfacing and Interaction

c13.indd 06:59:35:PM 05/05/2016 Page 554

can be used for this task, but fi rst it must be built and deployed on the RPi. It

is useful to note that the library also has Python bindings. You can install the

JsonCpp library on the RPi as follows:

pi@erpi ~ $ git clone https://github.com/open-source-parsers/jsoncpp.git

pi@erpi ~ $ cd jsoncpp/

pi@erpi ~/jsoncpp $ sudo apt install cmake

pi@erpi ~/jsoncpp $ mkdir -p build/debug

pi@erpi ~/jsoncpp $ cd build/debug

pi@erpi ~/jsoncpp/build/debug $ cmake -DCMAKE_BUILD_TYPE=debug →

-DBUILD_STATIC_LIBS=ON -DBUILD_SHARED_LIBS=OFF -DARCHIVE_INSTALL_DIR=. →

-G "Unix Makefiles" ../..

pi@erpi ~/jsoncpp/build/debug $ make

pi@erpi ~/jsoncpp/build/debug $ sudo make install

Listing 13-3 is a short JSON data fi le that can be used to test the JsonCpp

library on the RPi. The fi le contains two fi elds: a fl oating-point temperature

value, and a Boolean value that describes the state of a button.

Listing 13-3: /chp13/json/data.json

{

 "temperature" : 28.5,

 "button" : true

}

Listing 13-4 is a C++ example program that uses the JsonCpp library to parse

the data.json fi le in Listing 13-3.

Listing 13-4: /chp13/json/json_test.cpp

#include "json/json.h"

#include<iostream>

#include<fstream>

using namespace std;

int main(){

 Json::Value root; // the parsed data is at the root

 Json::Reader reader; // read from the data.json file

 ifstream data("data.json", ifstream::binary);

 bool success = reader.parse(data, root, false);

 if(!success){ // has the parsing failed?

 cout << "Failed: " << reader.getFormattedErrorMessages() << endl;

 }

 // the deserialized data can be converted to a float and a bool

 float temperature = root.get("temperature", "UTF-8").asFloat();

 bool button = root.get("button", "UTF-8").asBool();

 cout << "The temperature is " << temperature << "°C" << endl;

 cout << "The button is " << (button ? "pressed":"not pressed") << endl;

 return 0;

}

 Chapter 13 ■ Wireless Communication and Control 555

c13.indd 06:59:35:PM 05/05/2016 Page 555

Once the data fi le is open, the call root.get("temperature", "UTF-8").

asFloat() is used to get the temperature fi eld value. It is important to note that

the deserialized return value is of the type float. The JSON library has performed

all of the work involved in parsing the fi le, identifying the temperature fi eld,

and deserializing the data. The program can be built and executed as follows:

pi@erpi .../chp13/json $ g++ json_test.cpp libjsoncpp.a -o test

pi@erpi .../chp13/json $./test

The temperature is 28.5°C

The button is pressed

Communicating Using JSON Messages

JSON can be used for all types of data interchange and it is not limited to

use with NodeMCU devices; however, it is useful to develop a client/server

socket example so that the RPi can communicate with the NodeMCU over

Wi-Fi and then easily parse the communications response. Listing 13-5 is a Lua

program that executes on the NodeMCU. It is very similar to Listing 13-2, with

the exception that the return data is constructed as a JSON string of the form:

{ "temperature" : X, "button" : Y }, where X and Y are the temperature

and button press states.

Listing 13-5: /chp13/jsonNodeMCU/main.lua

-- a simple http server

srv=net.createServer(net.TCP)

gpio.mode(1,gpio.INPUT)

gpio.mode(7,gpio.OUTPUT)

srv:listen(80,function(conn)

 conn:on("receive",function(conn,payload) print(payload)

 gpio.write(7, gpio.HIGH)

 conn:send("{\n")

 raw_voltage = adc.read(0) - 233 -- 233 is 25C

 diff_degC = raw_voltage / 6 -- 6 steps is 1C

 temperature = diff_degC + 25 -- add/sub from 25

 conn:send(" \"temperature\" : ")

 conn:send(temperature)

 conn:send(",\n")

 conn:send(" \"button\" : ")

 if gpio.read(1)==1 then

 conn:send("true\n")

 else

 conn:send("false\n")

 end

 conn:send("}\n")

 gpio.write(7, gpio.LOW)

 conn:on("sent",function(conn) conn:close() end)

 end)

end)

556 Part III ■ Advanced Interfacing and Interaction

c13.indd 06:59:35:PM 05/05/2016 Page 556

The code can be uploaded to the NodeMCU and executed as before:

pi@erpi .../chp13/jsonNodeMCU $ luatool.py -p /dev/ttyUSB0 -b 9600

pi@erpi .../chp13/jsonNodeMCU $ minicom -b 9600 -o -D /dev/ttyUSB0 -s

NodeMCU 0.9.6 build 20150704 powered by Lua 5.1.4

lua: cannot open init.lua

> node.restart()

> dofile("main.lua")

You can test that the script is working correctly by opening the NodeMCU

web page, whereupon you should see an output of the following form:

{

 "temperature" : 22,

 "button" : true

}

The C++ socket code from Chapter 12 and the JsonCpp code from Listing 13-4

can be merged to create a program that can communicate to the NodeMCU using

TCP sockets and parse the JSON response. An example is shown in Listing 13-6.

Listing 13-6: /chp13/jsonNodeMCU/jsonNodeMCU.cpp

#include <iostream>

#include "json/json.h"

#include "network/SocketClient.h"

using namespace std;

using namespace exploringRPi;

int main(int argc, char *argv[]){

 Json::Value root;

 Json::Reader reader;

 if(argc!=2){

 cout << "Usage is: jsonNodeMCU nodeMCU_IP" << endl;

 return 2;

 }

 SocketClient sc(argv[1], 80);

 sc.connectToServer();

 string message("GET / HTTP/1.1");

 sc.send(message);

 string rec = sc.receive(1024);

 bool success = reader.parse(rec, root, false);

 if(!success){ // has the parsing failed?

 cout << "Failed: " << reader.getFormattedErrorMessages() << endl;

 }

 float temperature = root.get("temperature", "UTF-8").asFloat();

 bool button = root.get("button", "UTF-8").asBool();

 cout << "The temperature is " << temperature << "°C" << endl;

 cout << "The button is " << (button ? "pressed":"not pressed") << endl;

 return 0;

}

Listing 13-6 gives the following output when it is executed:

pi@erpi ~/exploringrpi/chp13/jsonNodeMCU $./build

pi@erpi ~/exploringrpi/chp13/jsonNodeMCU $./jsonNodeMCU 192.168.1.120

The temperature is 21°C

 Chapter 13 ■ Wireless Communication and Control 557

c13.indd 06:59:35:PM 05/05/2016 Page 557

The button is not pressed

pi@erpi ~/exploringrpi/chp13/jsonNodeMCU $./jsonNodeMCU 192.168.1.120

The temperature is 20°C

The button is pressed

Note that the LED attached to the NodeMCU only fl ashes once in this example,

as only a single HTTP request is received—there is no request for a website icon.

This approach to device messaging can be applied to other applications. For

example, it could also be used to facilitate two RPi boards in communicating

over TCP/IP.

The NodeMCU and MQTT

The NodeMCU fi rmware has full built-in support for MQTT. Therefore, the

MQTT frameworks that are described in Chapter 12 can be used for brokered

communication between the NodeMCU and the RPi. For example, the NodeMCU

could publish sensor data to an IoT Platform as a Service (PaaS) and the RPi could

subscribe to the same data stream. Listing 13-7 provides an MQTT example that

runs directly on the NodeMCU. To use this example, you must create a device

on the MQTT PaaS using the instructions in Chapter 12. For example, I created

a NodeMCU device on IBM Bluemix IoT with the following settings:

Organization ID 4wyix6

Device Type NodeMCU

Device ID node01

Authentication Method token

Authentication Token &hnss1h+1i_*qKvMBH

The Lua code in Listing 13-7 uses these properties to connect the NodeMCU

to the PaaS. The program opens an MQTT connection and publishes ten samples

from the temperature sensor at ten-second intervals. Once ten samples have

been sent, the program closes the connection to the PaaS. The program uses

the same circuit that is illustrated in Figure 13-7(a).

Listing 13-7: /chp13/nodemcu/mqtt/main.lua

-- a simple NodeMCU MQTT publish example for IBM Bluemix IoT

BROKER = "4wyix6.messaging.internetofthings.ibmcloud.com"

BRPORT = 1883

BRUSER = "use-token-auth"

BRPWD = "&hnss1h+1i_*qKvMBH"

DEVID = "d:4wyix6:NodeMCU:node01"

TOPIC = "iot-2/evt/status/fmt/json"

count = 0 -- used to count the number of samples sent

gpio.mode(7, gpio.OUTPUT)

gpio.write(7, gpio.HIGH)

print("Starting the NodeMCU MQTT client test")

print("Current heap is: " .. node.heap()) -- .. appends strings

m = mqtt.Client(DEVID, 120, BRUSER, BRPWD) -- keep alive time 120s

m:connect(BROKER, BRPORT, 0, function(conn) -- secure off

 print("Connected to MQTT Broker: " .. BROKER)

558 Part III ■ Advanced Interfacing and Interaction

c13.indd 06:59:35:PM 05/05/2016 Page 558

 tmr.alarm(0, 10000, 1, function() -- repeat is on

 publish_sample()

 print("Time for another sample")

 count = count + 1

 end)

end)

function publish_sample()

 raw_voltage = adc.read(0) - 233 -- 233 is 25C

 diff_degC = raw_voltage / 6 -- 6 steps is 1C

 temp = diff_degC + 25 -- add/sub from 25

 msg = string.format("{\"d\":{\"Temp\": %d }}", temp)

 m:publish(TOPIC, msg, 0, 0, function(conn)

 print("Published a message: " .. msg)

 print("Value of count is: " .. count)

 if count>=10 then

 close()

 timer.cancel(0)

 end

 end)

end

function close()

 m:close()

 print("End of the NodeMCU MQTT Example")

 gpio.write(7, gpio.LOW)

end

This program can be uploaded from the RPi and executed on the NodeMCU

as follows:

pi@erpi .../chp13/nodemcu/mqtt $ luatool.py -p /dev/ttyUSB0 -b 9600

NodeMCU 0.9.6 build 20150704 powered by Lua 5.1.4

lua: cannot open init.lua

> node.restart()

> dofile("main.lua")

Starting the NodeMCU MQTT client test

Current heap is: 29072

Connected to MQTT Broker: 4wyix6.messaging.internetofthings.ibmcloud.com

Time for another sample

Published a message: {"d":{"Temp": 23 }}

Value of count is: 1

...

Published a message: {"d":{"Temp": 22 }}

Value of count is: 10

End of the NodeMCU MQTT Example

The LED attached to the NodeMCU turns on when the program begins and

turns off when the communication transaction has completed.

This fi nal application of the NodeMCU demonstrates the numerous possibili-

ties of IoT frameworks—it is possible to have many low-cost devices such as the

NodeMCU wirelessly publishing sensor data to a cloud platform, whereupon

the cloud platform can execute programs to analyze the data and trigger events

on other such devices that are subscribed to data streams. The computationally

 Chapter 13 ■ Wireless Communication and Control 559

c13.indd 06:59:35:PM 05/05/2016 Page 559

powerful nature of the RPi means that it can aggregate data locally and/or per-

form advanced interactions (e.g., using computer vision techniques to recognize

a face) for IoT applications. Finally, the example also confi rms the low-overhead

nature of MQTT, as it can clearly be used on a low-cost microcontroller such as

the ESP8266 for persistent data communications.

ZigBee Communications

ZigBee is a global standard for power-effi cient, low data rate, embedded wire-

less communication. It supports the concept of wireless mesh networking, in

which nodes cooperate to relay data. This allows the range of the network to

be extended far beyond what is possible with the single access point model. In

addition, the mesh network can heal itself should a node in the network be lost.

The ZigBee standard is maintained by the ZigBee Alliance (zigbee.org), a non-

profi t association of approximately 450 members, who promote the use of ZigBee.

Introduction to XBee Devices

Digi (digi.com) XBee devices, such as those illustrated in Figure 13-8(a), are pos-

sibly the best known hardware realization of the ZigBee standard. However, not

all XBee devices are actually ZigBee compatible. In fact, Digi also manufactures

devices that use a proprietary DigiMesh protocol for mesh networking, which

is not compatible with ZigBee.3 Care must be taken in choosing your devices.

The ZigBee protocol defi nes three types of nodes:

 1. Coordinators. There is one coordinator in each network that is used to

establish the network and to distribute security keys. For RPi applica-

tions, the coordinator is usually connected directly to the RPi via a UART

connection.

 2. Routers. These nodes relay data from device to device and are not permit-

ted to sleep.

 3. End Devices. These devices are the leaf nodes in the network. They take

information from sensor devices, and transmit it to routers and coordina-

tors. They cannot relay data from other nodes, but are permitted to sleep.

In contrast, the DigiMesh protocol simplifi es the mesh structure by using only

one type of node that can take on any of the ZigBee roles. Unfortunately, it is not

compatible with the ZigBee protocol or other vendor solutions. A separate XBee
802.15.4 standard version is also available, but it only supports point-to-point

or point-to-multipoint networking—it does not support mesh networking. The

model numbering scheme used by Digi is confusing, but once you understand the

3 A white paper is available at tiny.cc/erpi1309 that describes the differences between
ZigBee and DigiMesh in detail.

560 Part III ■ Advanced Interfacing and Interaction

c13.indd 06:59:35:PM 05/05/2016 Page 560

difference between ZigBee and DigiMesh you can choose a module accordingly.

Table 13-2 summarizes these differences and lists the current naming conven-

tion for devices, which all operate at 2.4 GHz and are in a through-hole package.

(a) (b)

Figure 13-8: (a) The XBee Pro S2 and XBee S2 devices with wire antennas, and (b) the SparkFun

XBee USB Explorer

Table 13-2: Comparison of XBee Models

XBEE NAME

PROTOCOL/

TOPOLOGY DESCRIPTION

Series 2

ZigBee

ZigBee/Mesh Standardized and interoperable with other vendor

solutions. This model supports AT and API modes.

There must be one coordinator in each network.

Coordinators and routers cannot sleep.

Series 1

802.15.4

802.15.4/

Multipoint

Good point-to-point and point-to-multipoint

support.

Series 1

DigiMesh

DigiMesh/Mesh Uses fi rmware to implement proprietary mesh

networking on Series 1 modules. Only one type of

node is required.

www.digi.com/lp/xbee

The XBee Pro S2 and XBee S2 devices4 are shown side by side in Figure

13-8(a). They have compatible pin layouts, but the XBee Pro S2 is physically

longer. The Pro version is somewhat more expensive (~$29 versus ~$19) and uses

greater power levels (63mW versus 2mW), but it is capable of free-space com-

munication distances of up to 1 mile, whereas the non-Pro version is limited to

approximately 400 feet. The versions in Figure 13-8(a) include an on-board wire

antenna, which is a delicate but convenient option. Alternative confi gurations

4 The precise Digi modules used in this section are the XBee PRO ZB with a wire antenna (XBP24-
Z7WIT-004) and The XBee ZB with a wire antenna (XB24-Z7WIT-004).

http://www.digi.com/lp/xbee

 Chapter 13 ■ Wireless Communication and Control 561

c13.indd 06:59:35:PM 05/05/2016 Page 561

include PCB trace antennas or external u.FL/RP-SMA antennas. The latter are

particularly useful if you intend to place your project inside a metal and/or

weather-sealed box. Most XBee devices, like Wi-Fi devices, operate at 2.4GHz.

This band of frequencies does not need a license, as transmissions in this band

do not interfere with licensed frequency bands, such as those used for radio

broadcast and cellular phones.

Note that the 2 mm pin spacing on XBee modules is not compatible with

0.1-inch (2.5 mm) breadboard spacing, which means that an adapter board

($2–$3) is required for prototyping work. Also, remember to purchase at least

two XBee modules—they are not much use on their own!

AT versus API Mode

XBee devices can be used in two modes, and it is important that you understand

the distinction:

 ■ AT command mode. ATtention commands are instructions that are used to

control serial devices such as modems. These devices relay data precisely,

but when a certain string of characters is sent to the device, it enters a

special AT mode. This is the default mode of operation on XBee devices

and it hides much of the underlying communications complexity. In

effect, two XBee devices confi gured in this mode behave somewhat like

a wireless serial UART connection. However, in this mode XBee devices

enter AT command mode when the characters +++ are sent to the device.

Subsequent AT commands, which are prefi xed by the characters AT, can

then be issued. For example, ATID returns the network ID (PAN ID). This

topic is discussed in more detail shortly.

 ■ API mode. The Digi XBee devices can also be used in API mode, which

is used to transmit structured frames of data. The frames of data can be

addressed and sent to an individual module without having to reprogram

the device. In addition, API mode facilitates interaction with the input/

output (I/O) capabilities of an XBee module, and it provides support for

the receipt of data transfer acknowledgements.

API mode is much more capable than AT mode, but it is more complex to

program. In the following sections an application is developed in both modes.

XBee Confi guration

Once you have XBee devices, the fi rst step is to confi gure them using your desk-

top computer and a device such as the SparkFun XBee USB Explorer, which is

illustrated in Figure 13-8(b). The most intuitive way to confi gure an XBee device

is to use the XCTU software platform from Digi.

562 Part III ■ Advanced Interfacing and Interaction

c13.indd 06:59:35:PM 05/05/2016 Page 562

XCTU

XCTU is a full-featured GUI-based confi guration platform for XBee devices that

is provided by Digi. It can discover modules that are attached to your desktop

computer using the XBee USB Explorer, as illustrated in Figure 13-9(a), and

confi gure the network properties, such as the PAN ID, as illustrated in Figure

13-9(b). XCTU is available for free on Windows, MacOS X, and Linux. You can

download it from www.digi.com/xctu.

(a) (b)

Figure 13-9: The Digi XCTU software: (a) device discovery using an XBee USB adapter, and (b)

the device configuration window

Confi guring an XBee Network Using XCTU

The fi rst thing you should do with XCTU is to update the XBee modules to the

latest fi rmware. Click the Update Firmware button (see Figure 13-9b) and then

choose the product family, function set, and fi rmware version. There are different

fi rmware versions depending on whether you are using AT or API mode, and

whether you are setting up a coordinator, router, or end device. These options

are described throughout this section.

To confi gure an AT or API-based network, you must set a PAN ID. The per-
sonal area network ID is a 16-bit address that allows you to confi gure a set of

XBee devices to be on the same network. This network ID facility allows you

to create multiple networks of devices that are independent from each other,

even at the same physical location. To establish a network, ensure that all of the

devices have the same PAN ID.

The two examples that follow provide step-by-step instructions on confi guring

XBee devices in AT and API mode. Each example identifi es and utilizes differ-

ent fi rmware versions, which necessitates the use of XCTU in reprogramming

the fi rmware of the devices.

http://www.digi.com/xctu

 Chapter 13 ■ Wireless Communication and Control 563

c13.indd 06:59:35:PM 05/05/2016 Page 563

RESETTING OLDER/GENERIC XBEE USB EXPLORERS

You may have a SparkFun XBee USB Explorer from an older project or you may have

purchased a generic XBee USB Explorer that does not have a reset button. If so, you

may see a message such as the one in Figure 13-10(a) when you use it to update the

fi rmware. You can add a pushbutton to the RST and GND pins on your XBee USB

Explorer, as illustrated in Figure 13-10(b). The reset button that is illustrated in Figure

1-5(a) is ideal for this application.

(a) (b)

Figure 13-10: (a) XCTU firmware update reset warning, and (b) a reset pushbutton

modification for the XBee USB Explorer

An XBee AT Mode Example

In this example, an Arduino is confi gured to be a wireless temperature sensor

for the RPi. The Arduino takes an analog reading from the TMP36 temperature

sensor and converts the voltage value into degrees Celsius (or Fahrenheit). One

XBee router module in AT mode is connected to the Arduino (termed XBeeA).

A second XBee coordinator module in AT mode is connected to the RPi (termed

XBeePi). To be clear, both modules are physically identical but they will have

different roles as a result of the fi rmware that is written to them. The fi nal cir-

cuit is illustrated in Figure 13-12, but you should not connect it at this point, as

the modules must be confi gured. In AT mode the XBee modules behave like

a wireless UART connection, but you must fi rst pair the devices to establish

communication. Each device must be confi gured with the destination address

set to that of the other XBee module.

Setting Up the Arduino XBee Device (XBeeA)

Place the XBeeA module in the XBee USB Explorer and attach it to your desk-

top machine—ensure that you align the pin numbers on the XBee module and

564 Part III ■ Advanced Interfacing and Interaction

c13.indd 06:59:35:PM 05/05/2016 Page 564

the XBee USB Explorer. Click the Discover button in XCTU (as indicated in

Figure 13-9(b)); the device appears in the list of available modules. In my case,

XBeeA has the MAC address 0013 A200 40C8B460.

In XCTU, perform the following confi guration steps:

 ■ Update to the latest fi rmware for a ZigBee Router AT (version 22A7 at

the time of writing).

 ■ Change the PAN ID to 5432. Both XBee devices will use this address.

 ■ Change the serial Baud Rate (BD) to 115,200. XCTU updates the device

settings when you write this value to the XBee.

 ■ Read the Destination Address (DH/DL) from the bottom of the XBeePi

(see Figure 13-11a) and enter it as the destination address for XBeeA: DH as

0013A200 and DL as 40E8E355 in my case, as illustrated in Figure 13-11(b).

(a) (b)

Figure 13-11: Configuring the Arduino XBee to connect to the RPi XBee Device: (a) the RPi XBee,

and (b) Arduino XBee XCTU settings

Connect XBeeA to the Arduino as illustrated in Figure 13-12(a) but do not

connect the RX and TX lines at this point. Listing 13-8 is an Arduino sketch that

interfaces to analog input pin A0, reads in the current voltage, and converts it

to degrees Celsius (as described in Chapter 11). The code then sends a JSON

string out on the serial connection. You can change tempC to tempF to transmit

the temperature in degrees Fahrenheit.

N O T E You must disconnect the TX and RX lines from the Arduino to the XBee

device when you are programming the Arduino or you will have communication prob-

lems. If you are doing this regularly, then it might be worth adding two slider switches

to your breadboard circuit.

Listing 13-8: chp13/xbee/at/xbee.ino

const int analogInPin = A0; // analog input for the TMP36

void setup(){

 pinMode(13, OUTPUT);

 Serial.begin(115200, SERIAL_8N1);

}

void loop(){ // update registers every five secs

 Chapter 13 ■ Wireless Communication and Control 565

c13.indd 06:59:35:PM 05/05/2016 Page 565

 digitalWrite(13, HIGH); // LED briefly on

 delay(100); // 100ms + processing

 int adcValue = analogRead(analogInPin); // using a 10-bit ADC

 float curVoltage = adcValue * (3.3f/1024.0f); // Vcc = 5.0 V, 10-bit

 float tempC = 25.0 + ((curVoltage-0.75f)/0.01f); // from datasheet

 float tempF = 32.0 + ((tempC * 9)/5); // deg. C to F

 Serial.print("{ \"Temperature\" : "); // Send as JSON msg

 Serial.print(tempC); // The temperature

 Serial.println(" }"); // close JSON message

 digitalWrite(13, LOW); // LED off

 delay(4900); // delay ~5 secs total

}

(a) (b)

Figure 13-12: (a) The XBeeA circuit configuration, and (b) the XBeePi circuit configuration

Write the program to the Arduino using a USB-to-UART cable as described

in Chapter 11. Then open the serial console on the Arduino programming

environment (use a baud rate of 115,200); you should see the following JSON

format messages every fi ve seconds. If you hold the TMP36 sensor, then the

temperature should change.

{ "Temperature" : 22.19 }

{ "Temperature" : 22.19 }

{ "Temperature" : 24.44 }

You can now connect the RX/TX pins from the Arduino to the XBee as illus-

trated in Figure 13-12(a). You can leave the Arduino Serial Console open. The

on-board LED acts as a status indicator, fl ashing briefl y each time a reading is

transmitted. The Arduino XBee confi guration is complete.

N O T E Several of the examples in this chapter use a USB-to-UART adapter. These

adapters are described in Chapter 9 as a convenient alternative to the on-board UART

device (/dev/ttyAMA0 or /dev/ttyS0), which is described in Chapter 8. If you

use the on-board UART device, remember to disable the serial-getty service that

runs by default—see Chapter 8 for instructions.

566 Part III ■ Advanced Interfacing and Interaction

c13.indd 06:59:35:PM 05/05/2016 Page 566

Setting Up the RPi XBee Device (XBeePi)

The second XBee module, XBeePi, must be confi gured to have XBeeA as the

communications destination. Place the XBeePi module in the XBee USB Explorer

and attach it to your desktop machine. Click the Discover button in XCTU; in

my case, the module appears with the MAC address 0013A200 40E8E355 as

expected. Then perform the following steps using XCTU:

 ■ Update the fi rmware on the device to “ZigBee Coordinator AT.” Note

that this module should be set to be a coordinator, unlike the XBeeA router.

 ■ Change the PAN ID to 5432 and set the baud rate to 115,200 in order to

conform to the settings of XBeeA.

 ■ Set the destination address DH and DL values according to the MAC

address of XBeeA (0013A200 40C8B460 in my case).

With the XBeePi module still in the XBee USB Explorer, you can click the

Discover Radio Nodes button and the XBeeA should appear in the list. You can-

not view or confi gure the settings because the devices are in AT mode; however,

you can switch to the Console working mode and click Connect, whereupon you

should see an output similar to Figure 13-13. The output indicates that the

Arduino is successfully communicating with the XBeePi module and you are

now ready to connect it to the RPi.

Figure 13-13: The XCTU Console working mode receiving JSON messages from the Arduino

XBee device

The XBeePi can be removed from the XBee USB Explorer and attached to

the RPi as described in Figure 13-12(b). The connection can be tested by using

minicom as follows:

pi@erpi ~ $ minicom -b 115200 -o -D /dev/ttyUSB0

{ "Temperature" : 21.87 }

{ "Temperature" : 22.19 } ...

A new JSON format temperature reading appears after each fi ve-second inter-

val. The Arduino UART code from Chapter 11 can be used to read these values

in C/C++, and the JSON code earlier in this chapter can be used to parse the

data strings.

 Chapter 13 ■ Wireless Communication and Control 567

c13.indd 06:59:35:PM 05/05/2016 Page 567

Remember, this circuit is a bi-directional communication channel—the UART

Command Control code can also be used to control the Arduino, as described

in Chapter 11.

XBEE AT COMMANDS

A useful exercise at this point is to become familiar with AT commands. Leave the

minicom session running, but disconnect the power to the XBeeA module in order

to halt the incoming data stream to the RPi. Then, using the minicom terminal, enter

some AT commands:

 ■ To turn on AT mode, type +++ (don’t press Enter); OK will appear as the

response.

 ■ Then display the network ID (PAN ID) by typing ATID (i.e., ID prefi xed by AT) and

pressing Enter.

For example, following is an AT conversation to read the settings for the network

ID, serial number (high and low parts), and destination address (high and low parts).

Ensure that local echo is enabled in minicom, and note that AT mode ends ten sec-

onds after you type the last valid AT command—you have to be quick!

pi@erpi ~ $ minicom -b 115200 -o -D /dev/ttyUSB0

+++OK

ATID

5432

ATSH

13A200

ATSL

40E8E355

ATDH

13A200

ATDL

40C8B460

To change a setting, you should append the new value to the command. For example,

to set a new network ID 1234 (and then set it back to 5432), type the following:

ATID1234

OK

ATID

1234

ATID5432

OK

ATID

5432

A full list of AT commands is visible in the confi guration entries of XCTU (see Figure

13-9b) and in the XBee Command Reference Tables at tiny.cc/erpi1304.

568 Part III ■ Advanced Interfacing and Interaction

c13.indd 06:59:35:PM 05/05/2016 Page 568

An XBee API Mode Example

Unfortunately, XBee AT mode does not provide access to the advanced features

that are available on a ZigBee device. In the last example, the source and des-

tination points are manually confi gured for the two devices. XBee API mode

uses data frames, each with a software-confi gurable address that allows other

modules in API mode to selectively receive the data.

Setting Up the RPi XBee Device (XBee1)

In this section two identical XBee S2 ZigBee devices are confi gured into API

mode by writing new fi rmware to them. As illustrated in Figure 13-14, XBee1

is confi gured as a ZigBee Coordinator (API mode), and XBee2 is confi gured as

a ZigBee Router (API mode). In this example, the coordinator is attached to the

RPi, but the XBee router is utilized as a standalone microcontroller, as illustrated

in Figure 13-15.

(a) (b)

Figure 13-14: (a) Configuring XBee1 as a coordinator with PAN ID 1234, and (b) configuring

XBee2 as a router with PAN ID 1234

The PAN ID is set to 1234 for both devices. Once the PAN ID is set for XBee1,

it can be disconnected from the XBee USB Explorer and attached to the RPi, as

illustrated in Figure 13-15(a).

Setting Up the Standalone XBee Device (XBee2)

The XBee2 can be placed in the XBee USB Explorer and programmed with ZigBee

router fi rmware. A scan can then be performed by clicking the Wireless Scan for

Devices button (as identifi ed in Figure 13-14(b)). The XBee1 coordinator device

that is attached to the RPi should be detected, and because the devices are both

in API mode, it is possible to wirelessly change the settings on the XBee1 device.

In this example, the XBee2 router device is not attached to an Arduino; rather,

it is used as a standalone microcontroller, as illustrated in Figure 13-15(b). The

 Chapter 13 ■ Wireless Communication and Control 569

c13.indd 06:59:35:PM 05/05/2016 Page 569

full list of input/outputs is illustrated in Figure 13-16(a), and the settings used

to confi gure them in XCTU are illustrated in Figure 13-16(b).

(a) (b)

Figure 13-15: (a) The XBee1 RPi coordinator circuit, and (b) the standalone XBee2 router circuit

with sample I/O connections

(a) (b)

Figure 13-16: (a) The XBee S2 pinout, and (b) the XCTU I/O settings for an XBee S2 module

At this point you might try to use minicom to connect to the XBee1 device on

the RPi—unfortunately, it will not work, as the XBee device is confi gured in

API mode and therefore expects data frames. However, it is possible to interact

with the XBee module using code that is written in several different languages,

including Node.js and C/C++.

XBee API Mode and Node.js

The xbee-api Node.js module (tiny.cc/erpi1305) is a quick and effective way

of writing applications that utilize the XBee devices in API mode. The module

fully supports the XBee Series 2 (ZigBee) devices that are used in this section.

To utilize the Node.js module, you must begin by ensuring that you have a

recent version of Node.js. (See the “LAMP and MEAN” feature in Chapter 12

for instructions on updating Node.js.)

570 Part III ■ Advanced Interfacing and Interaction

c13.indd 06:59:35:PM 05/05/2016 Page 570

Listing 13-9 is a Node.js program that displays the Node Identifi er (NI) infor-

mation and any data frames that are sent on PAN ID 1234.

Listing 13-9: /chp13/xbee/nodejs/test.js

// From the example code at www.npmjs.com/package/xbee-api

var util = require('util');

var SerialPort = require('serialport').SerialPort;

var xbee_api = require('xbee-api');

var C = xbee_api.constants;

var xbeeAPI = new xbee_api.XBeeAPI({ // two API modes are available

 api_mode: 1

});

var serialport = new SerialPort("/dev/ttyUSB0", {

 baudrate: 9600, // default baud rate

 parser: xbeeAPI.rawParser() // parsing raw frames

});

serialport.on("open", function() { // uses the serialport module

 var frame_obj = { // AT Request to be sent...

 type: C.FRAME_TYPE.AT_COMMAND, // Prepare for an AT command

 command: "NI", // Node identifer command

 commandParameter: [], // No parameters needed

 };

 serialport.write(xbeeAPI.buildFrame(frame_obj));

});

// The data frames received are outputted by this function

xbeeAPI.on("frame_object", function(frame) {

 console.log(">>", frame);

});

To execute this code, you must fi rst use the Node package manager (npm) to

install the required xbee-api and serialport modules as follows:

pi@erpi ~/exploringrpi/chp13/xbee/nodejs $ npm install serialport

pi@erpi ~/exploringrpi/chp13/xbee/nodejs $ npm install xbee-api

pi@erpi ~/exploringrpi/chp13/xbee/nodejs $ sudo node test.js

>> { type: 136,

 id: 1,

 command: 'NI',

 commandStatus: 0,

 commandData: <Buffer 20 52 50 69 43 6f 6f 72 64 69 6e 61 74 6f 72> }

>> { type: 146,

 remote64: ,

 remote16: '885e',

 receiveOptions: 1,

 digitalSamples: { DIO2: 1, DIO3: 0 },

 analogSamples: { AD1: 617 },

 numSamples: 1 }

The program outputs the Node Identifi er information, and then every 60 seconds

(as confi gured in Figure 13-16(b)) the XBee2 router device reads its ADC input

 Chapter 13 ■ Wireless Communication and Control 571

c13.indd 06:59:35:PM 05/05/2016 Page 571

and transmits the value to the XBee1 coordinator node. You can see that the

value received here is 617 (i.e., from a 10-bit ADC) and that the button (DIO2)

is pressed.

Each time a new frame of data is received, the xbeeAPI.on() function is called

and is passed that frame. The frame describes the following:

 ■ type refers to the frame type. In this case it is 146 (0x92), which is an “IO

Data Sample Rx Indicator.”

 ■ remote64 is the address of the node that transmitted the data, which cor-

responds to the address of the XBee2 in Figure 13-15(b).

 ■ remote16 is the network address of the device that transmitted the data,

which is 0x885E in this example.

The interactive XBee API Frame generator utility is available in the Tools menu

of XCTU. It describes the contents of such a frame in detail.

You can see that the Node.js output is in JSON format. JSON support is built

in to Node.js and the JSON.parse() method can be used to transform the string

into useable data values.

XBee and C/C++

A C/C++ library called libxbee is available to support the use of XBee API mode

devices. It is not as straightforward to use as the Node.js module, but it has full

support for API mode transmissions. To get started with the library, you can

download and build it using the following steps:

pi@erpi ~ $ git clone https://github.com/attie/libxbee3

pi@erpi ~ $ cd libxbee3/

Running make configure will copy a generic confi guration fi le into the main

build directory. You should disable RTS/CTS support before building on the

RPi by uncommenting the XBEE_NO_RTSCTS line as follows:

pi@erpi ~/libxbee3 $ make configure

pi@erpi ~/libxbee3 $ nano config.mk

pi@erpi ~/libxbee3 $ more config.mk |grep RTSCTS

OPTIONS+= XBEE_NO_RTSCTS

pi@erpi ~/libxbee3 $ make

pi@erpi ~/libxbee3 $ sudo make install

Using the same circuit confi guration as in Figure 13-15, you can execute the

simple.c program in /chp13/xbee/cpp/ to test the library (remember to set

the XBee UART device in the simple.c fi le):

pi@erpi ~/exploringrpi/chp13/xbee/cpp $ gcc simple.c -o simple -lxbee

pi@erpi ~/exploringrpi/chp13/xbee/cpp $ XBEE_LOG_LEVEL=100 ./simple

...

12#[rx.c:202] xbee_rxHandler() 0x143c128: received 'I/O' type packet...

 5#[rx.c:211] xbee_rxHandler() 0x143c128: connectionless 'I/O' packet...

10#[conn.c:181] xbee_conLogAddress() 0x143c128:address @ 0x76578cc4...

572 Part III ■ Advanced Interfacing and Interaction

c13.indd 06:59:35:PM 05/05/2016 Page 572

10#[conn.c:182] xbee_conLogAddress() 0x143c128: broadcast: No

10#[conn.c:184] xbee_conLogAddress() 0x143c128: 16-bit addr: 0x885E

10#[conn.c:191] xbee_conLogAddress() 0x143c128: 64-bit: 0x13A200 0x40C296E6

10#[conn.c:198] xbee_conLogAddress() 0x143c128: endpoints: --

10#[conn.c:203] xbee_conLogAddress() 0x143c128: profile ID: ----

10#[conn.c:208] xbee_conLogAddress() 0x143c128: cluster ID: ----

The libxbee C/C++ library requires detailed study in order to understand

how to parse the resulting data frames. A guide to getting started is available

at tiny.cc/erpi1307 and the full documentation for the library is available at

github.com/attie/libxbee3/.

Near Field Communication

Near fi eld communication (NFC) is a wireless technology that allows two devices

that are physically close to each other to communicate bi-directionally. NFC

is a specialized high-frequency version of radio frequency identifi cation (RFID)

that supports secure communication and peer-to-peer communication. For

example, NFC is the core technology involved in contactless payments using

mobile devices, and is also used for phone-to-phone information sharing (e.g.,

by tapping two devices together). NFC devices operate at the same frequency

as high-frequency RFID (13.56 MHz), which means that many NFC devices can

also interface to passive or actively-powered RFID devices. Commonly available

RFID cards do not have a power supply; rather, they contain a wire coil. The

NFC device uses a magnetic fi eld to generate power in the wire coils in order

to initiate communication.

One of the diffi culties of developing software for NFC/RFID is the complexity

and large number of proprietary solutions. The open-source libnfc (nfc-tools

.org) is a platform-independent, low-level software development kit for NFC/

RFID, and it can be installed on the RPi. However, you also need NFC/RFID

hardware. The circuit that is illustrated in Figure 13-17 can be used for this

task—it uses the Philips PN532 NFC controller.

Figure 13-17: The Adafruit NFC/RFID interface for the RPi along with passive RFID tags

 Chapter 13 ■ Wireless Communication and Control 573

c13.indd 06:59:35:PM 05/05/2016 Page 573

The Philips PN532 NFC controller (tiny.cc/erpi1308) supports contactless

communication at 13.56 MHz using the ISO14443A/MIFARE and FeliCa com-

munication schemes. It supports SPI, I2C, and serial UART interfaces; however, it

is only available in a surface mount package and must be attached to an external

antenna. Thankfully, Adafruit and others have developed breakout boards that

simplify development with this technology. There is an Arduino shield and a

standalone interface board, both retailing at approximately $40. There are other

very low-cost PN532 controllers available—ensure that you purchase one that

makes a UART connection available, such as those illustrated in Figure 13-18(a).

In addition, passively-powered 13.56 MHz RFID/NFC stickers, cards, keyrings,

buttons, plastic nails, bracelets, and laundry tags are also available at low cost,

which opens up the application possibilities—see Figure 13-18(b).

(a) (b)

Figure 13-18: (a) Low-cost PN532 NFC breakout boards ($5–$16); (b) RFID cards and key

chain tags

The latest version of libnfc can be downloaded and confi gured as follows:

pi@erpi ~ $ git clone https://github.com/nfc-tools/libnfc

pi@erpi ~ $ cd libnfc/

pi@erpi ~/libnfc $ sudo apt install libusb-dev

pi@erpi ~/libnfc $ sudo mkdir /etc/nfc/

pi@erpi ~/libnfc $ sudo cp libnfc.conf.sample /etc/nfc/libnfc.conf

The last step in this example copies a sample confi guration fi le onto the RPi that

can be used to identify the NFC device confi guration. In Figure 13-17, a USB-

to-UART device (see Chapter 9) is used to interface to the RPi, so this must be

specifi ed in the confi guration fi le as follows:

pi@erpi /etc/nfc $ more libnfc.conf

allow_autoscan = true

device.name = "microBuilder.eu"

device.connstring = "pn532_uart:/dev/ttyUSB0"

Once the confi guration fi le is in place, you can build libnfc for the RPi as

follows. The ldconfig step is used to update the shared library cache:

pi@erpi ~/libnfc $ cmake .

pi@erpi ~/libnfc $ make

pi@erpi ~/libnfc $ sudo make install

pi@erpi ~/libnfc $ sudo ldconfig -v

pi@erpi ~/libnfc $ ls /usr/local/lib/libnfc*

574 Part III ■ Advanced Interfacing and Interaction

c13.indd 06:59:35:PM 05/05/2016 Page 574

libnfc.so libnfc.so.5.0.1 libnfc.so.5

pi@erpi ~/libnfc $ ls /usr/local/bin/nfc*

nfc-scan-device nfc-list ...

If the interface board is now attached as in Figure 13-17, then you can test your

confi guration using the binary tools that are provided with libnfc:

pi@erpi ~ $ sudo nfc-list

nfc-list uses libnfc 1.7.1

NFC device: pn532_uart:/dev/ttyUSB0 opened

If you get a shared library error, then check the ldconfig step. (You can use the

ldd tool that is described in Chapter 5 in the section on “Static and Dynamic

Compilation” to test shared library dependencies.) Now, when two individual

RFID cards are used with the circuit, you will see different but consistent IDs

presented:

pi@erpi ~ $ sudo nfc-poll

nfc-poll uses libnfc 1.7.1

NFC reader: pn532_uart:/dev/ttyUSB0 opened

NFC device will poll during 30000 ms (20 pollings of 300 ms for 5 modulations)

ISO/IEC 14443 A (106 kbps) target:

 ATQA (SENS_RES): 00 44

 UID (NFCID1): 04 60 28 4a fe 32 80

 SAK (SEL_RES): 00

nfc_initiator_target_is_present: Target Released

Waiting for card removing...done.

pi@erpi ~ $ sudo nfc-poll

... ATQA (SENS_RES): 00 04

 UID (NFCID1): 8e 3f 34 03

 SAK (SEL_RES): 08 ...

A sample C program is available in /chp13/libnfc/nfc_test.c that can be

used to build your own NFC access control program in C. The program stores

a UID as an array of characters (char secretCode[] = {0x8e, 0x3f, 0x34,

0x03};), which is compared against the individual RFID values that are read

from different RFID cards. The program grants notional access when the cor-

rect card with that “secret” ID is presented, as can be observed in the following

test example:

pi@erpi ~/exploringrpi/chp13/nfc $./build

pi@erpi ~/exploringrpi/chp13/nfc $./nfc_test

ERPi NFC reader: pn532_uart:/dev/ttyUSB0 opened

 Waiting for you to use an RFID card or tag....

The following tag was found:

 UID (NFCID1): 04 60 28 4a fe 32 80

 *** ERPi Access NOT allowed! ***

pi@erpi ~/exploringrpi/chp13/nfc $./nfc_test

ERPi NFC reader: pn532_uart:/dev/ttyUSB0 opened

 Chapter 13 ■ Wireless Communication and Control 575

c13.indd 06:59:35:PM 05/05/2016 Page 575

 Waiting for you to use an RFID card or tag....

The following tag was found:

 UID (NFCID1): 8e 3f 34 03

 *** ERPi Access allowed! ***

Summary

After completing this chapter, you should be able to do the following:

 ■ Choose an appropriate wireless communication protocol and associated

hardware for your projects.

 ■ Confi gure a USB Bluetooth adapter for the RPi and connect to it from a

mobile device for the purpose of building a basic remote-control application.

 ■ Install a USB Wi-Fi adapter on the RPi and confi gure the RPi to connect

to a secured Wi-Fi network.

 ■ Use the NodeMCU device to build a distributed wireless network of things

that is controlled by the RPi.

 ■ Build on skills developed in Chapter 12 to create IoT devices that can be

wireless.

 ■ Use the ZigBee protocol with XBee adapters in AT mode to establish a

wireless serial data link.

 ■ Investigate ZigBee using XBee devices that are confi gured in API mode,

which allows for the use of advanced ZigBee features.

 ■ Use NFC/RFID devices to build a basic access control system.

577

c14.indd 06:52:40:PM 05/12/2016 Page 577

In this chapter, you are introduced to rich user interface (UI) architectures and

application development on the Raspberry Pi (RPi). Rich UIs allow for a depth of

interaction with an application that is not possible with command-line interfaces

(CLIs)—in particular, the addition of graphical display elements can result in

easier-to-use applications. Also introduced are different RPi architectures that

can support rich UIs, such as general-purpose computing, touchscreen display

modules, and virtual network computing (VNC). Different software application

frameworks are examined for rich UI development, such as GTK+ and Qt. The

Qt framework is the focus of the discussion, largely due to its comprehensive

libraries of code. An example rich UI application is developed for the RPi that

uses the DHT temperature and humidity sensor from Chapter 6. Finally, a

feature-rich remote fat-client TCP application framework is developed, along

with an example that uses the same sensor.

Equipment Required for This Chapter:

 ■ Raspberry Pi (any model)

 ■ Aosong AM230x humidity and temperature sensor (DHT)

 ■ USB/HDMI accessories from Chapter 1 (optional)

Further resources for this chapter are available at www.exploringrpi.com/

chapter14/.

C H A P T E R

14

Raspberry Pi with a Rich

User Interface

http://www.exploringrpi.com
http://www.exploringrpi.com/chapter14/

578 Part III ■ Advanced Interfacing and Interaction

c14.indd 06:52:40:PM 05/12/2016 Page 578

Rich UI RPi Architectures

In Chapters 9 and 10, low-cost LED displays and character LCD displays are

introduced. They can be coupled with sensors, switches, or keyboard modules

to form simple, low-cost UI architectures that are suffi cient for many appli-

cations, such as for confi guration or interaction with hardware devices (e.g.,

vending machines, printer control interfaces). However, the RPi has a powerful

processor, which when coupled with the Linux OS is capable of providing very

sophisticated user interfaces—similar to those to which you are accustomed on

your desktop machine and/or mobile devices.

The RPi can be connected directly to a physical display (e.g., monitor, tele-

vision, or LCD touchscreen) to create a sophisticated self-contained physical

UI device. This is one application of the RPi that demonstrates the strength

of embedded Linux in particular, as it supports open source UI development

frameworks such as GTK+ and Qt. These frameworks provide libraries of visual

components (a.k.a. widgets) that you can combine to create applications with

considerable depth of interaction.

Before examining software development frameworks, this section fi rst intro-

duces four different RPi UI hardware architectures:

 ■ General-purpose computing: By connecting the RPi to a monitor/television

by HDMI, and a keyboard and mouse by USB, it can be used as a general-

purpose computer. The RPi 3 is the best model for this architecture type.

 ■ LCD touchscreen display: By attaching an LCD touchscreen to the GPIO

headers, it can be used as a stand-alone UI device. Any RPi model can

be used in this way.

 ■ Virtual network computing (VNC): By using remote access and control

software on a network-attached RPi, it can control UIs on a virtual display.

This architecture is best suited to a wired network RPi model.

 ■ Remote fat-client applications: By using custom client/server program-

ming with a network-attached RPi, it can interact with remote UIs by

sending and receiving messages. Any RPi model can be used in this way.

These architectures are described in detail in this section, but to give the

discussion some context, Table 14-1 summarizes the strengths and weaknesses

of each approach when used with the RPi.

 Chapter 14 ■ Raspberry Pi with a Rich User Interface 579

c14.indd 06:52:40:PM 05/12/2016 Page 579

Table 14-1: Strengths and Weaknesses of Diff erent RPi UI Architectures

APPROACH STRENGTHS WEAKNESSES

RPi as a general-

purpose computer

Low-cost computing

platform with low power

consumption. Ideal for a

 network-attached information

display point application, by

connecting it to a TV/moni-

tor. Can interact with it using

a USB keyboard and mouse.

Requires a dedicated monitor/

TV. RPi models lack the processing

power to replace a modern desktop

computer; however, the RPi 3 is a

capable general-purpose device.

RPi with an LCD

touchscreen

Very portable interactive

display that can be battery

powered. Ideal for custom UI

process controls. A range of

display sizes are available.

Expensive and modest resolution.

Cheaper options are typically resis-

tive touch, rather than capacitive

touch.

VNC No display required on

the RPi. RPi could be bat-

tery powered and wireless,

but wired connections are

preferable.

Requires a desktop computer/tablet

device and network connection.

Display update over the network

connection can be sluggish.

Fat-client

applications

No display is required on

the RPi. RPi could be bat-

tery powered and wireless

(e.g., RPi Zero based). Very

low RPi processor overhead,

as the display is updated

by the desktop computer.

Many simultaneous displays

possible.

Requires custom application devel-

opment (e.g., using TCP socket

programming). Requires network

connection and a device on which

to run the fat-client applications.

The RPi as a General-Purpose Computer

The HDMI video output capability on the RPi platform means that it can be

directly connected to a monitor/television, enabling it to be confi gured as a

general-purpose desktop computer. For example, Figure 14-1(a) illustrates the

use of an HDMI cable alongside the Kinivo Bluetooth adapter, together providing

support for video output and keyboard/mouse input. Figure 14-1(b) displays

580 Part III ■ Advanced Interfacing and Interaction

c14.indd 06:52:40:PM 05/12/2016 Page 580

a low-cost Bluetooth keyboard/touchpad that is used for this example; it is a

compact device that is displayed to scale with the RPi.

(a) (b)

Figure 14-1: (a) Connection to an HDMI and a Bluetooth adapter, and (b) a Bluetooth keyboard/

touchpad (to scale with RPi)

The Ethernet connector can be used to provide network support, and a pow-

ered USB hub can be connected to the RPi in order to provide support for more

devices, such as Wi-Fi adapters or separate keyboard and mouse peripherals.

Figure 14-2 displays a screen capture of the RPi display output when connected

directly to a computer monitor using the HDMI interface.

Figure 14-2: Screen capture of the RPi monitor display

To be clear, this display is running on a standalone monitor at a screen reso-

lution of 1920 × 1200 pixels and the screen was captured on the RPi using a

Linux tool called scrot that can be installed and executed from the CLI using

the following call:

pi@erpi:~ $ sudo apt install scrot

pi@erpi ~ $ scrot screenshot.png

 Chapter 14 ■ Raspberry Pi with a Rich User Interface 581

c14.indd 06:52:40:PM 05/12/2016 Page 581

pi@erpi ~ $ ls -l screenshot.png

-rw-r--r-- 1 pi pi 1798498 Nov 14 17:53 screenshot.png

Connecting a Bluetooth Input Peripheral

A regular USB keyboard and mouse can be directly connected to the RPi for

this architecture. Bluetooth keyboard/touchpads are also useful, as they can be

reused in other applications, such as wireless robotic control and home automa-

tion. The RPi 3 onboard Bluetooth adapter and the Kinivo Bluetooth adapter

(see Chapter 13) can directly interface to devices such as the handheld iPazzPort
Bluetooth keyboard and touchpad (~$20). Bluetooth devices can be confi gured using

the following steps so that they are always available to the RPi on reboot:

pi@erpi ~ $ sudo apt install bluez bluetooth

pi@erpi ~ $ sudo reboot

pi@erpi ~ $ sudo bluetoothctl

[NEW] Controller 00:02:72:CB:C3:53 raspberrypi [default]

[NEW] Device 40:E2:30:13:CA:09 HOMEOFFICE-PC

[NEW] Device 54:46:6B:01:E2:13 bluetooth iPazzport

[bluetooth]# agent KeyboardOnly

Agent registered

[bluetooth]# default-agent

Default agent request successful

[bluetooth]# scan on

Discovery started

[CHG] Controller 00:02:72:CB:C3:53 Discovering: yes

[CHG] Device 40:E2:30:13:CA:09 RSSI: -38

[CHG] Device 54:46:6B:01:E2:13 RSSI: -44

[bluetooth]# pair 54:46:6B:01:E2:13

Attempting to pair with 54:46:6B:01:E2:13

[CHG] Device 54:46:6B:01:E2:13 Connected: yes

[agent] PIN code: 798521

To pair the device, a pin code of 798521 is presented by the tool in the preced-

ing instructions, so 798521 must also be keyed on the Bluetooth device (followed

by Enter), which results in the following output:

[CHG] Device 54:46:6B:01:E2:13 Paired: yes

Pairing successful ...

[bluetooth]# trust 54:46:6B:01:E2:13

[CHG] Device 54:46:6B:01:E2:13 Trusted: yes

Changing 54:46:6B:01:E2:13 trust succeeded

[bluetooth]# connect 54:46:6B:01:E2:13

Attempting to connect to 54:46:6B:01:E2:13

Connection successful

[bluetooth]# info 54:46:6B:01:E2:13

Device 54:46:6B:01:E2:13

 Name: bluetooth iPazzport Alias: bluetooth iPazzport

 Class: 0x000540 Icon: input-keyboard

 Paired: yes Trusted: yes

 Blocked: no Connected: yes ...

582 Part III ■ Advanced Interfacing and Interaction

c14.indd 06:52:40:PM 05/12/2016 Page 582

The Bluetooth keyboard/touchpad is now attached to the RPi and it will auto-

matically connect from then on. It can control the general-purpose computing

environment that is displayed in Figure 14-2.

N O T E Linux allows virtual consoles (a.k.a. virtual terminals) to be opened while an

X Window System (windowing display) is executing. Use Ctrl+Alt+F1 to open a virtual

console—there are six virtual text-based consoles (F1 to F6). Use Ctrl+Alt+F7 to return

to the X Window System. Using Alt+Left arrow and Alt+Right arrow switches in order

between the consoles.

Also, you can kill a frozen SSH session by typing Enter ~ . in sequence (i.e., the Enter

key followed by the tilde followed by a period). Use Enter ~ ? to display a list of the

escape sequences that are available within an SSH session.

RPi with an LCD Touchscreen

The RPi can be connected directly to LCD HATs that support Linux desktop

display. This allows you to develop sophisticated Linux GUI displays for embed-

ded controller applications (e.g., smart light switches, robotic controls, 3D printer

controls), but such displays are typically expensive or alternatively quite limited

in resolution. Two such examples are:

 ■ The 4Dpi-24-HAT: A 2.4” LCD display (~$35) with a resolution of 240 ×

320 pixels and integrated 4-wire resistive touch panel. It supports a frame

rate of 17 frames per second (FPS). It utilizes the RPi SPI bus to drive the

display, and requires a custom kernel to be utilized (under Raspbian

only). See tiny.cc/erpi1401.

 ■ The RPi 7” Touchscreen Display: An impressive 800 × 480 pixel display

with ten fi nger capacitive multi-touch sensing (~$70). This display uses

the DSI port on the RPi (not available on the RPi Zero) to drive the display,

which means that most of the GPIO pins are available for interfacing. This

display also requires a recent version of Raspbian. See tiny.cc/erpi1402.

The second option is expensive; however, capacitive touch displays are fl ex-

ible in comparison to resistive touch displays, which typically require a stylus

for their use. Most low-cost options utilize resistive touch displays and require

custom Linux kernels.

Other display types are available, such as the high-contrast PaPiRus ePaper/

eInk Display HATs, which are supplied with SPI source code examples. The

display sizes currently range from 1.44” (~$45) with a resolution of 128 × 96, to

2.7” (~$85) with a resolution of 264 × 176. Usefully, the display image persists

after it has been powered down. See tiny.cc/erpi1406.

 Chapter 14 ■ Raspberry Pi with a Rich User Interface 583

c14.indd 06:52:40:PM 05/12/2016 Page 583

Virtual Network Computing (VNC)

Virtual network computing (VNC) enables desktop applications on one computer

(the server) to be shared and remotely controlled from another computer (the

client). Keystrokes and mouse interactions on the VNC client are transmitted

to the VNC server over the network. The VNC server determines the impact of

these interactions and then updates the remote frame buffer (RAM containing

bitmap image data) on the VNC client machine. VNC uses the remote frame

buffer protocol, which is similar to the Remote Desktop Protocol (RDP) that is

tightly coupled to the Windows OS, but because VNC works at the frame buffer

level, it is available for many OSs. The RPi does not require a physical display in

order to act as a VNC server. Importantly, with VNC the Linux applications are

executing on the RPi using its processor, but the frame buffer display is being

updated on the remote machine.

VNC Using VNC Viewer

Many VNC client applications are available that can be installed on your desktop

machine, but VNC Viewer is described here because it is available for Windows,

Mac OS X, and Linux platforms. It can be downloaded and installed free from

www.realvnc.com. Once it is executed on your desktop machine, a login screen

appears that requests the VNC server address. However, for this confi guration

you must ensure that your RPi is running a VNC server before you can log in.

The VNC server allows the VNC client application to remotely connect to and

control the RPi.

The tightvncserver is available under the Raspbian distribution by default. The

fi rst time you execute the server you will be prompted to defi ne a password for

remote access, as follows:

pi@erpi ~ $ sudo apt install tightvncserver

pi@erpi ~ $ tightvncserver

You will require a password to access your desktops.

Password:

Verify:

Would you like to enter a view-only password (y/n)? n

New 'X' desktop is erpi:1

Once the server is running, you can check the process description to deter-

mine the port number; here it is running on port 5901:

pi@erpi ~ $ ps aux | grep vnc

pi 1538 2.0 1.2 19684 11688 pts/0 S 22:53 0:02 Xtightvnc

 :1 -desktop X -auth /home/pi/.Xauthority -geometry 1024x768 -depth 24

 -rfbwait 120000 -rfbauth /home/pi/.vnc/passwd -rfbport 5901 ...

http://www.realvnc.com

584 Part III ■ Advanced Interfacing and Interaction

c14.indd 06:52:40:PM 05/12/2016 Page 584

The VNC Viewer session can then be started on your desktop machine using

the server address and its port number (e.g., erpi.local:5901). The RPi desktop

is contained within a window frame, as displayed in Figure 14-3. Note that the

tightvncserver session in Figure 14-3 was started by the root user so that the RPi

Weather Application could be executed.

Figure 14-3: VNC Viewer on Windows

VNC with Xming and PuTTY

The Xming X Server (tiny.cc/erpi1403)1 for Windows, in combination with

PuTTY, is a different approach to the same task; however, it does not require

that a VNC server is running on the RPi. Once Xming is installed and executed,

it appears only in the Windows taskbar with an X icon. The PuTTY RPi session

can be confi gured using Connection ➪ SSH ➪ X11 to “Enable SSH X11 forward-

ing” to the local X display location and to set the X display location to be :0.0.

When an SSH session is opened to the RPi, you can simply perform the

following instructions, which result in the display of an xterm and xeyes dis-

play. The xterm window is the standard terminal emulator for the X Window

System and the “magical” xeyes follow your mouse cursor around the desktop

1 Note that there is a “website release” and a “public domain release” version available at this
link. The website release version requires a donation but the older version (Xming v6.9) is cur-
rently available for free. You must also install the Xming-fonts release.

 Chapter 14 ■ Raspberry Pi with a Rich User Interface 585

c14.indd 06:52:40:PM 05/12/2016 Page 585

computer. Remember that the xeyes display is being updated by the RPi, not

the desktop computer:

pi@erpi ~ $ sudo apt install x11-apps xterm

pi@erpi ~ $ xeyes &

pi@erpi ~ $ xterm &

One advantage of this approach is that you can seamlessly integrate RPi

applications and Windows applications on the display. You can also start the

RPi’s LXDE (Lightweight X11 Desktop Environment) standard panel by calling

lxpanel or lxsession, which results in a bottom-bar menu display.

VNC with a Linux Desktop Computer

If you are running Linux as your desktop OS (e.g., Debian x64 on a VM), you

can usually start a VNC session using the following steps, where -X enables

X11 forwarding and -C requests that compression is used in the transmission

of frame buffer data:

molloyd@desktop:~$ ssh -XC pi@erpi.local

pi@erpi ~ $ sudo apt install x11-apps xterm

pi@erpi ~ $ xeyes &

pi@erpi ~ $ xterm &

Fat-Client Applications

At the beginning of Chapter 12, the RPi is confi gured as a web server; essentially,

the RPi is serving data to a thin-client web browser that is executing on a client

machine. The weather sensor application executes on the RPi and the data is

served to the client’s web browser using the Nginx web server and CGI/PHP

scripts. With thin-client applications, most of the processing takes place on the

server machine (server side). In contrast, fat-client (a.k.a. thick-client) applications

execute on the client machine (client side), and send and receive data messages

to and from the server.

Recent computing architecture design trends have moved away from fat-client

architectures and toward thin-client (and cloud) browser-based frameworks.

However, the latter frameworks are usually implemented on a powerful cluster

of server machines and are unsuitable for deployment on embedded devices.

When working with the RPi, it is likely that the client desktop machine is the

more computationally powerful device.

A fat-client application is typically more complex to develop and deploy

than a thin-client application, but it reduces the demands on the server while

allowing for advanced functionality and user interaction on the client machine.

Later in this chapter, a fat-client UI application is developed that executes on a

desktop computer and communicates to the RPi via TCP sockets. Importantly,

mailto:pi@erpi.local

586 Part III ■ Advanced Interfacing and Interaction

c14.indd 06:52:40:PM 05/12/2016 Page 586

the fat-client applications use the resources of the desktop computer for graphical

display, and therefore there is a minimal computational cost on the RPi. As such,

it is possible for many fat-client applications on different desktop computers to

simultaneously communicate with a single RPi.

Rich UI Application Development

Once a display framework is available to the RPi, a likely next step is to write

rich UI applications that can utilize its benefi ts. Such applications are termed

graphical user interface (GUI) applications; if you have used desktop computers,

tablet computers, or smartphones, you are familiar with their use. There are

many different ways to implement GUI applications on the RPi. For example,

Java has comprehensive built-in support for GUI development with its Abstract
Windowing Toolkit (AWT) libraries, and Python has libraries such as pyGTK,

wxPython, and Tkinter.

To develop GUI applications under C/C++ for the RPi, there are two clear

options: the GIMP Toolkit (GTK+) and the Qt cross-platform development frame-

work. This section describes how you can get started with both of these options.

It is important to note that the applications in this section will function regard-

less of whether they are used directly on the RPi (i.e., general-purpose computer

or touchscreen form) or through VNC. GTK+ and Qt can also be used as the

basis for building fat-client applications, which is covered later in this chapter.

Introduction to GTK+ on the RPi

GTK+ (www.gtk.org) is a cross-platform toolkit for creating GUI applications.

It is most well known for its use in the Linux GNOME desktop and the GNU

Image Manipulation Program (GIMP). Figure 14-4 illustrates a sample GTK+

application running on the RPi using VNC. The same application also works

perfectly if the application is running on the RPi directly (e.g., refer to Figure 14-3).

Figure 14-4: The GTKhello application

The “Hello World” GTK+ Application

The code for the application shown in Figure 14-4 is provided in Listing 14-1. The

application consists of a single label, which contains the text “Hello Raspberry

http://www.gtk.org

 Chapter 14 ■ Raspberry Pi with a Rich User Interface 587

c14.indd 06:52:40:PM 05/12/2016 Page 587

Pi” that has been added to a GTK+ window. Each line of the code has been

commented in the listing to explain the important steps.

Listing 14-1: /chp14/gtk/GTKhello.cpp

#include<gtk/gtk.h>

int main(int argc, char *argv[]){

 // This application will have a window and a single label

 GtkWidget *window, *label;

 // Initialize the toolkit, pass the command line arguments

 gtk_init(&argc, &argv);

 // Create the top-level window (not yet visible)

 window = gtk_window_new(GTK_WINDOW_TOPLEVEL);

 // Set the title of the window to Exploring RPi

 gtk_window_set_title (GTK_WINDOW (window), "Exploring RPi");

 // Create a label

 label = gtk_label_new ("Hello Raspberry Pi");

 // Add the label to the window

 gtk_container_add(GTK_CONTAINER (window), label);

 // Make the label visible (must be done for every widget)

 gtk_widget_show(label);

 // Make the window visible

 gtk_widget_show(window);

 // Runs the main loop until gtk_main_quit() is called (hit Ctrl C)

 gtk_main();

 return 0;

}

The application can be compiled using the following call, which is also cap-

tured in the Git repository build script (use the grave accent character ,̀ not the

single opening quotation mark character ‘):

pi@erpi .../chp14/gtk $ sudo apt install libgtk-3-dev

pi@erpi .../chp14/gtk $ g++ `pkg-config --libs --cflags gtk+-3.0` →

 GTKhello.cpp -o gtkhello

This call uses pkg-config, a tool that is useful when building applications

and libraries under Linux, as it inserts the correct system-dependent options.

It does this by collecting metadata about the libraries that are installed on the

Linux system. For example, to get information about the current GTK+ library,

you can use the following:

pi@erpi .../chp14/gtk $ pkg-config --modversion gtk+-3.0

3.14.5

The application in Figure 14-4 does not quit when the X button (top right-hand

corner) is clicked; the window itself disappears, but the program continues to

execute. This is because the preceding code has not defi ned that something

should happen when the X button is clicked; you need to associate a “close”

function with the signal that is generated when the button is clicked.

588 Part III ■ Advanced Interfacing and Interaction

c14.indd 06:52:40:PM 05/12/2016 Page 588

The Event-Driven Programming Model

GUI applications typically use an event-driven programming model. Under

this model, the application waits in its main loop until an event (e.g., the user

action of clicking a button) is detected, which triggers a callback function to be

performed. In GTK+, a user action causes the main loop to deliver an event to

GTK+, which is initialized by the call to gtk_init(). GTK+ then delivers this

event to the graphical widgets, which in turn emit signals. These signals can be

attached to callback functions of your own design or to windowing functions.

For example, the following GTK+ code quits the application if the window X

button is clicked:

g_signal_connect(window, "destroy", G_CALLBACK (gtk_main_quit), NULL);

The signal is attached to the window handle, so that when a signal named

destroy is received, the gtk_main_quit() function is called, which causes the

application to exit. The last argument is NULL because no data is required to be

passed to the gtk_main_quit() function.

The GTK+ Temperature and Humidity Application

Listing 14-2 provides a segment of code for a more complete GTK+ application,

which executes on the RPi as shown in Figure 14-5. It uses the same one-wire

DHT temperature and humidity sensor used in Chapter 6 (i.e., in Listing 6-14).

This example is a GUI application that reads the RPi GPIO input when a button

is clicked, and then displays the temperature and humidity readings in two label

widgets. In this example, a signal is connected to the button object, so when it

is clicked the callback function getReading() is called.

Figure 14-5: The GTKsensor application

Listing 14-2: /chp14/gtk/GTKsensor.cpp (segment)

// Same as code in Chapter 6 to read DHT sensor (see Listing 6-14)

int readDHTSensor() { ... }

// The callback function associated with the button. It passes a ptr

// to the label, so that it can be changed when the button is pressed

static void getReadings(GtkWidget *widget, gpointer read_label) {

 // cast the generic gpointer into a GtkWidget label

 Chapter 14 ■ Raspberry Pi with a Rich User Interface 589

c14.indd 06:52:40:PM 05/12/2016 Page 589

 GtkWidget *reading_label = (GtkWidget *) read_label;

 while (readDHTSensor()==-1){

 usleep(2000000); // sleep for 2 seconds

 };

 stringstream ss;

 ss << "Reading: Temperature=" << temperature

 << "°C Humidity=" << humidity << "%";

 // set the text in the label

 gtk_label_set_text(GTK_LABEL(reading_label), ss.str().c_str());

 ss << endl; // add a \n to the string for the standard output

 g_print(ss.str().c_str()); // output to the terminal (std out)

}

int main(int argc, char *argv[]) {

 GtkWidget *window, *reading_label, *button, *button_label;

 gtk_init(&argc, &argv);

 window = gtk_window_new(GTK_WINDOW_TOPLEVEL);

 gtk_window_set_title(GTK_WINDOW (window), "Exploring RPi");

 // Fix the size of the window so that it cannot be resized

 gtk_widget_set_size_request(window, 220, 50);

 gtk_window_set_resizable(GTK_WINDOW(window), FALSE);

 // Place a border of 5 pixels around the inner window edge

 gtk_container_set_border_width (GTK_CONTAINER (window), 5);

 // Quit application if X button is pressed

 g_signal_connect(window, "destroy", G_CALLBACK (gtk_main_quit), NULL);

 // set window to contain two vertically stacked widgets using a box

 GtkWidget *box = gtk_box_new(GTK_ORIENTATION_VERTICAL, 5);

 gtk_container_add (GTK_CONTAINER (window), box); // add box to window

 gtk_widget_show (box); // set visible

 // this is the label in which to display the weather data

 reading_label = gtk_label_new ("Reading is Undefined");

 gtk_widget_show(reading_label); // make it visible

 gtk_label_set_justify(GTK_LABEL(reading_label), GTK_JUSTIFY_LEFT);

 // Add the label to the vbox

 gtk_box_pack_start (GTK_BOX (box), reading_label, FALSE, FALSE, 0);

 // create a button and connect it to the getReadings() callback fn

 button = gtk_button_new();

 button_label = gtk_label_new ("Get Reading"); // label button text

 gtk_widget_show(button_label); // show label

 gtk_widget_show(button); // show button

 gtk_container_add(GTK_CONTAINER (button), button_label); // add label

 // Connect the callback function getReadings() to the button press

 g_signal_connect(button, "clicked", G_CALLBACK (getReadings),

 (gpointer) reading_label);

 // Add the button to the box

590 Part III ■ Advanced Interfacing and Interaction

c14.indd 06:52:40:PM 05/12/2016 Page 590

 gtk_box_pack_start (GTK_BOX (box), button, FALSE, FALSE, 0);

 gtk_widget_show(window);

 gtk_main();

 return 0;

}

To execute this program, you must have superuser permissions in order to

use the wiringPi library. This means that you also need to authorize the root

user to use VNC:

pi@erpi .../chp14/gtk $ sudo cp ~/.Xauthority /root

pi@erpi .../chp14/gtk $ sudo ./gtksensor

The application then appears as in Figure 14-5.

Introduction to Qt on the RPi

Qt (pronounced “cute”) is a powerful cross-platform development framework

that uses standard C++. It provides libraries of C++ code for GUI application

development and for database access, thread management, networking, and

more. Importantly, code developed under this framework can be executed under

Windows, Linux, Mac OS X, Android, iOS, and on embedded platforms, such

as the RPi. Qt can be used under open source or commercial terms and it is

supported by freely available development tools, such as qmake and Qt Creator.

The capability and fl exibility of this framework make it an ideal candidate for

GUI applications that are to run directly on the RPi, or on devices that control

the RPi.

Qt is described in greater detail in the next section, but it is useful to get started

using a simple “hello world” example, as illustrated in Figure 14-6, which can

be compiled and executed on the RPi either directly or using VNC.

Figure 14-6: Qt “hello world” RPi example executing using VNC

Installing Qt Development Tools on the RPi

The fi rst step is to install the Qt development tools on the RPi. The last com-

mand in the following code snippet installs a full suite of tools (60 MB to 200

MB of additional storage required):

pi@erpi ~ $ apt-cache search qt5

pi@erpi ~ $ sudo apt install qt5-default

 Chapter 14 ■ Raspberry Pi with a Rich User Interface 591

c14.indd 06:52:40:PM 05/12/2016 Page 591

You can then test the version of the installation using the following:

pi@erpi ~ $ qmake -version

QMake version 3.0

Using Qt version 5.3.2 in /usr/lib/arm-linux-gnueabihf

The Hello World Qt Application

Listing 14-3 is a very concise Qt application that can be used as a test—it does not

represent good Qt programming practice! It uses an object of the QLabel class,

which is a subclass of the QWidget class, to display a message in the application.

A widget is the primary UI element that is used for creating GUIs with Qt. The

parent QWidget class provides the code required to render (draw) the subclass

object on the screen display.

Listing 14-3: /chp14/simpleQt/simpleQt.cpp

#include <QApplication>

#include <QLabel>

int main(int argc, char *argv[]){

 QApplication app(argc, argv);

 QLabel label("Hello Raspberry Pi!");

 label.resize(200, 100);

 label.show();

 return app.exec();

}

The simpleQt.cpp fi le in Listing 14-3 is the only fi le required in a directory

before the following steps take place. The qmake cross-platform Makefi le gen-

erator can then be used to create a default project:

pi@erpi ~/exploringrpi/chp14/simpleQt $ ls

simpleQt.cpp

pi@erpi ~/exploringrpi/chp14/simpleQt $ qmake -project

pi@erpi ~/exploringrpi/chp14/simpleQt $ ls

simpleQt.cpp simpleQt.pro

pi@erpi ~/exploringrpi/chp14/simpleQt $ more simpleQt.pro

##

Automatically generated by qmake (3.0) Mon Nov 16 04:02:43 2015

##

TEMPLATE = app

TARGET = simpleQt

INCLUDEPATH += .

Input

SOURCES += simpleQt.cpp

This project .pro fi le describes the project settings and, if required, it can be

edited manually to add additional dependencies. In this case the line:

QT += widgets

592 Part III ■ Advanced Interfacing and Interaction

c14.indd 06:52:40:PM 05/12/2016 Page 592

must be added to the .pro fi le (e.g., between the TEMPLATE and TARGET lines), as

otherwise the libraries required for the GUI display widgets will not be linked

correctly. The qmake Makefile generator can then be executed again, this time

with no -project argument:

pi@erpi ~/exploringrpi/chp14/simpleQt $ qmake

pi@erpi ~/exploringrpi/chp14/simpleQt $ ls

Makefile simpleQt.cpp simpleQt.pro

This step results in a Makefile fi le being created in the current directory that

allows the executable to be built using a call to the make program, which in turn

uses g++ to build the fi nal application:

pi@erpi ~/exploringrpi/chp14/simpleQt $ make

g++ -c -pipe -O2 -Wall -W -D_REENTRANT -fPIE -DQT_NO_DEBUG ...

The executable is now present in the directory and can be executed as follows,

which results in the visual display shown earlier in Figure 14-6:

pi@erpi ~/exploringrpi/chp14/simpleQt $ ls

Makefile simpleQt simpleQt.cpp simpleQt.o simpleQt.pro

pi@erpi ~/exploringrpi/chp14/simpleQt $./simpleQt

Clearly, there are additional steps involved in using qmake to build a Qt appli-

cation, but these are necessary to take advantage of the cross-platform nature

of Qt. For example, you can perform similar steps on your desktop machine to

build the same application, regardless of its OS.

Qt Primer

Qt is a full cross-platform development framework that is written in C/C++. It is

used in the preceding section for UI programming, but it also provides support

for databases, threads, timers, networking, multimedia, XML processing, and

more. Qt extends C++ by adding macros and introspection, code that examines

the type and properties of an object at run time, which is not natively available

in C++. It is important to note that all the code is still just plain C++!

Qt Concepts

Qt is built in modules, each of which can be added to your project by includ-

ing the requisite header fi les in your C++ program and by identifying that the

module is used in the project .pro fi le. For example, to include the classes in

the QtNetwork module, you add #include<QtNetwork> to your program code

 Chapter 14 ■ Raspberry Pi with a Rich User Interface 593

c14.indd 06:52:40:PM 05/12/2016 Page 593

and link against the module by adding QT += network to the qmake .pro fi le.

A list of important Qt modules is provided in Table 14-2.

Table 14-2: Summary of the Important Qt Modules

NAME DESCRIPTION

QtCore Contains the core non-GUI classes, such as QString, QChar, QDate,

QTimer, and QVector. It is included by default in Qt projects, as all

other Qt modules rely on this module.

QtGui Core module that adds GUI support to the QtCore module, with classes

such as QDialog, QWidget, QToolbar, QLabel, QTextEdit, and

QFont. This module is included by default. If your application has no GUI,

you can add Qt -= gui to your .pro fi le.

QtMultimedia Contains classes for low-level multimedia functionality, such as

QVideoFrame, QAudioInput, and QAudioOutput. To use this mod-

ule, add #include <QtMultimedia> to your source fi le and QT +=
multimedia to your .pro fi le.

QtNetwork Contains classes for network communication over TCP and UDP, includ-

ing SSL communications, with classes such as QTcpSocket, QFtp,

QLocalServer, QSslSocket, and QUdpSocket. As above, use

#include <QtNetwork> and QT += network.

QtOpenGL The Open Graphics Library (OpenGL) is a cross-platform application pro-

gramming interface (API) for 3-D computer graphics, which is widely used

in industrial visualization and computer gaming applications. This module

makes it straightforward to contain OpenGL in your application with classes

such as QGLBuffer, QGLWidget, QGLContext, and QGLShader. As

above, use #include <QtOpenGL> and QT += opengl.

QtScript Enables you to make your Qt application scriptable. Scripts are used in

applications such as Microsoft Excel and Adobe Photoshop to enable

users to automate repetitive tasks. QtScript includes a JavaScript engine,

which you can use within the core application to interlink functionality

in scripts. It can also be used to expose the internal functionality of your

application to users, enabling them to add new functionality without the

need for C++ compilation. As above, use #include <QtScript> and

QT += script.

QtSql Contains classes for interfacing to databases using the SQL programming

language, such as QSqlDriver, QSqlQuery, and QSqlResult. As

above, use #include <QtSql> and QT += sql.

QtSvg Contains classes for creating and displaying scalar vector graphics (SVG)

fi les, such as QSvgWidget, QSvgGenerator, and QSvgRenderer. As

above, use #include <QtSvg> and QT += svg.

Continues

594 Part III ■ Advanced Interfacing and Interaction

c14.indd 06:52:40:PM 05/12/2016 Page 594

NAME DESCRIPTION

QtTest Contains classes for unit testing Qt applications using the QTestLib tool,

such as QSignalSpy and QTestEventList. As above, use #include
<QtTest> and QT += testlib.

QtWebKit Provides a web browser engine and classes for rendering and interacting

with web content, such as QWebView, QWebPage, and QWebHistory.

As above, use #include <QtWebKit> and QT += webkit.

QtXml Extensible markup language (XML) is a human-readable document for-

mat that can be used to transport and store data. The QtXml module

provides a stream reader and writer for XML data, with classes such as

QXmlReader, QDomDocument, and QXmlAttributes. As above, use

#include <QtXml> and QT += xml.

The QObject Class

The QObject class is the base class of almost all the Qt classes and all the wid-

gets.2 This means that most Qt classes share common functionality for handling

memory management, properties, and event-driven programming.

Qt implements introspection by storing information about every class that is

derived from QObject using a QMetaObject object within its Meta-Object System.

When you build projects using Qt you will see that new .cpp fi les appear in

the build directory; these are created by the Meta-Object Compiler (moc).3 The

C++ compiler will then compile these fi les into a regular C/C++ object fi le (.o),

which is ultimately linked to create an executable application.

Signals and Slots

Similar to GTK+, Qt has an event-driven programming model that enables events

and state changes to be interconnected with reactions using a mechanism termed

signals and slots. For example, a Qt button widget can be confi gured so that

when it is clicked, it generates a signal, which has been connected to a slot. The

slot, which is somewhat like a callback function, performs a user-defi ned func-

tion when it receives a signal. Importantly, the signals and slots mechanism can

be applied to non-GUI objects; it can be used for intercommunication between

2 Java programmers will notice that this is similar to the Object class in Java; however, in Qt,
classes requiring object instances that can be copied do not subclass QObject (e.g., QString,
QChar).
3 At compile time, the moc uses information from the class header files (e.g., if the class is a
descendent of QObject) to generate a “marked-up” version of the .cpp file. For example, if
you have a class X that is defined in the files X.h and X.cpp, the moc will generate a new file
called moc-X.cpp, which contains the meta-object code for the class X.

Table 14-2 (continued)

 Chapter 14 ■ Raspberry Pi with a Rich User Interface 595

c14.indd 06:52:40:PM 05/12/2016 Page 595

any object that is in any way derived from the QObject class. Signals and slots

provide a powerful mechanism that is possibly the most unique feature of the

Qt framework.

A full-featured Qt sensor application is developed shortly that makes exten-

sive use of signals and slots. For example, the application updates the display

every 5 seconds by reading the sensor value; Figure 14-7 illustrates how this

takes place. In this example, the QTimer class has a signal called timeout() that

is emitted whenever an object called timer “times out” (which it does after fi ve

seconds). This signal is connected to the on_timerUpdate() slot on an object

of the QMainWindow class called mainWindow. The connection is made by a call of

the form

QObject::connect(source,SIGNAL(signature),destination,SLOT(signature));

where source and destination are objects of classes that are derived from the

QObject class. The signature is the function name and argument types (without

the variable names).

Figure 14-7: QTimer signals and slots example

The website www.qt.io provides an excellent detailed description of the

behavior of signals and slots, but here are some further summary points on

signals, slots, and connections that will get you started:

 ■ Signals can be connected to any number of slots.

 ■ Signals are defi ned in the signals section of the code (under a signals:

label, which is usually in the class header fi le).

 ■ Signal “methods” must return void and may not have any implementation.

 ■ A signal can be explicitly emitted using the emit keyword.

 ■ Slots can be connected to any number of signals.

 ■ Slots are defi ned in the slots section of the code (under a slots: label that

can be public, private, or protected).

 ■ Slots are regular methods with a full implementation.

 ■ Connections can be explicitly formed (as in the timer example) or automati-

cally created when using the Qt graphical design tools in the next section.

http://www.qt.io

596 Part III ■ Advanced Interfacing and Interaction

c14.indd 06:52:40:PM 05/12/2016 Page 596

Qt Development Tools

The Qt framework also has associated development tools. As well as the qmake

tool, there is a full-featured IDE called Qt Creator, which is similar in nature to

Eclipse, except that it is specifi cally tailored for Qt development. The IDE, which

is illustrated in Figure 14-8, is available for Linux, Windows, and Mac OS X, and

can execute on the RPi directly. Qt Creator can be used to build native applica-

tions, or it can be used to cross-compile applications for the RPi, by installing a

cross-platform toolchain (similar to Eclipse in Chapter 7). To install and execute

Qt Creator on the RPi (e.g., via VNC) use the following steps, whereupon the

IDE appears as in Figure 14-8.

pi@erpi ~ $ sudo apt install qtcreator

pi@erpi ~ $ qtcreator &

Figure 14-8: Qt Creator IDE visual design editor running directly on the RPi (via VNC)

One of the key features that Qt Creator provides is its visual design edi-

tor, which enables you to interactively drag-and-drop widgets onto window

designs, called forms. The interface enables the properties of the widgets to be

confi gured easily, and it provides a straightforward way of enabling signals and

associating slots against the UI components. For example, to write code that

executes when the pushbutton is clicked (refer to Figure 14-8), you can simply

right-click the button and choose “Go to slot,” which provides a dialog with a

list of available signals (such as clicked(), pressed(), and released()).4 Once

a signal is chosen, the IDE will automatically enable the signal, provide a slot

code template, and associate the signal with the slot. The form UI’s properties

are stored in an XML fi le and associated with the project (e.g., mainwindow.ui).

4 A click is a press and a release. Code can be associated with the complete click action and/or
the constituent actions.

 Chapter 14 ■ Raspberry Pi with a Rich User Interface 597

c14.indd 06:52:40:PM 05/12/2016 Page 597

N O T E When using Qt Creator, unusual problems can arise (e.g., changes to the code

not appearing in the application build), particularly when switching projects. In such

cases, go to the Build menu and choose Clean All.

In addition, “unresolved external” link errors (e.g., when adding new classes) can

often be resolved by selecting Run qmake from the Build menu.

A First Qt Creator Example

You can create a simple Qt GUI application on the RPi using Qt Creator by fol-

lowing these steps:

 ■ Using VNC or by developing on the RPi directly, start Qt Creator with

the following call:

pi@erpi ~ $ qtcreator &

 ■ Create a new project of type Qt Widgets Application. Call it QtTest and

create it in the /home/pi/ directory.

 ■ Select the Desktop kit and choose the default class information. This

results in a new project being created within Qt Creator, which appears

as in Figure 14-8 when you double click the mainwindow.ui form entry.

 ■ In this window view, add a Push Button and a Text Edit (QTextEdit)

component, as illustrated in Figure 14-8.

 ■ Right-click on the text edit box and choose Change objectName. Change

the object name to be output.

 ■ Right-click on the button and use the Change text option to retitle the but-

ton to “Press Me.” Right-click the button again and choose Go to Slot and

then pick a signal (for example clicked()). This creates a new function in

the mainwindow.cpp fi le called on_pushButton_clicked(). See Figure 14-9.

 ■ You can then add a line of code to this method that sets the text of the

output QTextEdit component, which is accessed via the ui main window:

void MainWindow::on_pushButton_clicked() {

 ui->output->setText("Hello from the RPi");

}

The application can be executed by clicking the play button on the bottom-left

side of Figure 14-9.5 The application window appears as in Figure 14-9. When

the Press Me button is clicked, the text “Hello from the RPi” appears in the

output QTextEdit component.

5 In some cases you may have to manually add the g++ compiler to the kit. Go to Tools ➪
Options ➪ Build & Run ➪ Compilers and add it under the Manual category.

598 Part III ■ Advanced Interfacing and Interaction

c14.indd 06:52:40:PM 05/12/2016 Page 598

Figure 14-9: Qt Creator IDE test application

A Qt Weather GUI Application

In this section, the Qt Creator IDE is used on the RPi to build a full-featured

GUI weather sensor application, as illustrated in Figures 14-10 and 14-11. This

application executes directly on the RPi, regardless of the UI architecture used.

In fact, if you look back at Figure 14-3, you will see that it makes a guest appear-

ance. This application demonstrates some of the capabilities of Qt on the RPi,

while being cognizant of the volume of code to be studied. It could be greatly

extended; for example, it could also provide historical charting or fancy display

dials. This example application supports the following features:

 ■ A timer thread takes a reading every fi ve seconds from the RPi GPIO

using the one-wire interface to the DHT sensor.

 ■ An LCD-style fl oating-point temperature and humidity displays are used.

 ■ A display of the minimum and maximum temperature is provided.

 ■ A mechanism is provided to convert the main display from a Celsius

scale to a Fahrenheit scale by clicking the Use Fahrenheit radio widget.

 ■ A status display is used at the very bottom of the window.

The full source code and executable for this application are available in the

Git repository /chp14/QtWeather/ directory.

There are four important source fi les to describe for this application, the

first of which is in Listing 14-4. It provides the main() starting point for

the application in which an instance of the QApplication and MainWindow classes

 Chapter 14 ■ Raspberry Pi with a Rich User Interface 599

c14.indd 06:52:40:PM 05/12/2016 Page 599

are created. The QApplication class manages the GUI application control fl ow

(the main loop).

Figure 14-10: Development of the Qt weather sensor GUI application within Qt Creator

Figure 14-11: The Qt weather sensor GUI application components

Listing 14-4: /chp14/QtWeather/QtWeather/main.cpp

#include "mainwindow.h"

#include <QApplication>

int main(int argc, char *argv[])

{

 QApplication a(argc, argv);

 MainWindow w;

 w.show();

 return a.exec();

}// it is the main loop that processes events

600 Part III ■ Advanced Interfacing and Interaction

c14.indd 06:52:40:PM 05/12/2016 Page 600

Listing 14-5 is the Qt project fi le. To use the wiringPi library from within Qt,

the LIBS line must be manually added to the .pro fi le.

Listing 14-5: /chp14/QtWeather/QtWeather/QtWeather.pro

QT += core gui

greaterThan(QT_MAJOR_VERSION, 4): QT += widgets

TARGET = QtWeather

TEMPLATE = app

LIBS += -lwiringPi

SOURCES += main.cpp\

 mainwindow.cpp

HEADERS += mainwindow.h

FORMS += mainwindow.ui

The MainWindow class is defi ned in Listings 14-6 and 14-7. The MainWindow

class is a child of the QMainWindow class (which is child of QWidget and

ultimately QObject). That means that any methods that are available in the

parent classes are also available in the MainWindow class itself.

Listing 14-6: /chp14/QtWeather/QtWeather/mainwindow.h

#include <QMainWindow>

#include <QTimer>

#define USING_DHT11 false // The DHT11 uses only 8 bits

#define DHT_GPIO 22 // Using GPIO 22 for this example

#define LH_THRESHOLD 26 // Low=~14, High=~38 - pick avg.

namespace Ui {

class MainWindow;

}

class MainWindow : public QMainWindow {

 Q_OBJECT

public:

 explicit MainWindow(QWidget *parent = 0);

 ~MainWindow();

private slots:

 void on_getSample_clicked(); // when button is pressed

 void on_radioButton_toggled(bool checked); // when radio clicked

 void on_timerUpdate(); // when timer times out

private:

 float temperature, humidity; // states

 float maxTemperature, minTemperature;

 bool isFahrenheit;

 QTimer *timer; // pointer to timer

 void updateDisplay(); // sets the UI values

 int readDHTSensor(); // read DHT sensor

 Chapter 14 ■ Raspberry Pi with a Rich User Interface 601

c14.indd 06:52:40:PM 05/12/2016 Page 601

 float celsiusToFahrenheit(float valueCelsius);

 Ui::MainWindow *ui;

};

Listing 14-7: /chp14/QtWeather/QtWeather/mainwindow.cpp

#include "mainwindow.h"

#include "ui_mainwindow.h"

#include <QDateTime>

#include <wiringPi.h>

#include <unistd.h>

using namespace std;

MainWindow::MainWindow(QWidget *parent) :

 QMainWindow(parent),

 ui(new Ui::MainWindow) {

 ui->setupUi(this);

 this->isFahrenheit = false;

 statusBar()->showMessage("Sensor Application Started");

 this->maxTemperature = -100.0f; // initial values

 this->minTemperature = 100.0f;

 this->updateDisplay(); // refresh UI values (below)

 this->timer = new QTimer(this); // create the timer

 //when the timer times out, call the on_timerUpdate() function

 connect(timer, SIGNAL(timeout()), this, SLOT(on_timerUpdate()));

 this->timer->start(5000); // time out after 5 sec

}

float MainWindow::celsiusToFahrenheit(float valueCelsius) {

 return ((valueCelsius * (9.0f/5.0f)) + 32.0f);

}

void MainWindow::on_getSample_clicked() { // called when button pressed

 QDateTime local(QDateTime::currentDateTime()); // display sample time

 statusBar()->showMessage(QString("Update: ").append(local.toString()));

 this->readDHTSensor();

 if(temperature<minTemperature) minTemperature = temperature; // min?

 if(temperature>maxTemperature) maxTemperature = temperature; // max?

 this->updateDisplay();

}

void MainWindow::on_timerUpdate() {

 this->on_getSample_clicked();

 this->updateDisplay();

}

void MainWindow::updateDisplay() {

 if(this->isFahrenheit) { // in Fahrenheit mode?

 ui->lcdTemperature->display(celsiusToFahrenheit(temperature));

 ui->temperatureUnits->setText("F"); // set the label to F

 }

 else {

602 Part III ■ Advanced Interfacing and Interaction

c14.indd 06:52:40:PM 05/12/2016 Page 602

 ui->lcdTemperature->display((double)temperature);

 ui->temperatureUnits->setText("C");

 }

 ui->lcdHumidity->display((double)humidity);

 ui->minTemperature->setText(QString::number(minTemperature));

 ui->maxTemperature->setText(QString::number(maxTemperature));

}

void MainWindow::on_radioButton_toggled(bool checked) {

 this->isFahrenheit = checked;

 this->updateDisplay();

}

MainWindow::~MainWindow() { delete ui; }

int MainWindow::readDHTSensor(){ // same as before in Chapter 6 }

Figure 14-12 illustrates the relationship between the UI components and the

slots that are declared in Listing 14-6 and defi ned in Listing 14-7. The timer code

is also summarized; it is not a GUI component, but it does generate a timeout()

signal, which is connected to the on_timerUpdate() slot. The exact nature of the

code in Listings 14-6 and 14-7 is described by the comments. However, the clearest

way to fully understand the code is to edit it and see what impact your edits have.

Figure 14-12: The UI component signals and associated slots

The code can be executed on the RPi from within a root session, which is

required due to the use of the wiringPi library:

molloyd@desktop:~$ ssh -XC pi@erpi.local

pi@erpi ~ $ cd ~/exploringrpi/chp14/QtWeather/

pi@erpi ~/exploringrpi/chp14/QtWeather/ $ sudo bash

root@erpi:.../chp14/QtWeather# cd build-QtWeather-Desktop-Debug/

root@erpi:.../chp14/QtWeather/build-QtWeather-Desktop-Debug# ./QtWeather

Remote UI Application Development

In Chapter 12, a C++ client/server application is introduced that can be used

for direct intercommunication between two processes that are running on two

different machines (or the same machine) using TCP sockets. The machines

mailto:pi@erpi.local

 Chapter 14 ■ Raspberry Pi with a Rich User Interface 603

c14.indd 06:52:40:PM 05/12/2016 Page 603

could be situated on the same physical/wireless network, or could even be on

different continents. Direct socket communication requires programmers to

frame their own intercommunication protocol. That results in programming

overhead, but it also leads to very effi cient communication, which is only really

limited by the speed of the network.

In this section, the functionality of the Qt weather sensor GUI application and

the C++ client/server application (from Chapter 12) are combined. This enables the

creation of a fat-client GUI Weather application that can intercommunicate with

a weather service, which is running on the RPi. The weather service server code

is enhanced from that presented in Chapter 12, by making it multithreaded.

This change enables many client applications to attach to the server at the same

time. The architecture is illustrated in Figure 14-13.

Figure 14-13: The Qt fat-client GUI weather application client/server architecture

The full source code for the Qt GUI application is available in the /chp14/

QtWeatherClient directory, and the server source code is available in the

/chp14/QtWeatherServer directory.

Fat-Client Qt GUI Application

In this section, the Qt weather GUI application from earlier in this chapter is

modifi ed so that it becomes “Internet enabled.” This change means that the

application does not have to execute on the RPi; rather, the GUI application

can run on a desktop machine and communicate to the RPi sensor using TCP

sockets. To achieve this outcome, the following changes are made to the GUI

application code (The server application is described in the next section.):

 1. A new dialog window is added to the application that can be used to enter

the server IP address, the service port number, and the reading refresh

frequency. This dialog is illustrated in Figure 14-14.

 2. Rather than read from the RPi one-wire GPIO interface, the GUI application

must open a TCP socket and communicate to the RPi server application.

604 Part III ■ Advanced Interfacing and Interaction

c14.indd 06:52:40:PM 05/12/2016 Page 604

The client application sends the string command “getReading” to the

server. The server is programmed to respond with the temperature and

humidity values, which are read from the DHT sensor. Clearly, many

different commands could be introduced.

 3. A menu is enabled on the application UI that can be used to open the Server

Settings dialog or to quit the application. The respective key sequences

Ctrl+S or Ctrl+X can also be used.

Figure 14-14: The menu and the Server Settings dialog

The fi rst change involves the addition of a new class to the project called

ServerSettingsDialog, as described in Listing 14-8, which is associated with

the dialog (and its serversettingsdialog.ui XML fi le). The role of this class is

to act as a wrapper for the values that are entered in the dialog—for example,

it will return the IPv4 address that a user entered in the QSpinBox widgets, by

returning a single 32-bit unsigned int (quint32) when its getIPAddress()

method is called.

Listing 14-8: /chp14/QtWeatherClient/serversettingsdialog.h

class ServerSettingsDialog : public QDialog {

 Q_OBJECT // the required Qt macro

public:

 explicit ServerSettingsDialog(QWidget *parent = 0); // pass reference

 ~ServerSettingsDialog();

 quint32 virtual getIPAddress(); // return IP address as a 32-bit int

 int virtual getTimeDelay() { return timeDelay; } // sample time

 int virtual getServerPort() { return serverPortNumber; } // port number

private slots:

 void on_buttonBox_accepted(); // OK button is pressed

 void on_buttonBox_rejected(); // Cancel button is pressed

private:

 Ui::ServerSettingsDialog *ui; // pointer to the UI components

 int serverPortNumber; // port number (default 5555)

 int timeDelay; // time delay sec (default 30)

 int address[4]; // IP address (default 192.168.1.1)

};

 Chapter 14 ■ Raspberry Pi with a Rich User Interface 605

c14.indd 06:52:40:PM 05/12/2016 Page 605

The second change involves the addition of socket code to the getSensor-

Reading() method, as provided in Listing 14-9. This code uses the QtNetwork

module, which requires that you add

QT += core gui network

to the QWeatherClient.pro project fi le so that the project links to that module.

The QTcpSocket class is used to create a client connection to the RPi TCP Weather

server. Regular TCP sockets are used on the RPi, which does not cause any dif-

fi culty in the transaction of string data. Interestingly, you could equivalently

use Java socket code on either end of a connection. Just be careful to ensure that

the byte order is preserved.

Listing 14-9: /chp14/QtWeatherClient/mainwindow.cpp (segment)

void MainWindow::createActions() { // set up the menu

 QAction *exit = new QAction("&Exit", this);

 exit->setShortcut(QKeySequence(tr("Ctrl+X")));

 QAction *settings = new QAction("&Settings", this);

 settings->setShortcut(QKeySequence(tr("Ctrl+S")));

 QMenu *menu = menuBar()->addMenu("&Menu");

 menu->addAction(settings);

 menu->addAction(exit);

 connect(exit, SIGNAL(triggered()), qApp, SLOT(quit())); //quit

 connect(settings, SIGNAL(triggered()), this, SLOT(on_openSettings()));

}

void MainWindow::on_openSettings() {

 this->dialog->exec(); // display the dialog box

 this->timer->start(1000*this->dialog->getTimeDelay()); //update delay

}

int MainWindow::getSensorReading() {

 // Get the server address and port from the settings dialog box

 int serverPort = this->dialog->getServerPort(); // from dialog box

 quint32 serverAddr = this->dialog->getIPAddress();

 QTcpSocket *tcpSocket = new QTcpSocket(this); // create socket

 tcpSocket->connectToHost(QHostAddress(serverAddr), serverPort);

 if(!tcpSocket->waitForConnected(1000)){ // up to 1s for connection

 statusBar()->showMessage("Failed to connect to server...");

 return 1;

 }

 // Send the message "getReading" to the server

 tcpSocket->write("getReading");

 if(!tcpSocket->waitForReadyRead(3000)){ // up to 3s for the server

 statusBar()->showMessage("Server did not respond...");

 return 1;

 }

 // If the server has sent bytes back to the client

606 Part III ■ Advanced Interfacing and Interaction

c14.indd 06:52:40:PM 05/12/2016 Page 606

 if(tcpSocket->bytesAvailable()>0){

 int size = tcpSocket->bytesAvailable(); // how many bytes ready?

 char data[200]; // upper limit of 200 chars

 tcpSocket->read(&data[0],(qint64)size); // read number of bytes rec.

 data[size]='\0'; // terminate the string

 cout << "Received the data [" << data << "]" << endl;

 this->parseJSONData(QString(data));

 if(temperature<=minTemperature) minTemperature = temperature;

 if(temperature>=maxTemperature) maxTemperature = temperature;

 }

 else{

 statusBar()->showMessage("No data available...");

 }

 return 0;

}

int MainWindow::parseJSONData(QString str){

 QJsonDocument doc = QJsonDocument::fromJson(str.toUtf8());

 QJsonObject obj = doc.object();

 QJsonObject sample = obj["sample"].toObject();

 this->temperature = (float) sample["temperature"].toDouble();

 this->humidity = (float) sample["humidity"].toDouble();

 cout << "The temperature is " << temperature << " and humidity is "

 << humidity << endl;

 return 0;

}

The third change is implemented by the createActions() method in

Listing 14-9, which creates the GUI menu when it is called by the class construc-

tor. It adds two actions to the menu: The Exit item quits the application, and

the Settings item triggers the execution of the on_openSettings() slot, which

opens the Server Settings dialog.

The RPi does not have to update the client-side GUI of the application in this

architecture. Instead, it manages TCP socket connections, processes strings, and

reads values from the DHT sensor. Such operations have a very low overhead

on the RPi, and therefore it is capable of simultaneously handling many client

requests. Unfortunately, the server code that is presented in Chapter 12 is not

capable of handling multiple simultaneous requests; rather, it processes requests

in sequence, and would reject a connection if it is presently occupied.

Multithreaded Server Applications

For many server applications it is important that the server can handle multiple

simultaneous requests—for example, if the Google search engine web page could

only handle requests sequentially, there might be a long queue and/or many

rejected connections! Figure 14-15 illustrates the steps that must take place for

 Chapter 14 ■ Raspberry Pi with a Rich User Interface 607

c14.indd 06:52:40:PM 05/12/2016 Page 607

a multithreaded server application to communicate simultaneously with two

individual client applications. The steps are as follows:

 1. TCP Client 1 requests a connection to the RPi TCP Server. It must know

the server’s IP address (or name) and the port number.

 2. The RPi TCP Server creates a new thread (Connection Handler 1) and

passes the TCP Client’s IP address and port number to it. The RPi TCP

Server immediately begins listening for new connections (on port 5555).

The Connection Handler 1 thread then forms a connection to the TCP

Client 1 and begins communicating.

 3. TCP Client 2 requests a connection to the RPi TCP Server. The Connection

Handler 1 thread is currently communicating to TCP Client 1, but the RPi

TCP Server is also listening for connections.

 4. The RPi TCP Server creates a new thread (Connection Handler 2) and

passes the second TCP Client’s IP address and port number to it. The RPi

TCP Server immediately begins listening for new connections. The

Connection Handler 2 thread then forms a connection to the TCP Client

2 and begins communication.

At this point, communication is simultaneously taking place between both

client/connection handler pairs, and the server main thread is listening for

new connections. The client/connection handler communication session could

persist for a long time—for example, for video streaming Internet services such

as YouTube or Netfl ix.

If the connection handler objects were not implemented as threads, the server

would have to wait until the client/connection handler communication is complete

before it could listen again for new connections. With the structure described,

the server is only unavailable while it is constructing a new connection handler

threaded object. Once the object is created, the server returns to a listening state.

Client socket connections have a confi gurable time-out limit (typically on the

order of seconds), so a short processing delay by the server should not result in

rejected connections.

A C++ multithreaded client/server example is available in the /chp14/

threadedclientserver directory. An artifi cial 5-second delay is present in the

ConnectionHandler class to prove conclusively that simultaneous communica-

tion is taking place. For example, you can open three terminal sessions on the

RPi and start the server:

pi@erpi ~/exploringrpi/chp14/threadedClientServer $ ls

build client client.cpp network server server.cpp

pi@erpi ~/exploringrpi/chp14/threadedClientServer $./server

Starting RPi Server Example

Listening for a connection...

608 Part III ■ Advanced Interfacing and Interaction

c14.indd 06:52:40:PM 05/12/2016 Page 608

Figure 14-15: A multithreaded server

Then start TCP Client 1 in the next terminal:

pi@erpi ~/exploringrpi/chp14/threadedClientServer $./client localhost

Starting RPi Client Example

Sending [Hello from the Client]

Then start TCP Client 2 in the last terminal (quickly—the delay is 5 seconds!):

pi@erpi ~/exploringrpi/chp14/threadedClientServer $./client localhost

Starting RPi Client Example

Sending [Hello from the Client]

The fact that the second client is able to connect while the fi rst client is awaiting

a (artifi cially delayed) response means that the server must be multithreaded.

The fi nal output of the server is as follows:

pi@erpi ~/exploringrpi/chp14/threadedClientServer $./server

Starting RPi Server Example

Listening for a connection...

Received from the client [Hello from the Client]

Sending back [The Server says thanks!]

 but going asleep for 5 seconds first....

 Chapter 14 ■ Raspberry Pi with a Rich User Interface 609

c14.indd 06:52:40:PM 05/12/2016 Page 609

Received from the client [Hello from the Client]

Sending back [The Server says thanks!]

 but going asleep for 5 seconds first....

Both clients will display the same fi nal output:

pi@erpi ~/exploringrpi/chp14/threadedClientServer $./client localhost

Starting RPi Client Example

Sending [Hello from the Client]

Received [The Server says thanks!]

End of RPi Client Example

The class defi nition for the ConnectionHandler class is provided in Listing 14-10.

This class has a slightly complex structure so that a thread is created and started

when an object of the class is created. This code can be used as a template—just

rewrite the threadLoop() implementation.

Listing 14-10: /chp14/threadedclientserver/network/ConnectionHandler.h

class SocketServer; // class declaration, due to circular ref problem

 // and C/C++ single definition rule.

class ConnectionHandler {

public:

 // Constructor expects a reference to the server that called it and

 // the incoming socket and file descriptor

 ConnectionHandler(SocketServer *server, sockaddr_in *in, int fd);

 virtual ~ConnectionHandler();

 int start();

 void wait();

 void stop() { this->running = false; } // stop the thread loop

 virtual int send(std::string message); // send message to the client

 virtual std::string receive(int size); // receive a message

protected:

 virtual void threadLoop(); // the user-defined thread loop

private:

 sockaddr_in *client; // a handle to the client socket

 int clientSocketfd; // the client socket file desc.

 pthread_t thread; // the thread

 SocketServer *parent; // a handle to the server object

 bool running; // is thread running? (default true)

 // static method to set the thread running when an object is created

 static void * threadHelper(void * handler){

 ((ConnectionHandler *)handler)->threadLoop();

 return NULL;

 }

};

The Multithreaded Weather Server

The code in the previous section is modified in this section to create

the Multithreaded Weather Service in Listing 14-11, which is available in the

610 Part III ■ Advanced Interfacing and Interaction

c14.indd 06:52:40:PM 05/12/2016 Page 610

/chp14/QtWeatherServer directory. It is unlikely that you will need to check

the room temperature every fraction of a second. Therefore, a multithreaded

approach is overkill in this example. However, this structure is very important

for applications that stream data, so it is useful to be exposed to it.

Listing 14-11: /chp14/QtWeatherServer/network/ConnectionHandler.cpp

#define USING_DHT11 false // The DHT11 uses only 8 bits

#define DHT_GPIO 22 // Using GPIO 22 for this example

#define LH_THRESHOLD 26 // Low=~14, High=~38 - pick avg.

int ConnectionHandler::readDHTSensor() { ... // same as before }

void ConnectionHandler::threadLoop() {

 cout << "*** Created a Connection Handler threaded Function" << endl;

 string rec = this->receive(1024);

 if (rec == "getReading"){

 cout << "Received from the client [" << rec << "]" << endl;

 if (this->readDHTSensor()<0) {

 cout << "Failed to make a reading from the DHT sensor" << endl;

 }

 stringstream ss;

 ss << " { \"sample\": { \"temperature\" : " << temperature;

 ss << ", \"humidity\": " << humidity << " } } ";

 this->send(ss.str());

 cout << "Sent [" << ss.str() << "]" << endl;

 }

 else {

 cout << "Received from the client [" << rec << "]" << endl;

 this->send(string("Unknown Command"));

 }

 cout << "*** End of the Connection Handler Function" << endl;

 this->parent->notifyHandlerDeath(this);

}

The Weather Server code can be tested by using the clientTest CLI test

application, which is in the same directory as the server, by using the following:

pi@erpi ~/exploringrpi/chp14/QtWeatherServer $ sudo ./server

Starting RPi Server Example

Listening for a connection...

Then execute the test client in a different terminal:

pi@erpi ~/exploringrpi/chp14/QtWeatherServer $./clientTest localhost

Starting RPi Client Test

Sending [getReading]

Received [{ "sample": { "temperature" : 19, "humidity": 49.5 } }]

End of RPi Client Test

The fi nal output of the server is then as follows:

pi@erpi ~/exploringrpi/chp14/QtWeatherServer $ sudo ./server

Starting RPi Server Example

Listening for a connection...

 Chapter 14 ■ Raspberry Pi with a Rich User Interface 611

c14.indd 06:52:40:PM 05/12/2016 Page 611

Starting the Connection Handler thread

*** Created a Connection Handler threaded Function

Received from the client [getReading]

Sent [{ "sample": { "temperature" : 19, "humidity": 49.5 } }]

*** End of the Connection Handler Function

Server: Found and deleted the connection reference...

Destroyed a Connection Handler

The localhost host name is resolved to the loopback address 127.0.0.1, which

enables the RPi to communicate with itself. If the client application outputs a

temperature and humidity value (e.g., 19ºC and 49.5%), this test is successful and

the Qt fat-client GUI application should also connect to the server, as illustrated

in Figure 14-14.

Parsing Stream Data

The obvious approach to sending data between a server and a client is to use byte

data and to marshall and unmarshall the data values. This can be performed

by manually converting numeric data into string values; however, manual

conversion is prone to parsing errors, particularly as the complexity of com-

munication increases. One solution to this problem is to use an XML format to

communicate between the client and the server. For example the sample data

could be structured as a simple XML message format:

<sample><temperature>18.2</temperature><humidity>45.4</humidity></sample>

The Qt framework has full support for XML parsing in the QtXml module by

using the QXmlStreamReader class.

An alternative solution is to use JavaScript Object Notation (JSON), which is

also a human-readable format and is commonly used to transmit data between

server and web applications. As you will have noticed, the sample data in the

QtWeather client/server application is transmitted in the JSON format as follows:

{

 "sample": {

 "temperature" : 18.2,

 "humidity": 45.4

 }

}

The Qt framework also has full support for parsing JSON data using the

QJsonDocument class. Listing 14-12 is a segment of code from the Qt Weather

Client application that parses the JSON data format and retrieves the fl oating-

point temperature and humidity values. By converting the byte data into a

sample object of the QJsonObject class, the data values can be retrieved by call-

ing sample["name"].toDouble(), where name is the string name of the value

612 Part III ■ Advanced Interfacing and Interaction

c14.indd 06:52:40:PM 05/12/2016 Page 612

to be retrieved. There are similar functions for other data types, for example

toInt(), toString(), toBool(), and toArray().

Listing 14-12: /chp14/QtWeatherClient/mainwindow.cpp (segment)

int MainWindow::parseJSONData(QString str){

 QJsonDocument doc = QJsonDocument::fromJson(str.toUtf8());

 QJsonObject obj = doc.object();

 QJsonObject sample = obj["sample"].toObject();

 this->temperature = (float) sample["temperature"].toDouble();

 this->humidity = (float) sample["humidity"].toDouble();

 cout << "The temperature is " << temperature << " and humidity is "

 << humidity << endl;

 return 0;

}

This framework is fl exible and can be applied to many client/server appli-

cations on the RPi. In fact, it can even be reversed so that the RPi is the client

and a desktop/server machine acts as the TCP server. Regardless, the same

 multithreading and data interchange principles can be applied.

Summary

After completing this chapter, you should be able to do the following:

 ■ Confi gure the RPi as a general-purpose computing device and use Bluetooth

peripherals to control it.

 ■ Acquire hardware for LCD touchscreen display applications.

 ■ Use virtual network computing (VNC) to remotely execute graphical user

interface (GUI) applications on the RPi.

 ■ Build rich user interface (UI) applications that execute directly on the RPi

using the GTK+ and Qt frameworks.

 ■ Build Qt applications with advanced interfaces that connect to hardware

sensors on the RPi.

 ■ Build fat-client remote Qt applications that communicate using TCP sockets

to a server that is executing on the RPi.

 ■ Enhance TCP server code to be multithreaded, in order to allow multiple

simultaneous connections from TCP client applications.

 ■ Build remote Qt GUI server applications that communicate, using TCP

sockets and JSON messages, to a client application on the RPi.

 Chapter 14 ■ Raspberry Pi with a Rich User Interface 613

c14.indd 06:52:40:PM 05/12/2016 Page 613

Further Reading

The following additional links provide further information on the topics in

this chapter:

 ■ Chapter web page: www.exploringrpi.com/chapter14

 ■ Core documentation on GTK+3.0: tiny.cc/erpi1404

 ■ Qt Signals and Slots: tiny.cc/erpi1405

http://www.exploringrpi.com/chapter14

615

c15.indd 06:53:21:PM 05/12/2016 Page 615

In this chapter, peripherals are attached to the RPi so that it can be used for

capturing image, video, and audio data using low-level Linux drivers and

application programming interfaces (APIs). It describes Linux applications

and tools that can be used to stream captured video and audio data to the Internet.

Open Source Computer Vision (OpenCV) image processing and computer vision

approaches are investigated that enable the Raspberry Pi (RPi) to draw infer-

ences from the information content of the captured image data. Capture and

playback of audio streams is described, along with the use of Bluetooth A2DP

audio. The chapter also covers some applications of audio on the RPi, including

streaming audio, Internet radio, and text-to-speech (TTS).

Equipment Required for This Chapter:

 ■ Raspberry Pi (any model, but ideally an RPi 3)

 ■ Raspberry Pi camera or a USB webcam

 ■ USB audio, audio HAT, and/or Bluetooth adapter

Further resources for this chapter are available at www.exploringrpi.com/

chapter15/.

 C H A P T E R

15

Images, Video, and Audio

http://www.exploringrpi.com
http://www.exploringrpi.com/chapter15/

616 Part III ■ Advanced Interfacing and Interaction

c15.indd 06:53:21:PM 05/12/2016 Page 616

Capturing Images and Video

In this section, the RPi is used as a platform for capturing image and video data

and saving the data on the RPi fi le system. This is useful for RPi applications such

as robotics, home security, home automation, and aeronautics, when networked

image streaming is not an available option—for example, if the application is

untethered and distant from a wireless network. With suitable peripherals,

the RPi can be used to capture very high-quality video streams, which can be

viewed asynchronously. The durations of the video streams are limited only

by the available storage on the RPi and any attached USB memory devices.

Alternatively, the video can be streamed to the network, which is discussed in

the next section of this chapter.

The RPi Camera

The RPi camera ($30), illustrated in Figure 15-1(a), is a small (25 mm × 24 mm)

camera module that is attached to the RPi camera serial interface (CSI) connector

via a 15 cm ribbon cable (15 core, 1 mm pitch). The CSI connector is on all RPi

models, except the RPi Zero. The fi xed-focus camera uses an Omnivision 5647

sensor that has still picture resolution of 2592 × 1944 pixels (5 MP) and supports

full HD video recording (1920 × 1080) at various frame rates (including 640 × 480

at 90 FPS!). The camera is also available with and without an infrared fi lter; the

latter is called the NoIR model, and it is useful for night-vision applications (with

the use of active IR illumination), but daylight image colors are badly affected.

The RPi NoIR is currently produced on a black PCB, whereas the regular model

is produced on a green PCB.

(a) (b)

Figure 15-1: (a) The RPi NoIR camera; (b) correct attachment of the ribbon cable to the RPi CSI

connector

 Chapter 15 ■ Images, Video, and Audio 617

c15.indd 06:53:21:PM 05/12/2016 Page 617

The camera is attached to the RPi as illustrated in Figure 15-1(b) using the

following steps:

 ■ Power down the RPi and avoid touching the metal contacts at the end of

the ribbon cable to avoid damage due to static discharge.

 ■ Remove the plastic protector from the lens.

 ■ Gently pull up the housing clip (typically black or white) on the CSI con-

nector (next to the Ethernet connector).

 ■ Point the metal contacts on the ribbon cable away from the Ethernet port

and insert the ribbon cable evenly into the connector slot.

 ■ Push the plastic housing clip down. The cable should appear as in

Figure 15-1(b).

After the RPi has been powered, you can use the raspi-config tool to enable

the camera, and reboot:

pi@erpi ~ $ sudo raspi-config

You will see that the /boot/config.txt fi le is updated to allocate memory to

the graphical processor unit (GPU) in order for the camera to work (by default

gpu_mem=128). The camera requires a minimum of 32 MB, but 128 MB is recom-

mended. You can disable the camera LED from lighting when the camera is

recording by adding the following line to the same confi guration fi le:

disable_camera_led=1

N O T E The examples that follow in this chapter are written with the assumption that

you have confi gured a display for your RPi, as described in Chapter 14. For example,

a VNC client/server (e.g., Xming or VNC Viewer) allows the output images to be dis-

played on your desktop machine. An alternative approach is to sftp image fi les back

and forth between the desktop machine and the RPi.

Capturing Still Images

After the RPi camera has been installed, you can test it using the raspistill and

raspivid applications, which respectively facilitate the capture of still images

and video to the fi le system. For example, to capture a 5 megapixel (2592 × 1944)

JPEG-format image, you can use the following steps:

pi@erpi ~ $ raspistill -o image.jpg

pi@erpi ~ $ ls -l image.jpg

-rw-r--r-- 1 pi pi 2706220 Dec 1 02:21 image.jpg

pi@erpi ~ $ gpicview image.jpg

618 Part III ■ Advanced Interfacing and Interaction

c15.indd 06:53:21:PM 05/12/2016 Page 618

The last line displays the image using the gpicview utility; this requires that

you have a display attached to the RPi, or that you are using VNC. The resolution

can be adjusted, and a time delay of 1 second can be added by using command-

line options such as (type raspistill with no arguments to get the full list):

pi@erpi ~ $ raspistill -t 1000 -o test.jpg -w 1280 -h 960

pi@erpi ~ $ ls -l test.jpg

-rw-r--r-- 1 pi pi 660387 Dec 1 03:05 test.jpg

If you have a TV/monitor attached to the video output of the RPi, you can get

a live view of the camera on it using the same tool. For example, to display the

camera preview output for 30 seconds on the attached TV/monitor (5 seconds

is the default time):

pi@erpi ~ $ raspistill -v -t 30000

raspistill Camera App v1.3.8

Recording Video

The raspivid application can be used to capture video from the camera at very

impressive resolutions and frame rates. For example, to record 5 seconds of full-

HD video to the SD card, you can use the following:

pi@erpi ~ $ raspivid -t 5000 -o video.h264

pi@erpi ~ $ ls -l video.h264

-rw-r--r-- 1 pi pi 10106227 Dec 1 03:08 video.h264

You can see that this video is captured at a rate of approximately 2 MB (16 Mb)

per second; therefore, 1 hour of video would require approximately 7.2 GB of

storage. You can adjust the bitrate using the -b option. For example, to record 1

minute of video at 8 Mb/sec (1 MB/sec) to a USB key that is attached to the RPi,

use the following call:

pi@erpi ~ $ raspivid -t 60000 -b 8000000 -o - > /media/pi/key/video.h264

pi@erpi ~ $ cd /media/pi/key/

pi@erpi /media/pi/key $ ls -l video.h264

-rw------- 1 pi pi 59849757 Dec 5 02:09 video.h264

The resulting fi le is approximately 60 MB in size; however, to play this video

on media players such as VLC, it may have to be converted from a raw H.264

format into a “packaged” MP4 format:

pi@erpi /media/pi/key $ sudo apt install gpac

pi@erpi /media/pi/key $ MP4Box -add video.h264 video.mp4

The RPi camera can capture video at high frame rates; for example, 60 FPS at

720p (i.e., 1280 × 720) and 90 FPS at 640 × 480. The latter allows for impressive

slow-motion effects by capturing at 90 FPS and replaying the video at lower

frame rates (e.g., 30 FPS):

pi@erpi ~ $ raspivid -t 20000 -w 640 -h 480 -fps 90 -o - > →

 /media/pi/key/v90fps.h264

 Chapter 15 ■ Images, Video, and Audio 619

c15.indd 06:53:21:PM 05/12/2016 Page 619

pi@erpi ~ $ cd /media/pi/key/

pi@erpi /media/pi/key $ MP4Box -add v90fps.h264:rescale=30000 v30fps.mp4

pi@erpi /media/pi/key $ ls -l v*fps.*

-rw------- 1 pi pi 28957257 Dec 5 03:43 v30fps.mp4

-rw------- 1 pi pi 25299257 Dec 5 03:42 v90fps.h264

Another utility, raspiyuv, has the same option set as raspivid, but captures

uncompressed YUV (YCbCr) video, which is an image color space that is com-

monly used in place of RGB (red, green, blue) by video devices, largely for his-

torical compatibility as the Y channel (luma or brightness) is all that is required

for output to “black and white” displays.

Using the RPi Camera in Linux User Space

The tools described for the RPi camera use the Broadcom multimedia abstrac-

tion layer (MMAL), which is specifi cally written for the Videocore 4 system on

the RPi. MMAL provides high-performance video, but it means that the camera

is not compatible with many user space Linux applications. Video4Linux2 is

shortly described, and the RPi MMAL camera can be used as a Linux user space

device by loading the bcm2835-v4l2 LKM, which results in the appearance of

a video device (for example, /dev/video0):

pi@erpi ~ $ sudo modprobe bcm2835-v4l2

pi@erpi ~ $ lsmod | grep v4l2

bcm2835_v4l2 37223 0

videobuf2_vmalloc 5397 1 bcm2835_v4l2

videobuf2_core 33918 1 bcm2835_v4l2

v4l2_common 3766 2 bcm2835_v4l2,videobuf2_core

videodev 124119 3 bcm2835_v4l2,v4l2_common,videobuf2_core

pi@erpi ~ $ ls -l /dev/vid*

crw-rw----+ 1 root video 81, 0 Dec 2 02:07 /dev/video0

Remember to add an entry to the /etc/modules fi le should you want this

change to persist after a reboot.

W A R N I N G Problems with USB webcams and the RPi camera (typically requires

200 mA–250 mA) can be caused by low power. The camera LED may indicate that the

camera is working, but the lack of power may result in data transmission problems. If

you are combining a USB webcam with a Wi-Fi adapter, you should use a powered USB

hub, such as the PiHut 7 Port USB Hub for the RPi (tiny.cc/erpi1501).

USB Webcams

USB webcams are widely available and can be reused as a general-purpose

desktop peripheral. The Logitech HD C270 ($26), HD C310 ($30), and HD Pro

C920 ($70), shown in Figure 15-2, are chosen, as they are commonly available

HD cameras that are known to function under Linux.

620 Part III ■ Advanced Interfacing and Interaction

c15.indd 06:53:21:PM 05/12/2016 Page 620

(a) (b) (c)

Figure 15-2: Logitech USB HD webcams (a) C270, (b) C310, and (c) C920

When one of the USB cameras is connected to the RPi, the “list USB devices”

utility provides the following output:

pi@erpi ~ $ lsusb

Bus 001 Device 005: ID 046d:082d Logitech, Inc. HD Pro Webcam C920

Bus 001 Device 004: ID 0a5c:2198 Broadcom Corp. Bluetooth 3.0 Device

...

The output lists the device ID for the camera and a USB Bluetooth adapter.

The fact that “Logitech” is listed against the device ID indicates that some level

of Linux support is already present on the RPi for such a device. If this is not

the case, you will have to source proprietary Linux drivers from the webcam

manufacturer. Typically, such drivers would have to be built and deployed on

the RPi before the webcam could be used.

Full information about the modes that are available on a USB camera can be

displayed using the following:

pi@erpi ~ $ lsusb -v | less

This command results in detailed and verbose output. In addition, the LKMs

that are currently loaded can be listed using the lsmod command:

pi@erpi ~ $ lsmod | grep video

uvcvideo 72838 0

videobuf2_vmalloc 5397 1 uvcvideo

videobuf2_memops 1564 1 videobuf2_vmalloc

videobuf2_core 33918 1 uvcvideo

v4l2_common 3766 1 videobuf2_core

videodev 124119 3 uvcvideo,v4l2_common,videobuf2_core

media 11633 2 uvcvideo,videodev

The uvcvideo LKM supports UVC (USB video class) compliant devices, such

as the webcams in Figure 15-2. The videobuf2_vmalloc LKM is the memory

allocator for the Video4Linux video buffer. If everything is working as expected,

there should be new video (and audio devices) available, which can be listed

using the following:

pi@erpi ~ $ ls /dev/vid*

/dev/video0 /dev/video1

pi@erpi ~ $ ls /dev/snd/controlC*

/dev/snd/controlC0 /dev/snd/controlC1

 Chapter 15 ■ Images, Video, and Audio 621

c15.indd 06:53:21:PM 05/12/2016 Page 621

In this example, the RPi camera and USB camera are attached to the RPi. The

audio device related to the USB webcam is mapped to /dev/snd/controlC1 in

this example.

Video4Linux2 (V4L2)

Video4Linux2 (V4L2) is a video capture driver framework tightly integrated with

the Linux kernel and supported by the uvcvideo LKM. It provides drivers for

video devices, such as webcams, PCI video capture cards, and TV (DVB-T/S)

tuner cards/peripherals. V4L2 primarily supports video (and audio) devices

through the following types of interfaces:

 ■ Video capture interface: Used to capture video from capture devices,

such as webcams, TV tuners, or video capture devices

 ■ Video output interface: For video output devices (e.g., video transmission

devices or video streaming devices)

 ■ Video overlay interface: Enables the direct display of the video data

without requiring the data to be processed by the CPU

 ■ Video blanking interval (VBI) interface: Provides access to legacy data

that is transmitted during the VBI of an analog video signal (e.g., teletext)

 ■ Radio interface: Provides access to AM/FM tuner audio streams

V4L2 provides support for many types of devices, and simply put, it is complex!

In addition to supporting video input/output, the V4L2 API also has stubs for

codec and video effect devices, which enable manipulation of the video stream

data. The focus in this section is on the capture of video data from webcam devices

using V4L2 by performing the following steps (not necessarily in this order):

 ■ Opening the V4L2 device

 ■ Changing the device properties (e.g., camera brightness)

 ■ Agreeing on a data format and input/output method

 ■ Performing the transfer of data

 ■ Closing the V4L2 device

The main source of documentation on V4L2 is available from www.kernel

.org at tiny.cc/erpi1502, and the V4L2 API specifi cation is available at tiny

.cc/erpi1503.

Image Capture Utility

The first step is to install the V4L2 development libraries, abstraction

layer, utilities, and a simple webcam application for V4L2-compatible devices.

http://www.kernel.org
http://www.kernel.org
http://tiny.cc/erpi1502
http://tiny.cc/erpi1503
http://tiny.cc/erpi1503

622 Part III ■ Advanced Interfacing and Interaction

c15.indd 06:53:21:PM 05/12/2016 Page 622

Always update the package lists, to get information about the newest packages

and their dependencies, before installing a system library:

pi@erpi ~ $ apt-cache search v4l2

fswebcam - Tiny and flexible webcam program

...

pi@erpi ~ $ sudo apt install fswebcam libv4l-dev v4l-utils view libav-tools

The fswebcam application can then be used to test that the attached web camera

is working correctly. It is a surprisingly powerful and easy-to-use application

that is best used by writing a confi guration fi le, as shown in Listing 15-1, which

contains settings for choosing the device, capture resolution, output fi le type,

and the addition of a title banner. It can even be used on a continuous loop by

adding a loop entry that specifi es the time in seconds between frame captures.

Listing 15-1: /exploringrpi/chp15/fswebcam/fswebcam.conf

device /dev/video0

input 0

resolution 1280x720

bottom-banner

font /usr/share/fonts/truetype/ttf-dejavu/DejaVuSans.ttf

title "Exploring Raspberry Pi"

timestamp "%H:%M:%S %d/%m/%Y (%Z)"

png 0

save exploringRPi.png

The fswebcam application can be confi gured with these settings by passing

it the confi guration fi lename on execution:

pi@erpi ~/exploringrpi/chp15/fswebcam $ ls

fswebcam.conf

pi@erpi ~/exploringrpi/chp15/fswebcam $ fswebcam -c fswebcam.conf

--- Opening /dev/video0...

Trying source module v4l2...

/dev/video0 opened.

--- Capturing frame... ...

pi@erpi ~/exploringrpi/chp15/fswebcam $ ls

exploringRPi.png fswebcam.conf

The image can then be viewed using gpicview, which requires that you have

attached a display to the RPi, such as a VNC connection:

.../chp15/fswebcam$ gpicview exploringRPi.png

This will result in output like that in Figure 15-3. The image data has been

modifi ed to include a formatted bottom text banner, which contains a title, and

the date and time of image capture.

N O T E You can output a live view of the webcam by using the command mplayer

tv:// or by installing Cheese (sudo apt install cheese) and executing it using

cheese.

 Chapter 15 ■ Images, Video, and Audio 623

c15.indd 06:53:21:PM 05/12/2016 Page 623

(a) (b)

Figure 15-3: (a) The fswebcam webcam capture (1280 × 720) displayed using gpicview via VNC,

and (b) the Cheese application displaying some available image filters

Interestingly, the fswebcam application could be executed on a loop and

combined with the Nginx web server (as described in Chapter 12) to create a

simple web camera, which uses a web page that links to the captured image

fi le present on the RPi fi le system that is updating over time.

Video4Linux2 Utilities

V4L2 provides a set of user space utilities that can be used for obtaining informa-

tion about connected V4L2-compatible devices. It is also possible to use the user

space utilities to change camera settings; however, it is possible that executed

applications will be programmed to override such changes. The most important

role of these tools is to verify that connected V4L2 devices are functioning cor-

rectly. You can list the available V4L2 devices using the following:

pi@erpi ~ $ v4l2-ctl --list-devices

mmal service 16.1 (platform:bcm2835-v4l2): /dev/video0

HD Pro Webcam C920 (usb-3f980000.usb-1.4): /dev/video1

The devices appear in the order in which they are attached to the USB hub.

You can get information about a particular device by listing its modes (where

-d 0 refers to the RPi MMAL camera in this instance):

pi@erpi ~ $ v4l2-ctl --all -d 0

Driver Info (not using libv4l2):

 Driver name : bm2835 mmal

 Card type : mmal service 16.1

 Bus info : platform:bcm2835-v4l2

 Driver version: 4.1.13

 Capabilities : 0x85200005 Video Capture

624 Part III ■ Advanced Interfacing and Interaction

c15.indd 06:53:21:PM 05/12/2016 Page 624

Certain controls can be used to confi gure a camera, which can be accessed

using the --list-ctrls option, as follows:

pi@erpi ~ $ v4l2-ctl --list-ctrls -d 0

 brightness (int) : min=0 max=100 step=1 default=50 value=50

 contrast (int) : min=-100 max=100 step=1 default=0 value=0

 saturation (int) : min=-100 max=100 step=1 default=0 value=0

 red_balance (int) : min=1 max=7999 step=1 default=1000 value=1000

 blue_balance (int) : min=1 max=7999 step=1 default=1000 value=1000

 horizontal_flip (bool): default=0 value=0

 vertical_flip (bool) : default=0 value=0 ...

For the RPi camera, other controls include white balance, color temperature,

sharpness, backlight compensation, exposure (auto or absolute), focus, zoom, and

support for pan/tilt. For example, to change the brightness on device video0 to

100 (currently 50 as shown in the preceding snippet), you can use the following:

pi@erpi ~ $ v4l2-ctl --set-ctrl=brightness=100 -d 0

pi@erpi ~ $ v4l2-ctl --list-ctrls -d 0 | grep brightness

 brightness (int) : min=0 max=100 step=1 default=50 value=100

 brightness (int) : min=0 max=100 step=1 default=50 value=100

You can also list the modes of the cameras. In the case of the RPi MMAL cam-

era there are thirteen different video capture pixel formats; the Logitech C920

has three. Examples of fourcc color space video include codes such as 'YUYV'

(a common broadcast format with one luminance and two chrominance chan-

nels), 'H264' (a common modern interframe video compression format), and

'MJPG' (a common, but older, intraframe-only motion JPEG video compression

format). The listing is obtained using the following:

pi@erpi ~ $ v4l2-ctl --list-formats -d 0

ioctl: VIDIOC_ENUM_FMT ...

 Index : 1 Type : Video Capture

 Pixel Format: 'YUYV' Name : 4:2:2, packed, YUYV

 Index : 4 Type : Video Capture

 Pixel Format: 'H264' (compressed) Name : H264 ...

pi@erpi ~ $ v4l2-ctl --list-formats -d 1

ioctl: VIDIOC_ENUM_FMT

 Index : 0 Type : Video Capture

 Pixel Format: 'YUYV' Name : YUV 4:2:2 (YUYV)

 Index : 1 Type : Video Capture

 Pixel Format: 'H264' (compressed) Name : H.264

 Index : 2 Type : Video Capture

 Pixel Format: 'MJPG' (compressed) Name : MJPEG

The C270 and C310 cameras do not have a H.264 mode, but they both have

'YUYV' and 'MJPG' compressed pixel formats at indices 0 and 1 respectively. It is

possible to explicitly set the resolution and pixel format of a camera as follows:

pi@erpi ~ $ v4l2-ctl --set-fmt-video=width=1920,height=1080,pixelformat=4 -d

0

pi@erpi ~ $ v4l2-ctl --all -d 0

Driver Info (not using libv4l2):

 Chapter 15 ■ Images, Video, and Audio 625

c15.indd 06:53:21:PM 05/12/2016 Page 625

 Driver name : bm2835 mmal ...

Format Video Capture:

 Width/Height : 1920/1080 Pixel Format : 'H264'

 Field : None Bytes per Line: 0

 Size Image : 2088960

 Colorspace : Broadcast NTSC/PAL (SMPTE170M/ITU601) ...

This output provides very useful state information, such as the resolution,

video frame image size, frame rate, and so on.

Writing Video4Linux2 Programs

As with other devices in Linux (e.g., SPI in Chapter 8), it is possible to send data

to and receive data from a video device by opening its /dev/videoX fi le system

entry by using a call to open(). Unfortunately, such an approach would not

provide the level of control or the performance level that is required for video

devices. Instead, low-level input/output control (ioctl()) calls are required

to confi gure the settings of the device, and memory map (mmap()) calls are

used to perform image frame memory copy, rather than using a byte-by-byte

serial transfer.

The Git repository contains programs in the /chp15/v4l2/ directory that

use V4L2 and its low-level ioctl() calls to perform video frame capture and

video capture tasks:

 ■ grabber.c: Grabs raw image frame data from a webcam into memory

using libv4l2. The images can be written to the fi le system.

 ■ capture.c: Grabs raw video data to a stream or fi le. It does this quickly

enough to be used for real-time video capture.

These code examples are almost entirely based on the examples that are

provided by the V4L2 project team. The code is too long to display here, but

you can view it in the Git repository. To build and execute the code examples,

use the following steps:

.../chp15/v4l2$ ls *.c

capture.c grabber.c

.../chp15/v4l2$ gcc -O2 -Wall `pkg-config --cflags --libs libv4l2` →

 grabber.c -o grabber

.../chp15/v4l2$ gcc -O2 -Wall `pkg-config --cflags --libs libv4l2` →

 capture.c -o capture

.../chp15/v4l2$./grabber

.../chp15/v4l2$ ls *.ppm

grabber000.ppm grabber005.ppm grabber010.ppm grabber015.ppm ...

.../chp15/v4l2$ gpicview grabber000.ppm

The .ppm fi le format describes an uncompressed color image format, which

gpicview will display. You can use the “forward” button on gpicview to step

through the 20 image frames. To capture data using the capture.c program,

use a selection of the following options:

626 Part III ■ Advanced Interfacing and Interaction

c15.indd 06:53:21:PM 05/12/2016 Page 626

.../chp15/v4l2$./capture -h

Usage: ./capture [options]

Version 1.3 Options:

-d | --device name Video device name [/dev/video0] ...

-f | --format Force format to 640x480 YUYV

-F | --formatH264 Force format to 1920x1080 H264

-c | --count Number of frames to grab [100] - use 0 for infinite

Example usage: capture -F -o -c 300 > output.raw

Captures 300 frames of H264 at 1920x1080. Use raw2mpg4 script to convert to

mpg4

If you have the C920 or RPi camera, you can capture 100 frames of H.264 data

using the fi rst of the following commands. A second command then converts

the .raw fi le to a .mp4 fi le format, which can be played on a desktop machine:

.../chp15/v4l2 $./capture -d /dev/video0 -F -o -c 100 > output.raw

Force Format 2

..

.../chp15/v4l2 $ avconv -f h264 -i output.raw -vcodec copy output.mp4

.../chp15/v4l2 $ ls -l output*

-rw-r--r-- 1 pi pi 2494753 Dec 5 07:07 output.mp4

-rw-r--r-- 1 pi pi 2493142 Dec 5 07:07 output.raw

The fi le sizes are almost identical because the video data is actually cap-

tured in a raw H.264 format. The conversion is performed using the avconv

(Libav) utility, which is a fork of the FFmpeg project that is better supported

by the Raspbian/Debian Linux distribution. The -vcodec copy option enables

the video to be copied without transcoding the video data format. This will

work for the USB C920 or the RPi MMAL cameras, but not cameras that do

not have H.264 format capabilities.

However, the capture.c program can also be used with cameras such

as the C270 and C310, which do not have hardware H.264 functionality; however,

the capabilities are more limited:

...$ v4l2-ctl --set-fmt-video=width=1280,height=720,pixelformat=1 -d 1

...$ v4l2-ctl --all -d 1

Format Video Capture: Width/Height:1280/720 Pixel Format:'MJPG'

.../chp15/v4l2$./capture -d /dev/video2 -o -c 100 > output.raw

Force Format 0 ..

.../chp15/v4l2$ ls -l output.raw

-rw-r--r-- 1 pi pi 4496449 Dec 5 01:51 output.raw

.../chp15/v4l2$ avconv -f mjpeg -i output.raw output.mp4

.../chp15/v4l2$ ls -l output.mp4

-rw-r--r-- 1 pi pi 1466046 Dec 5 02:00 output.mp4

The video conversion using avconv can take quite some time on the RPi. In

this example you can see that the H.264 video fi le requires signifi cantly less space

than the MJPEG fi le, as it is a more effi cient interframe video encoding format.

 Chapter 15 ■ Images, Video, and Audio 627

c15.indd 06:53:21:PM 05/12/2016 Page 627

N O T E A common problem arises when using the capture.c program: The cam-

era returns a “select timeout” error. If this happens, you need to change the time-out

properties of the uvcvideo LKM as follows:

pi@erpi ~ $ sudo rmmod uvcvideo

pi@erpi ~ $ sudo modprobe uvcvideo nodrop=1 timeout=5000

pi@erpi ~ $ lsmod | grep uvcvideo

uvcvideo 72838 0

videobuf2_vmalloc 5397 2 uvcvideo,bcm2835_v4l2

videobuf2_core 33918 2 uvcvideo,bcm2835_v4l2 ...

Please note that you should usually call modprobe -r instead of rmmod, as it

performs dependency checking and removes any unused LKMs. In this example the

uvcvideo LKM is reloaded immediately, so dependency checking is not required.

Streaming Video

It is possible to use the RPi to capture and stream live video. The RPi MMAL

or Logitech C920 cameras are particularly useful for this purpose, as they have

built-in H.264 hardware support. The raw 1080p H.264 data can be passed directly

from the camera stream to the network without transcoding, which means

that the computational load on the RPi is reasonably low. Streaming scripts

are available in the /chp15/v4l2/ repository directory. For example, Listing

15-2 provides a script for sending H.264 video data over UDP to port 12345 on

a desktop PC at IP address 192.168.1.4 using the C920 webcam.

Listing 15-2: /chp15/v4l2/streamVideoUDP_C920

#!/bin/bash

echo "Video Streaming for the Raspberry Pi - Exploring Raspberry Pi"

v4l2-ctl --set-fmt-video=width=1920,height=1080,pixelformat=1

./capture -d /dev/video0 -F -o -c0|avconv -re -i - -vcodec copy -f mpegts →

udp://192.168.1.4:12345

This script pipes the raw video output from the capture program to the avconv

application, which “copies” the raw data to the network stream using UDP. You

can open this stream on the desktop machine (at address 192.168.1.4) in VLC by

using the option Media ➪ Open Network Stream ➪ and entering the network

URL UDP://@:12345. The RPi can stream full-HD video to the desktop PC with

a slight delay that is caused by encoding/decoding.

There are various methods of streaming full-HD video from the RPi MMAL

camera. One of the most stable approaches appears to be through the use of

VideoLAN VLC (www.videolan.org), albeit it suffers from slight latency problems.

http://www.videolan.org

628 Part III ■ Advanced Interfacing and Interaction

c15.indd 06:53:21:PM 05/12/2016 Page 628

Do not enable the user space driver for the RPi camera. Disable the user space

driver for the RPi camera (e.g., using sudo rmmod bcm2835-v4l2) and pipe the

output of the raspivid program directly to VLC as follows:

pi@erpi ~ $ sudo apt install vlc

pi@erpi ~ $ raspivid -o - -t 0 -hf -w 1920 -h 1080 -fps 30 | cvlc -vvv stre →

am:///dev/stdin --sout '#standard{access=http,mux=ts,dst=:12345}' :demux=h264

This stream can be opened within VLC using the URL http://erpi

.local:12345, where erpi.local is the IP address of your RPi.

There is an additional script outline to multicast the video stream to mul-

tiple network points (streamVideoMulti) using the broadcast network address

226.0.0.1 and to stream the video using the Real-time Transport Protocol (RTP)

(streamVideoRTP).

A second RPi can be used to receive the network video stream and display it

using a video player that takes advantage of the Raspberry Pi’s H.264 hardware

decoder. For example, the OMXplayer supports hardware decoding, and it can

be used to open the network broadcast stream using the following:

pi@erpi2 ~ $ omxplayer -o hdmi udp://226.0.0.1:12345

The RPi can decode the video stream and display it live on a monitor, albeit

with a varying degree of latency.

Image Processing and Computer Vision

Once a USB or RPi camera is attached to the RPi, it is possible to capture images

and process them using a comprehensive high-level library called Open Source

Computer Vision (OpenCV). OpenCV (www.opencv.org) provides a cross-platform

library of functions for computer vision, such as gesture recognition, motion

understanding, motion tracking, augmented reality, and structure-from-motion.

It also provides supporting libraries for applications such as artifi cial neural

networks, support vector machines, classifi cation, and decision tree learning.

OpenCV is written in C/C++ and is optimized for real-time applications, includ-

ing support for multicore programming. The OpenCV libraries can be installed

using the following:

pi@erpi ~ $ sudo apt install libopencv-dev

Image Processing with OpenCV

OpenCV supports V4L2 and provides a high-level interface for capturing image

data, which can be used instead of the grabber.c program. Listing 15-3 is an

OpenCV application that captures data from a webcam and fi lters it using some

simple image processing techniques. The steps that it performs are as follows:

 1. Capture of the image from the webcam.

http://erpi
http://www.opencv.org

 Chapter 15 ■ Images, Video, and Audio 629

c15.indd 06:53:21:PM 05/12/2016 Page 629

 2. Conversion of the image into grayscale form.

 3. Blurring of the image to remove high-frequency noise.

 4. Detecting regions in the image where the image brightness changes sharply.

This is achieved using an image processing operator known as an edge

detector—the Canny edge detector in this example.

 5. Storage of the image fi les to the RPi fi le system.

OpenCV uses a fi le-naming convention whereby an .hpp fi le extension is used

for header fi les that contain C++ code. This convention enables a C version of

a header fi le (e.g., opencv.h) to coexist alongside a C++ header fi le (e.g., opencv

.hpp). Because OpenCV mixes both C and C++ code, this is an appropriate way

to distinguish one form from the other.

Listing 15-3: /chp15/openCV/fi lter.cpp

#include<iostream>

#include<opencv2/opencv.hpp> // C++ OpenCV include file

using namespace std;

using namespace cv; // using the cv namespace too

int main() {

 VideoCapture capture(0); // capturing from /dev/video0

 cout << "Started Processing - Capturing Image" << endl;

 // set any properties in the VideoCapture object

 capture.set(CV_CAP_PROP_FRAME_WIDTH,1280); // width in pixels

 capture.set(CV_CAP_PROP_FRAME_HEIGHT,720); // height in pixels

 capture.set(CV_CAP_PROP_GAIN, 0); // enable auto gain

 if(!capture.isOpened()){ // connect to the camera

 cout << "Failed to connect to the camera." << endl;

 }

 Mat frame, gray, edges; // original, grayscale and edge image

 capture >> frame; // capture the image to the frame

 if(frame.empty()){ // did the capture succeed?

 cout << "Failed to capture an image" << endl;

 return -1;

 }

 cout << "Processing - Performing Image Processing" << endl;

 cvtColor(frame, gray, CV_BGR2GRAY); // convert to grayscale

 blur(gray, edges, Size(3,3)); // blur image using a 3x3 kernel

 // use Canny edge detector that outputs to the same image

 // low threshold = 10, high threshold = 30, kernel size = 3

 Canny(edges, edges, 10, 30, 3); // run Canny edge detector

 cout << "Finished Processing - Saving images" << endl;

 imwrite("capture.png", frame); // store the original image

 imwrite("grayscale.png", gray); // store the grayscale image

 imwrite("edges.png", edges); // store the processed edge image

 return 0;

}

630 Part III ■ Advanced Interfacing and Interaction

c15.indd 06:53:21:PM 05/12/2016 Page 630

The RPi MMAL camera should be placed in user space mode as described

earlier in this chapter. The camera device must also be chosen on the fi rst line of

the main() function; use 0 for /dev/video0 and 1 for /dev/video1. This example

can be built and executed as follows (in the /chp15/openCV directory), which

results in the output displayed in Figure 15-4(a):

.../openCV $ g++ -O2 `pkg-config --cflags --libs opencv` filter.cpp -o filter

.../openCV $./filter

Started Processing - Capturing Image

Processing - Performing Image Processing

Finished Processing - Saving images

.../openCV $ ls *.png

capture.png edges.png grayscale.png

.../openCV $ gpicview capture.png

(a) (b)

Figure 15-4: The OpenCV image processing example: (a) edge-detected version of Figure

15-3(a), and (b) face detection on the Lenna image

A second example application in the same directory can be used to test the

performance of using OpenCV for image processing. In each iteration, it performs

an image capture at a 640 × 480 resolution, converts the image to grayscale form,

and performs an edge detection operation. The program performs 100 iterations,

after which the execution time is measured on the RPi 2 at 1 GHz:

pi@erpi ~/exploringrpi/chp15/openCV $./timing

It took 6.95347 seconds to process 100 frames

Capturing and processing 14.3813 frames per second

And on the RPi 3 at 1.2 GHz:

pi@erpi ~/exploringrpi/chp15/openCV$./timing

It took 4.07931 seconds to process 100 frames

Capturing and processing 24.5139 frames per second

 Chapter 15 ■ Images, Video, and Audio 631

c15.indd 06:53:21:PM 05/12/2016 Page 631

During this test, the application uses 99% of CPU and 4% of memory capacity.

N O T E The RPi 2/3 has a NEON SIMD (single instruction multiple data) engine that

allows you to perform certain instructions in parallel on multiple data values. The

engine is capable of greatly accelerating image processing operations; however, utiliz-

ing the engine may require that inline assembly language code is written in your C/

C++ programs.

Computer Vision with OpenCV

Image processing involves manipulating images by fi lters (e.g., smoothing,

contrast enhancement) or transformations (e.g., scaling, rotation, stretching) for

purposes such as enhancing or even reducing the information content of digital

images. Image processing is one tool that is used in computer vision, which often

has the goal of “understanding” the information content within digital images.

Computer vision applications often try to replicate the capabilities of human

vision by drawing inferences, making decisions, and taking actions based on

visual data. For example, the OpenCV application described in this section

uses the RPi to process image data and apply computer vision techniques to

determine whether a human face is present in a webcam image frame or an

image fi le. Importantly, the approach is designed for face detection, not face

recognition. Face detection can be used for applications such as security and

photography; however, the processing required has a signifi cant computational

overhead and is not suitable for high frame rates on the RPi.

Listing 15-4 provides an example computer vision application that uses OpenCV

for face detection. It uses a Harr feature-based cascade classifi er, which uses

a characterization of adjacent rectangular image regions to identify regions of

interest. For example, in human faces, the region near the eyes has a darker

intensity than the region containing the cheeks. Human faces can be detected

using such observations. Usefully, OpenCV provides some codifi ed rules for

detecting human faces, which have been used in this example.

Computer vision is an entire research domain, and it requires a signifi cant

time investment before you will be able to perform some of its more complex

operations. The “Further Reading” section at the end of this chapter provides

links to resources to get you started.

Listing 15-4: /chp15/openCV/face.cpp

#include <iostream>

#include <opencv2/highgui/highgui.hpp>

#include <opencv2/objdetect/objdetect.hpp>

#include <opencv2/imgproc/imgproc.hpp>

632 Part III ■ Advanced Interfacing and Interaction

c15.indd 06:53:21:PM 05/12/2016 Page 632

using namespace std;

using namespace cv;

int main(int argc, char *args[]) {

 Mat frame;

 VideoCapture *capture; // capture needs full scope of main()

 cout << "Starting face detection application" << endl;

 if(argc==2){ // loading image from a file

 cout << "Loading the image " << args[1] << endl;

 frame = imread(args[1], CV_LOAD_IMAGE_COLOR);

 }

 else {

 cout << "Capturing from the webcam" << endl;

 capture = new VideoCapture(0);

 // set any properties in the VideoCapture object

 capture->set(CV_CAP_PROP_FRAME_WIDTH,1280); // width pixels

 capture->set(CV_CAP_PROP_FRAME_HEIGHT,720); // height pixels

 if(!capture->isOpened()){ // connect to the camera

 cout << "Failed to connect to the camera." << endl;

 return 1;

 }

 *capture >> frame; // populate the frame with captured image

 cout << "Successfully captured a frame." << endl;

 }

 if (!frame.data){

 cout << "Invalid image data... exiting!" << endl;

 return 1;

 }

 // loading the face classifier from a file (standard OpenCV example)

 CascadeClassifier faceCascade;

 faceCascade.load("haarcascade_frontalface.xml");

 // faces is a STL vector of faces - will store the detected faces

 std::vector<Rect> faces;

 // detect objects in the scene using the classifier above (frame,

 // faces, scale factor, min neighbors, flags, min size, max size)

 faceCascade.detectMultiScale(frame, faces, 1.1, 3,

 0 | CV_HAAR_SCALE_IMAGE, Size(50,50));

 if(faces.size()==0){

 cout << "No faces detected!" << endl; // display the image

 }

 // draw oval around the detected faces in the faces vector

 for(int i=0; i<faces.size(); i++)

 {

 // Using the center point and a rectangle to create an ellipse

 Point cent(faces[i].x+faces[i].width*0.5,

 faces[i].y+faces[i].height*0.5);

 RotatedRect rect(cent, Size(faces[i].width,faces[i].width),0);

 // image, rectangle, color=green, thickness=3, linetype=8

 Chapter 15 ■ Images, Video, and Audio 633

c15.indd 06:53:21:PM 05/12/2016 Page 633

 ellipse(frame, rect, Scalar(0,255,0), 3, 8);

 cout << "Face at: (" << faces[i].x << "," <<faces[i].y << ")" << endl;

 }

 imshow("RPi OpenCV face detection", frame); // display image results

 imwrite("faceOutput.png", frame); // save image too

 waitKey(0); // dislay image until key press

 return 0;

}

The face detection example can be built and executed using the following

commands:

.../openCV $ g++ -O2 `pkg-config --cflags --libs opencv` face.cpp -o face

.../openCV $./face Lenna.png

Starting face detection application

Loading the image Lenna.png

Face at: (217,201)

When executed, it results in displaying image in Figure 15-4(b) (if an X Window

session is confi gured), with ellipses identifying any faces that are detected in

the image.

Boost

Similar to OpenCV, Boost (www.boost.org) provides a comprehensive free library

of C++ source code that can be used for many applications on the RPi. There are

libraries for multithreading, data structures, algorithms, regular expressions,

memory management, mathematics, and more. The range of libraries available

is too exhaustive to detail here, but a full listing is available at www.boost.org/

doc/libs/. Boost can be installed on the RPi using the following:

pi@erpi ~ $ sudo apt install libboost-dev

... libboost1.55-dev

Listing 15-5 provides an example of usage of the Boost library for calculating

the geometric distance between two 2D points.

Listing 15-5: /chp15/boost/test.cpp

#include <boost/geometry.hpp>

#include <boost/geometry/geometries/point_xy.hpp>

using namespace boost::geometry::model::d2;

#include <iostream>

int main() {

 point_xy<float> p1(1.0,2.0), p2(3.0,4.0);

 float d = boost::geometry::distance(p1,p2);

 std::cout << "The distance between points is: " << d << std::endl;

 return 0;

}

http://www.boost.org
http://www.boost.org
http://www.boost.org/doc/libs/

634 Part III ■ Advanced Interfacing and Interaction

c15.indd 06:53:21:PM 05/12/2016 Page 634

Similarly to OpenCV, it utilizes an .hpp extension form. It also makes extensive

use of C++ namespaces. The preceding code can be built and executed using

the following:

pi@erpi ~/exploringrpi/chp15/boost $ g++ test.cpp -o test

pi@erpi ~/exploringrpi/chp15/boost $./test

The distance between points is: 2.82843

Raspberry Pi Audio

There are several approaches to utilizing audio inputs and outputs with the

RPi, including the following:

 ■ HDMI and onboard audio: These outputs are enabled by default on the

RPi and allow audio signals to be sent to a television via HDMI (not DVI)

or to a four-pole audio/video connector on newer RPi models.

 ■ USB audio: Low-cost USB adapters can be attached to the RPi that have

Linux driver support for the input/output of audio. In addition, USB

webcams can be used as audio input devices.

 ■ Bluetooth audio: A Linux-compatible Bluetooth adapter (or the RPi 3

onboard Bluetooth) can be used to input from, or output to, external

Bluetooth recorder/speaker devices.

 ■ RPi HATs: HATs can be attached to the RPi that provide advanced audio

capabilities. Figure 15-5 illustrates the popular HiFiBerry Digi+ board ($35),

which is available in different versions for older and newer RPi models.

This board supports high-quality S/PDIF output at up to 192 kHz, with

24-bit resolution.

It is also possible to use an electret microphone such as the Sparkfun breakout

board (BOB-09964) that can be connected via an op-amp circuit to an SPI ADC

circuit (with a 10 kΩ potentiometer on the GND line) and used for tasks such as

impact detection (e.g., a door knock). The MCP3008 circuit in Chapter 9 could

be used to sample such a sensor.

(a) (b)

Figure 15-5: The HiFiBerry audio HAT: (a) for the RPi A/B, and (b) for the RPi A+/B+/2

 Chapter 15 ■ Images, Video, and Audio 635

c15.indd 06:53:21:PM 05/12/2016 Page 635

In this section, the most common approaches are examined, as is software

that enables you to perform basic audio input/output tasks.

Core Audio Software Tools

The following tools are used in this section of the book:

 ■ MPlayer: A movie player for Linux that has optimized built-in support

for audio devices. It works very well as an MP3 audio stream player on

the RPi.

 ■ ALSA utilities: Contains tools for confi guring and using ALSA (advanced

Linux sound architecture) devices. It includes the aplay/arecord utili-

ties for the playback and recording of audio streams; the amixer tool for

controlling volume levels; and the speaker-test utility.

 ■ Libav: Contains libraries and programs for handling multimedia data.

In particular, avconv is a fast video and audio conversion tool that can

also be used to capture audio data from devices or to stream data to the

network (see libav.org/avconv.html).

To install these tools, ensure that your packages lists are up-to-date and

install the tools as follows:

pi@erpi ~ $ sudo apt update

pi@erpi ~ $ sudo apt install mplayer alsa-utils libav-tools

Audio Devices for the RPi

After you have the core software installed, the next step is to utilize an audio

device that is connected to the RPi. In this section, an example is used in which

multiple audio devices are attached simultaneously to the RPi: the HDMI audio

interface, a webcam, and two USB audio adapters.

HDMI and USB Audio Playback Devices

Figure 15-6(a) illustrates the USB hub with three USB devices attached—the two

USB audio adapters and the Bluetooth adapter. When a webcam is also attached

to the Velleman USB hub, a call to lsusb results in the following:

pi@erpi ~ $ lsusb

Bus 001 Device 008: ID 0d8c:013c C-Media Electronics CM108 Audio Controller

Bus 001 Device 009: ID 046d:082d Logitech, Inc. HD Pro Webcam C920

Bus 001 Device 007: ID 041e:30d3 Creative Technology, Ltd Sound Blaster Play!

Bus 001 Device 006: ID 1a40:0201 Terminus Technology Inc. FE 2.1 7-port Hub

Bus 001 Device 004: ID 0a5c:2198 Broadcom Corp. Bluetooth 3.0 Device

...

636 Part III ■ Advanced Interfacing and Interaction

c15.indd 06:53:21:PM 05/12/2016 Page 636

(a) (b) (c)

Figure 15-6: (a) Seven-port USB hub with multiple adapters, (b) the Sound Blaster audio

adapter, and (c) the Dynamode USB audio adapter

The USB hub in Figure 15-6(a) is not a powered hub, which limits the number

of devices that can be attached simultaneously. The Sound Blaster ($20) and

Dynamode ($5) USB adapters are illustrated in Figure 15-6(b) and (c), respec-

tively. These adapters can be hot-plugged into the RPi, where their LKMs can

be dynamically loaded and unloaded.

When the various adapters are connected to the RPi, you can obtain informa-

tion about them as follows:

pi@erpi ~ $ cat /proc/asound/pcm

00-00: bcm2835 ALSA : bcm2835 ALSA : playback 8

00-01: bcm2835 ALSA : bcm2835 IEC958/HDMI : playback 1

01-00: USB Audio : USB Audio : playback 1 : capture 1

02-00: USB Audio : USB Audio : playback 1 : capture 1

03-00: USB Audio : USB Audio : capture 1

In this case, the HDMI adapter is capable of playback only, the two USB adapt-

ers are capable of playback and capture, and the USB webcam is only capable of

capture. An alternative approach is to use the aplay utility to list the available

playback devices:

pi@erpi ~ $ aplay -l

**** List of PLAYBACK Hardware Devices ****

card 0: ALSA [bcm2835 ALSA], device 0: bcm2835 ALSA [bcm2835 ALSA]

 Subdevices: 8/8 Subdevice #0: subdevice #0 ...

card 0: ALSA [bcm2835 ALSA], device 1: bcm2835 ALSA [bcm2835 IEC958/HDMI]

 Subdevices: 1/1 Subdevice #0: subdevice #0

card 1: U0x41e0x30d3 [USB Device 0x41e:0x30d3], device 0: USB Audio [USB Audio]

 Subdevices: 1/1 Subdevice #0: subdevice #0

card 2: Device [USB PnP Sound Device], device 0: USB Audio [USB Audio]

 Subdevices: 1/1 Subdevice #0: subdevice #0

 Chapter 15 ■ Images, Video, and Audio 637

c15.indd 06:53:21:PM 05/12/2016 Page 637

After you have identified the devices, you can play back an audio file

on the Creative Sound Blaster and Dynamode USB adapters, respectively, using

the mplayer and aplay utilities, as follows:

.../chp15/audio$ mplayer -ao alsa:device=hw=1 320sample.mp3

.../chp15/audio$ mplayer -ao alsa:device=hw=2 320sample.mp3

.../chp15/audio$ aplay -D plughw:1,0 cheering.wav

.../chp15/audio$ aplay -D plughw:2,0 cheering.wav

The sound quality is audibly richer on the Sound Blaster adapter (card 1) than

the Dynamode adapter (card 2). However, the quality of the Dynamode adapter

is good for its price, and its manual volume control feature is useful.

The HDMI device adapter can also be used, either by connecting the RPi

directly to an HDMI receiver or HDMI television (or a monitor with built-in

speakers), or by using a HDMI-to-VGA adapter to extract the HDMI audio chan-

nel to a 3.5 mm stereo audio jack. The quality of the audio that is extracted from

the latter devices can be quite variable, and can suffer from auto-gain line noise

when no audio stream is being played back.

To test an output device, you can use the speaker-test utility (where -c2

indicates two channels are to be tested):

.../chp15/audio$ speaker-test -D plughw:2,0 -c2

The ALSA utilities also provide you with detailed information about the

capabilities of a USB device. For example, amixer can be used to get and set

an adapter’s available properties. Using amixer on the Sound Blaster device

provides its current state information:

pi@erpi ~/exploringrpi/chp15/audio $ amixer -c 1

Simple mixer control 'Speaker',0

 Capabilities: pvolume pswitch pswitch-joined

 Playback channels: Front Left - Front Right

 Limits: Playback 0 - 151

 Mono: Front Left: Playback 44 [29%] [-20.13dB] [on]

 Front Right: Playback 44 [29%] [-20.13dB] [on]

Simple mixer control 'Mic',0

 Capabilities: pvolume pvolume-joined cvolume cvolume-joined pswitch

 pswitch-joined cswitch cswitch-joined

 Playback channels: Mono Capture channels: Mono

 Limits: Playback 0 - 32 Capture 0 - 16

 Mono: Playback 23 [72%] [34.36dB] [off] Capture 0 [0%] [0.00dB] [on]

Simple mixer control 'Auto Gain Control',0

 Capabilities: pswitch pswitch-joined

 Playback channels: Mono Mono: Playback [on]

To get its available control settings, use the following:

pi@erpi ~/exploringrpi/chp15/audio $ amixer -c 1 controls

numid=3,iface=MIXER,name='Mic Playback Switch'

numid=4,iface=MIXER,name='Mic Playback Volume'

638 Part III ■ Advanced Interfacing and Interaction

c15.indd 06:53:21:PM 05/12/2016 Page 638

numid=7,iface=MIXER,name='Mic Capture Switch'

numid=8,iface=MIXER,name='Mic Capture Volume'

numid=9,iface=MIXER,name='Auto Gain Control'

numid=5,iface=MIXER,name='Speaker Playback Switch'

numid=6,iface=MIXER,name='Speaker Playback Volume'

numid=2,iface=PCM,name='Capture Channel Map'

numid=1,iface=PCM,name='Playback Channel Map'

Therefore, to control the Speaker Playback Volume setting, you can use this:

.../audio $ amixer -c 1 cset iface=MIXER,name='Speaker Playback Volume' 10,10

numid=6,iface=MIXER,name='Speaker Playback Volume'

 ; type=INTEGER,access=rw---R--,values=2,min=0,max=151,step=0

 : values=10,10 | dBminmax-min=-28.37dB,max=-0.06dB

This adjusts the volume on the speaker output of the Sound Blaster USB

card—the 10,10 values are the left and right volume percentage settings, so

0,30 would turn off the left channel and set the volume level at 30% for the

right channel.

Internet Radio Playback

You can play Internet radio channels using the same mplayer application. For

example, by using www.xatworld.com/radio-search/, you can search for a radio

station of your preference to determine its IP address. You can then stream the

audio to your USB adapter using the following:

.../audio $ mplayer -ao alsa:device=hw=1 http://178.18.137.246:80

MPlayer2 2.0-728-g2c378c7-4+b1 (C) 2000-2012 MPlayer Team

Playing http://178.18.137.246:80.

Resolving 178.18.137.246 for AF_INET6...

Couldn't resolve name for AF_INET6: 178.18.137.246

Connecting to server 178.18.137.246[178.18.137.246]: 80...

Name : Pinguin Radio

Genre : Alternative

Website: http://www.pinguinradio.com

Public : yes

Bitrate: 320kbit/s

Cache size set to 320 KiB

Cache fill: 0.00% (0 bytes)

ICY Info: StreamTitle='Talk Talk - It's My Life ';

This stream runs at 4% of CPU and 3.5% memory usage on the RPi 2 with

good sound quality (regardless of what you might think of the music itself!).

In fact, with multiple sound output devices, there is no diffi culty in confi gur-

ing the RPi to connect to multiple Internet radio streams simultaneously and

streaming audio to separate audio adapters.

http://www.xatworld.com/radio-search
http://www.xatworld.com/radio-search

 Chapter 15 ■ Images, Video, and Audio 639

c15.indd 06:53:21:PM 05/12/2016 Page 639

TURNING THE RASPBERRY PI INTO AN FM TRANSMITTER

It is possible to use the RPi as an FM transmitter by connecting a 70 cm length of wire

to GPIO4 on the RPi to act as an antenna, and by using code by Oliver Mattos and

Oskar Weigl to transmit a signal at 103.3 MHz. See tiny.cc/erpi1504.

Recording Audio

The USB adapters and the USB webcams can be used to capture audio directly

to the RPi fi le system. You can use the arecord utility to provide a list of the

available devices—for example, with one webcam and the two USB audio adapt-

ers connected:

pi@erpi ~ $ arecord -l

**** List of CAPTURE Hardware Devices ****

card 1: U0x41e0x30d3 [USB Device 0x41e:0x30d3], device 0: USB Audio [USB Audio]

 Subdevices: 1/1 Subdevice #0: subdevice #0

card 2: Device [USB PnP Sound Device], device 0: USB Audio [USB Audio]

 Subdevices: 1/1 Subdevice #0: subdevice #0

card 3: C920 [HD Pro Webcam C920], device 0: USB Audio [USB Audio]

 Subdevices: 1/1 Subdevice #0: subdevice #0

These devices are also indexed at the following /proc location:

pi@erpi ~ $ cat /proc/asound/cards

 0 [ALSA]:bcm2835 - bcm2835 ALSA

 bcm2835 ALSA

 1 [U0x41e0x30d3]:USB-Audio - USB Device 0x41e:0x30d3

 USB Device 0x41e:0x30d3 at usb-3f980000.usb-1.4.2, full speed

 2 [Device]:USB-Audio - USB PnP Sound Device

 USB PnP Sound Device at usb-3f980000.usb-1.4.5, full speed

 3 [C920]:USB-Audio - HD Pro Webcam C920

 HD Pro Webcam C920 at usb-3f980000.usb-1.4.4, high speed

You can record audio from each of the audio capture devices using the arecord

utility1 and the device’s address. Interestingly, the LED does not light on the

webcams described when they are recording only audio:

pi@erpi ~/tmp $ arecord -f cd -D plughw:1,0 -d 10 test1.wav

Recording WAVE 'test1.wav' : Signed 16 bit Little Endian, Rate 44.1kHz, Stereo

pi@erpi ~/tmp $ arecrd -f cd -D plughw:2,0 -d 10 test2.wav

1 There is a known issue in arecord version 1.0.28, which means that the recording does not
stop after the duration has elapsed and Ctrl-C must be pressed. This is resolved in version 1.0.29.

640 Part III ■ Advanced Interfacing and Interaction

c15.indd 06:53:21:PM 05/12/2016 Page 640

Recording WAVE 'test2.wav' : Signed 16 bit Little Endian, Rate 44.1kHz Hz, Stereo

pi@erpi ~/tmp $ aplay -D plughw:1,0 test1.wav

pi@erpi ~/tmp $ aplay -D plughw:2,0 test2.wav

The waveform audio fi le format (WAV) stores uncompressed audio data,

which will quickly consume your RPi fi le storage free space. To avoid this, you

can compress WAV fi les into the popular MP3 compressed format using the

LAME MP3 encoder, as follows:

pi@erpi ~/tmp $ sudo apt install lame

pi@erpi ~/tmp $ lame test2.wav output.mp3

LAME 3.99.5 32bits (http://lame.sf.net)

Using polyphase lowpass filter, transition band: 16538 Hz - 17071 Hz

Encoding test2.wav to output.mp3

Encoding as 44.1 kHz j-stereo MPEG-1 Layer III (11x) 128 kbps qval=3 ...

pi@erpi ~/tmp $ mplayer -ao alsa:device=hw=2 output.mp3

N O T E AlsaMixer is a very useful tool for setting the volume levels for each of the

attached sound devices. Execute it by calling alsamixer.

Audio Network Streaming

Earlier in this chapter, a description is provided of video streaming to the network

using avconv. It is also possible to use the same application to stream audio, as

it is captured by an audio device, live to the network. For example, here is the

command required to stream audio from a device attached to the address 2,0

using UDP to a desktop computer (port 12345 at IP address 192.168.1.4):

pi@erpi ~/tmp $ avconv -ac 1 -f alsa -i hw:2,0 -acodec libmp3lame -ab →

 32k -ac 1 -f mp3 udp://192.168.1.4:12345

avconv version 11.4-6:11.4-1~deb8u1+rpi1,(c)2000/14 the Libav developers

 built on Jun 16 2015 05:32:34 with gcc 4.9.2 (Raspbian 4.9.2-10)

[alsa @ 0x39b1e0] Estimating duration from bitrate, may be inaccurate

Guessed Channel Layout for Input Stream #0.0 : mono

Input #0, alsa, from 'hw:2,0':

 Duration: N/A, start: 77656.998974, bitrate: N/A

 Stream #0.0: Audio: pcm_s16le, 48000 Hz, 1 channels, s16, 768 kb/s

Output #0, mp3, to 'udp://192.168.1.4:12345' ...

A desktop player such as VLC can be used to open the network UDP stream.

For example, in VLC use Media ➪ Open Network Stream, and set the network

URL to be udp://@:1234. Streaming audio from the RPi in this form has a 30%

CPU load (2% memory) in this instance and has a latency of approximately 1

second.

udp://192.168.1.4:12345
udp://192.168.1.4:12345

 Chapter 15 ■ Images, Video, and Audio 641

c15.indd 06:53:21:PM 05/12/2016 Page 641

N O T E Wireshark (www.wireshark.org) is a great tool for debugging network

connection and communication problems that might occur in audio/video streaming

and network socket programming (as in Chapters 12 and 13).

Bluetooth A2DP Audio

The use of a Bluetooth adapter (or onboard Bluetooth on the RPi 3) is fi rst intro-

duced in Chapter 13 for general-purpose serial communication. It is used again

in Chapter 14 to attach peripherals to the RPi. Here again, Bluetooth can be used

with the RPi—this time to communicate with audio devices.

One of the most common uses of the Bluetooth wireless communication system

is for the connection of smartphones to in-car audio systems, or to home enter-

tainment centers. For this purpose, the Bluetooth Advanced Audio Distribution

Profi le (A2DP) can be used to stream high-quality stereo audio from a media

source to a media sink. The source device (SRC) acts as the source of a digital

audio stream (e.g., Bluetooth headset, smartphone media player), which is sent

in a compressed format to a sink device (SNK) (e.g., Bluetooth headphones,

stereo receiver, in-car receiver).

When connected to a Bluetooth adapter, the RPi can be confi gured to act as

an A2DP SRC or SNK. In this example, the RPi is confi gured as a SRC that is

connected to a Hi-Fi system. There are many low-cost A2DP audio receivers

available that provide audio output on a 3.5 mm stereo jack, which can be used

to retrospectively add A2DP capability to Hi-Fi systems. However, the Hi-Fi

system that is used as the test platform has built-in A2DP support.

N O T E It is recommended that you go through the process of connecting a smart-

phone to a Bluetooth A2DP SNK before attempting to connect the RPi. This will help

you to verify that a connection is possible and help you to become familiar with the

steps that are required to pair A2DP devices.

After a Bluetooth adapter is attached to the RPi, the fi rst step is to install

the necessary packages, confi gure the RPi to support A2DP, and test that the

Bluetooth audio SNKs are visible:

pi@erpi ~ $ hcitool scan

Scanning ... 00:1D:BA:2E:BC:36 CMT-HX90BTR

 40:E2:30:13:CA:09 HOMEOFFICE-PC

The RPi has detected the desktop PC and the Sony Hi-Fi system (CMT-HX90BTR).

An additional Linux service called PulseAudio, a background process that

reroutes all audio streams, is required for recent A2DP services. It aims to

http://www.wireshark.org

642 Part III ■ Advanced Interfacing and Interaction

c15.indd 06:53:21:PM 05/12/2016 Page 642

support legacy devices, as well as to provide support for network audio (e.g., for

VNC). PulseAudio is complex and should be avoided unless you have a specifi c

need to use it on the RPi. It does provide useful user interface tools, such as

pavucontrol, and can be installed using the following:

pi@erpi ~ $ sudo apt install pulseaudio pavucontrol →

 pulseaudio-module-bluetooth

PulseAudio can be confi gured as follows:

pi@erpi /etc/pulse $ sudo nano default.pa

The service can be started and stopped using the following (note: no sudo):

.../chp15/audio$ pulseaudio --kill

.../chp15/audio$ pulseaudio --start

One of the best ways to debug problems with PulseAudio is to kill the service

and start the service using pulseaudio -v to get a verbose output. Once you

have ensured that PulseAudio is working correctly, you can execute it in daemon

mode (-D) and begin the process of pairing the RPi with the Bluetooth device:

pi@erpi ~ $ pulseaudio -D

pi@erpi ~ $ sudo bluetoothctl

[bluetooth]# scan on

Discovery started

[CHG] Controller 00:02:72:CB:C3:53 Discovering: yes

[NEW] Device 40:E2:30:13:CA:09 HOMEOFFICE-PC

[CHG] Device 00:1D:BA:2E:BC:36 Name: CMT-HX90BTR

[CHG] Device 00:1D:BA:2E:BC:36 Alias: CMT-HX90BTR

[CHG] Device 00:1D:BA:2E:BC:36 LegacyPairing: yes

You can then connect to the SNKs using the following commands. (You will

likely have to enter a code [e.g., 0000] on both devices in order to pair the devices

in the fi rst step.)

[bluetooth]# pair 00:1D:BA:2E:BC:36

Attempting to pair with 00:1D:BA:2E:BC:36

[CHG] Device 00:1D:BA:2E:BC:36 Connected: yes

[CHG] Device 00:1D:BA:2E:BC:36 Paired: yes

[bluetooth]# trust 00:1D:BA:2E:BC:36

[CHG] Device 00:1D:BA:2E:BC:36 Trusted: yes

Changing 00:1D:BA:2E:BC:36 trust succeeded

[bluetooth]# paired-devices

Device 00:1D:BA:2E:BC:36 CMT-HX90BTR

[bluetooth]# info 00:1D:BA:2E:BC:36

Device 00:1D:BA:2E:BC:36

 Name: CMT-HX90BTR Alias: CMT-HX90BTR

 Class: 0x240428 Icon: audio-card

 Paired: yes Trusted: yes

 Blocked: no Connected: no

 LegacyPairing: yes

 UUID: Audio Sink ...

 Chapter 15 ■ Images, Video, and Audio 643

c15.indd 06:53:21:PM 05/12/2016 Page 643

[bluetooth]# connect 00:1D:BA:2E:BC:36

Attempting to connect to 00:1D:BA:2E:BC:36

[CHG] Device 00:1D:BA:2E:BC:36 Connected: yes

Connection successful

Now, if you use the PulseAudio sound confi guration tool, pacmd, you can see

that the Bluetooth device is now available as a sound sink:

pi@erpi ~ $ pacmd

Welcome to PulseAudio 5.0! Use "help" for usage information.

>>> list-sinks

3 sink(s) available ...

index: 2

 name: <bluez_sink.00_1D_BA_2E_BC_36>

 driver: <module-bluez5-device.c> ...

>>> set-default-sink 2

You can then play audio fi les to the Bluetooth device by using PulseAudio

as the device:

pi@erpi ~/exploringrpi/chp15/audio $ aplay -D pulse cheering.wav

Playing WAVE 'cheering.wav' : Unsigned 8 bit, Rate 11025 Hz, Mono

Text-to-Speech

Once you have a working playback adapter connected to the RPi, you can then

utilize Linux tools and online services to perform some interesting audio appli-

cations. One such application is text-to-speech (TTS); it is possible to generate

audio from text using tools such as eSpeak, FestVox Festival, and pico2wave.

Presently, pico2wave must be built from source, but eSpeak and Festival are

available in binary form under the Raspbian distribution.

You can install and use eSpeak to output audio to the aplay application as

follows:

pi@erpi ~ $ sudo apt install espeak

pi@erpi ~ $ espeak "Hello Raspberry Pi" --stdout | aplay -D plughw:1,0

Playing WAVE 'stdin' : Signed 16 bit Little Endian, Rate 22050 Hz, Mono

You can install Festival and use it to output a text fi le to a WAV format fi le

as follows:

pi@erpi ~ $ sudo apt install festival festival-freebsoft-utils

pi@erpi ~ $ more hello.txt

Hello Raspberry Pi

pi@erpi ~ $ text2wave hello.txt -o hello.wav

pi@erpi ~ $ ls -l hello.wav

-rw-r--r-- 1 pi pi 56048 Dec 7 05:15 hello.wav

pi@erpi ~ $ aplay -D plughw:1,0 hello.wav

Playing WAVE 'hello.wav' : Signed 16 bit Little Endian, Rate 16000 Hz, Mono

644 Part III ■ Advanced Interfacing and Interaction

c15.indd 06:53:21:PM 05/12/2016 Page 644

Also, text can be piped into the text2wave application as follows:

pi@erpi ~ $ echo 'Hello' | text2wave -o test.wav

pi@erpi ~ $ aplay -D plughw:1,0 test.wav

Playing WAVE 'test.wav' : Signed 16 bit Little Endian, Rate 16000 Hz, Mono

TTS engines can be integrated into your own applications. For example, you

can use the output from a binary application as follows (for the date application)

to provide dynamic speech output:

pi@erpi ~ $ echo $(date +"It is %M minutes past %l %p") | text2wave -o →

 test.wav
pi@erpi ~ $ aplay -D plughw:1,0 test.wav

Playing WAVE 'test.wav' : Signed 16 bit Little Endian, Rate 16000 Hz, Mono

pi@erpi ~ $ lame test.wav test.mp3

pi@erpi ~ $ mplayer -ao alsa:device=hw=1 test.mp3

Finally, it is also possible to install the CMU Sphinx Speech Recognition

Toolkit on the RPi. Open source speech recognition tools are notoriously dif-

fi cult to train when compared to commercial offerings such as Nuance’s Dragon

NaturallySpeaking. However, with some time investment, PocketSphinx can

be trained to provide good results. To install it on the RPi, you must manually

download and build two repositories: sphinxbase and pocketsphinx. You can

use SourceForge (sourceforge.net) to fi nd the latest versions of both reposito-

ries. Build them directly on the RPi using steps such as ./configure --enable-

fixed , followed by make, and sudo make install.

Summary

After completing this chapter, you should be able to do the following:

 ■ Capture image and video data on the RPi using the RPi MMAL camera

or USB webcams combined with Linux Video4Linux2 drivers and APIs.

 ■ Use Video4Linux2 utilities to get information from and adjust the proper-

ties of video capture devices.

 ■ Stream video data to the Internet using Linux applications and UDP,

multicast, and RTP streams.

 ■ Use OpenCV to perform basic image processing on the RPi.

 ■ Use OpenCV to perform a computer vision face-detection task.

 ■ Utilize the Boost C++ libraries on the RPi.

 ■ Play audio data on the RPi using HDMI audio and USB audio adapters.

The audio data can be raw waveform data or compressed MP3 data from

the RPi fi le system or from Internet radio streams.

 ■ Record audio data using USB audio adapters or webcams.

 Chapter 15 ■ Images, Video, and Audio 645

c15.indd 06:53:21:PM 05/12/2016 Page 645

 ■ Stream audio data to the Internet using UDP.

 ■ Play audio to Bluetooth A2DP audio devices, such as Hi-Fi systems.

 ■ Use text-to-speech (TTS) approaches to verbalize the text output of com-

mands that are executed on the RPi.

Further Reading

Many links to websites and documents are provided throughout this chapter.

Additional links and further information on the topics are provided at www

.exploringrpi.com/chapter15/ and the following:

 ■ Video4Linux2 core documentation: tiny.cc/erpi1502

 ■ V4L2 API Specifi cation: tiny.cc/erpi1503

 ■ The Boost C++ Libraries, Boris Schäling: theboostcpplibraries.com

 ■ Computer Vision Cascaded Classifi cation: tiny.cc/erpi1505

 ■ CVonline: The Evolving, Distributed, Non-Proprietary, On-Line

Compendium of Computer Vision, at tiny.cc/erpi15 06

647

c16.indd 06:56:1:PM 05/12/2016 Page 647

In this chapter, you are introduced to Linux kernel programming on an embedded

device such as the Raspberry Pi (RPi). Kernel programming is an advanced topic

that requires in-depth study of the source code for the Linux kernel; however,

this chapter is structured as a practical step-by-step guide to the focused task of

writing Linux loadable kernel modules (LKMs) that interface to general-purpose

inputs/outputs (GPIOs). The fi rst example is a straightforward “Hello World”

module that can be used to establish a confi guration for LKM development on

the RPi. The second LKM example introduces interrupt service routines (ISRs),

and interfaces a simple GPIO button and LED circuit to Linux kernel space. Two

further examples are provided that introduce the kobject interface and the use

of kernel threads to build kernel-space sysfs devices for the RPi. By the end of

this chapter, you should be familiar with the steps required to write kernel code,

and appreciate the programming constraints that such development entails.

Equipment Required for This Chapter:

 ■ Raspberry Pi (any model)

Further details on this chapter are available at www.exploringrpi.com/

chapter16/.

C H A P T E R

16

Kernel Programming

http://www.exploringrpi.com
http://www.exploringrpi.com/chapter16/

648 Part III ■ Advanced Interfacing and Interaction

c16.indd 06:56:1:PM 05/12/2016 Page 648

Introduction

As introduced in Chapter 3, a loadable kernel module (LKM) is a mechanism

for adding code to, or removing code from, the Linux kernel at run time. They

are ideal for device drivers, enabling the kernel to communicate with the hard-

ware without it having to know how the hardware works. Without this modular

capability, the Linux kernel would be very large, because it would have to sup-

port every driver that would ever be needed on the RPi. You would also have

to rebuild the kernel every time you want to add new hardware or update a

device driver. The downside of LKMs is that driver fi les have to be maintained

for each device. LKMs are loaded at run time, but they do not execute in user

space; they are essentially part of the kernel.

Kernel modules run in kernel space and applications run in user space, as

illustrated in Figure 16-1. Both kernel space and user space have their own

unique memory address spaces that do not overlap. This approach ensures

that applications running in user space have a consistent view of the hardware,

regardless of the hardware platform. The kernel services are then made avail-

able to the user space in a controlled way through the use of system calls. The

kernel also prevents individual user space applications from confl icting with

each other or from accessing restricted resources through the use of protection

levels (e.g., superuser versus regular user permissions).

Figure 16-1: The Linux kernel and user space architecture

Why Write Kernel Modules?

When interfacing to electronics circuits under embedded Linux, you are exposed

to sysfs and the use of low-level fi le operations for interfacing to electronics

 Chapter 16 ■ Kernel Programming 649

c16.indd 06:56:1:PM 05/12/2016 Page 649

circuits. This approach can appear to be ineffi cient (especially if you have experi-

ence of traditional embedded systems); however, these fi le entries are memory

mapped and the performance is suffi cient for many applications. As discussed

in Chapter 6, it is possible to achieve response times of about one eighth of a

millisecond, with negligible CPU overhead, from within Linux user space by

using pthreads, callback functions, and sys/poll.h.

Also described in Chapter 6 is an approach for bypassing the Linux kernel

on the RPi, using direct memory manipulation to take control of the SoC inputs

and outputs. Unfortunately, this approach means that your programs will not

be portable to other embedded Linux platforms. In addition, because the Linux

kernel is unaware of such direct memory manipulations, you could potentially

generate resource confl icts.

An alternative approach is to use kernel code, which has support for inter-

rupts. However, kernel code is diffi cult to write and debug. My advice is that

you should always try to accomplish your task in Linux user space unless you

are certain that there is no other possible way!

Loadable Kernel Module (LKM) Basics

The runtime lifecycle of a typical computer program is reasonably straightfor-

ward: A loader allocates memory for the program, and loads the program with

any required shared libraries. Instruction execution then begins at some entry

point (typically identifi ed by the main() point in C/C++ programs), statements

are executed, exceptions are thrown, dynamic memory is allocated and deal-

located, and the program eventually runs to completion. On program exit, the

operating system frees the memory that was allocated to the program back to

the heap memory pool.

Kernel modules are written in C, but they are not programs; for a start, there

is no main() function! Some of the key differences are that kernel modules:

 ■ Do not execute sequentially: A kernel module registers itself to handle

requests using its initialization function, which runs and then terminates.

The type of requests that it can handle are defi ned within the module

code. This is quite similar to the event-driven programming model that

is commonly utilized in graphical user interface (GUI) applications.

 ■ Do not clean up automatically: Any resources that are allocated to the

module must be manually released when the module is unloaded, or they

may be unavailable until a system reboots.

 ■ Do not have printf() functions: Kernel code cannot access libraries of code

that is written for the Linux user space. The kernel module lives and runs

in kernel space, which has its own memory address space. The interface

between kernel space and user space is clearly defi ned and controlled.

However, a printk() function is available that can be used to output

information, which can be viewed from within user space.

650 Part III ■ Advanced Interfacing and Interaction

c16.indd 06:56:1:PM 05/12/2016 Page 650

 ■ Can be interrupted: One conceptually diffi cult aspect of kernel modules

is that they can be used by several different programs/processes at the

same time. Modules must be constructed so that they have a consistent

and valid behavior when they are interrupted. The RPi 2/3 has a multicore

processor, which means that you also have to consider the issues involved

in simultaneous access from multiple processes.

 ■ Have a higher level of execution privilege: Typically, more CPU cycles

are allocated to kernel modules than to user space programs. This sounds

like an advantage; however, you have to be very careful that your module

does not adversely affect the overall performance of your system.

 ■ Do not have fl oating-point support: It is kernel code that uses traps to transi-

tion from integer to fl oating-point mode for your user space applications.

However, it is very diffi cult to perform these traps in kernel space. The

alternative is to manually save and restore fl oating-point operations—a

task that is best avoided and left to user space code.

A First LKM Example

The concepts just described are a lot to digest, and it is important that they are

all addressed, but not all in the fi rst example! Listing 16-1 provides the code for

a fi rst example LKM. When no kernel argument is provided, the code uses the

printk() function to display “Hello world!” in the kernel logs. If the argument

“Derek” is provided, then the logs display “Hello Derek!” The comments in

Listing 16-1, which are written using a Doxygen format (see Chapter 7), describe

the role of each statement. Further description is available after the code listing.

W A R N I N G It is very easy to crash the system when you are writing and testing

LKMs. It is always possible that such a system crash could corrupt your fi le system; it is

unlikely, but it is possible. Performing a sudo reboot, or pressing the reset button

on the RPi (see Chapter 1) will usually put everything back in order. Should something

go wrong, the RPi can easily be refl ashed, which makes it a good practice platform for

LKM development. For your information, I have yet to corrupt any embedded Linux

device fi le system as a result of a system crash, despite my being the cause of many!

Listing 16-1: /exploringrpi/chp16/hello/hello.c

/**

 * @file hello.c

 * @author Derek Molloy

 * @date 6 November 2015

 * @version 0.1

 * @brief An introductory "Hello World!" loadable kernel module (LKM)

 * that can display a message in the /var/log/kern.log file when the

 Chapter 16 ■ Kernel Programming 651

c16.indd 06:56:1:PM 05/12/2016 Page 651

 * module is loaded and removed. The module can accept an argument when

 * it is loaded -- the name, which appears in the kernel log files.

*/

#include <linux/init.h> // macros for marking up functions e.g. __init

#include <linux/module.h> // core header for loading LKMs

#include <linux/kernel.h> // contains kernel types, macros, functions

MODULE_LICENSE("GPL"); // the license type (affects behavior)

MODULE_AUTHOR("Derek Molloy"); // The author visible with modinfo

MODULE_DESCRIPTION("A simple Linux LKM for the RPi."); // desc.

MODULE_VERSION("0.1"); // the version of the module

static char *name = "world"; // example LKM argument default is "world"

// param description charp = char pointer, defaults to "world"

module_param(name, charp, S_IRUGO); // S_IRUGO can be read/not changed

MODULE_PARM_DESC(name, "The name to display in /var/log/kern.log");

/** @brief The LKM initialization function

 * The static keyword restricts the visibility of the function to within

 * this C file. The __init macro means that for a built-in driver (not

 * an LKM) the function is only used at initialization time and that it

 * can be discarded and its memory freed up after that point.

 * @return returns 0 if successful

 */

static int __init helloERPi_init(void) {

 printk(KERN_INFO "ERPi: Hello %s from the RPi LKM!\n", name);

 return 0;

}

/** @brief The LKM cleanup function

 * Similar to the initialization function, it is static. The __exit

 * macro establishes that if this code is used for a built-in driver (not

 * an LKM) that this function is not required.

 */

static void __exit helloERPi_exit(void) {

 printk(KERN_INFO "ERPi: Goodbye %s from the RPi LKM!\n", name);

}

/** @brief A module must use the module_init() module_exit() macros from

 * linux/init.h, which identify the initialization function at insertion

 * time and the cleanup function (as listed above).

 */

module_init(helloERPi_init);

module_exit(helloERPi_exit);

In addition to the points described by the comments in Listing 16-1, there are

some additional points worth noting:

 ■ The statement MODULE_LICENSE("GPL") provides information (via modinfo)

about the licensing terms of the module that you have developed, thus

allowing users of your LKM to ensure that they are using free software.

652 Part III ■ Advanced Interfacing and Interaction

c16.indd 06:56:1:PM 05/12/2016 Page 652

Because the kernel is released under the GPL, your license choice impacts upon

the way that the kernel treats your module. You can choose "Proprietary"

for non-GPL code, but the kernel will be marked as “tainted,” and a warning

will appear. There are nontainted alternatives to GPL, such as "GPL v2",

"GPL and additional rights", "Dual BSD/GPL", "Dual MIT/GPL", and

"Dual MPL/GPL". See linux/module.h for more information.

 ■ The name (char *) is declared as static and is initialized to contain the string

“world”. You should avoid using global variables in kernel modules; it is

even more important than in application programming, because global

variables are shared kernel wide. You should use the static keyword to

restrict a variable’s scope to within the module. If you must use a global

variable, add a prefi x that is unique to the module that you are writing.

 ■ The module_param(name, type, permissions) macro has three parameters:

name (the parameter name displayed to the user and the variable name

in the module), type (the type of the parameter—i.e., one of byte, int,

uint, long, ulong, short, ushort, bool, an inverse Boolean invbool, or a

char pointer charp), and permissions (this is the access permissions to the

parameter when using sysfs and is covered later). A value of 0 disables

the entry, but S_IRUGO allows read access for user/group/others; see the

Mode Bits for Access Permissions Guide at tiny.cc/erpi1601.

 ■ The functions in the module can have whatever names you like (e.g., hel-

loERPi_init() and helloERPi_exit()); however, the same names must

be passed to the special macros module_init() and module_exit() at the

very end of Listing 16-1.

 ■ The printk() is very similar in usage to the familiar printf() function,

and you can call it from anywhere within the kernel module code. The

only signifi cant difference is that you should specify a log level when

you call the function. The log levels are defi ned in linux/kern_levels.h

as one of KERN_EMERG, KERN_ALERT, KERN_CRIT, KERN_ERR, KERN_WARNING,

KERN_NOTICE, KERN_INFO, KERN_DEBUG, and KERN_DEFAULT. This header is

included via the linux/kernel.h header fi le, which includes it via linux/

printk.h.

Essentially, when this module is loaded, the helloERPi_init() function executes,

and when the module is unloaded, the helloERPi_exit() function executes.

The LKM Makefi le

A Makefi le is required to build the kernel module; in fact, it is a special kbuild

Makefi le. The kbuild Makefi le required to build the kernel module can be

viewed in Listing 16-2. (Remember that there must be a Tab character in front

of the calls to make in the Makefile fi le.)

 Chapter 16 ■ Kernel Programming 653

c16.indd 06:56:1:PM 05/12/2016 Page 653

Listing 16-2: /exploringrpi/chp16/hello/Makefi le

obj-m+=hello.o

all:

 make -C /lib/modules/$(shell uname -r)/build/ M=$(PWD) modules

clean:

 make -C /lib/modules/$(shell uname -r)/build/ M=$(PWD) clean

The fi rst line of the Makefi le is called a goal defi nition, and it defi nes the

module to be built (hello.o). The syntax is surprisingly intricate. For example,

obj-m defi nes a loadable module goal, whereas obj-y indicates a built-in object

goal. The syntax becomes more complex when a module is to be built from

multiple objects, but Listing 16-2 is suffi cient to build this example LKM.

The remainder of the Makefi le is similar to a regular Makefi le. The $(shell

uname -r) is a useful call to return the current kernel build version; this ensures

a degree of portability for the Makefi le. The -C option switches the directory to

the kernel directory before performing any make tasks. The M=$(PWD) variable

assignment tells the make command where the actual project fi les exist. The

modules target is the default target for external kernel modules. An alternative

target is modules_install, which would install the module. (The make com-

mand would have to be executed with superuser permissions, and the module

installation path is required.)

Building the LKM on a Linux Desktop Machine

Unfortunately, the process of building the LKM on the RPi is typically more

complex than might be expected, as quite specifi c and detailed steps are required

to install the Linux kernel headers. This is typically a trivial step for a desktop

Linux installation, so it is useful to fi rst build a module on the desktop machine

for two reasons: First, it will give you an understanding of what to expect.

Second, it is likely that the Raspbian distribution will be improved over time

to provide similar ease of installation.

The Linux kernel headers are C header fi les that defi ne the interfaces between

the different kernel modules, and the kernel and user space. These header fi les

are required in order to build external LKMs, and they must be the exact same

version as the kernel for which you want to build a module.

The fi rst thing to do is to install Linux kernel header fi les that perfectly align

with the Linux kernel distribution on your device or machine. The uname com-

mand provides a long description (-a for all), and a kernel release output (-r

for release) as follows:

molloyd@desktop:~$ uname -a

Linux desktop 3.16.0-4-amd64 #1 SMP Debian 3.16.7-ckt11-1+deb8u2 GNU/Linux

molloyd@desktop:~$ uname -r

3.16.0-4-amd64

654 Part III ■ Advanced Interfacing and Interaction

c16.indd 06:56:1:PM 05/12/2016 Page 654

The kernel release output can be used to search for the appropriate Linux

header fi les:

molloyd@desktop:~$ apt-cache search linux-headers-$(uname -r)

linux-headers-3.16.0-4-amd64 - Header files for Linux 3.16.0-4-amd64

molloyd@desktop:~$ sudo apt install linux-headers-$(uname -r)

At this point, the headers should be installed in /lib/modules/$(uname

-r)/build/, which should likely be a symbolic link to the location /usr/src/

linux/$(uname -r)/. For historical reasons, an additional symbolic link is usu-

ally available at /usr/src/linux:

molloyd@desktop:/usr/src$ ls -l

lrwxrwxrwx 1 root root 28 Aug 1 11:55 linux -> linux-headers-3.16.0-

4-amd64

drwxr-xr-x 4 root root 4096 Nov 4 21:07 linux-headers-3.16.0-4-amd64

...

molloyd@desktop:/lib/modules/3.16.0-4-amd64$ ls -l build

lrwxrwxrwx 1 ... 20:17 build -> /usr/src/linux-headers-3.16.0-4-amd64

Once the Linux kernel headers are in place, you can build the hello LKM

using the Makefi le from Listing 16-2. For example:

molloyd@desktop:~/exploringrpi/chp16/hello$ make

make -C /lib/modules/3.16.0-4-amd64/build/ →

 M=/home/molloyd/exploringrpi/chp16/hello modules

make[1]: Entering directory `/usr/src/linux-headers-3.16.0-4-amd64'

 CC [M] /home/molloyd/exploringrpi/chp16/hello/hello.o

 Building modules, stage 2.

 MODPOST 1 modules

 CC /home/molloyd/exploringrpi/chp16/hello/hello.mod.o

 LD [M] /home/molloyd/exploringrpi/chp16/hello/hello.ko

make[1]: Leaving directory '/usr/src/linux-headers-3.16.0-4-amd64'

At this point, the LKM has been created with the name hello.ko in the current

directory. Note that this LKM can only be executed on your desktop machine

and is applicable only to the current kernel version. The instructions for how to

use this module are provided after a discussion on building the LKM on the RPi:

molloyd@desktop:~/exploringrpi/chp16/hello$ ls -l

-rw-r--r-- 1 molloyd molloyd 2430 Nov 4 21:11 hello.c

-rw-r--r-- 1 molloyd molloyd 116352 Nov 4 21:11 hello.ko

-rw-r--r-- 1 molloyd molloyd 769 Nov 4 21:11 hello.mod.c

-rw-r--r-- 1 molloyd molloyd 64248 Nov 4 21:11 hello.mod.o

-rw-r--r-- 1 molloyd molloyd 53592 Nov 4 21:11 hello.o

-rw-r--r-- 1 molloyd molloyd 154 Nov 4 21:03 Makefile

-rw-r--r-- 1 molloyd molloyd 55 Nov 4 21:11 modules.order

-rw-r--r-- 1 molloyd molloyd 0 Nov 4 21:11 Module.symvers

Building the LKM on the RPi

If you are planning to use a recent kernel, you should fi rst update the RPi so as

to ensure that the kernel release aligns with the kernel release that is present

mailto:molloyd@desktop:/lib/modules/3.16.0-4-amd64

 Chapter 16 ■ Kernel Programming 655

c16.indd 06:56:1:PM 05/12/2016 Page 655

in the source repository. If you are planning to use an older kernel release, you

should skip this step and adapt the steps that follow accordingly:

pi@erpi ~ $ sudo apt update

pi@erpi ~ $ sudo apt upgrade

pi@erpi ~ $ sudo rpi-update

 *** Raspberry Pi firmware updater by Hexxeh, enhanced by AndrewS and Dom

 *** Performing self-update

 % Total % Received % Xferd Average Speed Time Time Time Current

 Dload Upload Total Spent Left Speed

100 10206 100 10206 0 0 36936 0 --:--:-- --:--:-- --:--:-- 37112

This update bumps to rpi-4.1.y linux tree

...

*** depmod 4.1.12-v7+

 *** Updating VideoCore libraries

 *** Using HardFP libraries

 *** Updating SDK

pi@erpi ~ $ sudo reboot

pi@erpi ~ $ uname -a

Linux erpi 4.1.12-v7+ #824 SMP PREEMPT ... GMT 2015 armv7l GNU/Linux

In theory, you should be able to install the Linux kernel headers using the

following two steps (as described for the desktop machine):

pi@erpi ~ $ apt-cache search linux-headers-$(uname -r)

pi@erpi ~ $ sudo apt install linux-headers-$(uname -r)

Or you can use the Linux virtual headers package. Unfortunately, though,

the headers are not available for the current kernel version:

pi@erpi ~ $ sudo apt-get install linux-headers

Reading package lists... Done

Building dependency tree

Reading state information... Done

Package linux-headers is a virtual package provided by:

 linux-headers-3.6-trunk-rpi 3.6.9-1~experimental.1+rpi7

 linux-headers-3.10-3-rpi 3.10.11-1+rpi7

You should explicitly select one to install.

pi@erpi:~ $ apt-cache search linux-headers

...

linux-headers-3.18.0-trunk-common - Common header files for Linux

3.18.0-trunk

linux-headers-3.18.0-trunk-rpi - Header files for Linux 3.18.0-trunk-rpi

linux-headers-3.18.0-trunk-rpi2 - Header files for Linux 3.18.0-trunk-rpi2 ...

Therefore, it is necessary to manually download and build the Linux kernel

headers for the current image. There are prepackaged headers available from

some sites, such as tiny.cc/erpi1602, but I recommend that you follow a

manual process to ensure that you can always obtain the headers directly from

Raspbian source.

Because all the following steps require superuser permissions, it is preferable

to execute them from within a root shell:

656 Part III ■ Advanced Interfacing and Interaction

c16.indd 06:56:1:PM 05/12/2016 Page 656

 1. Begin by downloading the kernel source to the /usr/src/ directory. The

version that you download must align with the current kernel version.

See Chapter 7 for instructions on how to choose a specifi c kernel release:

pi@erpi /usr/src $ sudo bash

root@erpi:/usr/src# wget →

https://github.com/raspberrypi/linux/tarball/rpi-4.1.y

root@erpi:/usr/src# tar zxf rpi-4.1.y

root@erpi:/usr/src# ls -l

drwxrwxr-x 23 root root 4096 Nov 5 12:01 raspberrypi-linux-503f879

-rw-r--r-- 1 root root 128436889 Nov 6 02:40 rpi-4.1.y

drwxr-xr-x 3 root root 4096 Sep 24 14:44 sense-hat

 2. Overwrite the build confi guration fi le with the confi guration fi le for the

current RPi image. The confi guration fi le for your current image is typically

available in compressed form at /proc/config.gz. If the fi le is missing,

type the command modprobe configs:

root@erpi:/usr/src# cd raspberrypi-linux-503f879/

ro ot@erpi:/usr/src/raspberrypi-linux-503f879# zcat /proc/config.gz > →

.config

 3. Check that there are no user options in the current kernel confi guration

fi le that are not present in the .config fi le, and then ensure that the kernel

contains the information required for building external modules using the

following steps, which take a few minutes to execute:

root@erpi:/usr/src/raspberrypi-linux-503f879# make oldconfig

root@erpi:/usr/src/raspberrypi-linux-503f879# make modules_prepare

 4. Next you need a fi le called Module.symvers. This is a fi le that defi nes the

exported symbols that are not defi ned in the kernel. You can take this fi le

from a kernel that you built in Chapter 7, or you can download it directly

from the RPi source repository. The RPi 2/3 has a different Module.sym-

vers than other models, so it is best if you visit the repository site fi rst at

https://github.com/raspberrypi/firmware/raw/master/extra/ before

downloading the fi le. For non-RPi 2 models, use the following:

root@erpi:/usr/src/raspberrypi-linux-503f879# wget →

 https://github.com/raspberrypi/firmware/raw/master/extra/Module.symvers

Or, use Module7.symvers for the RPi2/3:

root@erpi:/usr/src/raspberrypi-linux-503f879# wget →

 https://github.com/raspberrypi/firmware/raw/master/extra/Module7.symvers

pi@erpi /usr/src/linux # cp Module7.symvers Module.symvers

 5. Finally, symbolic links must be set up so that the Makefi le can fi nd the

Linux kernel header fi les (use 4.x.x-v7+ for the RPi2/3, and 4.x.x+ for

other RPi models):

root@erpi:/usr/src/raspberrypi-linux-503f879# KHEADER=`pwd`

root@erpi:/usr/src/raspberrypi-linux-503f879# echo $KHEADER

/usr/src/raspberrypi-linux-503f879

root@erpi:/usr/src/raspberrypi-linux-503f879# cd /lib/modules/4.1.12-v7+/

https://github.com/raspberrypi/firmware/raw/master/extra

 Chapter 16 ■ Kernel Programming 657

c16.indd 06:56:1:PM 05/12/2016 Page 657

root@erpi:/lib/modules/4.1.12-v7+# ln -s $KHEADER source

root@erpi:/lib/modules/4.1.12-v7+# ln -s $KHEADER build

root@erpi:/lib/modules/4.1.12-v7+# ls -l build source

... 34 Nov 12 04:12 build -> /usr/src/raspberrypi-linux-503f879

... 34 Nov 12 04:12 source -> /usr/src/raspberrypi-linux-503f879

root@erpi:/lib/modules/4.1.12-v7+# cd /usr/src

root@erpi:/usr/src# ls

raspberrypi-linux-503f879 rpi-4.1.y sense-hat

root@erpi:/usr/src# ln -s $KHEADER linux-`uname -r`

root@erpi:/usr/src# ln -s $KHEADER linux

root@erpi:/usr/src# ls

linux linux-4.1.12+ raspberrypi-linux-503f879 rpi-4.1.y sense-hat

The Linux kernel headers are now installed on the RPi.

Finally, you can build the LKM with a call to make. Do not use sudo make;

otherwise, it will cause the Linux kernel headers to be rebuilt:

pi@erpi ~/exploringrpi/chp16/hello $ make

make -C /lib/modules/4.1.12-v7+/build/ M= modules

make[1]: Entering directory '/usr/src/raspberrypi-linux-503f879'

...

pi@erpi ~/exploringrpi/chp16/hello $ ls -l

-rw-r--r-- 1 pi pi 2199 Nov 7 01:12 hello.c

-rw-r--r-- 1 pi pi 4348 Nov 6 22:45 hello.ko

-rw-r--r-- 1 pi pi 154 Nov 5 00:20 Makefile

...

Testing the First LKM Example

The “Hello World!” LKM can then be tested on the desktop machine or the RPi by

loading it into the kernel. Once again, these steps require superuser permissions:

pi@erpi ~/exploringrpi/chp16/hello $ sudo bash

root@erpi:/home/pi/exploringrpi/chp16/hello# ls

hello.c hello.mod.c hello.o modules.order

hello.ko hello.mod.o Makefile Module.symvers

root@erpi:/home/pi/exploringrpi/chp16/hello# ls -l *.ko

-rw-r--r-- 1 pi pi 4348 Nov 6 22:45 hello.ko

The LKM can be loaded using the insmod program to insert a module into

the Linux kernel:

root@erpi:/home/pi/exploringrpi/chp16/hello# insmod hello.ko

root@erpi:/home/pi/exploringrpi/chp16/hello# lsmod

Module Size Used by

hello 737 0 ...

You can get information about the loaded LKM using the modinfo command,

which identifi es the description, author, and any module parameters that are

defi ned by the LKM source code:

root@erpi:/home/pi/exploringrpi/chp16/hello# modinfo hello.ko

filename: /home/pi/exploringrpi/chp16/hello/hello.ko

658 Part III ■ Advanced Interfacing and Interaction

c16.indd 06:56:1:PM 05/12/2016 Page 658

version: 0.1

description: A simple Linux driver for the RPi.

author: Derek Molloy

license: GPL

srcversion: 92E5000BB5C10D0021FF527

depends:

vermagic: 4.1.12-v7 SMP preempt mod_unload modversions ARMv7

parm: name: The name to display in /var/log/kern.log (charp)

You can see that the kernel version is compiled into the module and any

module parameters are visible, such as name in this instance.

The module can be removed from the Linux kernel using the rmmod program:

root@erpi:/home/pi/exploringrpi/chp16/hello# rmmod hello.ko

You can repeat these steps and view the output live in the kernel log as a

result of the use of the printk() function in Listing 16-1. I recommend that you

use a second terminal window and view the live output as your LKM is loaded

and unloaded, as follows:

pi@erpi ~ $ sudo bash

root@erpi:/home/pi# cd /var/log

root@erpi:/var/log# tail -f kern.log

... erpi kernel: [275408.309510] ERPi: Hello world from the RPi LKM!

... erpi kernel: [275562.544255] ERPi: Goodbye world from the RPi LKM!

... erpi kernel: [276435.032469] ERPi: Hello world from the RPi LKM!

... erpi kernel: [276450.192676] ERPi: Goodbye world from the RPi LKM!

Testing the LKM Parameter

The code in Listing 16-1 contains a custom LKM parameter that can be set when

the module is being loaded. For example:

root@erpi:/home/pi/exploringrpi/chp16/hello# insmod hello.ko name=Derek

If you view /var/log/kern.log at this point, the message “Hello Derek”

appears in place of “Hello world”:

root@erpi:/var/log# tail -f kern.log

... erpi kernel: [279690.417709] ERPi: Hello Derek from the RPi LKM!

However, you can also see information about the kernel module that is loaded,

as follows:

root@erpi:/home/pi/exploringrpi/chp16/hello# cd /proc

root@erpi:/proc# cat modules|grep hello

hello 737 0 - Live 0x7f3d4000 (O)

This is the same information that is provided by the lsmod command, but it

also provides the current kernel memory offset for the loaded module, which

is useful for debugging.

 Chapter 16 ■ Kernel Programming 659

c16.indd 06:56:1:PM 05/12/2016 Page 659

The LKM also has an entry under /sys/module/, which provides you with

direct access to the custom parameter state. For example:

root@erpi:/proc# cd /sys/module

root@erpi:/sys/module# ls -l | grep hello

drwxr-xr-x 6 root root 0 Nov 8 06:37 hello

root@erpi:/sys/module# cd hello

root@erpi:/sys/module/hello# ls

coresize initsize notes refcnt srcversion uevent

holders initstate parameters sections taint version

root@erpi:/sys/module/hello# cat version

0.1

root@erpi:/sys/module/hello# cat taint

O

The version value is 0.1 as per the MODULE_VERSION("0.1") entry in Listing

16-1 and the taint value is O as per the license that has been chosen, which is

MODULE_LICENSE("GPL").

The custom parameter value can be viewed as follows:

root@erpi:/sys/module/hello# cd parameters/

root@erpi:/sys/module/hello/parameters# ls -l

total 0

-r--r--r-- 1 root root 4096 Nov 8 06:45 name

root@erpi:/sys/module/hello/parameters# cat name

Derek

Using this directory structure, you can see that the state of the name variable

is displayed. Superuser permissions are not required to read the value, due to

the S_IRUGO argument that is used in defi ning the module parameter. It is pos-

sible to confi gure this value for write access, but your module code will need

to detect such a state change and act accordingly. Finally, you can remove the

module and observe the output:

root@erpi:/sys/module/hello/parameters# cd ~/

root@erpi:~# rmmod hello.ko

root@erpi:~# tail /var/log/kern.log

... erpi kernel: [279690.417709] ERPi: Hello Derek from the RPi LKM!

... erpi kernel: [280373.162268] ERPi: Goodbye Derek from the RPi LKM!

It is important that you leave any directory associated with the LKM before

you unload it, because otherwise you can cause a kernel panic with something

as simple as a call to ls.

An Embedded LKM Example

Now that you have built a fi rst LKM, more sophisticated device drivers can be

developed. For example, see the chapter web page on how to build a character

660 Part III ■ Advanced Interfacing and Interaction

c16.indd 06:56:1:PM 05/12/2016 Page 660

device. However, the remaining examples in this chapter focus on interfacing

LKM code to simple hardware circuits using kernel-based GPIO code. A single

circuit is used for this chapter, as illustrated in Figure 16-2(a). The hardware

confi guration is similar to the user space GPIO circuits that are described in

Chapter 6.

(a) (b)

Figure 16-2: (a) An LED and pushbutton circuit for testing the GPIO LKM; (b) the LKM

performance results (with debouncing disabled)

Unlike Linux user space, the Linux kernel space has full support for inter-

rupts. The fi rst example in this section demonstrates how you can write an

LKM that uses GPIOs and interrupts to achieve a faster response time than is

possible in user space. I am not suggesting that you write all of your GPIO code

in kernel space, but these examples may provide inspiration for discrete tasks

that you can perform in kernel space; the higher-level code can still be written

in Linux user space.

First test that your circuit is working correctly by setting up GPIO17 as an

output and testing the LED, and by setting up GPIO27 as an input and testing

that the button works correctly:

pi@erpi /sys/class/gpio $ echo 17 > export

pi@erpi /sys/class/gpio $ cd gpio17

pi@erpi /sys/class/gpio/gpio17 $ echo out > direction

pi@erpi /sys/class/gpio/gpio17 $ echo 1 > value

pi@erpi /sys/class/gpio/gpio17 $ echo 0 > value

pi@erpi /sys/class/gpio/gpio17 $ cd ..

pi@erpi /sys/class/gpio $ echo 27 > export

pi@erpi /sys/class/gpio $ cd gpio27

pi@erpi /sys/class/gpio/gpio27 $ echo in > direction

pi@erpi /sys/class/gpio/gpio27 $ cat value

0

pi@erpi /sys/class/gpio/gpio27 $ cat value

1

pi@erpi /sys/class/gpio/gpio27 $ cd ..

 Chapter 16 ■ Kernel Programming 661

c16.indd 06:56:1:PM 05/12/2016 Page 661

pi@erpi /sys/class/gpio $ echo 17 > unexport

pi@erpi /sys/class/gpio $ echo 27 > unexport

Interestingly, the steps to control the GPIOs in Linux kernel space are very

similar to the steps above. Linux GPIOs can easily be accessed and controlled

from kernel space using the functions that are described in linux/gpio.h.

Here are some of the most important functions that are available through the

inclusion of this kernel header fi le:

static inline bool gpio_is_valid(int number)

static inline int gpio_request(unsigned gpio, const char *label)

static inline int gpio_export(unsigned gpio, bool direction_may_change)

static inline int gpio_direction_input(unsigned gpio)

static inline int gpio_get_value(unsigned gpio)

static inline int gpio_direction_output(unsigned gpio, int value)

static inline int gpio_set_debounce(unsigned gpio, unsigned debounce)

static inline int gpio_sysfs_set_active_low(unsigned gpio, int value)

static inline void gpio_unexport(unsigned gpio)

static inline void gpio_free(unsigned gpio)

static inline int gpio_to_irq(unsigned gpio)

Importantly, you can associate an interrupt request (IRQ) with a GPIO using

the last function in the list above. IRQs enable you to build effi cient, high-

performance code that detects a change in the input state

Interrupt Service Routines (ISRs)

An interrupt is a signal that is sent to a microprocessor from an attached hardware

device, software application, or circuit to indicate that an event has occurred

which requires attention. Interrupts are high-priority conditions; the term

essentially implies “interrupt what you are currently doing and do something

instead.” The processor suspends its current activities, saves the current state,

and executes an interrupt handler function, which is also known as an inter-
rupt service routine (ISR). Once the handler function has run to completion, the

processor reloads its previous state and continues with its previous activities.

The LKM driver must register a handler function for the interrupt, which

defi nes the actions that the interrupt should perform. In this example the han-

dler function is called erpi_gpio_irq_handler() and it has the following form:

static irq_handler_t erpi_gpio_irq_handler(unsigned int irq, void *dev_id,

 struct pt_regs *regs) {

 // the actions that the interrupt should perform

 ... }

This handler function is then registered with an interrupt request (IRQ) using

the request_irq() function as follows:

result = request_irq(irqNumber, // the interrupt number

 (irq_handler_t) erpi_gpio_irq_handler,// pointer to the handler

 IRQF_TRIGGER_RISING, // interrupt on rising edge

 "erpi_gpio_handler", // used to identify the owner

 NULL); // *dev_id for shared interrupt lines, NULL

662 Part III ■ Advanced Interfacing and Interaction

c16.indd 06:56:1:PM 05/12/2016 Page 662

The irqNumber is determined automatically in the code example in Listing

16-3 by using the interrupt number that is associated with the respective GPIO

number. Importantly, the GPIO number is not the interrupt number; however,

there is a direct one-to-one mapping.

To undo the IRQ request, there is also a free_irq() function. In this fi rst

example, the free_irq() function is called from within the erpi_gpio_exit()

function, which is invoked when the LKM is unloaded.

In this example, a simple momentary push button (as illustrated in Figure

16-2(a)) is used to generate an interrupt on the rising edge of a button press. It

is also possible to generate the interrupt on the falling edge. (A full set of inter-

rupt defi nitions is available in /include/linux/interrupt.h.) These fl ags can

be combined using the bitwise OR operator to provide precise control over

interrupt confi guration.

The full source code for the fi rst GPIO LKM is provided in Listing 16-3. The

comments in the listing provide a description of the role of each function.

N O T E Listing 16-3 uses a gpio_set_bounce() function call to ignore repeated

edge transitions for a time period (typically of the order of 100 ms to 200 ms), once a

single transition is detected. You should remove the gpio_set_debounce() func-

tion call if you want to use this code to detect multiple edge transitions on a “clean”

digital signal, because software debouncing severely limits detection performance.

Listing 16-3: /chp16/gpio/gpio_test.c

#include <linux/init.h>

#include <linux/module.h>

#include <linux/kernel.h>

#include <linux/gpio.h> // for the GPIO functions

#include <linux/interrupt.h> // for the IRQ code

MODULE_LICENSE("GPL");

MODULE_AUTHOR("Derek Molloy");

MODULE_DESCRIPTION("A Button/LED test driver for the RPi");

MODULE_VERSION("0.1");

static unsigned int gpioLED = 17; // pin 11 (GPIO17)

static unsigned int gpioButton = 27; // pin 13 (GPIO27)

static unsigned int irqNumber; // share IRQ num within file

static unsigned int numberPresses = 0; // store number of presses

static bool ledOn = 0; // used to invert state of LED

// prototype for the custom IRQ handler function, function below

static irq_handler_t erpi_gpio_irq_handler(unsigned int irq, void

 *dev_id, struct pt_regs *regs);

/** @brief The LKM initialization function */

static int __init erpi_gpio_init(void) {

 Chapter 16 ■ Kernel Programming 663

c16.indd 06:56:1:PM 05/12/2016 Page 663

 int result = 0;

 printk(KERN_INFO "GPIO_TEST: Initializing the GPIO_TEST LKM\n");

 if (!gpio_is_valid(gpioLED)) {

 printk(KERN_INFO "GPIO_TEST: invalid LED GPIO\n");

 return -ENODEV;

 }

 ledOn = true;

 gpio_request(gpioLED, "sysfs"); // request LED GPIO

 gpio_direction_output(gpioLED, ledOn); // set in output mode and on

// gpio_set_value(gpioLED, ledOn); // not reqd - see line above

 gpio_export(gpioLED, false); // appears in /sys/class/gpio

 // false prevents in/out change

 gpio_request(gpioButton, "sysfs"); // set up gpioButton

 gpio_direction_input(gpioButton); // set up as input

 gpio_set_debounce(gpioButton, 200); // debounce delay of 200ms

 gpio_export(gpioButton, false); // appears in /sys/class/gpio

 printk(KERN_INFO "GPIO_TEST: button value is currently: %d\n",

 gpio_get_value(gpioButton));

 irqNumber = gpio_to_irq(gpioButton); // map GPIO to IRQ number

 printk(KERN_INFO "GPIO_TEST: button mapped to IRQ: %d\n", irqNumber);

 // This next call requests an interrupt line

 result = request_irq(irqNumber, // interrupt number requested

 (irq_handler_t) erpi_gpio_irq_handler, // handler function

 IRQF_TRIGGER_RISING, // on rising edge (press, not release)

 "erpi_gpio_handler", // used in /proc/interrupts

 NULL); // *dev_id for shared interrupt lines

 printk(KERN_INFO "GPIO_TEST: IRQ request result is: %d\n", result);

 return result;

}

/** @brief The LKM cleanup function */

static void __exit erpi_gpio_exit(void) {

 printk(KERN_INFO "GPIO_TEST: button value is currently: %d\n",

 gpio_get_value(gpioButton));

 printk(KERN_INFO "GPIO_TEST: pressed %d times\n", numberPresses);

 gpio_set_value(gpioLED, 0); // turn the LED off

 gpio_unexport(gpioLED); // unexport the LED GPIO

 free_irq(irqNumber, NULL); // free the IRQ number, no *dev_id

 gpio_unexport(gpioButton); // unexport the Button GPIO

 gpio_free(gpioLED); // free the LED GPIO

 gpio_free(gpioButton); // free the Button GPIO

 printk(KERN_INFO "GPIO_TEST: Goodbye from the LKM!\n");

}

/** @brief The GPIO IRQ Handler function

 * A custom interrupt handler that is attached to the GPIO. The same

 * interrupt handler cannot be invoked concurrently as the line is

 * masked out until the function is complete. This function is static

 * as it should not be invoked directly from outside of this file.

 * @param irq the IRQ number associated with the GPIO

 * @param dev_id the *dev_id that is provided - used to identify

664 Part III ■ Advanced Interfacing and Interaction

c16.indd 06:56:1:PM 05/12/2016 Page 664

 * which device caused the interrupt. Not used here.

 * @param regs h/w specific register values - used for debugging.

 * return returns IRQ_HANDLED if successful - return IRQ_NONE otherwise.

 */

static irq_handler_t erpi_gpio_irq_handler(unsigned int irq, void *dev_id,

 struct pt_regs *regs) {

 ledOn = !ledOn; // invert the LED state

 gpio_set_value(gpioLED, ledOn); // set LED accordingly

 printk(KERN_INFO "GPIO_TEST: Interrupt! (button is %d)\n",

 gpio_get_value(gpioButton));

 numberPresses++; // global counter

 return (irq_handler_t) IRQ_HANDLED; // announce IRQ handled

}

module_init(erpi_gpio_init);

module_exit(erpi_gpio_exit);

N O T E If you see the message in the kernel logs “no symbol version for module_lay-

out,” you should perform a make clean in the project directory, and then down-

load the Module.symvers fi le again (Step 4). Finally, perform a make in the project

directory. This issue can occur if you should type sudo make instead of make in the

example directories.

The LKM that is described in Listing 16-3 can be built and loaded using the

same steps as for the fi rst LKM example:

pi@erpi ~/exploringrpi/chp16/gpio $ make

pi@erpi ~/exploringrpi/chp16/gpio $ ls

gpio_test.c gpio_test.mod.c gpio_test.o modules.order

gpio_test.ko gpio_test.mod.o Makefile Module.symvers

pi@erpi ~/exploringrpi/chp16/gpio $ sudo insmod gpio_test.ko

Then when the physical momentary push button that is wired as in Figure

16-2(a) is pressed, the kernel log reacts as follows:

root@erpi:/var/log# tail -f kern.log

... erpi kernel: [318326.665496] GPIO_TEST: Initializing the GPIO_TEST LKM

... erpi kernel: [318326.665753] GPIO_TEST: button value is currently: 0

... erpi kernel: [318326.665765] GPIO_TEST: button mapped to IRQ: 507

... erpi kernel: [318326.665834] GPIO_TEST: IRQ request result is: 0

... erpi kernel: [320001.467957] GPIO_TEST: Interrupt! (button is 1)

... erpi kernel: [320002.104784] GPIO_TEST: Interrupt! (button is 1)

...

At this point, you can view the /proc/interrupts entry, and you can see that

the name of the interrupt handler is listed as erpi_gpio_handler, as confi gured

in the code in Listing 16-3. You can also see that the interrupt associated with

the GPIO has number 507, which aligns with the value that is outputted in the

preceding kernel logs:

pi@erpi /proc $ cat interrupts | grep erpi

507: 8 0 0 0 pinctrl-bcm2835 27 Edge erpi_gpio_handler

 Chapter 16 ■ Kernel Programming 665

c16.indd 06:56:1:PM 05/12/2016 Page 665

Again, it is important to note that the interrupt number is not the GPIO

number, which is GPIO27 for the button. In fact, you can see the number 27 in

the interrupts line above, because it is associated with the pinctrl-bcm2835

module. You can also see that this GPIO number is exported for use by the

GPIO functions in Listing 16-3 (the GPIOs are automatically unexported when

the LKM is unloaded):

pi@erpi /sys/class/gpio $ ls -l gpio*

lrwxrwxrwx 1 root gpio 0 Nov 8 17:21 gpio17 -> ...

lrwxrwxrwx 1 root gpio 0 Nov 8 17:21 gpio27 -> ...

When the module is unloaded, the log output becomes the following:

pi@erpi ~/exploringrpi/chp16/gpio $ sudo rmmod gpio_test

pi@erpi ~/exploringrpi/chp16/gpio $ sudo tail /var/log/kern.log

... erpi kernel: [321054.037902] GPIO_TEST: button value is currently: 0

... erpi kernel: [321054.037968] GPIO_TEST: pressed 8 times

... erpi kernel: [321054.042150] GPIO_TEST: Goodbye from the LKM!

Performance

One useful feature of this LKM is that it allows you to evaluate the response

time (interrupt latency time) of the system as a whole. A press of the momentary

push button results in the inversion of the state of the LED; if the LED is on,

it turns off when the button is pressed. To measure this delay, an oscilloscope

is used, which is confi gured to trigger on the rising edge of the button signal.

The oscilloscope provides an independent time measurement, and its output

is displayed in Figure 16-2(b). The latency is approximately 12 μs. On repeated

testing this delay varies between a minimum of 10 μs to a maximum of 20 μs

approximately.

Enhanced Button GPIO Driver LKM

The third example builds on the second example to create an enhanced GPIO

driver, which permits a user to confi gure and interact with a GPIO button using

sysfs. This module allows a GPIO button to be mapped to Linux user space where

it can be utilized directly. The best way to explain the capability of this module

is with a use case example. In this example, the button is attached to GPIO27,

and once the LKM is loaded, it can be accessed and manipulated as follows:

root@erpi:/sys/erpi/gpio27# lsmod | grep button

button 2931 0

root@erpi:/sys/erpi/gpio27# ls -l

total 0

-r--r--r-- 1 root root 4096 Nov 9 01:04 diffTime

-rw-rw---- 1 root root 4096 Nov 9 01:04 isDebounce

-r--r--r-- 1 root root 4096 Nov 9 01:04 lastTime

666 Part III ■ Advanced Interfacing and Interaction

c16.indd 06:56:1:PM 05/12/2016 Page 666

-r--r--r-- 1 root root 4096 Nov 9 01:04 ledOn

-rw-rw---- 1 root root 4096 Nov 9 01:04 numberPresses

root@erpi:/sys/erpi/gpio27# cat numberPresses

0

root@erpi:/sys/erpi/gpio27# cat numberPresses

5

root@erpi:/sys/erpi/gpio27# cat ledOn

0

root@erpi:/sys/erpi/gpio27# cat lastTime

01:04:59:304524323

root@erpi:/sys/erpi/gpio27# cat diffTime

0.340584664

root@erpi:/sys/erpi/gpio27# echo 0 > isDebounce

root@erpi:/sys/erpi/gpio27# cat isDebounce

0

root@erpi:/sys/erpi/gpio27# echo 1 > isDebounce

root@erpi:/sys/erpi/gpio27# cat isDebounce

1

Despite the complexity involved in creating this LKM, the user space interface

is very straightforward and can be utilized by an executable program on your

embedded system that can be written in any programming language. Sysfs is

a memory-based fi le system that provides a mechanism to export kernel data

structures, attributes, and linkages to Linux user space. The infrastructure that

enables sysfs to function is heavily based on the kobject interface.

The kobject Interface

The driver model in Linux uses a kobject abstraction. To understand this model,

you must fi rst appreciate the following important concepts:1

 ■ kobject: A kobject is a struct that consists of a name, a reference count, a

type, a sysfs representation, and a pointer to a parent object (see Listing

16-4). Importantly, kobjects are not useful on their own; instead, they are

embedded within other data structures and used to control access. This

is similar to the object-oriented concept of generalized top-level parent

classes (e.g., the Object class in Java, or the QObject class in Qt).

 ■ ktype: A ktype is the type of the object that the kobject is embedded within.

It controls what happens when the object is created and destroyed.

 ■ kset: A kset is a group of kobjects that can be of different ktypes. A

kset of kobjects can be thought of as a sysfs directory that contains

a collection of subdirectories (kobjects).

1 From “Everything you never wanted to know about kobjects, ksets, and ktypes," Greg Kroah-
Hartman, https://www.kernel.org/doc/Documentation/kobject.txt.

https://www.kernel.org/doc/Documentation/kobject.txt

 Chapter 16 ■ Kernel Programming 667

c16.indd 06:56:1:PM 05/12/2016 Page 667

Listing 16-4: The kobject Structure

#define KOBJ_NAME_LEN 20

struct kobject {

 char *k_name; // kobject name pointer (not NULL)

 char name[KOBJ_NAME_LEN]; // short internal name

 struct kref kref; // the reference count

 struct list_head entry; // linked list to members of the kset

 struct kobject *parent; // the parent kobject

 struct kset *kset; // kobject can be a member of a set

 struct kobj_type *ktype; // kobj_type describes object type

 struct dentry *dentry; // the sysfs directory entry

};

For this example LKM, a single kobject is required, which is mapped to

/sys/erpi/ on the fi le system. This single kobject contains all the attributes

required for the interaction that is demonstrated above (e.g., viewing the

numberPresses entry). This is achieved in Listing 16-5 through the use of

the kobject_create_and_add() function, as follows:

static struct kobject *erpi_kobj;

erpi_kobj = kobject_create_and_add("erpi", kernel_kobj->parent);

The kernel_kobj pointer provides a reference to /sys/kernel/. If you remove

the call to ->parent, the erpi entry will be placed at /sys/kernel/erpi/, but for

clarity, I have placed it at /sys/erpi/; this is not best practice! (Also, sysfs_cre-

ate_dir() performs the same role.) For this example LKM, a set of subsystem-

specifi c callback functions must be implemented to expose its attributes via

sysfs using functions of the form:

static ssize_t dev_attribute_show(struct kobject *kobj,

 struct kobj_attribute *attr, char *buf);

static ssize_t dev_attribute_store(struct kobject *kobj,

 struct kobj_attribute *attr, char *buf);

When a sysfs attribute is read from or written to, the _show and _store func-

tions are called respectively. The sysfs.h header fi le defi nes the following helper

macros that make defi ning the attributes more straightforward:

 ■ __ATTR(_name,_mode,_show,_store): Long-hand version. You must pass

the attribute variable name _name, the access mode _mode (e.g., 0664 for

read/write access, except for others), the pointer to the show function

_show, and the pointer to the store function _store.

 ■ __ATTR_RO(_name): Short-hand read-only attribute macro. You must pass

the attribute variable name _name, and the macro sets the _mode to be

0444 (read-only) and the _show function to be _name_show.

 ■ __ATTR_WO(_name) and __ATTR_RW(_name): Write-only and read/write.

Not available in Linux 3.8.x, but added in 3.11.x.

668 Part III ■ Advanced Interfacing and Interaction

c16.indd 06:56:1:PM 05/12/2016 Page 668

Listing 16-5 provides the full source code for the enhanced GPIO button LKM.

It may appear to be quite lengthy, but you will see that this is because there

is a lot of comment, and additional printk() calls so that you can see exactly

what is happening as the code is executing. This example builds on the work

in Listing 16-3; it also includes an LED so that you can observe interaction at

the circuit itself.

Listing 16-5: /exploringrpi/chp16/button/button.c

#include <linux/init.h>

#include <linux/module.h>

#include <linux/kernel.h>

#include <linux/gpio.h> // Required for the GPIO functions

#include <linux/interrupt.h> // Required for the IRQ code

#include <linux/kobject.h> // Using kobjects for the sysfs bindings

#include <linux/time.h> // Using clock to measure button press times

#define DEBOUNCE_TIME 200 // The default bounce time -- 200ms

MODULE_LICENSE("GPL");

MODULE_AUTHOR("Derek Molloy");

MODULE_DESCRIPTION("A simple Linux GPIO Button LKM for the RPi");

MODULE_VERSION("0.1");

static bool isRising = 1; // rising edge default IRQ property

module_param(isRising, bool, S_IRUGO); // S_IRUGO read/not changed

MODULE_PARM_DESC(isRising, " Rising edge = 1 (default), Falling edge = 0");

static unsigned int gpioButton = 27; // default GPIO is 27

module_param(gpioButton, uint, S_IRUGO); // S_IRUGO can be read/not changed

MODULE_PARM_DESC(gpioButton, " GPIO Button number (default=27)");

static unsigned int gpioLED = 17; // default GPIO is 17

module_param(gpioLED, uint, S_IRUGO); // S_IRUGO can be read/not changed

MODULE_PARM_DESC(gpioLED, " GPIO LED number (default=17)");

static char gpioName[8] = "gpioXXX"; // null terminated default string

static int irqNumber; // used to share the IRQ number

static int numberPresses = 0; // store number of button presses

static bool ledOn = 0; // used to invert the LED state

static bool isDebounce = 1; // use to store debounce state

static struct timespec ts_last, ts_current, ts_diff; // nano precision

// Function prototype for the custom IRQ handler function

static irq_handler_t erpi_gpio_irq_handler(unsigned int irq,

 void *dev_id, struct pt_regs *regs);

/** @brief A callback function to output the numberPresses variable

 * @param kobj a kernel object device that appears in the sysfs filesystem

 * @param attr the pointer to the kobj_attribute struct

 * @param buf the buffer to which to write the number of presses

 * @return return the total number of characters written to the buffer

 */

 Chapter 16 ■ Kernel Programming 669

c16.indd 06:56:1:PM 05/12/2016 Page 669

static ssize_t numberPresses_show(struct kobject *kobj,

 struct kobj_attribute *attr, char *buf) {

 return sprintf(buf, "%d\n", numberPresses);

}

/** @brief A callback function to read in the numberPresses variable */

static ssize_t numberPresses_store(struct kobject *kobj, struct

 kobj_attribute *attr, const char *buf, size_t count) {

 sscanf(buf, "%du", &numberPresses);

 return count;

}

/** @brief Displays if the LED is on or off */

static ssize_t ledOn_show(struct kobject *kobj, struct kobj_attribute *attr,

 char *buf) {

 return sprintf(buf, "%d\n", ledOn);

}

/** @brief Displays the last time the button was pressed - manually output*/

static ssize_t lastTime_show(struct kobject *kobj,

 struct kobj_attribute *attr, char *buf){

 return sprintf(buf, "%.2lu:%.2lu:%.2lu:%.9lu \n", (ts_last.tv_sec/3600)%24,

 (ts_last.tv_sec/60) % 60, ts_last.tv_sec % 60, ts_last.tv_nsec);

}

/** @brief Display the time diff in the form secs.nanosecs to 9 places */

static ssize_t diffTime_show(struct kobject *kobj,

 struct kobj_attribute *attr, char *buf){

 return sprintf(buf, "%lu.%.9lu\n", ts_diff.tv_sec, ts_diff.tv_nsec);

}

/** @brief Displays if button debouncing is on or off */

static ssize_t isDebounce_show(struct kobject *kobj,

 struct kobj_attribute *attr, char *buf){

 return sprintf(buf, "%d\n", isDebounce);

}

/** @brief Stores and sets the debounce state */

static ssize_t isDebounce_store(struct kobject *kobj, struct kobj_attribute

 *attr, const char *buf, size_t count){

 unsigned int temp;

 sscanf(buf, "%du", &temp); // use temp var for correct int->bool

 gpio_set_debounce(gpioButton,0);

 isDebounce = temp;

 if(isDebounce) { gpio_set_debounce(gpioButton, DEBOUNCE_TIME);

 printk(KERN_INFO "ERPi Button: Debounce on\n");

 }

 else { gpio_set_debounce(gpioButton, 0); // set the debounce time to 0

 printk(KERN_INFO "ERPi Button: Debounce off\n");

 }

 return count;

}

670 Part III ■ Advanced Interfacing and Interaction

c16.indd 06:56:1:PM 05/12/2016 Page 670

/** Use these helper macros to define the name and access levels of the

 * kobj_attributes. The kobj_attribute has an attribute attr (name and mode),

 * show and store function pointers. The count variable is associated with

 * the numberPresses variable and it is to be exposed with mode 0664 using

 * the numberPresses_show and numberPresses_store functions above. Using mode

 * 0664 gives user and group read/write access, but others only read access.

 * Recent kernel versions do not like write permission settings for "others".

 */

static struct kobj_attribute count_attr = __ATTR(numberPresses, 0664,

 numberPresses_show, numberPresses_store);

static struct kobj_attribute debounce_attr = __ATTR(isDebounce, 0664,

 isDebounce_show, isDebounce_store);

/** The __ATTR_RO macro defines a read-only attribute. There is no need to

 * identify that the function is called _show, but it must be present.

 * __ATTR_WO can be used for a write-only attribute but only Linux 3.11.x+

*/

static struct kobj_attribute ledon_attr = __ATTR_RO(ledOn);

static struct kobj_attribute time_attr = __ATTR_RO(lastTime);

static struct kobj_attribute diff_attr = __ATTR_RO(diffTime);

/** The erpi_attrs[] is an array of attributes that is used to create the

 * attribute group below. The attr property of the kobj_attribute is used

 * to extract the attribute struct

 */

static struct attribute *erpi_attrs[] = {

 &count_attr.attr, // the number of button presses

 &ledon_attr.attr, // is the LED on or off?

 &time_attr.attr, // button press time in HH:MM:SS:NNNNNNNNN

 &diff_attr.attr, // time difference between last two presses

 &debounce_attr.attr, // is debounce state true or false

 NULL,

};

/** The attribute group uses the attribute array and a name, which is

 * exposed on sysfs -- in this case it is gpio27, which is automatically

 * defined in the erpi_button_init() function below using the custom kernel

 * parameter that can be passed when the module is loaded.

 */

static struct attribute_group attr_group = {

 .name = gpioName, // the name generated in erpi_button_init()

 .attrs = erpi_attrs, // the attributes array defined just above

};

static struct kobject *erpi_kobj;

/** @brief The LKM initialization function */

static int __init erpi_button_init(void){

 int result = 0;

 unsigned long IRQflags = IRQF_TRIGGER_RISING;

 printk(KERN_INFO "ERPi Button: Initializing the button LKM\n");

 sprintf(gpioName, "gpio%d", gpioButton); // create /sys/erpi/gpio27

 Chapter 16 ■ Kernel Programming 671

c16.indd 06:56:1:PM 05/12/2016 Page 671

 // create the kobject sysfs entry at /sys/erpi

 erpi_kobj = kobject_create_and_add("erpi", kernel_kobj->parent);

 if(!erpi_kobj){

 printk(KERN_ALERT "ERPi Button: failed to create kobject mapping\n");

 return -ENOMEM;

 }

 // add the attributes to /sys/erpi/ e.g., /sys/erpi/gpio27/numberPresses

 result = sysfs_create_group(erpi_kobj, &attr_group);

 if(result) {

 printk(KERN_ALERT "ERPi Button: failed to create sysfs group\n");

 kobject_put(erpi_kobj); // clean up remove entry

 return result;

 }

 getnstimeofday(&ts_last); // set last time to current time

 ts_diff = timespec_sub(ts_last, ts_last); // set the initial time diff=0

 // set up the LED. It is a GPIO in output mode and will be on by default

 ledOn = true;

 gpio_request(gpioLED, "sysfs"); // gpioLED is hardcoded to 17

 gpio_direction_output(gpioLED, ledOn); // set in output mode

 gpio_export(gpioLED, false); // appears in /sys/class/gpio/

 gpio_request(gpioButton, "sysfs"); // set up the gpioButton

 gpio_direction_input(gpioButton); // set up as an input

 gpio_set_debounce(gpioButton, DEBOUNCE_TIME); // ddebounce the button

 gpio_export(gpioButton, false); // appears in /sys/class/gpio/

 printk(KERN_INFO "ERPi Button: button state: %d\n",

 gpio_get_value(gpioButton));

 irqNumber = gpio_to_irq(gpioButton);

 printk(KERN_INFO "ERPi Button: button mapped to IRQ: %d\n", irqNumber);

 if(!isRising){ // if kernel param isRising=0

 IRQflags = IRQF_TRIGGER_FALLING; // set on falling edge

 }

 // This next call requests an interrupt line

 result = request_irq(irqNumber, // the interrupt number

 (irq_handler_t) erpi_gpio_irq_handler,

 IRQflags, // use custom kernel param

 "erpi_button_handler", // used in /proc/interrupts

 NULL); // the *dev_id for shared

lines

 return result;

}

static void __exit erpi_button_exit(void){

 printk(KERN_INFO "ERPi Button: The button was pressed %d times\n",

 numberPresses);

 kobject_put(erpi_kobj); // clean up, remove kobject sysfs entry

 gpio_set_value(gpioLED, 0); // turn the LED off, device was unloaded

 gpio_unexport(gpioLED); // unexport the LED GPIO

 free_irq(irqNumber, NULL); // free the IRQ number, no *dev_id reqd

 gpio_unexport(gpioButton); // unexport the Button GPIO

 gpio_free(gpioLED); // free the LED GPIO

 gpio_free(gpioButton); // free the Button GPIO

 printk(KERN_INFO "ERPi Button: Goodbye from the ERPi Button LKM!\n");

}

672 Part III ■ Advanced Interfacing and Interaction

c16.indd 06:56:1:PM 05/12/2016 Page 672

/** @brief The GPIO IRQ Handler function

 * This function is a custom interrupt handler that is attached to the GPIO

 * above. The same interrupt handler cannot be invoked concurrently as the

 * interrupt line is masked out until the function is complete. This function

 * is static as it should not be invoked directly from outside of this file.

 * @param irq the IRQ number that is associated with the GPIO

 * @param dev_id the *dev_id that is provided -- used to identify device.

 * Not used in this example as NULL is passed.

 * @param regs h/w specific register values -- used for debugging.

 * return returns IRQ_HANDLED if successful -- return IRQ_NONE otherwise.

 */

static irq_handler_t erpi_gpio_irq_handler(unsigned int irq,

 void *dev_id, struct pt_regs *regs){

 ledOn = !ledOn; // invert LED on each button press

 gpio_set_value(gpioLED, ledOn); // set the physical LED accordingly

 getnstimeofday(&ts_current); // get the current time as ts_current

 ts_diff = timespec_sub(ts_current, ts_last); // determine the time diff

 ts_last = ts_current; // store current time as ts_last

 printk(KERN_INFO "ERPi Button: The button state is currently: %d\n",

 gpio_get_value(gpioButton));

 numberPresses++; // count number of presses

 return (irq_handler_t) IRQ_HANDLED; // announce IRQ was handled correctly

}

// This next calls are mandatory -- they identify the initialization function

// and the cleanup function (as above).

module_init(erpi_button_init);

module_exit(erpi_button_exit);

The code in Listing 16-5 is described by the comments throughout; however,

there are a few more points that are worth mentioning:

 ■ Three module parameters are made available to be confi gured as the LKM

is loaded (isRising, gpioButton, and gpioLED). The use of LKM parameters

is described in the fi rst LKM example. This allows you to defi ne different

GPIOs for the button input and LED output; their sysfs mount names are

automatically adjusted. The code also allows for a falling-edge interrupt

in place of the default rising-edge interrupt.

 ■ There are fi ve attributes associated with the kobject entry (erpi). These

are diffTime, isDebounce, lastTime, ledOn, and numberPresses. They are

all read-only, with the exception of isDebounce and numberPresses (i.e.,

can be set to any value, e.g., reset to 0).

 ■ The erpi_gpio_irq_handler() function performs the majority of the

timing. The clock time is stored and the inter-press time is determined

each time that the interrupt is handled.

 Chapter 16 ■ Kernel Programming 673

c16.indd 06:56:1:PM 05/12/2016 Page 673

The module can be loaded in falling-edge mode and tested using the following:

pi@erpi ~/exploringrpi/chp16/button $ make

pi@erpi ~/exploringrpi/chp16/button $ sudo insmod button.ko

pi@erpi ~/exploringrpi/chp16/button $ cd /sys/erpi/gpio27/

pi@erpi /sys/erpi/gpio27 $ ls -l

total 0

-r--r--r-- 1 root root 4096 Nov 9 01:37 diffTime

-rw-rw-r-- 1 root root 4096 Nov 9 01:37 isDebounce

-r--r--r-- 1 root root 4096 Nov 9 01:37 lastTime

-r--r--r-- 1 root root 4096 Nov 9 01:37 ledOn

-rw-rw-r-- 1 root root 4096 Nov 9 01:37 numberPresses

pi@erpi /sys/erpi/gpio27 $ cat numberPresses

0

pi@erpi /sys/erpi/gpio27 $ cat numberPresses

3

pi@erpi /sys/erpi/gpio27 $ cat diffTime

15.074734332

pi@erpi /sys/erpi/gpio27 $ cat lastTime

01:46:36:030219769

pi@erpi /sys/erpi/gpio27 $ sudo sh -c "echo 0 > numberPresses"

pi@erpi /sys/erpi/gpio27 $ cat numberPresses

0

pi@erpi /sys/erpi/gpio27 $ cd ~/exploringrpi/chp16/button/

pi@erpi ~/exploringrpi/chp16/button $ sudo rmmod button

Note the permissions (0664) on the isDebounce and numberPresses entries,

which correlate directly with the program code in Listing 16-5. Ensure that you

exit the /sys/erpi/ directory before unloading the module; otherwise, you will

cause a kernel panic if you perform an operation such as ls.

The simultaneous output in the kernel logs (/var/log/kern.log) is as follows:

... erpi kernel: [337494.885001] ERPi Button: Initializing the button LKM

... erpi kernel: [337494.885473] ERPi Button: button state: 0

... erpi kernel: [337494.885490] ERPi Button: button mapped to IRQ: 507

... erpi kernel: [337598.271292] ERPi Button: The button state is currently: 1

... erpi kernel: [337598.979912] ERPi Button: The button state is currently: 1

... erpi kernel: [337599.559666] ERPi Button: The button state is currently: 1

... erpi kernel: [337710.564613] ERPi Button: The button was pressed 3 times

... erpi kernel: [337710.564963] ERPi Button: Goodbye from the ERPi Button LKM!

Enhanced LED GPIO Driver LKM

The fi nal example in this chapter is a driver for controlling an LED using an

LKM. This example is designed to introduce the use of kernel threads, kthreads,

which can be started in response to an event that occurs in our LKM. In this

example, kthreads are used to fl ash the LED at a user-defi ned interval.

674 Part III ■ Advanced Interfacing and Interaction

c16.indd 06:56:1:PM 05/12/2016 Page 674

Kernel Threads

The general structure of the code in this example is provided in Listing 16-6.

This is a reasonably unusual thread in the Linux kernel, as we require a specifi c

sleep time to get a consistent fl ash period. The return of resources to the kthread

scheduler is usually performed with a call to schedule().

The call to kthread_run() is quite similar to the user space pthread func-

tion pthread_create(). (See the section on POSIX threads in Chapter 6.) The

kthread_run() call expects a pointer to the thread function (flash() in this case),

the data to be sent to the thread (NULL in this case), and the name of the thread,

which is displayed in the output from a call to top or ps. The kthread_run()

function returns a task_struct, which is shared between the various functions

within this C fi le as *task.

Listing 16-6: An Outline of the kthread Implementation

#include <linux/kthread.h>

static struct task_struct *task; // pointer to the thread task

static int flash(void *arg) {

 while(!kthread_should_stop()){ // kthread_stop() call returns true

 set_current_state(TASK_RUNNING); // prevent sleeps temporarily

 ... // state change instructions (flash)

 set_current_state(TASK_INTERRUPTIBLE); // sleep but can be awoken

 msleep(...); // millisecond sleep

 }

}

static int __init erpi_LED_init(void) {

 task = kthread_run(flash, NULL, "LED_flash_thread"); // start kthread

 ...

}

static void __exit erpi_LED_exit(void) {

 kthread_stop(task); // Stop the LED flashing kthread

 ...

}

The fi nal source code is not presented here because it is lengthy and very

similar to Listing 16-5, but with the addition of the thread code. It is available

at /chp16/LED/led.c, and the comments therein provide a full description

of the integration of all the tasks. However, there are a few additional points

worth noting:

 ■ An enumeration, called modes, is used to defi ne the three possible run-

ning states. When you are passing commands to a LKM, you have to

very carefully parse the data to ensure it is valid and within range. In

this example, the string command can only be one of three values (“on”,

“off”, or “fl ash”), and the period value must be between 2 and 10000 (ms).

 Chapter 16 ■ Kernel Programming 675

c16.indd 06:56:1:PM 05/12/2016 Page 675

 ■ The kthread_should_stop() evaluates to a bool. When a function such

as kthread_stop() is called on the kthread, this function will wake and

return true. This causes the kthread to run to completion, after which

the return value from the kthread will be returned by the kthread_stop()

function.

This example can be built and executed as follows, where you can increase

the frequency of the fl ash by reducing the sleep period to be 2 ms so that we

can observe the CPU loading, using the following call:

pi@erpi ~/exploringrpi/chp16/LED $ make

pi@erpi ~/exploringrpi/chp16/LED $ sudo insmod led.ko

pi@erpi ~/exploringrpi/chp16/LED $ cd /sys/erpi/led17/

pi@erpi /sys/erpi/led17 $ ls -l

total 0

-rw-rw-r-- 1 root root 4096 Nov 9 02:25 blinkPeriod

-rw-rw-r-- 1 root root 4096 Nov 9 02:25 mode

pi@erpi /sys/erpi/led17 $ cat blinkPeriod

1000

pi@erpi /sys/erpi/led17 $ sudo sh -c "echo 100 > blinkPeriod"

pi@erpi /sys/erpi/led17 $ cat blinkPeriod

100

The CPU loading of this LKM is quite low at ~0.0% of CPU when it is fl ashing

with a sleep duration of 2 ms:

pi@erpi /sys/erpi/led17 $ sudo sh -c "echo 2 > blinkPeriod"

pi@erpi /sys/erpi/led17 $ ps aux|grep LED

root 27618 0.0 0.0 0 0 ? D 02:57 0:00 [LED_flash_threa]

pi@erpi /sys/erpi/led17 $ sudo sh -c "echo off > mode"

pi@erpi /sys/erpi/led17 $ sudo sh -c "echo on > mode"

pi@erpi /sys/erpi/led17 $ sudo sh -c "echo flash > mode"

pi@erpi /sys/erpi/led17 $ cd ~/exploringrpi/chp16/LED

pi@erpi ~/exploringrpi/chp16/LED $ sudo rmmod led

The kernel logs give the following output:

... erpi kernel: [350999.939466] ERPi LED: Initializing the ERPi LED LKM

... erpi kernel: [350999.940003] ERPi LED: Thread has started running

... erpi kernel: [351159.656388] ERPi LED: Thread has run to completion

... erpi kernel: [351159.656656] ERPi LED: Goodbye from the ERPi LED LKM!

The results for this approach are quite impressive when compared to similar

tests in Linux user space. The results have a consistent ~50% duty cycle, and

the range of frequency values is quite consistent.

Conclusions

Remember that the kernel is essentially a program—a big and complex pro-

gram, but a program nevertheless. It is possible to make changes to the kernel

code, recompile, redeploy, and then reboot, which is quite a lengthy process.

676 Part III ■ Advanced Interfacing and Interaction

c16.indd 06:56:1:PM 05/12/2016 Page 676

This chapter has exposed you to writing your own Linux loadable kernel modules

(LKMs), which allow you to create binary code that can be loaded and unloaded

from the kernel at run time.

The examples that are presented in this chapter are for the purpose of learning.

It is unlikely that you would ever need to write a LKM to control pushbuttons

or LEDs directly. For example, there are GPIO-keys and GPIO-LEDs drivers

available in Linux to provide sophisticated kernel support for such circuits.

However, these examples should provide a strong basis for other embedded

LKM development tasks.

For further information on GPIO kernel programming under Linux, see:

 ■ The GPIO Sysfs Interface for User Space: tiny.cc/erpi1603

 ■ GPIO Interfaces (in Kernel Space): tiny.cc/erpi1604

 ■ Linux Kernel Development, Robert Love, Addison-Wesley Professional,

Third edition (July 2, 2010), 978-0672329463

Summary

 After completing this chapter, you should be able to do the following:

 ■ Write a basic Linux loadable kernel module (LKM) that can receive a

kernel argument.

 ■ Build, load, and unload a custom LKM on a desktop machine and/or

the RPi.

 ■ Undertake the steps required to build a module for embedded devices

that can control GPIOs.

 ■ Appreciate some of the concepts required to build LKMs on an embedded

Linux device, such as interrupts, kobjects, and kernel threads.

677

bindex.indd 11:4:44:AM 05/12/2016 Page 677

 Index

SYMBOLS & NUMERALS

prompt, 37

4N25 optocoupler, 228

74HC595 circuit, 334–339

connecting MOSI line to, 336

wiring, 335–336

74HC595 serial shift register

mapping data bits, 438

SPI interfacing with, 437

617A optocoupler, current

transfer rate, 228

A
Abstract Windowing Toolkit

(AWT) libraries, 586

accelerometers, 316–317

access specifi er keyword,

200

ACT LED, 50–51

actuators, 406–420

Adafruit board, 441

Adafruit breakout board,

376

Adafruit Eight-Channel

Bi-directional Logic Level

Converter, 359–360

Adafruit Four-Channel

Bi-directional Level Shifter,

359

Adafruit module, 381–382

Adafruit NFC/RFID interface,

572

Adafruit Passive PoE Injector

Cable set, 531

Adafruit PCA9685 PWM

driver, 382

Adafruit SSD1306 OLED

display driver, 441

ADC. See analog-to-digital

converters (ADC)

“Address already in use” error

message, 526n
Advanced Distribution Profi le

(A2DP) audio, 641

Advanced Packaging Tool

(APT), 44

adx1335 program, 432–433

ADXL335 analog

accelerometer, 421

adxl345 class, inheritance in,

328–329

ADXL345 SPI interface,

340–341

connecting to RPi, 341–342

three-wire SPI mode, 344

ADXL355, 431

agetty (alternative getty)

command, 351

Allegro A3967 Microstepping

Driver with Translator, 415

ALSA utilities, 635

AlsaMixer, 640

AM230x/DHT sensors, C++

program to communicate

to, 261–263

Amazon, AWS IoT platform,

514

amixer tool, 635, 637–638

amplifi ers, operational,

152–155

amps (A), 118

anacron command, 507–508

analog accelerometer, interface

to, 431–433

Analog Devices ADXL345

accelerometer, 316–317

acceleration measurement,

326

breakout board, 318

Analog Discovery digital

Logic Analyzer, 322–323,

351, 460

important registers, 323

loopback serial transmission

display, 352

Analog Discovery Waveform

Generator, 370

analog input/output, GPIO

and, 221

analog sensors

interface to, 420–433

linear, 422–423

nonlinear, 423–428

signal conditioning, 428–431

analog-to-digital converters

(ADC), 150–155

adding external ADC,

364–376

678 Index ■ B–B

bindex.indd 11:4:44:AM 05/12/2016 Page 678

analog light meter

application, 368–370

converting value to distance,

427

limitation of using SPI, 376

SPi bus, 365–368

testing SPI, 370–373

Android mobile phone with

Bluetooth

app development, 543–544

RPi connection, 542

Aosong, temperature and

humidity sensors, 260–263

Apache Subversion (SVN), 100

API mode, in XBee device, 561

aplay utility, 635, 636, 637

appending to fi le, 90

application binary interface

(ABI), 277

application information,

passing to script, 494

APT (Advanced Packaging

Tool), 44

apt binary command, 45

apt command, 93

apt update command, 48,

304

apt upgrade command, 49,

304

apt-cache command, 280

apt-get command, 45

apt-key command, 280

Arch Linux, 25

Arduino, 453–480

disconnecting lines when

programming, 564

as I2C slave device, 464–476

I2C temperature sensor with

warning LED, 469–471

programming from RPi

command line, 478–480

serial slave, 457–464

slave communication with

C/C++, 471–473

as SPI slave, 476–478

troubleshooting

communication

problems, 459

UART command control of,

461–464

Wi-Fi shield, 547

as wireless temperature

sensor, 563

Arduino Pro Mini, 454–455

programming from desktop

machine, 455–456

variants, 458

Arduino UNO, 454, 455

Arduino Wire library, 466

Arduino XBee device, setup

for AT mode, 563–566

Arduino Yún, 547

ArduiPi OLED library, 443

ArduiPi_OLED_lib.h fi le,

442

arecord utility, 635, 639–640

ARM Cortex-A53 processor, 4

ARM Holdings PLC, 56

ARM instructions, 185, 281

armhf architecture, emulating,

281

arm-linux-gnueabihf-
gdb, 291

assignment operator (=), vs.

comparison operator, 190

AT command mode, in XBee

device, 561

ATmega IC, 455

atomic operations, 206

audio, 17, 634–644

capturing, 615

core software tools, 635

devices, 635–643

network streaming, 640–641

recording, 639–640

automatic documentation

(Doxygen), 294–297

Auto-MDIX, 29

Avago Technologies Ltd.,

56–57

avcconv (Libav) utility, 626

avconv, for streaming audio,

640–641

awk command, 92, 486

B
back feeding, 16

background processes in

Linux, 97–99

backup, reinstating with

crontab, 509

badblocks command, 82

Baite module, 399

Bakker, Jan-Derk, 246

Bash scripting, 168, 169–171

.bashrc fi le, 279

baud rates, 348

mismatched, 402

BC547 transistor, 228

bcm2708_wdog LKM, 528

BCM2835, C library for,

373–376

BCM2836 Document, 8

BeagleBone Black, 364

BeagleBone platform, 7

bg (background) command, 98

bidirection data buses, 359

bidirectional motor control,

409

bidirectional transmission, in

I2C, 311

binary numbers, 143–144

BIOS, 43

bipolar junction transistors

(BJTs), 132–133

LED circuit using, 223

bit manipulation, in C/C++,

248–249

bit rate, 348

BitBake build tool, 305

bit-banging, 352

BitScope DSO, 117

blacklist fi le, 314

Bluemix IoT service (IBM), 514,

515–518

Bluetooth, 536, 537–544

A2DP audio, 641–643

Android app development

with, 543–544

audio, 634

connecting input peripheral,

581–582

keyboard/touchpad, 580

for RPi connection to

Android phone, 542

Bluetooth adapter, 18

confi guring, 539–540

installing, 537–542

Bluetooth low energy (LE), 536

Bluetooth Terminal app, 541

bluetoothd process,

--compat option, 541

BlueZ l2ping tool, 540

Bonjour Print Services for

Windows, 29

Boolean algebra functions, 143

Boost, library, 633–634

Boost Chrono libraries, 241

 Index ■ C–C 679

bindex.indd 11:4:44:AM 05/12/2016 Page 679

Boost.Python, 214–215, 232

bootcode.bin fi le, 59

/boot/config.txt fi le, 62

booting Raspberry Pi, 58–68

bootloaders, 58–63

bounce, of mechanical switch,

141, 258, 418

branching in Git, 105–107

breadboards

and digital multimeter

(DMM), 123–124

implementing RPi circuits

on, 121–122

Broadcom Corporation, 56

BCM2835 Peripherals

Datasheet, 8, 245

BCM2835 system on a chip

(SoC)., 6, 8

BCM2836 system on a chip

(SoC)., 6, 8

BCM2837 system on a chip

(SoC)., 6, 8, 10

bootloader license, 7

multimedia abstraction layer

(MMAL), 619

Serial Controller (BSC), 312

Buffer bit, for DAC, 379

Buildroot, 305

bus communications, 220,

309–337

basics, 310

buttons, 140–143

adding to XBee USB

Explorer, 563

enhanced button GPIO

driver LKM, 665–673

LED response to press,

257–258

reading GPIO state, 391

steps to read state, 225

to trigger interrupt, 392–393

byte rate, 348

bytecodes, 178

bzImage fi le, 302n

C
C functions, in wiringPi,

254–255

C library for BCM2835,

443

C++ language, 196–199

C++11, 163

C++11 Chrono, 241

cables

CAT 5 network patch, 12, 14

Ethernet crossover, 26, 29–31

FTDI TTL-232R-3v3, 15

HDMI, 14

unshielded twisted-pair

(UTP), 530

USB-to-TTL UART serial, 15

Cairo-Dock desktop, 109

cal command, 39

callback function, 178

camera, 616–619

controls for, 624

enabling, 47

modes, 624

camera bracket, 18

camera serial interface (CSI)

connector, 616

capacitance effects, 311

capacitors, 130–132

capture.c program, 625–626

“select timeout” error, 627

cases for RPi, 18–19

cast, 190

CAT 5 network patch cable,

12, 14

cat command, 82, 93–94

cat trigger command, 52

cat value command, 225

C/C++, 180–199

advantages and

disadvantages, 181–182

Arduino slave

communication with,

471–473

bidirection SPI

communication in,

339–341

bit manipulation, 248–249

callback functions, 237–238

class for MCP23x17 devices,

394–397

client/server, 523–526

compiling and linking,

184–186

for converting ADC value to

temperature, 422

creating new project in

Eclipse, 284

extending Python with,

211–213

fl ashing LEDs, 199

for GPIO control, 248–250

I2C communication in,

325–327

IoT MQTT C++ publish

example, 520–521

LED control in, 194–196

library building, 444–451

library for BCM2835, 373–376

object-oriented LED control,

203–205

passing value to function,

197–198

pointers in, 190–193

POSIX threads (Pthreads),

238–241

precedence of operations,

192–193

for Qt, 592

SPI communication with,

336–339

static and dynamic

compilation, 187

for stepper motor control,

416–418

strings in, 193–194

UART echo example, 460–461

variables and operators,

188–190

web client, 498–503

wrapping I2C with classes,

328–330

wrapping SPI devices with

classes, 342–344

writing shortest program,

186–187

and XBee modules, 571–572

cd command, 38

centralized version control, 100

ceramic capacitors, 131

character LCD modules,

436–440

Cheese, 622, 623

chgrp command, 75, 77

chipsets, and Linux device

driver support, 538

chmod command, 76–78

chown command, 75, 77, 271

Chrome web browser, support

for Chrome apps, 34

Chromium browser, 283

circuits

analyzing, 114–117

basic principles, 117–126

680 Index ■ D–D

bindex.indd 11:4:44:AM 05/12/2016 Page 680

for physical computing,

166–168

for testing GPIO LKM, 660

classes, in object-oriented

programming, 199–200

client socket, 523

client/server

C/C++, 523–526

socket example, 555

clock phase, 332

clock polarity, in SPI bus,

331–332

clock signals

high-frequency, 269

wiringPi for generating,

268–269

clock stretching, 312

cloud platform

providers, 514

publishing sensor data to,

558

CMake, 446–451

CMake Documentation Index,

451

CMakeLists.txt fi le,

448–449, 450

cmdline.txt fi le, 62

CMOS (complementary metal-

oxide-semiconductor), 145

unused inputs, 147

CMU Sphinx Speech

Recognition Toolkit, 644

CoffeeCup, 490

combinational logic, 143–144

“command not found”

message, 65

command scripting, 175–176

command-line debugging, 290

remote, 291–292

Common Gateway Interface

(CGI) scripts, 490, 494–497

common-mode voltage, 530

communication, secure, with

OpenSSL toolkit, 502–503

comparator, 153

comparison operator (==), vs.

assignment operator, 190

compiled languages, 178

compiler, defi ning in

Makefile, 445

Compute module, 9

computer monitors, RPi

attached to, 433–443

computer-mode emulation,

281

.config fi le, 299–300

connection, 499

speed for serial connection,

32

ConnectionHandler class,

609

const keyword (C/C++), 190

content management systems

(CMSs), 497

coordinators, in ZigBee

protocol, 559

Cortex-A53 BGCM2837 SoC,

163

counter, display module for,

435

cp command, 39

CPU frequency profi le,

372–373

CPU heatsinks, 486–487

cron, user access to, 509

crontabs (confi guration fi les),

506–508

reinstating backup fi le with,

509

cross-compilation

with Eclipse, 282–297

with third-party libraries,

281–282

toolchain, 276–282

curl command, 280

current, 118

division, 120–121

notations on fl ow, 126

current-limiting resistor, 129

cyber-physical systems (CPS),

484

cyclictest program,

234–235

Cython, 163–164, 208–211

D
DACDriver class, 377

daisy-chained SPI devices,

393

Dal Mut, Walter, 358

Darlington pair, 228

Das U-Boot, 59

data aggregation services, 504

datagram socket, 499

date command, 43

daughter boards. See

Hardware Attached on Top

(HATs)

DC current (DCA)

interface to powered, 227–229

measuring, 123–124

DC motors, 406–413

driving larger, 412–413

driving small, 410–412

DC voltage (DCV), measuring,

123–124

dd command, 26, 82

Debian, 24

cross-toolchains, 279–282

Debug Perspective view, 294

debugging command-line, 290

decoupling, capacitors for, 132

deletion

of Git branch, 107

recursive, 40

desktop computer

for application development,

275

Arduino Pro Mini

programming from,

455–456

building LKM on, 653–654

installing Eclipse on Linux,

282–283

desktop virtualization, 108–110

device driver, for USB

peripherals, 6

device tree, 62

device tree binaries (DTB), 62

building for RPi, 63

/dev/mem, for GPIO control,

248–250

devmem2, GPIO control using,

246–248

df command, 80, 82

dht.cpp program, 492

diff command, 94

differential signaling, 530–531

Digi, 559

Digilent Analog Discovery

with Waveforms, 115–116

DigiMesh protocol, 559

digital input, GPIO and, 221,

225–226

digital multimeter (DMM),

114–115

and breadboards, 123–124

 Index ■ E–F 681

bindex.indd 11:4:44:AM 05/12/2016 Page 681

digital output, GPIO and, 221,

222–224

digital television, RPi attached

to, 433–443

digital-to-analog converters

(DAC), 263, 376–381

I2C, 376–378

SPI, 379–381

diodes, 126–128

dir command, 36

direct socket communication,

603

directories, links to, 72–73

discoverable devices, 540

displays

character LCD modules,

436–440

interface to local, 433–443

OLED dot-matrix, 440–443

RPi connection to, 578

distance measurement sensors,

423

distance sensor, calibrating,

425

distributed version control, 100

dmesg command, 93, 398, 547

documentation, 7–8

doMath() function, 237–238

downloading

Linux kernel source, 298–299

source code for book, 110

Doxyfile, 294

Doxygen (automatic

documentation), 294–297

DPKG (Debian Package

Management System), 44

DRV8835 dual low-voltage

motor driver carrier, 410

DS3231 ZS-042 breakout

board, 318, 319

du command, 82, 90–91

dynamic DNS, 33

Dynamic Host Confi guration

Protocol (DHCP), 27–28, 529

dynamic IP address,

identifying, 28

dynamic typing, 173

Dynamode USB audio adapter,

636

E
EasyDriver stepper motor

driver, 415

echo command, 93–94

Eclipse integrated

development environment

(IDE), 229, 275, 282–297

automatic documentation

(Doxygen), 294–297

confi guring for cross-

compilation, 283–285

installing on desktop Linux,

282–283

integrating GitHub into, 289

master password system, 286

remote debugging, 289–294

Eclipse Paho project, 515

Eclox plug-in, 294

editor, for web content, 490

electric motors, 406–407

electrolytic capacitors, 130–132

electromechanical relays

(EMRs), 418–419

elif keyword (Bash), 170

eLinux.org website, 8

e-mail, sending from RPi,

510–512

embedded ABI (EABI), 277

Embedded Debian (Emdebian)

Project, 279n
embedded Linux systems,

55–112

advantages and

disadvantages, 57

basics, 56–68

Git for version control, 99–101

managing, 69–99

embedded LKM example,

659–665

encapsulation, 200–201

encryption, of communication,

502

end devices, in ZigBee

protocol, 559

endl stream manipulation

function, 197

environment information,

passing to script, 494

environment variables, 41

E-paper (e-ink) modules, 436

Ericsson, 537

erpi_gpio_irq_handler()

function, 672

ESP8266 Wi-Fi microcontroller,

547–548

eSpeak, 643

/etc directory, cron

confi guration fi les in, 506

/etc/fstab confi guration

fi le, 78, 88

/etc/modules fi le, 314, 528

/etc/network/interfaces

confi guration fi le, 530, 545,

546, 547

/etc/nginx/ directory, 489

/etc/nginx/fcgiwrap.
conf fi le, 491

/etc/ssmtp/ssmtp.conf

fi le, 510

/etc/udev/rules.d

directory, 270

Ethernet, 27–29

cable, 14, 26

and power, 530

Ethernet crossover cable, 26,

29–31

event-driven programming

model, 588

Express, installing, 497–498

extundelete command, 40

F
face detection, 631–633

fading LEDs, PWM application

for, 265–266

Fairchild Semiconductor BS270

N-Channel Enhancement

Mode FET, 137–138

fat-client applications, 585–586,

603–606

fdisk command, 82

FeliCa communication

schemes, 573

FestVox Festival, 643

FFmpeg project, 626

fg command, 98

fi eld effect transistors (FETs),

133

GPIO connected to, 222

LED circuit using, 223

as switches, 137–138

fi le transfer protocol (ftp),

PuTTY support for, 35–36

fi les

appending to, 90

changing ownership and

group, 75–76

editing, 41–42

joining together, 93–94

links to, 72–73

fi lesystem

682 Index ■ G–H

bindex.indd 11:4:44:AM 05/12/2016 Page 682

basic commands, 38–41

corruption from improper

shutdown, 53

fi lter commands, 91–93

find command, 86–87, 93

fi rewall, mapping to port

visible outside, 529

fi rmware, upgrading, 548–549

fl oating inputs, 147

FM transmitter, Raspberry Pi

as, 639

fmt command, 92

force options, for package

installation, 46

foreground processes in Linux,

97–99

form fi elds, for CGI scripts, 492

form POST example, for Cgicc,

495

free_irq() function, 662

fswebcam application, 622–623

FTDI TTL-232R-3v3 cable, 15

function pointers, for callback

functions, 237

functions

execution duration of call,

209

passing value to (C/C++),

197–198

G
gcc/g++ compilers, 187

gdb (GNU debugger), 290

.gdbinit fi le, 291, 292

gdbserver, 290–291

general-purpose computing,

UI hardware architecture,

578–582

get command, 35

Getboard, 364

gethostbyname() function,

500

getty service, 350

Gigabit Ethernet, 532

GIMP Toolkit (GTK+), 578, 586

basics, 586–590

Hello World example,

586–587

temperature and humidity

application, 588–590

Git, 99–101

basic workfl ow, 101

branching, 105–107

cloning repository, 101–102

commands, 107–108

git add command, 103–104

git branch command, 107

git checkout command,

105–107

git commit command, 104

.git folder, 102

git merge command, 107

git status command, 103

GitHub, 100

account, 110

integrating into Eclipse, 289

RPi fi rmware in respository,

304

.gitignore fi le, 103

glibc (Linux GNU C library),

206

Global Positioning System

(GPS) module, 357–359

gmail, security settings, 510

GND (ground supply voltage),

146

GNU Cgicc library, 494–497

GNU GPL (General Public

License), 58

GNU nano editor, 41–42

gnuplot, 371, 425–426

goal defi nition, in Makefi le,

653

Google, Native Client (NaCL;

Salt!), 34

governors, 165

gpicview utility, 618, 622, 625

GPIO class, 232

enhanced, 242–244

gpio command, 253–254

for servo motor control, 267

GPIO header, 5, 8, 220–221, 236

custom cables for, 123

interface to pins, 221

gpio_set_bounce()

function, 662

gpio_set_debounce()

function, 662

GPIO27, 228–229

GPIOs (general-purpose input/

outputs), 310

C++ control with sysfs,

229–233

circuit for testing LKM, 660

control using C and /dev/
mem, 248–250

control using devmem2,

246–248

controlling LED circuit,

390–391

digital input, 225–226

digital output, 222–224

enhanced button driver

LKM, 665–675

extending, 387–397

memory-based control,

245–252

for multiple SPI slaves, 346

and permissions, 270–272

reading pushbutton state, 391

registers for control, 246–247

script for manipulating,

169–171

GPPUDCLK0 register, 251

grabber.c program, 625

graphical user interface (GUI)

applications, 586

graphics processing unit

(GPU), memory for, 48

grep command, 86, 92, 93

groups, 73–76

GrovePi, 364

gtk_main_quit() function,

588

GTK+. See GIMP Toolkit

(GTK+)

guest OS, for VM, 109

H
half-wave rectifi er, 127–128

Hall Effect sensor, 408

Hallard, Charles-Henri, 441

hard fl oat operations, 277

hard links, 72

Hardware Attached on Top

(HATs), 4, 5, 19–20, 364, 365

for audio, 634

LCD, 582

Harr feature-based cascade

classifi er, 631

hash code, checking, 95–96

hashtags, 512

HAT. See Hardware Attached

on Top (HATs)

H-bridge, 409

 Index ■ I–I 683

bindex.indd 11:4:44:AM 05/12/2016 Page 683

hci_uart module, 539

hciconfig command,

540–541

hcitool command, 539

HC-SR04 ultrasonic distance

sensor, 428, 473–476

HDMI, 579

adapter, 636

cable, 14

and USB audio playback

devices, 635–638

HDMI-to-VGA adapter, 637

hdparm program, 81

head command, 92

header fi les, for Linux kernel,

653–654, 655

headless mode, 12

heartbeat pattern, for PWR

LED, 53

heatsinks, 410, 486–487

Hello World example

in CMake, 446–447

GTK+ for, 586–587

LKM for, 650–652

LKM testing, 657–659

Qt for, 591–592

Henderson, Gordon, 252

HiFiBerry Digi+ board, 634

high voltages, hazards of, 419

high-frequency clock signals,

269

high-frequency signal noise,

analog sensor and, 424–425

High-Speed CMOS (HC), 146

history command, 73

Hitec HS-422 servo motor,

266–267

home automation system, 6

home media center, RPi as, 25

host OS, 109

hosted hypervisors, 109

hostent structure, 500

hostname, 47–48

hot swapping, of micro-SD

card, 18

Howard, Phil, 259

.hpp fi le extension, 629

HTML pages, PHP scripting

in, 493

HTTP GET request, 494

HTTP POST request, 494

humidity sensors, 260–263

hwclock utility, 319, 321

hypervisors, 108

hysteresis, 141–143

I
I2C. See Inter-Integrated Circuit

(I2C)

i2cdetect command, 318

I2CDevice class, 377, 385

i2cdump command, 319, 389,

468–469

i2cget command, 322, 390

i2cset command, 323–325,

390

I2C-Tools in Linux, 318–325

for PWM signal setup,

383–384

IBM

Bluemix IoT service, 485, 514,

515–518

IoT MQTT C++ publish

example, 520–521

IoT MQTT Node.js publish

example, 518–519

Quickstart, 521–523

registering for ID, 516

Iceweasel, 283

id command, 399

if condition, 190

If This Then That (IFTTT) web

service, 512–513

ifconfig command, 545

image capture utility, 621–623

image writer tools, 26

images

capturing, 615, 616–627

processing, 628–634

impedance, 153

#include call (C/C++), 183

inductive coupling, 537

inductive kickback, 408

inheritance in OOP, 201–202

inode index, 71

inode table, 70

inodes, 70–71

input signal, setting gain and

offset, 429–431

input/output interfaces

enhancement, 363–403

input/outputs

basics, 220–221

general-purpose, 221–229

types, 11

insmod program, 657

installing

Express, 497–498

Qt development tools,

590–591

Wi-Fi adapter, 544–547

instruction pointer, 177

instruments. See sensors

integrated development

environment (IDE), Eclipse

as, 282–297

interconnecting gates, 149–150

Inter-Integrated Circuit (I2C),

310–330

Arduino slave, 464–476

bus for connection to OLED

Dot-matrix displays,

440–441

changing baud rate, 315

communication in C, 325–327

connecting MCP23017 to, 388

and digital-to-analog

converter, 376–378

enabling, 313–314

enabling second bus, 314–315

hardware, 311–315

register echo example,

465–467

vs. SPI, 331

standard data transfer mode,

322

temperature sensor example,

467–469

testing circuit, 315, 464–465

ultrasonic sensor application,

473–476

and wiringPi, 327

wrapping with C++ classes,

328–330

internal resistor, confi guration

changes, 250–252

Internet of Things (IoT),

483–533

basics, 484–485

connecting sensor to service,

518–519

device management, 526–533

large-scale frameworks,

513–523

RPi as sensor, 485–487

Internet radio playback,

mplayer utility for, 638

684 Index ■ J–L

bindex.indd 11:4:44:AM 05/12/2016 Page 684

interrupt confi guration

example, 392–393

interrupt request (IRQ), 661

interrupt service routines

(ISRs), 661–665

callback function, 257

interrupt-on-change

confi guration, 396–397

IntoCircuit Power Castle 11.2

Alt, 530

inversion, of output signal, 431

IoT. See Internet of Things (IoT)

IP address, 499

static, 28, 529–530

iPazzPort Bluetooth keyboard

and touchpad, 581

iwconfig command, for

adapter confi guration

information, 547

J
Java, 178–180, 586

relative performance of, 163

Java Runtime Environment

(JRE), 178

Javadoc, 294

JavaScript, 176–178

JK fl ip-fl op, 146

JPEG image, capturing, 617

JSON (JavaScript Object

Notation), 553–555, 611

messages, 555–557

JsonCpp C++ library, 553–554

just-in-time (JIT) compilation,

176

K
Kernel Confi guration tool,

299–300

kernel module, 64. . See also

Linux kernel

kernel programming, 647–676

kernel space, 64, 648

interrupt support, 660

kernel threads, 674–675

keyboard, 18

iPazzPort Bluetooth, 581

kill command, 98

Kinivo Bluetooth adapter, 538,

579–580

Kirchoff’s current law, 121

Kirchoff’s voltage law, 119

kobject interface, 666–673

Kodi, 25

KompoZer, 490

kset, 666

kthread_run() function, 674

ktype, 666

L
LAMP (Linux, Apache/Nginx,

MySQL, PHP), 497–498

latency, and memory paging,

374

LCD touchscreen display, UI

hardware architecture,

578–579

ldd tool, 278

lease time in DHCP, 28

least-squares (NLLS)

Marquardt-Levenberg

algorithm, nonlinear, 426

LEDs

attached to NodeMCU, 558

bash shell script to toggle,

224

brightness of, 461–463

Cgicc to control with web

interface, 495

control in C/C++, 194–196

controlling GPIO circuit,

390–391

echoing minicom with fl ash,

458–460

enhanced GPIO driver LKM,

673–675

fl ashing with C++, 199

GPIO C++ class fl ashing, 232

I2C temperature sensor with

warning, 469–471

for numeral display, 334–339

object-oriented control in

C++, 203–205

PWM application for fading,

265–266

response to button press,

257–258

RPi serial server, 354–356

time delay in lighting, 244

wiringPi for toggling,

255–257

less command, 87

Libav, 635

libi2c-dev package,

441–442

libnfc software development

kit, 572–574

libraries

Boost Chrono, 241

building C/C++, 444–451

cross-compilation with third-

party, 281–282

glibc (Linux GNU C), 206

libxbee (C/C++), 571–572

pigpio C, 269

statically linked, 449

WiringPi, 443

/lib/udev/rules.d

directory, 270

libxbee library (C/C++),

571–572

light dependent resistor (LDR)

circuit, 368

light emitting diodes (LEDs),

128–130

light meter application, analog,

368–370

lightLED() function, 257

Linaro debugger, 291

linear actuators, 406

linear analog sensors, 422–423

links to fi les and directories,

72–73

Linux cron scheduler, 506–509

Linux distribution

building, 305–307

in Raspbian image, 297

for RPi, 24–25

Linux driver, for USB

Bluetooth adapter, 537–538

Linux fi le system, 70–89

commands for, 80–82

permissions, 76–78

root directory, 71, 78–79

top-level directory, 79

Linux kernel, 64–65

adding or removing code,

648–650

building, 297–307

deploying, 303–304

downloading source, 298–299

preemptible, 233–235

preemptible (RT) patch,

301–302

Linux operating system, 4,

24–26

 Index ■ M–M 685

bindex.indd 11:4:44:AM 05/12/2016 Page 685

basic commands, 36–41

creating SD card image,

25–26

directory listing and fi le

permissions, 71

I2C-Tools, 318–325

interfacing to, 206–208

kernel version, 37

poll function, 241–242

processes, 96–99

real-time versions of, 6

virtual memory system, 245

VNC with, 585

Linux toolchain, 276

for Raspbian, 277–279

testing, 278–279

Linux user space SPI API,

336–337

Linux-dash, 527

linux-gnueabihf, 277

listener function, 237

LM358 Dual Operational

Amplifi er, 153

loadable kernel modules

(LKMs), 297, 538–539, 648

basics, 649–650

building on desktop

computer, 653–654

building on RPi, 654–657

embedded example, 659–665

enhanced button GPIO

driver, 665–673

enhanced LED GPIO driver,

673–675

fi rst example, 650–659

Hello World example testing,

657–659

Makefi les, 652–653

performance, 665

reasons for, 648–649

system crashes from, 650

testing parameter, 658–659

writing, 647

local displays, interface to,

433–443

local machine, commands

for, 35

local variable, in C/C++, 188

localhost, 501

logic analyzer, 402

logic gates, 143–150

interconnecting, 149–150

for multiple SPI slaves, 346

logic-level translation, 359–361

login, 36

.login fi le, 41

Logitech C920 USB webcam,

18, 627

Logitech HD C270 webcam,

619–620

Logitech HD C310 webcam,

619–620

Logitech HD C920 webcam,

619–620

Longbottom, Roy, 164

loop() function, 468

ls command, 38, 78–79, 93

-ail option, 71

-dhl option, 78

lsblk (list block devices)

command, 80, 82, 84

lsmod command, 538–539, 620

lsusb command, 399, 400–401

and USB cameras, 620

Lua, 168, 171–173

on NodeMCU, 550, 555–556

luatool, 550–551

M
MAC address, 61–62

machine-to-machine (M2M)

communications, 514

magic-number code, 170

MagJack, 532–533

mail tool, 511

main() function (C/C++),

183

mains-powered devices, 419

make clean command, 301

make command, 444–445

make script, 479

Makefi les, 444–445

for LKMs, 652–653

Marston, Tim, 479

master device

in I2C, 310, 311

in SPI communication, 330,

331

master in - slave out (MISO)

line, 330

master out - slave in (MOSI)

line, 330

connecting to circui, 336

MAX7219 display modules,

433–435

Maxim Integrated MAX7219,

433–435

McCauley, Mike, 374

MCP23S17 SPI Expander, 388

and SPI bus, 393–394

MCP23x17 devices

C++ class for, 394–397

registers, 390

MCP3208 SPI ADC, 366–367

communicating with,

367–368

sampling rate, 370

wiring to RPi, 367

MCP4725, 376–378

MCP4921 SPI DAC, 379

MCP6002, 429, 431

current supplied by, 378

MCP23017, and I2C bus,

389–393

md5sum command, 95–96

MEAN framework (MongoDB,

Express, AngularJS,

Node.js), 497

memory, 649

memory paging, and latency,

374

memory split, 48

Message Queueing Telemetry

Transport (MQTT), 514–515

NodeMCU fi rmware support

for, 557–559

metal surfaces, and RPi, 20

mget command, 36

Microchip MCP23017 I2C I/O

Expander, 388

micro-HDMI to VGA adapters,

16–17

micro-SD card, 12, 14

LED confi gured to show

activity, 51–52

mini UART, 349

minicom terminal emulator,

351

connection for testing

XBeePi, 566

disabling hardware control

in, 549–550

disconnecting, 551

minicom terminal emulator,

echoing with LED fl ash,

458–460

MIT App Inventor, 543–544

mkdir command, 39

686 Index ■ N–P

bindex.indd 11:4:44:AM 05/12/2016 Page 686

mkfs command, 82

mobile applications,

development, 543–544

modinfo command, 657

modprobe command, 313, 539

MODULE_LICENSE statement,

651–652, 659

Module.symvers fi le, 656

monitors, connecting RPi to, 14

more command, 37, 39, 87

more /etc/group command,

73

mount command, 80, 81, 82, 89

mouse, 18

mplayer utility, 635, 637

MQTT. See Message Queueing

Telemetry Transport

(MQTT)

multiarch (multi-architecture

package installs), 281

multimedia card (MMC), 87

multipackage installations, 279

multithreaded server

applications, 606–609

mv command, 36, 39

N
namespaces (C++), 197

NAND-based fl ash memory,

87

nano editor, for RPi web

server, 489

n-body benchmark, 161–162

ncurses-dev package, 299

near fi eld communication

(NFC), 536, 537, 572–575

negative (n-type) doping, 126

negative feedback, op-amp

output and, 154–155

NEON SIMD (single

instruction multiple data)

engine, 631

network, connecting RPi to,

12, 26–31

network communications,

basics, 499

Network Time Protocol (NTP),

43, 66, 316

Newhaven, display modules

from, 436

Nginx web server, 6, 488–493

night-vision applications, 616

nmap, 28

Node.js, 176–178, 527

NodeMCU wi-fi slave

processor, 547–559

communicating with, 555

connecting to Wi-Fi, 549–550

Lua on, 555–556

programming, 550–551

support for MQTT, 557–559

USB-to-UART conversion,

548

web server interface, 552–553

nodes, ZigBee protocol

defi ning, 559

NoIR model, 616

noise, and signal amplifi cation,

432

noise margin, 145–146

nonlinear analog sensors,

423–428

nonlinear least-squares (NLLS)

Marquardt-Levenberg

algorithm, 426

NOOBS (Linux installer),

25

Notepad++, 490

ntp service, stopping, 66

ntpdate command, 43

Nyquist sampling theorem,

425n
Nyquist’s sampling theorem,

151

O
objdump (object fi le dump)

tool, 184–185

object fi les, 185

object-oriented programming,

199–205

objects, 200

Ohm’s law, 117–119

OLED (organic LED) modules,

436

onboard LEDs, interacting

with, 50–52

one-wire sensors, 260–261

op-amp signal conditioning

circuit, 430

Open Source Computer Vision

(OpenCV), 18, 615

computer vision apps,

631–633

image processing with,

628–631

open source software driver, 5

open-collector outputs, 148–149

open-drain outputs, 148–149

OpenELEC, 25

OpenEmbedded, 305

OpenSSL toolkit, secure

communication with,

502–503

OpenWrt, 305

operating system, micro-SD

card for, 12, 14

operational amplifi ers, 152–155

operators, in C/C++, 188–190

optocouplers, 138–140

input circuit, 229

output circuit, 228

opto-isolators, 138

Oracle Java Development Kit

(JDK), 178

organic LED (OLED) dot-

matrix displays, 440–443

oscilloscopes, 115–117

Output Gain bit, for DAC, 379

output latching, 335

output stream operator, 183

output to fi le, redirection

sysmbols for, 89–90

outputs, open-collector and

open-drain, 148–149

overclock, 47

overloading, 202

overriding method, 202

overscan, 47

P
PaaS (platform as a service),

513

web sensor with, 484

package management, 44–46

Pacman, 44

pacmd tool, 643

paging through fi les, 87

PAN ID (personal area

network ID), 562

PaPiRus ePaper/eInk Display

HATs, 582

parity bit, 348

parsing stream data, 611–612

passing value to function

(C/C++), 197–198

 Index ■ P–P 687

bindex.indd 11:4:44:AM 05/12/2016 Page 687

passwd command, 37

passwd structure (glibc),

206–207

passwords

for e-mail, protecting, 510

master system for Eclipse,

286

PATH environment variable,

41

updating, 279

pavucontrol, 642

PCA9685, 381

registers for output control,

383

PCA9685 PWM board, 409

PDIP (plastic dual in-line

package), 145

performance

of programming language,

160–164

of Python, 208–215

Perl, 168, 173

permissions

and GPIOs, 270–272

and wiringPi, 272

personal area networks

(PANs), 536

Philips PN532 NFC controller,

572–573

PHP, on RPi, 493

physical computing

fi rst circuit for, 166–168

RPi interaction with, 405–452

physical environment,

interaction with, 484

pico2wave, 643

PicoScopes, 117

PiFace Digital, 364

pigpio C library, 269

pin numbers, 21

pipes (|), 90–91

pixel format, of camera,

setting, 624–625

pkg-config tool, 587

plastic dual in-line package

(PDIP), 145

platform as a service (PaaS),

513

web sensor with, 484

PocketSphinx, 644

PoE power extraction modules

(PEMs), 531–533

pointers

in C/C++, 190–193

passing value to function

(C/C++), 198

points, calculating geometric

distance between, 633

Poky, 305

Pololu, SPDT relay kit, 419

Pololu Simple Motor Controller

family, 412

polymorphism, 202

port forwarding, 529

port number, 31, 499

for Nginx web server, 488

port-scanning tool, 28

positive feedback, op-amp

output and, 155

Positive Temperature

Coeffi cient (PTC) resettable

fuse, 125

positively (p-type) doping, 126

POSIX threads (Pthreads),

238–241

potentiometer, 120

power, for RPi, 4, 530

Power over Ethernet (PoE),

530–533

power supply

components to build circuit,

126–136

external 5V, 13

powered DC circuits, interface

to, 227–229

powered USB hub, 16

.ppm fi le format, 625

precedence of C/C++

operations, 192–193

precision actuators, 406

preemptible kernel (RT) patch,

301–302

printf() function, 649

printk() function, 649, 650,

652

private keyword, 200

/proc directory, 206

.profile fi le, 41

program counter, 177

programming, 159–216

basics, 160–168

C/C++, 180–199

dynamically compiled

languages, 176–180

language performance,

160–164

object-oriented, 199–205

scripting languages, 168–176

propagation delay, 145

protected keyword (C++),

202

prototyping HAT, 19

ps command, 96–97

ps -p $$ command,

37

pseudo-PoE cabling structure,

531

psftp (PuTTY secure fi le

transfer protocol), 35

psftp command, 36

pthread_join() function,

240

pthread.h header fi le,

239

public keyword, 200

pull-down resistors, 147–148,

226–227

pull-up resistors, 147–148,

226–227

for second I2C bus, 314

pulse width modulation

(PWM) signals, 224,

263–264

adding outputs to RPi,

381–387

application for fading LEDs,

265–266

duty cycles, 130

for servo motor control,

266–267

PulseAudio, 641–642

troubleshooting with,

642–643

Pura Vida Apps code example,

544

Purdie, Richard,

305

pushing to remote repository,

104–105

put command, 35

PuTTY, 31

RPi session confi guration,

584

Secure Shell connections

with, 33–34

pwd command, 38

PWM signal, code to adjust

frequency, 385

PWMDriver class, 386

PWR LED, 50–51

heartbeat pattern for,

53

688 Index ■ Q–R

bindex.indd 11:4:44:AM 05/12/2016 Page 688

Python, 163, 168, 173–176, 586

extending with C/C++,

211–213

performance improvement,

208–215

and wiringPi, 259–260

Q
QEMU package, 281

QJsonDocument class, 611

qmake Makefi le generator,

591–592

QObject class, 594

Qt Creator, 596

example, 597–598

troubleshooting, 597

Qt development framework,

578, 586, 590–602

concepts, 592–594

Hello World example,

591–592

installing tools, 590–591

modules, 593–594

tools, 596–597

weather GUI application,

598–602

QtCore module, 593

QTcpSocket class, 605

QtGui module, 593

QtMultimedia module, 593

QtNetwork module, 592, 593,

605

QtOpenGL module, 593

QtScript module, 593

QtSql module, 593

QtSvg module, 593

QtTest module, 594

QtWebKit module, 594

QtXml module, 594

quantization, 151–152

QWidget class, 591

R
radio frequency identifi cation

(RFID) communications,

537, 572

Raspberry Pi (RPi)

accessories, 12–19

Arduino programming from

command line, 478–480

basics, 3–7

benchmarks, 164–165

booting, 58–68

building LKM on, 654–657

communicating with, 31–36

communication applications,

484

confi guration fi le, 62

confi guring, 46–50

connecting with RSE, 286

controlling, 36–46

CPU frequency setting,

165–166

creating Linux SD card

image for, 25–26

distance sensing and, 428

documentation, 7–8

general subsystems and

connectors, 11

hardware, 8–12

implementing circuits on

breadboard, 121–122

interaction with physical

environment, 405–452

Inter-Integrated Circuit (I2C)

on, 312–313

Linux distributions for, 24–25

making discoverable,

540–542

mounting SD card, 84–86

multiple SPI slave devices on,

346–347

vs. other embedded Linux

devices, 6

quad-core processor, 238

remote monitoring, 527

reset button, 12

risk of damage, 16, 20–21

risk of damage from voltage,

359

serial client, 352–354

software updates, 48–49

stepper motor driver circuit,

416

testing latency, 234–235

as “thing,” 503–513

UART devices, 348–352

use of, 5–7

versions, 9

watchdog timers, 528–529

wiring MCP3208 to, 367

Raspberry Pi Confi guration

Tool, 46–48

Raspberry Pi Foundation

website, 7

code for kernel, 298

Raspbian, 24

connecting to, 32

default user account for

image, 31

distribution updates, 48–49

enabling SSH root login,

303–304

Linux distribution in image,

297

Linux toolchain for, 277–279

Nginx server in distribution,

488

preemptive kernel option,

233–235

Raspbian Jessie, 24, 25

Raspbian Jessie Lite, 24

Raspbian Wheezy, 24

raspi-config tool, 46–48,

62, 313

to enable camera, 617

raspistill application,

617

raspivid application, 617,

618–619

raspiyuv utility, 619

read() system call, 500

readRegisters() function,

326

real time, 241

Realtek adapters, 547

RealTerm, 31

real-time clock, for RPi, 316

real-time operating systems

(RTOS), 57

Real-time Transport Protocol

(RTP), 628

reboot, 53

receive data connection (RXD),

for UARTs, 347

receiveRegister() listener

function, 466, 469

recipes, in IFTTT account, 512

recording audio, 639–640

recursive deletion, 40

redirection sysmbols, for

output to fi le, 89–90

reference, passing value to

function (C/C++), 198

reget command, 36

registers

i2cset command for

setting, 324

for output control of

PCA9685, 383

 Index ■ S–S 689

bindex.indd 11:4:44:AM 05/12/2016 Page 689

regular expressions, in Perl,

173

relays, 418–420

remote debugging, 289–294

from command line, 291–292

setup, 293

remote fat-client applications,

UI hardware architecture,

578–579

remote frame buffer protocol,

583

remote monitoring, of

Raspberry Pi, 527

Remote System Explorer (RSE)

plug-in, 285, 286–287

remote UI application

development, 602–612

repository

C/C++ library in, 447–450

cloning branch, 299

prebuilt toolchain from, 277

repository in Git, 100

cloning, 101–102

commtting to local, 104

pushing to remote, 104–105

request_irq() function,

661–662

reserved memory, 246

reset button, for Raspberry

Pi, 12

resistance, 118, 119, 123–124

resistance ratio, 429

resistors

confi guration changes to

internal, 250–252

power rating of, 118–119

pull-up and pull-down,

147–148

resolution

of camera, setting, 624–625

of video, 50

respondData() function,

466, 468

revolutions per minute (rpm),

407

rfcomm tool, 541

rich user interface, 577–613

application development,

586–592

fat-client applications,

585–586, 603–606

hardware architectures,

578–586

LCD touchscreen display, 582

remote UI application

development, 602–612

virtual network computing

(VNC), 583–585

RISC OS, 25

Ritchie, Dennis, 180

rm command, 39

rmmod program, 658

root account. See superuser

account

root directory, 71, 78–79

root fi lesystem, expanding to

fi ll SD card, 46–47

root user account, 73

rotor, 414

routers, in ZigBee protocol, 559

RPi Foundation, 25

RPi MMAL camera, 630

RPi NoIR Camera, 18

RPi Sense HAT, 19

RPi Zero, 10

USB On-The-Go (OTG), 15

rpi-update tool, 49

RS-485 modules, 397–398

rsync command, 304

rsync utility, 288

RTC devices, 320–322

Ruby on Rails, 504

rule fi le, 270

runlevel, 67

systemd targets aligned

with, 68

S
sample-clock jitter, 373

sampling rate, for transducer

signal, 151

sampling resolution, for

transducer signal, 151

scaling using voltage division,

429

Schmitt trigger, 141, 142–143

scp (secure copy) command,

287

Scratch visual programming

tool, 5

screen capture, of monitor

display, 580

screen program, 33

scripting languages, 168–176

scrot tool, 580

SD card

expanding root fi lesystem to

fi ll, 46–47

mounting on desktop, 303

mounting on RPi, 84–86

Oracle Java space

consumption, 179

reliability of fi le systems,

87–89

testing performance of, 81

troubleshooting boot image

problems, 83

SD image fi le, location, 306

secure communication, with

OpenSSL toolkit, 502–503

Secure Shell (SSH) protocol,

287–288

Secure Shell (SSH) server, 6,

33–34

Secure Shell (SSH) terminal,

478

Secure Sockets Layer (SSL), 502

sed command, 92

Selenic Mercurial, 100

self-documenting code, 294

semiconductor, 126

sending e-mail, from RPi,

510–512

sensor fusion, 316

sensor web server, RPi as,

487–498

sensors

digital vs. analog, 421

interface to analog, 420–433

one-wire, 260–261

types of, 420–421

separate compilation, 229

sequential logic, 143

serial client, in RPi, 352–354

Serial Clock (SCL) line, in I2C,

311

serial connection, for RPi and

desktop, 541

Serial Data (SDA) line, in I2C,

311

Serial Monitor window

(Arduino), 456

serial numbers, for USB

devices, 400–401

Serial Peripheral Interface (SPI)

bus, 310, 330–347

for ADC, 365–368

Arduino as slave, 476–478

bidirection communication

in C/C++, 339–341

690 Index ■ S–S

bindex.indd 11:4:44:AM 05/12/2016 Page 690

connecting MCP23S17 to, 388

digital-to-analog converter,

379–381

fi rst application, 334–339

vs. I2C, 331

limitation of using ADC, 376

multiple slave devices on

RPi, 346–347

on RPi, 332–334

testing, 333–334

testing ADC performance,

370–373

three-wire communication,

344

and wiringPi, 345

wrapping devices with C++

classes, 342–344

Serial Port Profi le (SPP), 541

serial resistors, 313

serial UART, cable connection

to, 15

serial-getty service,

350–351

disabling, 355

server

multithreaded applications,

606–609

ultithreaded weather,

609–612

server socket, 523

server.cpp code example,

525–526

ServerSettingsDialog

class, for weather

application, 604

service fi les, 66

servo motor, 406–407

gpio command to control,

267

PWM application for

controlling, 266–267

session management, 497–498

setEdgeType() method, 244

setuid bit, 272

setup() function, for

Arduino, 456, 466

setup.py confi guration fi le,

210

sftp command, 35

sh -c command, 80

sha-bang #!, 170

shaft encoders

with DC motors, 408

output from, 409

shallow clone, 298

shared library, 449

troubleshooting error, 574

using, 450–451

Sharp infrared distance

measurement sensor, 424,

428

shoot-through current, 409

short circuit, 119

shutdown, 20, 53

Shutdown bit, for DAC, 379

signal amplifi cation, and noise,

432

signal conditioning, 428–431

signals, in Qt, 594–595

silicon, 126

Simple Mail Transfer Protocol

(SMTP) server, 510

sine wave signal, I2C DAC to

output, 378

sinusoidal input signal, plot of

data capture, 373

sizeof operator (C/C++), 189

slave devices

Arduino, communication

with C/C++, 471–473

Arduino as SPI slave, 476–478

in I2C, 310, 311

processors, 453

in SPI communication, 330,

331

slave select (SS) line, 330

slots, in Qt, 594–595

smart homes, 484

smartphone technology, 56

snapshots, 110

sock-addr_in structure, 500

socket, 499

SocketClient class (C++),

504–505, 523

SocketServer class, 525

soft links, 72

solenoid, 406

solid-state relays (SSRs),

418–419

Solomon Systech SSD1306

driver, 440

sort command, 91

Sound Blaster audio adapter,

636

source code for book,

downloading, 110

source command, 279

SourceForge, 644

SparkFun Bi-directional Logic

Level Converter, 359

SparkFun breakout board, 634

SparkFun SC16IS750 module,

398

SparkFun XBee USB Explorer,

560–561

speaker-test utility, 635,

637

SPI. See Serial Peripheral

Interface (SPI) bus

SPI loopback test, 334

SPIDevice class, 369, 435

SSH root login, enabling with

Raspbian, 303–304

SSH server, options on RPi, 48

SSH session, 584

SSL connect() function, 503

SSL_Library_init()

function, 502

SSL_read() function, 503

SSL_write() function, 503

ssmtp program, 510

stall torque, 407

standalone XBee device, setup

for API mode, 568–569

standard namespace (std), 197

start bit, 348

start.elf fi le, 59

stat command, 77

static IP address, 28, 529–530

static keyword, 652

static library, using, 450–451

static type defi nitions, Cython

support for, 210

statically linked library, 449

statically typed languages,

173–174

stator, 414

stepper motor, 406–407,

414–418

C++ for controlling, 416–418

sticky bit, 78

still images, capturing, 617–618

stop bit, 348

stream data, parsing, 611–612

stream socket, 499

streaming video, 627–628

strings, in C/C++, 193–194

strongly typed languages, 174

Stroustrup, Bjarne, 180

 Index ■ T–U 691

bindex.indd 11:4:44:AM 05/12/2016 Page 691

stty command, 402

successive approximation

ADC, 366

sudo tool, 38, 66, 82, 419

apt install sahd

command, 6

passwd root command, 69

reboot command, 53

shutdown command, 53

sudoers fi le, 70

superuser account, 37, 69–70

switch bounce, 141, 258, 418

switches, 140–143

fi eld effect transistors (FETs)

as, 137–138

transistors as, 133–136

symbolic links, 72, 304

synchronizing clocks, 43

sysfs, 51, 666

C++ control of GPIOs with,

229–233

sysfs.h header fi le, 667

sys/poll.h fi le, 241–242

sys/socket.h header fi le,

500

system administration

commands, 69–70

system crontab, 506–508

system time, 241

setting, 321

System V (SysV) init, 65

systemctl command, 65–66

systemd system and service

manager, 65–68

SysVinit, 350

Sziklai pair, 228

T
tail command, 92

tar command, 94–95

target units, 67–68

T-Cobbler board, 20

TCP. See Transmission Control

Protocol (TCP)

tee tool, 91

“teletype” device, 349

televisions, connecting RPi

to, 14

temperature and humidity

application (GTK+), 588–590

temperature sensors, 260–263

I2C example, 467–469

temporary fi le system (tmpfs)

entries, 80, 89

terminal, 31

default line settings, 402

keyboard shortcuts for, 39–40

terminal emulator, 31

termination resistors, in I2C

bus, 312

termios structure, 353

test circuit, writing, 317

testing

Linux toolchain, 278–279

LKM Hello World example,

657–659

LKM parameter, 658–659

Raspberry Pi latency, 234–235

RPi supply volutage level, 13

SD card performance, 81

SPI ADC performance,

370–373

SPI bus, 333–334

XBeePi module, 566

text processing, in Perl, 173

text2wave application, 644

text-to-speech (TTS), 643–644

thin-client browser-based

frameworks, 585

“thing,” Raspberry Pi as,

503–513

ThingSpeak, 485, 504–506

MATLAB example, 509

thin-shrink small outline

package (TSSOP), 145

threading, 238

connection handler objects

and, 607

tightvncserver, 583

tilt, measuring, 431

time

measurement, 241

setting, 43

time step, 146

time zone, 44

timedatectl tool, 44

timer, for LED fl ashing, 52

TLC5940, 381

TMP36 analog temperature

sensor, 422, 485–487, 563

to_string() function

(C++11), 204–205

top command, 37, 224, 439

torque, 407

Torvalds, Linus, 24

touch command, 39, 78

transducer, 420

transfer() function, 337

transistors, 132–138

transistor-transistor logic

(TTL), 145

Transmission Control Protocol

(TCP), 499

RPi as client/ server, 484

server, 523

socket, creating, 500

TIME-WAIT state in, 526n
transmission line capacitance,

311

transmit data connection

(TXD), for UARTs, 347

TransportLayer Security (TLS)

protocol, 502

troubleshooting

Arduino communication

problems, 459

with PulseAudio, 642–643

SD card boot image

problems, 83

shared library error, 574

stability problems, 13

system crashes from LKM,

650

system logs for, 80

“unresolved external” link

errors, 597

USB webcam and RPi

camera, 619

wireless interface, 547

XCTU Firmware update reset

warning, 563

TSSOP (thin-shrink small

outline package), 145

TTL (transistor-transistor

logic), 145

ttyAMA0 UART device, 460

tvservice application, 49–50

typedef keyword (C/C++),

190, 238

U
UART. . See also Universal

Asynchronous Receiver/

Transmitter (UART)

devices

Ubuntu, 25

udev rules, 270–271, 419

692 Index ■ V–W

bindex.indd 11:4:44:AM 05/12/2016 Page 692

and USB devices, 400–401

udevadm command, 400

udevd service, 270

ultrasonic sensor application,

I2C, 473–476

umask command, 77

umount command, 82

uname command, 233

Unicode symbols, 493

unidirectional data buses,

logic-level translation for,

359

Unifi ed Extensible Firmware

Interface (UFFI), 58

Universal Asynchronous

Receiver/Transmitter

(UART) devices, 310,

347–359

adding to RPi, 397–402

advantages and

disadvantages, 352

Arduino and, 457

command control of

Arduino, 461–464

echo test example, 457–461

examples in C, 352–356

Global Positioning System

(GPS) module, 357–359

loopback test, 401

“unresolved external” link

errors, 597

unshielded twisted-pair (UTP)

cables, 530

uptime command, 37

USB devices, 4

2.0 cable, 12

audio, 634

connecting RPi to, 220

driver for, 6

hub, 16, 636

serial numbers for, 400–401

for storage, 17–18

and udev rules, 400–401

webcams, 18, 619–621

USB hot plugging, 398

USB On-The-Go (OTG), 15

USB-to-TLL converters, 398

USB-to-TLL serial connection,

29, 32

for RPi, 31–33

USB-to-TTL UART serial cable,

15

USB-to-UART adapter, 565

user accounts, creating, 73–75

user crontab, 508–509

User Datagram Protocol

(UDP), 499

user space, 64, 648

RPi camera in, 619

user time, 241

user-mode emulation, 281

users, 73–76

usleep() function, 240

uvcvideo LKM, 620, 621

V
variables

in C/C++, 188–190

in LKMs, 652

version control system, Git as,

99–101

video

capturing, 615

output, 49–50

recording, 618–619

streaming, 627–628

Video 4 Linux, 18

Video4Linux2, 619, 621–627

user space utilities, 623–625

writing programs, 625–627

videobuf2_vmalloc LKM,

620

Videocore 4 system, 619

VideoLAN VLC, 627–628

virtual keyword, 205

virtual machines (VMs),

108–109

virtual network computing

(VNC), 583–585

UI hardware architecture,

578–579

virtual terminal, 582

VirtualBox, 109–110, 276

visualizing live data, 521–523

visudo command, 75

VMware Fusion, 109

VMware Player, 109–110

VNC Viewer, 583–584

void pointer, 193

volatile keyword (C/C++),

190

voltage, 117

division, 119–120

levels, 455

regulation, 124–126

scaling using division, 429

voltage follower, 155

voltage spikes, risk to RPi, 407

W
waitForEdge() method, 243

wall-clock time, 241

watch command, 99

watchdog timers, in RPi,

528–529

Watterott Four-Channel Level

Shifter, 360

waveform audio fi le format

(WAV), 640

Waveforms 2015 software,

115–116

Wavemon, 45

wavemon application, 547

wc (word count) command,

91

wear leveling algorithms, 88

weather GUI application,

598–602

client/server architecture,

603

multithreaded, 609–612

weather sensor web page, 492

web client

C/C++, 498–503

RPi as, 484

web pages

creating, 489–492

weather sensor, 492

web sensor

with PaaS, 484

storing data from, 504

web server

vs. client applications,

498–499

If This Then That (IFTTT),

512–513

NodeMCU interface, 552–553

RPi as, 484

RPi as sensor, 487–498

webcams

outputting live view, 622

USB, 619–621

website for book, 8

whereis command, 87

whoami command, 37

widgets, 578, 591

drag-and-drop on forms, 596

 Index ■ X–Z 693

bindex.indd 11:4:44:AM 05/12/2016 Page 693

Wi-Fi communications, 536,

537, 544–559

adapters, 17

connecting NodeMCU to,

549–550

installing adapter, 544–547

Win32DiskImager, 26

Windows 10 IoT Core, 25

Windows confi guration tool,

for Pololu, 412

wireless communication, 27,

535–575

basics, 536–537

Bluetooth, 537–544

comparison of standards, 537

near fi eld communication

(NFC), 572–575

NodeMCU wi-fi slave

processor, 547–559

scanning for network access

points, 545–546

Wi-Fi communications,

544–559

ZigBee communication

standard, 559–572

Wireshark, 641

wiringPi, 252–269, 443

API summary, 256

for clock signal generation,

268–269

DC motor circuit control,

411–412

and I2C, 327

installing, 252–253

LED toggling with, 255–257

and permissions, 272

programming with, 254–255

and Python, 259–260

and SPI bus, 345

use within Qt, 600

wiringPiISR() function, 257

Wolfram Alpha website, 425

WPA passphrase, 546

“wpasupplicant daemon failed

to start” message, 547

write() system call, 500

X
X Window System, 582

xapt tool, 281

xargs command, 92

XBee 802.15.4, 559

XBee API Frame generator

utility, 571

XBee modules, 536

AT vs. API mode, 561

basics, 559–561

and C/C++, 571–572

circuit confi guration, 565

AT command mode, 563–567

confi guration, 561–562

setup for API mode, 568

standalone, setup for API

mode, 568–569

XBee Pro S2, 560–561

XBee S2 devices, 560–561

XBee network, confi guring

with XCTU, 562

XBee USB Explorer, 562

resetting older/generic,

563

xbee-api Node.js module,

569–571

xbeeAPI.on() function,

571

XBeePi module, setup for AT

mode, 566–567

XCTU software platform,

561–562

XBee network confi guration,

562

xeyes display, 584–585

Xming X Server, 584–585

XML format, for client/server

communication, 611

xterm window, 584

Y
Yocto Project, 305

YP-02, 399

Z
Zener diode, 408

Zenmap, 28

Zeroconf (zero-confi guration

networking), 28–29

ZigBee Alliance, 559

ZigBee communication

standard, 536, 537, 559–572

zImage fi le, 302n
Z-Term, 31

WILEY END USER LICENSE AGREEMENT
Go to www.wiley.com/go/eula to access Wiley’s ebook EULA.

http://www.wiley.com/go/eula

	Cover������������
	Title Page�����������������
	Copyright����������������
	Contents���������������
	Introduction
	Part I Raspberry Pi Basics���������������������������������
	Chapter 1 Raspberry Pi Hardware��������������������������������������
	Introduction to the Platform�����������������������������������
	Who Should Use the RPi�����������������������������
	When to Use the RPi��������������������������
	When to Not Use the RPi������������������������������

	RPi Documentation������������������������
	The RPi Hardware�����������������������
	Raspberry Pi Versions����������������������������
	The Raspberry Pi Hardware��������������������������������

	Raspberry Pi Accessories�������������������������������
	Important Accessories����������������������������
	Recommended Accessories������������������������������
	Optional Accessories���������������������������

	HATs�����������
	How to Destroy Your RPi!�������������������������������
	Summary��������������
	Support��������������

	Chapter 2 Raspberry Pi Software��������������������������������������
	Linux on the Raspberry Pi��������������������������������
	Linux Distributions for the RPi��������������������������������������
	Create a Linux SD Card Image for the RPi���

	Connecting to a Network������������������������������
	Regular Ethernet�����������������������
	Ethernet Crossover Cable�������������������������������

	Communicating with the RPi���������������������������������
	Serial Connection with the USB-to-TTL 3.3V Cable���
	Connecting through Secure Shell (SSH)��
	Transferring Files Using PuTTY/psftp over SSH��

	Controlling the Raspberry Pi�����������������������������������
	Basic Linux Commands���������������������������
	Basic File Editing�������������������������
	What Time Is It?�����������������������
	Package Management�������������������������

	Configuring the Raspberry Pi�����������������������������������
	The Raspberry Pi Configuration Tool��
	Updating the RPi Software��������������������������������
	Video Output�������������������

	Interacting with the Onboard LEDs��
	Shutdown and Reboot��������������������������
	Summary��������������

	Chapter 3 Exploring Embedded Linux Systems���
	Introducing Embedded Linux���������������������������������
	Advantages and Disadvantages of Embedded Linux���
	Is Linux Open Source and Free?�������������������������������������
	Booting the Raspberry Pi�������������������������������

	Managing Linux Systems�����������������������������
	The Super User���������������������
	System Administration����������������������������
	Linux Commands���������������������
	Linux Processes����������������������
	Other Linux Topics�������������������������

	Using Git for Version Control������������������������������������
	A Practice-Based Introduction������������������������������������
	Git Branching��������������������
	Common Git Commands��������������������������

	Using Desktop Virtualization�����������������������������������
	Code for This Book�������������������������
	Summary��������������
	Further Reading����������������������
	Bibliography�������������������

	Chapter 4 Interfacing Electronics��
	Analyzing Your Circuits������������������������������
	Digital Multimeter�������������������������
	Oscilloscopes��������������������

	Basic Circuit Principles�������������������������������
	Voltage, Current, Resistance, and Ohm’s Law��
	Voltage Division�����������������������
	Current Division�����������������������
	Implementing RPi Circuits on a Breadboard��
	Digital Multimeters (DMMs) and Breadboards���
	Example Circuit: Voltage Regulation��

	Discrete Components��������������������������
	Diodes�������������
	Light-Emitting Diodes (LEDs)�����������������������������������
	Smoothing and Decoupling Capacitors��
	Transistors������������������
	Optocouplers/Opto-isolators����������������������������������
	Switches and Buttons���������������������������

	Logic Gates������������������
	Analog-to-Digital Conversion�����������������������������������
	Sampling Rate��������������������
	Quantization�������������������
	Operational Amplifiers�����������������������������

	Concluding Advice������������������������
	Summary��������������
	Further Reading����������������������

	Chapter 5 Programming on the Raspberry Pi��
	Introduction�������������������
	Performance of Languages on the RPi��
	Setting the RPi CPU Frequency������������������������������������
	A First Circuit for Physical Computing���

	Scripting Languages��������������������������
	Scripting Language Options���������������������������������
	Bash�����������
	Lua����������
	Perl�����������
	Python�������������

	Dynamically Compiled Languages�������������������������������������
	JavaScript and Node.js on the RPi��
	Java on the RPi����������������������

	C and C++ on the RPi���������������������������
	C and C++ Language Overview����������������������������������
	LED Control in C�����������������������
	The C of C++�������������������

	Overview of Object-Oriented Programming��
	Object-Oriented LED Control in C++���

	Interfacing to the Linux OS����������������������������������
	Glibc and Syscall������������������������

	Improving the Performance of Python��
	Cython�������������
	Extending Python with C/C++����������������������������������

	Summary��������������
	Further Reading����������������������
	Bibliography�������������������

	Part II Interfacing, Controlling, and Communicating��
	Chapter 6 Interfacing to the Raspberry Pi Input/Outputs��
	Introduction�������������������
	General-Purpose Input/Outputs������������������������������������
	GPIO Digital Output��������������������������
	GPIO Digital Input�������������������������
	Internal Pull-Up and Pull-Down Resistors���
	Interfacing to Powered DC Circuits���

	C++ Control of GPIOs Using sysfs���������������������������������������
	More C++ Programming���������������������������
	An Enhanced GPIO Class�����������������������������

	Memory-Based GPIO Control��������������������������������
	GPIO Control Using devmem2���������������������������������
	GPIO Control Using C and /dev/mem��
	Changing the Internal Resistor Configuration���

	WiringPi���������������
	Installing wiringPi��������������������������
	The gpio Command�����������������������
	Programming with wiringPi��������������������������������
	Toggling an LED Using wiringPi�������������������������������������
	Button Press—LED Response��������������������������������
	Communicating to One-Wire Sensors��
	PWM and General-Purpose Clocks�������������������������������������

	GPIOs and Permissions����������������������������
	Writing udev Rules�������������������������
	Permissions and wiringPi�������������������������������

	Summary��������������

	Chapter 7 Cross-Compilation and the Eclipse IDE��
	Setting Up a Cross-Compilation Toolchain���
	The Linaro Toolchain for Raspbian��
	Debian Cross-Toolchains������������������������������

	Cross-Compilation Using Eclipse��������������������������������������
	Installing Eclipse on Desktop Linux��
	Configuring Eclipse for Cross-Compilation��
	Remote System Explorer�����������������������������
	Integrating GitHub into Eclipse��������������������������������������
	Remote Debugging�����������������������
	Automatic Documentation (Doxygen)��

	Building Linux���������������������
	Downloading the Kernel Source������������������������������������
	Building the Linux Kernel��������������������������������
	Deploying the Linux Kernel���������������������������������
	Building a Linux Distribution (Advanced)���

	Summary��������������
	Further Reading����������������������

	Chapter 8 Interfacing to the Raspberry Pi Buses��
	Introduction to Bus Communication��
	I2C����������
	I2C Hardware�������������������
	An I2C Test Circuit��������������������������
	Using Linux I2C-Tools����������������������������
	I2C Communication in C�����������������������������
	Wrapping I2C Devices with C++ Classes��

	SPI����������
	SPI Hardware�������������������
	SPI on the RPi���������������������
	A First SPI Application (74HC595)��
	Bidirectional SPI Communication in C/C++���
	Multiple SPI Slave Devices on the RPi��

	UART�����������
	The RPi UART�������������������
	UART Examples in C�������������������������
	UART Applications - GPS������������������������������

	Logic-Level Translation������������������������������
	Summary��������������
	Further Reading����������������������

	Chapter 9 Enhancing the Input/Output Interfaces on the RPi���
	Introduction�������������������
	Analog-to-Digital Conversion�����������������������������������
	SPI Analog-to-Digital Converters (ADCs)��
	ADC Application: An Analog Light Meter���
	Testing the SPI ADC Performance��������������������������������������
	The C Library for BCM2835 (Advanced)���

	Digital-to-Analog Conversion�����������������������������������
	An I2C Digital-to-Analog Converter���
	An SPI Digital-to-Analog Converter���

	Adding PWM Outputs to the RPi������������������������������������
	Extending the RPi GPIOs������������������������������
	The MCP23017 and the I2C Bus�����������������������������������
	The MCP23S17 and the SPI Bus�����������������������������������
	A C++ Class for the MCP23x17 Devices���

	Adding UARTs to the RPi������������������������������
	Summary��������������

	Chapter 10 Interacting with the Physical Environment���
	Interfacing to Actuators�������������������������������
	DC Motors����������������
	Stepper Motors���������������������
	Relays�������������

	Interfacing to Analog Sensors������������������������������������
	Linear Analog Sensors����������������������������
	Nonlinear Analog Sensors�������������������������������
	Analog Sensor Signal Conditioning��
	Interfacing to an Analog Accelerometer���

	Interfacing to Local Displays������������������������������������
	MAX7219 Display Modules������������������������������
	Character LCD Modules����������������������������
	OLED Dot-Matrix Display������������������������������

	Building C/C++ Libraries�������������������������������
	Makefiles����������������
	CMake������������

	Summary��������������

	Chapter 11 Real-Time Interfacing Using the Arduino���
	The Arduino������������������
	An Arduino Serial Slave������������������������������
	A UART Echo Test Example�������������������������������
	UART Command Control of an Arduino���

	An Arduino I2C Slave���������������������������
	An I2C Test Circuit��������������������������
	I2C Register Echo Example��������������������������������
	I2C Temperature Sensor Example�������������������������������������
	I2C Temperature Sensor with a Warning LED��
	Arduino Slave Communication Using C/C++��
	An I2C Ultrasonic Sensor Application���

	An Arduino SPI Slave���������������������������
	Programming the Arduino from the RPi Command Line��
	Summary��������������

	Part III Advanced Interfacing and Interaction��
	Chapter 12 The Internet of Things��
	The Internet of Things (IoT)�����������������������������������
	The RPi as an IoT Sensor�������������������������������
	The RPi as a Sensor Web Server�������������������������������������
	Nginx������������
	GNU Cgicc Applications (Advanced)��

	A C/C++ Web Client�������������������������
	Network Communications Primer������������������������������������
	A C/C++ Web Client�������������������������
	Secure Communication Using OpenSSL���

	The RPi as a “Thing”���������������������������
	ThingSpeak�����������������
	The Linux Cron Scheduler�������������������������������
	Sending E-mail from the RPi����������������������������������
	If This Then That (IFTTT)��������������������������������

	Large-Scale IoT Frameworks���������������������������������
	MQ Telemetry Transport (MQTT)������������������������������������
	IBM Bluemix Internet of Things�������������������������������������
	An IBM IoT MQTT Node.js Publish Example��
	An IBM IoT MQTT C++ Publish Example��
	Visualize Data Using IBM Quickstart��

	The C++ Client/Server����������������������������
	IoT Device Management����������������������������
	Remote Monitoring of the RPi�����������������������������������
	RPi Watchdog Timers��������������������������
	Static IP Addresses��������������������������
	Power over Ethernet (PoE)��������������������������������

	Summary��������������

	Chapter 13 Wireless Communication and Control��
	Introduction to Wireless Communications��
	Bluetooth Communications�������������������������������
	Installing a Bluetooth Adapter�������������������������������������
	Android App Development with Bluetooth���

	Wi-Fi Communications���������������������������
	Installing a Wi-Fi Adapter���������������������������������
	The NodeMCU Wi-Fi Slave Processor��

	ZigBee Communications����������������������������
	Introduction to XBee Devices�����������������������������������
	XBee Configuration�������������������������
	An XBee AT Mode Example������������������������������
	An XBee API Mode Example�������������������������������

	Near Field Communication�������������������������������
	Summary��������������

	Chapter 14 Raspberry Pi with a Rich User Interface���
	Rich UI RPi Architectures��������������������������������
	The RPi as a General-Purpose Computer��
	RPi with an LCD Touchscreen����������������������������������
	Virtual Network Computing (VNC)��������������������������������������
	Fat-Client Applications������������������������������

	Rich UI Application Development��������������������������������������
	Introduction to GTK+ on the RPi��������������������������������������
	Introduction to Qt on the RPi������������������������������������

	Qt Primer����������������
	Qt Concepts������������������
	Qt Development Tools���������������������������
	A First Qt Creator Example���������������������������������
	A Qt Weather GUI Application�����������������������������������

	Remote UI Application Development��
	Fat-Client Qt GUI Application������������������������������������
	Multithreaded Server Applications��
	The Multithreaded Weather Server���������������������������������������

	Summary��������������
	Further Reading����������������������

	Chapter 15 Images, Video, and Audio��
	Capturing Images and Video���������������������������������
	The RPi Camera���������������������
	USB Webcams������������������
	Video4Linux2 (V4L2)��������������������������

	Streaming Video����������������������
	Image Processing and Computer Vision���
	Image Processing with OpenCV�����������������������������������
	Computer Vision with OpenCV����������������������������������
	Boost������������

	Raspberry Pi Audio�������������������������
	Core Audio Software Tools��������������������������������
	Audio Devices for the RPi��������������������������������
	Text-to-Speech���������������������

	Summary��������������
	Further Reading����������������������

	Chapter 16 Kernel Programming������������������������������������
	Introduction�������������������
	Why Write Kernel Modules?��������������������������������
	Loadable Kernel Module (LKM) Basics��

	A First LKM Example��������������������������
	The LKM Makefile�����������������������
	Building the LKM on a Linux Desktop Machine��
	Building the LKM on the RPi����������������������������������
	Testing the First LKM Example������������������������������������

	An Embedded LKM Example������������������������������
	Interrupt Service Routines (ISRs)��
	Performance������������������

	Enhanced Button GPIO Driver LKM��������������������������������������
	The kobject Interface����������������������������

	Enhanced LED GPIO Driver LKM�����������������������������������
	Kernel Threads���������������������

	Conclusions������������������
	Summary��������������

	Index
	EULA

