‘Exploring Raspberry Pi is THE book to go to if you are interested in learning about the impressive
physicalcomputing capabilities of the Raspberry Pi platform. Derek Molloy imparts the electronics,
programming, and embedded Linux skills that are vital to today's innovators in building the next

generation of Internet of Things applications.” .
—Eben Upton, Co-creator of the Raspberry Pi

DEREK MOLLOY

E X Pl @aiRe G

RASPBERRY PI

INTERFACING TO THE REAL WORLD WITH EMBEDDED LINUX"

§ RR "

FEELETEES
n_.cz..T‘“ 2% 30 KT]:G

{
Raspberry i 3 Model B V1.2 cxi«,. .[. |
|
1

tee sl

(©) Raspberry Pi 2015 g werm mestie |

B _A3 - SeAe '
S N>, S 52 | - -
= SEme m Skt s oo
- s = <4 - 4
.' -t - 5; [:;-A 339 o .“' ¥ - ‘;
| VAa® 2 (o aE : =3
< - M - -
b o: S e St B :
-t czn,;_,:_ S .CH’ = 3 | :] :
=, Y ek g =l - | e
- o = : e K SO 2 3 g
== OEILe 20 QLT 2> s /e || —
23 Sarner Gl n e~ 2 e
o5 B C216, 213222 2 rs sn a8 = ~ P
- 2 LxZp oo ¢ »
- = RITB=mup S = _—
- T 212 = daged “(;’ "r-' —
-~
= 'FCC ID: 2ABCB-RPI32 - o - —=)
]
[L & IC: 20953- ”132—- o
- -
S5.% 2, HOMI _—"-:
R I mewn - "
e -t - 33
1-' TR %
R NN® en
B S 1
3\.’"
' ~
SRS YR
o~
- o~

-~ o
| ——
o
o
~
~

HOMIS -

o .®

Interfacing to the Real World with
Embedded Linux®

Derek Molloy

WILEY

Exploring Raspberry Pi®

Published by

John Wiley & Sons, Inc.
10475 Crosspoint Boulevard
Indianapolis, IN 46256

www.wiley.com
Copyright © 2016 by John Wiley & Sons, Inc., Indianapolis, Indiana
Published simultaneously in Canada

ISBN: 978-1-119-18868-1
ISBN: 978-1-119-18870-4 (ebk)
ISBN: 978-1-119-18869-8 (ebk)

Manufactured in the United States of America
10987654321

No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or
by any means, electronic, mechanical, photocopying, recording, scanning or otherwise, except as permitted
under Sections 107 or 108 of the 1976 United States Copyright Act, without either the prior written permis-
sion of the Publisher, or authorization through payment of the appropriate per-copy fee to the Copyright
Clearance Center, 222 Rosewood Drive, Danvers, MA 01923, (978) 750-8400, fax (978) 646-8600. Requests to
the Publisher for permission should be addressed to the Permissions Department, John Wiley & Sons, Inc.,
111 River Street, Hoboken, NJ 07030, (201) 748-6011, fax (201) 748-6008, or online at http://www.wiley
.com/go/permissions.

Limit of Liability/Disclaimer of Warranty: The publisher and the author make no representations or war-
ranties with respect to the accuracy or completeness of the contents of this work and specifically disclaim
all warranties, including without limitation warranties of fitness for a particular purpose. No warranty may
be created or extended by sales or promotional materials. The advice and strategies contained herein may
not be suitable for every situation. If improperly wired, circuits described in this work may possibly cause
damage to the device or physical injury. This work is sold with the understanding that the publisher is not
engaged in rendering legal, accounting, or other professional services. If professional assistance is required,
the services of a competent professional person should be sought. Neither the publisher nor the author shall
be liable for damages arising herefrom. The fact that an organization or website is referred to in this work
as a citation and/or a potential source of further information does not mean that the author or the publisher
endorses the information the organization or website may provide or recommendations it may make. Further,
readers should be aware that Internet websites listed in this work may have changed or disappeared between
when this work was written and when it is read.

For general information on our other products and services please contact our Customer Care Department
within the United States at (877) 762-2974, outside the United States at (317) 572-3993 or fax (317) 572-4002.

Wiley publishes in a variety of print and electronic formats and by print-on-demand. Some material included
with standard print versions of this book may not be included in e-books or in print-on-demand. If this book
refers to media such as a CD or DVD that is not included in the version you purchased, you may download
this material at http://booksupport.wiley.com. For more information about Wiley products, visit
www.wiley.com.

Library of Congress Control Number: 2016933853

Trademarks: Wiley and the Wiley logo are trademarks or registered trademarks of John Wiley & Sons, Inc.
and/or its affiliates, in the United States and other countries, and may not be used without written permission.
Raspberry Pi is a registered trademark of Raspberry Pi Foundation. All other trademarks are the property
of their respective owners. John Wiley & Sons, Inc. is not associated with any product or vendor mentioned
in this book.

http://www.wiley.com
http://www.wiley
http://booksupport.wiley.com
http://www.wiley.com
http://www.wiley.com/go/permissions

To Sally, Daragh, Eoghan, Aidan, and Sarah

(still in order of age, not preference!)

About the Author

Dr. Derek Molloy is a senior lecturer in the School of Electronic Engineering,
Faculty of Engineering and Computing, Dublin City University, Ireland. He
lectures at undergraduate and postgraduate levels in object-oriented program-
ming with embedded systems, digital and analog electronics, and the Internet
of Things. His research contributions have largely been in the fields of computer
and machine vision, 3D graphics/visualization, and e-Learning,.

Derek produces a popular YouTube video series that has introduced millions
of people to embedded Linux and digital electronics topics. In 2013, he launched
a personal web/blog site that is visited by thousands of people every day, and
which integrates his YouTube videos with support materials, source code,
and user discussion. In 2015, he published a book on the BeagleBone platform,
Exploring BeagleBone: Tools and Techniques for Building with Embedded Linux, which
has been very well received.

Derek has received several awards for teaching and learning. He was the
winner of the 2012 Irish Learning Technology Association (ILTA) national
award for Innovation in Teaching and Learning. The award recognizes his
learning-by-doing approach to undergraduate engineering education, which
utilizes electronic kits and online video content. In 2012, as a result of fervent
nominations from his students and peers, he was also awarded the Dublin City
University President’s Award for Excellence in Teaching and Learning.

You can learn more about Derek, his work, and his other publications at his
personal website: www.derekmolloy.ie.

http://www.derekmolloy.ie

About the Technical Editor

Dr. Tom Betka came to the world of embedded systems development by way
of a previous career in the aviation industry, and then as a physician practicing
clinical medicine for well over a decade. During this time his love of computers
and software development evolved toward the field of embedded systems, and
his training in computer science culminated in a second undergraduate-level
degree. After leaving clinical medicine, Dr. Betka began working in the world
of software development and has served as a subject-matter expert in both
medicine and embedded systems for various companies in the industry. His
recent work has included projects at the NASA Kennedy Space Center and the
Sierra Nevada Corporation. Tom’s first love is the C-family of programming
languages and using these languages to program 8-bit microcontrollers. As a
Linux user for the past decade, he has also been working with the BeagleBone,
BeagleBone Black, and Raspberry Pi devices for the last several years as well.
His hobbies include advanced mathematics, aviation, high-powered model
rocketry, and robotics. Also, he can often be found building prototype devices in
his home-based machine shop. In a previous life, Tom worked for several years
as a professional drummer—and was one of the first in his area to embrace the
use of electronic percussion devices in live music scenarios.

vi

Credits

Senior Acquisitions Editor
Aaron Black

Project Editor
Adaobi Obi Tulton

Technical Editor
Tom Betka

Production Editor
Barath Kumar Rajasekaran

Copy Editors
Keith Cline
Marylouise Wiack

Production Manager
Kathleen Wisor

Manager of Content Development
and Assembly
Mary Beth Wakefield

Marketing Manager
Carrie Sherrill

Professional Technology &
Strategy Director
Barry Pruett

Business Manager
Amy Knies

Executive Editor
Jody Lefevere

Project Coordinator, Cover
Brent Savage

Proofreader
Nancy Bell

Indexer
Nancy Guenther

Cover Designer
Wiley

Cover Image
Courtesy of Derek Molloy

Acknowledgments

Many thanks to everyone at Wiley Publishing once again for their outstanding
work on this project: to Jim Minatel for encouraging me to take this book con-
cept forward and for yet again supporting the realization of a book that engages
in deeper learning; to Aaron Black and Jody Lefevere, for guiding the project
forward, and for their support and help throughout the development of this
book; to Jennifer Lynn, for keeping me on schedule and for always being avail-
able to answer my questions; to Adaobi Obi Tulton, the project editor, for driv-
ing this project to completion in the most efficient way possible—it was a real
pleasure to work with such an accomplished and adept editor once again; to
Keith Cline and Marylouise Wiack the copy editors, for translating this book
into readable U.S. English; to Barath Kumar Rajasekaran, the production editor,
and Nancy Bell, the proofreader, for bringing everything together to create a
final, polished product.

Sincere thanks to Tom Betka, the technical editor, for the incredible amount
of work and personal time he selflessly put into ensuring that the content in
this book can be utilized seamlessly by readers. Following the publication of
my book on the BeagleBone, Tom of this own volition provided valuable com-
ment and feedback via the book website that further strengthened the title.
Iimmediately thought of Tom when I took on this project, and I was delighted
when he agreed to take on the role of technical editor. Tom is a scholar, a poly-
math, and indeed an inspiration, who was always available when I needed to
talk through technical issues. This book has benefited hugely from his technical
knowledge, world experience, and immense capabilities—I believe there could
be no better technical editor for this topic!

Thanks to the thousands of people who take the time to comment on my
YouTube videos, blog, and website articles. I truly appreciate all of the feedback,

vii

viii

Acknowledgments

advice, and comments—it has really helped in the development of the topics
in my books.

The School of Electronic Engineering, Dublin City University, is a great place
to work, largely because of its esprit de corps, and its commitment to rigorous,
innovative, and accessible engineering education. Thanks again to all of my
colleagues in the School for supporting, encouraging, and tolerating me in the
development of this book. Thanks in particular must go to Noel Murphy and
Conor Brennan for sharing the workload of the School Executive with me while
I was so absorbed in the writing of this book. Thanks again to (my brother)
David Molloy for his expert software advice and support. Thanks to Jennifer
Bruton for her meticulous and expert review of circuits, software, and content
that is used in this book. Thanks also to Martin Collier, Pascal Landais, Michele
Pringle, Robert Sadleir, Ronan Scaife, and John Whelan for their ongoing exper-
tise, support, and advice.

The biggest Thank You must of course go to my own family. This book was
written over six months, predominantly at night and on weekends. Thanks to
my wife Sally and our children Daragh, Eoghan, Aidan, and Sarah for putting
up with me (again) while I was writing this book. Thank you Mam, Dad, David,
and Catriona for your continued lifelong inspiration, support, and encourage-
ment. Finally, thank you to my extended family for graciously excusing my
absence at family events for another six months—I definitely have no excuses
now (unless I write another book!).

Introduction
Part|
Chapter 1
Chapter 2
Chapter 3
Chapter 4
Chapter 5
Partll
Chapter 6
Chapter 7
Chapter 8
Chapter 9
Chapter 10
Chapter 11
Part Ill
Chapter 12
Chapter 13

Contents at a Glance

Raspberry Pi Basics

Raspberry Pi Hardware

Raspberry Pi Software

Exploring Embedded Linux Systems
Interfacing Electronics

Programming on the Raspberry Pi
Interfacing, Controlling, and Communicating
Interfacing to the Raspberry Pi Input/Outputs
Cross-Compilation and the Eclipse IDE
Interfacing to the Raspberry Pi Buses
Enhancing the Input/Output Interfaces on the RPi
Interacting with the Physical Environment
Real-Time Interfacing Using the Arduino
Advanced Interfacing and Interaction

The Internet of Things

Wireless Communication and Control

Xix

23

55
113
159
217
219
275
309
363
405
453
481
483
535

Contents at a Glance

Chapter 14 Raspberry Pi with a Rich User Interface
Chapter 15 Images, Video, and Audio
Chapter 16 Kernel Programming

Index

577
615
647
677

Introduction
Partl
Chapter 1

Chapter 2

Raspberry Pi Basics

Raspberry Pi Hardware
Introduction to the Platform
Who Should Use the RPi

When to Use the RPi
When to Not Use the RPi
RPi Documentation
The RPi Hardware
Raspberry Pi Versions
The Raspberry Pi Hardware
Raspberry Pi Accessories
Important Accessories
Recommended Accessories
Optional Accessories
HATs
How to Destroy Your RPi!
Summary
Support

Raspberry Pi Software
Linux on the Raspberry Pi

Linux Distributions for the RPi
Create a Linux SD Card Image for the RPi

Connecting to a Network
Regular Ethernet
Ethernet Crossover Cable
Communicating with the RPi

Contents

Xix

Xi

Xii

Contents

Chapter 3

Chapter 4

Serial Connection with the USB-to-TTL 3.3V Cable
Connecting through Secure Shell (SSH)
Transferring Files Using PuTTY/psftp over SSH
Controlling the Raspberry Pi
Basic Linux Commands
Basic File Editing
What Time Is It?
Package Management
Configuring the Raspberry Pi
The Raspberry Pi Configuration Tool
Updating the RPi Software
Video Output
Interacting with the Onboard LEDs
Shutdown and Reboot
Summary

Exploring Embedded Linux Systems
Introducing Embedded Linux
Advantages and Disadvantages of Embedded Linux
Is Linux Open Source and Free?
Booting the Raspberry Pi
Managing Linux Systems
The Super User
System Administration
Linux Commands
Linux Processes
Other Linux Topics
Using Git for Version Control
A Practice-Based Introduction
Git Branching
Common Git Commands
Using Desktop Virtualization
Code for This Book
Summary
Further Reading
Bibliography

Interfacing Electronics
Analyzing Your Circuits
Digital Multimeter
Oscilloscopes
Basic Circuit Principles
Voltage, Current, Resistance, and Ohm’s Law
Voltage Division
Current Division
Implementing RPi Circuits on a Breadboard

31
33
35
36
36
41
43
44
46
46
48
49
50
53
54

55
56
57
58
58
69
69
70
89
96
99
99
101
105
107
108
110
111
111
111

113
114
114
115
117
117
119
120
121

Contents

Xiii

Chapter 5

Digital Multimeters (DMMs) and Breadboards
Example Circuit: Voltage Regulation
Discrete Components
Diodes
Light-Emitting Diodes (LEDs)
Smoothing and Decoupling Capacitors
Transistors
Optocouplers/Opto-isolators
Switches and Buttons
Logic Gates
Analog-to-Digital Conversion
Sampling Rate
Quantization
Operational Amplifiers
Concluding Advice
Summary
Further Reading

Programming on the Raspberry Pi
Introduction
Performance of Languages on the RPi
Setting the RPi CPU Frequency
A First Circuit for Physical Computing
Scripting Languages
Scripting Language Options
Bash
Lua
Perl
Python
Dynamically Compiled Languages
JavaScript and Node.js on the RPi
Java on the RPi
C and C++ on the RPi
C and C++ Language Overview
LED Control in C
The C of C++
Overview of Object-Oriented Programming
Object-Oriented LED Control in C++
Interfacing to the Linux OS
Glibc and Syscall
Improving the Performance of Python
Cython
Extending Python with C/C++
Summary
Further Reading
Bibliography

123
124
126
126
128
130
132
138
140
143
150
151
151
152
155
156
157

159
160
160
165
166
168
168
169
171
173
173
176
176
178
180
182
194
196
199
203
206
206
208
208
211
215
216
216

xiv

Contents

Part Il
Chapter 6

Chapter 7

Interfacing, Controlling, and Communicating

Interfacing to the Raspberry Pi Input/Outputs
Introduction
General-Purpose Input/Outputs
GPIO Digital Output
GPIO Digital Input
Internal Pull-Up and Pull-Down Resistors
Interfacing to Powered DC Circuits
C++ Control of GPIOs Using sysfs
More C++ Programming
An Enhanced GPIO Class
Memory-Based GPIO Control
GPIO Control Using devmem?2
GPIO Control Using C and /dev/mem
Changing the Internal Resistor Configuration
WiringPi
Installing wiringPi
The gpio Command
Programming with wiringPi
Toggling an LED Using wiringPi
Button Press—LED Response
Communicating to One-Wire Sensors
PWM and General-Purpose Clocks
GPIOs and Permissions
Writing udev Rules
Permissions and wiringPi
Summary

Cross-Compilation and the Eclipse IDE
Setting Up a Cross-Compilation Toolchain
The Linaro Toolchain for Raspbian
Debian Cross-Toolchains
Cross-Compilation Using Eclipse
Installing Eclipse on Desktop Linux
Configuring Eclipse for Cross-Compilation
Remote System Explorer
Integrating GitHub into Eclipse
Remote Debugging
Automatic Documentation (Doxygen)
Building Linux
Downloading the Kernel Source
Building the Linux Kernel
Deploying the Linux Kernel
Building a Linux Distribution (Advanced)
Summary
Further Reading

217

219
220
221
222
225
226
227
229
237
242
245
246
248
250
252
252
253
254
255
257
260
263
270
270
272
273

275
276
277
279
282
282
283
286
289
289
294
297
298
299
303
305
307
308

Contents

Xv

Chapter 8

Chapter 9

Chapter 10

Interfacing to the Raspberry Pi Buses
Introduction to Bus Communication
I’C

I’C Hardware

An I?C Test Circuit

Using Linux 12C-Tools

I’C Communication in C

Wrapping I°’C Devices with C++ Classes
SPI

SPI Hardware

SPI on the RPi

A First SPI Application (74HC595)

Bidirectional SPI Communication in C/C++

Multiple SPI Slave Devices on the RPi
UART

The RPi UART

UART Examples in C

UART Applications - GPS
Logic-Level Translation
Summary
Further Reading

Enhancing the Input/Output Interfaces on the RPi

Introduction
Analog-to-Digital Conversion

SPI Analog-to-Digital Converters (ADCs)

ADC Application: An Analog Light Meter

Testing the SPI ADC Performance

The C Library for BCM2835 (Advanced)
Digital-to-Analog Conversion

An I’C Digital-to-Analog Converter

An SPI Digital-to-Analog Converter
Adding PWM Outputs to the RPi
Extending the RPi GPIOs

The MCP23017 and the I’C Bus

The MCP23S17 and the SPI Bus

A C++ Class for the MCP23x17 Devices
Adding UARTs to the RPi
Summary

Interacting with the Physical Environment
Interfacing to Actuators

DC Motors

Stepper Motors

Relays
Interfacing to Analog Sensors

Linear Analog Sensors

309
310
310
311
315
318
325
328
330
330
332
334
339
346
347
348
352
357
359
361
361

363
364
364
365
368
370
373
376
376
379
381
387
389
393
394
397
403

405
406
407
414
418
420
422

xvi

Contents

Chapter 11

Part il
Chapter 12

Nonlinear Analog Sensors
Analog Sensor Signal Conditioning
Interfacing to an Analog Accelerometer
Interfacing to Local Displays
MAX?7219 Display Modules
Character LCD Modules
OLED Dot-Matrix Display
Building C/C++ Libraries
Makefiles
CMake
Summary

Real-Time Interfacing Using the Arduino
The Arduino
An Arduino Serial Slave
A UART Echo Test Example
UART Command Control of an Arduino
An Arduino I*C Slave
An I°C Test Circuit
I?C Register Echo Example
I?C Temperature Sensor Example
I’C Temperature Sensor with a Warning LED
Arduino Slave Communication Using C/C++
An I°C Ultrasonic Sensor Application
An Arduino SPI Slave
Programming the Arduino from the RPi Command Line
Summary

Advanced Interfacing and Interaction

The Internet of Things
The Internet of Things (IoT)
The RPi as an IoT Sensor
The RPi as a Sensor Web Server
Nginx
GNU Cgicc Applications (Advanced)
A C/C++ Web Client
Network Communications Primer
A C/C++ Web Client
Secure Communication Using OpenSSL
The RPi as a “Thing”
ThingSpeak
The Linux Cron Scheduler
Sending E-mail from the RPi
If This Then That (IFTTT)
Large-Scale IoT Frameworks
MQ Telemetry Transport (MQTT)
IBM Bluemix Internet of Things

423
428
431
433
433
436
440
444
444
446
452

453
454
457
457
461
464
464
465
467
469
471
473
476
478
480

481

483
484
485
487
488
494
498
499
500
502
503
504
506
510
512
513
514
515

Contents

Chapter 13

Chapter 14

An IBM IoT MQTT Nodejs Publish Example
An IBM IoT MQTT C++ Publish Example
Visualize Data Using IBM Quickstart
The C++ Client/Server
IoT Device Management
Remote Monitoring of the RPi
RPi Watchdog Timers
Static IP Addresses
Power over Ethernet (PoE)
Summary

Wireless Communication and Control
Introduction to Wireless Communications
Bluetooth Communications

Installing a Bluetooth Adapter

Android App Development with Bluetooth
Wi-Fi Communications

Installing a Wi-Fi Adapter

The NodeMCU Wi-Fi Slave Processor
ZigBee Communications

Introduction to XBee Devices

XBee Configuration

An XBee AT Mode Example

An XBee API Mode Example
Near Field Communication
Summary

Raspberry Pi with a Rich User Interface
Rich UI RPi Architectures
The RPi as a General-Purpose Computer
RPi with an LCD Touchscreen
Virtual Network Computing (VNC)
Fat-Client Applications
Rich UI Application Development
Introduction to GTK+ on the RPi
Introduction to Qt on the RPi
Qt Primer
Qt Concepts
Qt Development Tools
A First Qt Creator Example
A Qt Weather GUI Application
Remote UI Application Development
Fat-Client Qt GUI Application
Multithreaded Server Applications
The Multithreaded Weather Server
Summary
Further Reading

518
520
521
523
526
527
528
529
530
533

535
536
537
537
543
544
544
547
559
559
561
563
568
572
575

577
578
579
582
583
585
586
586
590
592
592
596
597
598
602
603
606
609
612
613

xviii Contents

Chapter 15

Chapter 16

Index

Images, Video, and Audio
Capturing Images and Video
The RPi Camera
USB Webcams
Video4Linux2 (VAL2)
Streaming Video
Image Processing and Computer Vision
Image Processing with OpenCV
Computer Vision with OpenCV
Boost
Raspberry Pi Audio
Core Audio Software Tools
Audio Devices for the RPi
Text-to-Speech
Summary
Further Reading

Kernel Programming
Introduction
Why Write Kernel Modules?
Loadable Kernel Module (LKM) Basics
A First LKM Example
The LKM Makefile
Building the LKM on a Linux Desktop Machine
Building the LKM on the RPi
Testing the First LKM Example
An Embedded LKM Example
Interrupt Service Routines (ISRs)
Performance
Enhanced Button GPIO Driver LKM
The kobject Interface
Enhanced LED GPIO Driver LKM
Kernel Threads
Conclusions
Summary

615
616
616
619
621
627
628
628
631
633
634
635
635
643
644
645

647
648
648
649
650
652
653
654
657
659
661
665
665
666
673
674
675
676

677

Introduction

The core idea behind the Raspberry Pi (RPi) project was the development of a
small and affordable computing platform that could be used to stimulate the
interest of children in core information and communications technology (ICT)
education. The rapid evolution of low-cost system on a chip (50C) devices for
mobile applications made it possible to widely deliver the affordable RPi plat-
form in early 2012. The impact was immediate; by February 2015, more than five
million Raspberry Piboards were sold. Given the proliferation of smartphones,
the idea of holding in one hand computers that are capable of performing
billions of instructions per second is easy to take for granted, but the fact that you
can modify the hardware and software of such small yet powerful devices and
adapt them to suit your own needs and create your own inventions is nothing
short of amazing. Even better, you can now purchase a Raspberry Pi Zero for
as little as $5 (the price of a large cup of coffee)!

The Raspberry Piboards on their own are too complex to be used by a general
audience; it is the ability of the boards to run embedded Linux in particular that
makes the resulting platform accessible, adaptable, and powerful. Together, Linux
and embedded systems enable ease of development for devices that can meet
future challenges in smart buildings, the Internet of Things (IoT), robotics, smart
energy, smart cities, human-computer interaction (HCI), cyber-physical systems,
3D printing, advanced vehicular systems, and many, many more applications.

The integration of high-level Linux software and low-level electronics repre-
sents a paradigm shift in embedded systems development. It is revolutionary
that you can build a low-level electronics circuit and then install a Linux web
server, using only a few short commands, so that the circuit can be controlled
over the Internet. You can easily use the Raspberry Pi as a general-purpose Linux
computer, but it is vastly more challenging and interesting to get underneath

Xix

Introduction

the hood and fully interface it to electronic circuits of your own design—and
that is where this book comes in!

This book should have widespread appeal for inventors, makers, students,
entrepreneurs, hackers, artists, dreamers—in short, anybody who wants to bring
the power of embedded Linux to their products, inventions, creations, or projects
and truly understand the RPi platform in detail. This is not a recipe book; with
few exceptions, everything demonstrated here is explained at a level that will
enable you to design, build, and debug your own extensions of the concepts
presented. Nor does this book include any grand design project for which you
must purchase a prescribed set of components and peripherals to achieve a
very specific outcome. Rather, this book is about providing you with enough
background knowledge and “under-the-hood” technical details to enable and
motivate your own explorations.

I'strongly believe in learning by doing, so I present low-cost, widely available
hardware examples so that you can follow along. Using these hands-on examples,
I describe what each step means in detail, so that when you substitute your own
hardware components, modules, and peripherals you will be able to adapt the
content in this book to suit your needs. As for that grand design project, that is
up to you and your imagination!

In late 2014, I released a well-received book on the BeagleBone platform titled
Exploring BeagleBone: Tools and Techniques for Building with Embedded Linux. Given
the focus of this book on embedded Linux and the emphasis on introducing the
core principles, there are some similarities between the introductory content in
that book and this book. However, this book has been written from first principles
purely for the RPi platform, focusing on its strengths and addressing several of its
weaknesses. I also took the opportunity to extend the coverage of the material to
cover topics such as Linux kernel development, the Arduino as a service proces-
sor, Wi-Fi sensor nodes, XBee communication, MQTT messaging, the Internet of
Things (IoI), platform as a service (PaaS), and much more. If you have a copy of
Exploring BeagleBone, you should visit this book’s website (www . exploringrpi . com)
to compare the content in both books before you make your purchasing decision.

When writing this book, I had the following aims and objectives:

m To explain embedded Linux and its interaction with electronic circuits—
taking you through the topics and challenges on the popular RPi platform.

m To provide in-depth information and instruction on the Linux, electron-
ics, and programming skills that are required to master a pretty wide and
comprehensive variety of topics in this domain.

m To create a collection of practical Hello World hardware and software
examples on each and every topic in the book, from low-level interfacing,
general-purpose input/outputs (GPIOs), buses, bus-attached analog-to-digital
converters (ADCs), and universal asynchronous receiver/transmitters
(UARTS) to high-level libraries such as OpenCV and the Qt Framework.

http://www.exploringrpi.com

Introduction

The book also covers more advanced topics such as low-level register
manipulation and Linux loadable kernel module (LKM) development.

m To enhance and extend the interfacing capability of the RPi platform by
developing frameworks for connecting it to circuits (e.g., SPI-based ADCs),
to service processors (e.g., Arduino and NodeMCU), and to cloud-based
IoT platforms and services.

m To ensure that each circuit and segment of code has a broad pedagogical
reach and is specifically designed to work on the Raspberry Pi. Every
single circuit and code example in this book was built and tested on the
RPi platform (most on multiple board versions).

m To use the Hello World examples to build a library of code that you can
use and adapt for your own Raspberry Pi projects.

m To make all the code available on GitHub in an easy-to-use form.

m To support this book with strong digital content, such as the videos on
the DerekMolloyDCU YouTube channel, and the www.exploringrpi.com
custom website that was developed specifically to support this book.

m To ensure that by the end of this book you have everything you need to
imagine, create, and build advanced Raspberry Pi projects.

How This Book Is Structured

There is no doubt that some of the topics in this book are quite complex. After
all, Raspberry Pi boards are complex devices! However, everything that you
need to master them is present in this book within three major parts:

m Part I: Raspberry Pi Basics
m Part II: Interfacing, Controlling, and Communicating

m Part [II: Advanced Interfacing and Interaction

In the first part of the book, I introduce the hardware and software of the RPi
platforms in Chapters 1 and 2, and subsequently provide three primer chapters:

m Chapter 3, “Exploring Embedded Linux Systems”
m Chapter 4, “Interfacing Electronics”

m Chapter 5, “Programming on the Raspberry Pi”

If you are a Linux expert, electronics wizard, and/or software guru, feel free
to skip these primers. However, for everyone else, I have put in place a concise
but detailed set of materials to ensure that you gain all the knowledge required
to effectively and safely interface to the Raspberry Pi. The remaining chapters
refer to these primers often.

http://www.exploringrpi.com

Introduction

The second part of the book, Chapters 6-11, provides detailed information on
interfacing to the Raspberry Pi GPIOs, buses (I*C, SPI), UART devices, and USB
peripherals. You learn how to configure a cross-compilation environment so that
you can build large-scale software applications for the Raspberry Pi. Part II also
describes how to combine hardware and software to provide the Raspberry Pi
with the capability to interact effectively with its physical environment. In addi-
tion, Chapter 11, “Real-Time Interfacing Using the Arduino,” shows you how to
use the Arduino as a slave processor with the Raspberry Pi, which helps you to
overcome some of the real-time constraints of working with embedded Linux.

The third and final part of the book, Chapters 12-16, describes how to use the
Raspberry Pi for advanced interfacing and interaction applications such as IoT;
wireless communication and control, rich user interfaces; images, video, and
audio; and Linux kernel programming. Along the way, you encounter many
technologies, including TCP/IP, ThingSpeak, IBM Bluemix, MQTT, Cgicc, Power
over Ethernet (PoE), Wi-Fi, NodeMCUs, Bluetooth, NFC/RFID, ZigBee, XBee, cron,
Nginx, PHP, e-mail, IFTTT, GPS, VNC, GTK+, Qt, XML, JSON, multithreading,
client/server programming, VAL2, video streaming, OpenCV, Boost, USB audio,
Bluetooth A2DP, text-to-speech, LKMs, kobjects, and kthreads!

Conventions Used in This Book

This book is filled with source code examples and snippets that you can use to
build your own applications. Code and commands are shown as follows:

This is what source code looks like.

When presenting work performed in a Linux terminal, it is often necessary
to display both input and output in a single example. A bold type is used to
distinguish the user input from the output. For example:

pieerpi ~ $ ping www.raspberrypi.org

PING lb.raspberrypi.org (93.93.128.211) 56(84) bytes of data.
64 bytes from 93.93.128.211: icmp seg=1 ttl=53 time=23.1 ms
64 bytes from 93.93.128.211: icmp seg=2 ttl=53 time=22.6 ms

The $ prompt indicates that a regular Linux user is executing a command,
and a # prompt indicates that a Linux superuser is executing a command. The
ellipsis symbol (. . .) is used whenever code or output not vital to understanding
a topic has been cut. Editing the output like this enables you to focus on only the
most useful information. In addition, an arrow symbol on a line entry indicates
that the command spans multiple lines in the book but should be entered on a
single line. For example:

pi@erpi /tmp $ echo "this is a long command that spans two lines in the -
book but must be entered on a single line" >> test.txt

Introduction

xxiii

You are encouraged to repeat the steps in this book yourself, whereupon
you will see the full output. In addition, the full source code for all examples
is provided along with the book using a GitHub repository.

You'll also find some additional styles in the text. For example:

m New terms and important words appear in italics when introduced.

m Keyboard strokes appear like this: Ctrl+C.
m All URLs in the book refer to HTTP/S addresses and appear like this:

www . exploringrpi.com.

m A URL shortening service is used to create aliases for long URLs that are
presented in the book. These aliases have the form tiny.cc/erpilo2 (e.g,
link two in Chapter 1). Should the link address change after this book is
published, the alias will be updated.

There are several features used in this book to identify when content is of
particular importance or when additional information is available:

m This type of feature contains important information that can help you
avoid damaging your Raspberry Pi board.

\[oll3 This type of feature contains useful additional information, such as links to
digital resources and useful tips, which can make it easier to understand the task at hand.

FEATURE TITLE

This type of feature goes into detail about the current topic or a related topic.

EXAMPLE: EXAMPLE TITLE

This type of feature typically provides an example use case, or an important task that
you may need to refer to in the future.

What You'll Need

Ideally, you should have a Raspberry Pi board before you begin reading this
book so that you can follow along with the numerous examples. If you have
not already purchased a Raspberry Piboard, I recommend the Raspberry Pi 3
Model B. Although it is presently the most expensive board ($35-$40), it is also
the most powerful. This board has a 64-bit quad-core processor, a wired network
adapter, wireless Ethernet, and onboard Bluetooth; therefore, it has all the fea-
tures required to run any example in this book. You can purchase a Raspberry

http://www.exploringrpi.com

XXiv

Introduction

Pi board in the United States from online stores such as Adafruit Industries,
Digi-Key, SparkFun, and Jameco Electronics. They are available internationally
from stores such as Farnell, Radionics, and Watterott.

A full list of recommended and optional accessories for the Raspberry Pi is
provided in Chapter 1. If you do not yet have a Raspberry Pi, you should read
that chapter before purchasing one. In addition, the first page of each chapter
contains a list of the electronics components and modules required if you want
to follow along. The book website (www.exploringrpi.com) provides details
about how to acquire these components.

I purposefully focus the examples in this book on the lowest-cost and most
widely available components, breakout boards, and modules that I could identify
that meet the needs of the examples. This should help you follow along with
many examples, rather than focusing your budget on a small few. Indicative prices
are listed throughout the book to give you a feel for the price of the components
before you embark on a project. They are the actual prices for which I purchased
the items on websites such as ebay . com, amazon.com, and aliexpress.com.

No products, vendors, or manufacturers listed in this book are the result
of any type of placement deal. | have chosen and purchased all the products myself
based on their price, functionality, and worldwide availability. Listed prices are indica-
tive only and are subject to change. Please do your own research before purchasing
any item that is listed in this book to ensure that it truly meets your needs.

Errata

We have worked really hard to ensure that this book is error free; however, it
is always possible that some were overlooked. A full list of errata is available
on each chapter’s web page at the companion website (www . exploringrpi . com).
If you find any errors in the text or in the source code examples, I would be
grateful if you could please use the companion website to send them to me so
that I can update the web page errata list and the source code examples in the
code repository.

Digital Content and Source Code

The primary companion site for this book is www.exploringrpi.com. It is main-
tained by the book’s author and contains videos, source code examples, and
links to further reading. Each chapter has its own web page. In the unlikely
event that the website is unavailable, you can find the code at www.wiley.com/

go/exploringrpi.

http://www.exploringrpi.com
http://www.exploringrpi.com
http://www.exploringrpi.com
http://www.wiley.com
http://www.wiley.com/go/exploringrpi
http://www.exploringrpi.com

Introduction

I have provided all the source code through GitHub, which allows you to
download the code to your Raspberry Pi with one command. You can also eas-
ily view the code online at tiny.cc/erpioo1. Downloading the source code to
your Raspberry Pi is as straightforward as typing the following at the Linux
shell prompt:

pi@erpi ~ $ git clone https://github.com/derekmolloy/exploringrpi.git

If you have never used Git before, don’t worry; it is explained in detail in
Chapter 3.
Now, on with even more adventures!

In This Part

Chapter 1: Raspberry Pi Hardware

Chapter 2: Raspberry Pi Software

Chapter 3: Exploring Embedded Linux Systems
Chapter 4: Interfacing Electronics

Chapter 5: Programming on the Raspberry Pi

Raspberry Pi Hardware

In this chapter, you are introduced to the Raspberry Pi (RPi) platform hard-
ware. The chapter focuses on recently released Raspberry Pi models and
describes the various subsystems and physical inputs/outputs of the boards.
In addition, the chapter lists accessories that can prove helpful in developing
your own Raspberry Pi-based projects. By the end of this chapter, you should
have an appreciation of the power and complexity of this physical-computing
platform. You should also be aware of the first steps to take to protect your
board from physical damage.

Introduction to the Platform

The RPi models are capable general-purpose computing devices, and for that
reason they have found favor for introducing learners to general computing
and computer programming. The RPi models, some of which are illustrated
in Figure 1-1, are also capable physical computing devices that can be used for
embedded systems applications—and for Internet-attached embedded applica-
tions in particular.

4

Partl

Raspberry Pi Basics

(GPIO headers are
unpopulated)

:I
]
O]
L)
e
L
®
(]
C)
)
e
]
C]
o
®
L)
o
C
e
®
0

RPiZero

.-lr‘

RPi3

-

Figure 1-1: Raspberry Pi platform board examples (to relative scale)

Some general characteristics of RPi devices include the following:

m They are low cost, available for as little as $5-$35.

m They are powerful computing devices. For example, the RPi 3 contains

a 1.2 GHz ARM Cortex-A53 processor that can perform more than 700
million Whetstone instructions per second (MWIPS).!

They are available in a range of models that are suitable for different
applications (e.g., the larger-format RPi 3 for prototyping and the tiny-
format RPi Zero or Compute Module for deployment).

They support many standard interfaces for electronic devices.

They use little power, running at between approximately 0.5 W (RPi Zero
when idle) and approximately 5.5 W (RPi 3 under load).

They are expandable through the use of Hardware Attached on Top (HAT)
daughter boards and USB devices.

They are supported by a huge community of innovators and enthusiasts,
who generously give of their time to help the RPi Foundation with their
educational mission.

The RPi platform can run the Linux operating system, which means that
you can use many open source software libraries and applications directly

! www.roylongbottom.org.uk/Raspberry%20Pi%20Benchmarks.htm

http://www.roylongbottom.org.uk/Raspberry%20Pi%20Benchmarks.htm

Chapter 1 = Raspberry Pi Hardware

with it. Open source software driver availability also enables you to interface
devices such as USB cameras, keyboards, and Wi-Fi adapters with your project,
without having to source proprietary alternatives. Therefore, you have access to
comprehensive libraries of code that have been built by a talented open source
community; however, it is important to remember that the code typically comes
without any type of warranty or guarantee. If there are problems, you have to
rely on the good nature of the community to resolve them. Of course, you could
also fix the problems yourself and make the solutions publicly available.

One impressive feature of recent RPi models is that their functionality can
be extended with daughter boards, called HATs (Hardware Attached on Top), that
connect to the GPIO header (the 40-pin double-pin connector row on the boards
in Figure 1-1). You can design your own HATs and attach them securely to your
RPi using this header. In addition, many HATSs are available for purchase that
can be used to expand the functionality of your RPi platform. Some examples
of these are described toward the end of this chapter.

Who Should Use the RPi

Anybody who wants to transform an engineering concept into a real interactive
electronics project, prototype, or work of art should consider using the RPi. That
said, integrating high-level software and low-level electronics is not an easy
task. However, the difficulty involved in an implementation depends on the
level of sophistication that the project demands. The RPi community is work-
ing hard to ensure that the platform is accessible by everyone who is interested
in integrating it into their projects, whether they are students, makers, artists,
or hobbyists. For example, the availability of the Scratch visual programming
tool on the RPi (tiny.cc/erpi101) is an excellent way to engage children with
both computer programming and the RPi.

For more advanced users with electronics or computing knowledge, the RPi
platform enables additional development and customization to meet specific
project needs. Again, such customization is not trivial: You may be an electron-
ics expert, but high-level software programming and/or the Linux operating
system might cause you difficulty. Or you may be a programming guru but
you have never wired an LED! This book aims to cater to all types of users who
are interested in interfacing with the RPi, providing each type of reader with
enough Linux, electronics, and software exposure to ensure that you can be
productive, regardless of your previous experience level.

When to Use the RPi

The RPi is perfectly placed for the integration of high-level software and low-
level electronics in any type of project. Whether you are planning to build an
automated home management system, robot, multimedia display, Internet of

Part | = Raspberry Pi Basics

Things (IoT) application, vending machine, or Internet-connected work of inter-
active art, the RPi has the processing power to do whatever you can imagine
of an embedded device.

The major advantage the RPi and other embedded Linux devices have over
more traditional embedded systems, such as the Arduino, PIC, and AVR micro-
controllers, is apparent when you leverage the Linux OS for your projects. For
example, if you build a home automation system using the RPi and you then
decide that you want to make certain information available on the Internet, you
can simply install the Nginx web server. You could then use server-side scripting
or your favorite programming language to interface with your home automa-
tion system to capture and share information. Alternatively, your project might
require secure remote shell access. In that case, you could install a Secure Shell
(SSH) server simply by using the Linux command sudo apt install sshd (as
covered in Chapter 2). This could potentially save you weeks of development
work. In addition, you have the comfort of knowing that the same software is
running securely on millions of machines around the world.

Linux also provides you with device driver support for many USB peripherals
and adapters, making it possible for you to connect cameras, Wi-Fi adapters, and
other low-cost consumer peripherals directly to your platform without the need
for complex/expensive software driver development.

The RPi is also an excellent device for playing high-definition video. The RPi
has this capability because its Broadcom BCM2835/6/7 processor was designed
for multimedia applications, and it has a hardware implementation of H.264/
MPG-4 and MPG-2/VC-1 (via additional license) decoders and encoders. The
RPi has found popular use for multimedia applications such as running the
Kodi home media center? (www.kodi . tv) for playing full-HD video content.

When to Not Use the RPi

The Linux OS was not designed for real-time or predictable processing. This
would be problematic if, for example, you want to sample a sensor precisely
every one millionth of a second. If the precise time arises to take a sample and
the kernel is busy with a different task, it cannot be easily interrupted. Therefore,
in its default state, the RPi is not an ideal platform for real-time systems applica-
tions. Real-time versions of Linux are available, but they are currently targeted
at very experienced Linux developers, and there are limits to their real-time
capabilities. However, the RPi can be combined with real-time service processors,
and the RPi can be used as the “central intelligence.” You can interconnect such
real-time microcontrollers to the RPi via electrical buses (e.g., I°C, UART) and

2 Formerly known as XBMC.

http://www.kodi.tv

Chapter 1 = Raspberry Pi Hardware

Ethernet, and have the RPi act as the central processor for a distributed control
system. This concept is described in Chapters 11, 12, and 13.

The RPi platform is not ideal for project developments that are likely to be
commercialized. The Raspberry Pi platform largely utilizes open source soft-
ware (there are some closed-source blobs used with the GPU), but it is not open
source hardware. Schematics are available for RPi boards (e.g., tiny.cc/erpi1o2),
but there is a lack of documentation on the hardware used. In addition, the
Broadcom bootloader license® explicitly states that its redistribution in binary
form is only permitted if it will “... only be used for the purposes of developing for,
running or using a Raspberry Pi device.” It is unlikely that such a license would
transfer to a product of your own design.

As described earlier in this chapter, the focus of the RPi Foundation is on edu-
cation, and product commercialization is far from that brief. If you are planning
to build an embedded Linux project that is to be commercialized, you should
examine the BeagleBone platform, which is entirely open source and is sup-
ported by strong Texas Instruments documentation. In addition, you should of
course purchase my book Exploring BeagleBone from the same Wiley mini-series.

RPi Documentation

This book integrates my experiences in developing with the RPi platform along
with supporting background materials on embedded Linux, software devel-
opment, and general electronics, to create an in-depth guide to building with
this platform. However, it is simply not possible to cover everything in just one
book, so I have avoided restating information that is listed in the key documents
and websites described in this section. The first starting point for supporting
documentation is the following website:

m The Raspberry Pi Foundation website: This provides the main support
for the RPi platform, with blogs, software guides, community links, and
downloads to support your development. See www . raspberrypi.org.

A huge amount of documentation is available on the RPi platform, but the
most important documents for this book are as follows:

m The Raspberry Pi Documentation: This is the official documentation for
the RPi that is written by the Raspberry Pi Foundation. It includes guides
on getting started, configuration, guides to Linux distributions, and more.

See www.raspberrypi.org/documentation/.

3github.com/raspberrypi/firmware/blob/master/boot/LICENCE.broadcom

http://www.raspberrypi.org
http://www.raspberrypi.org/documentation

8 Part | = Raspberry Pi Basics

m Broadcom BCM2835 ARM Peripherals Datasheet: This is the core docu-
ment that describes the processor on most RPi models (except the RPi2/3).
Itis 200 pages long and provides a technical description of the functionality
and capabilities of the processor on the RPi. See tiny.cc/erpi103. There
is also an important errata document at tiny.cc/erpilo4.

m The BCM2836 Document: This document describes features of the pro-
cessor on the RPi 2, and related features on the RPi 3. It should be read
in association with the previous Broadcom document for the BCM2835.
See tiny.cc/erpilos.

Key websites are also available to support your learning on this platform,
with combinations of tutorials, discussion forums, sample code libraries, Linux
distributions, and project ideas to stimulate your creative side. Here is a selec-
tion of important websites:

m The website for this book: www.exploringrpi.com
m My personal blog site: www.derekmolloy.ie

m The eLinux.org website: www.elinux.org

Getting started with the RPi platform software is described in Chapter 2. The
remainder of this chapter discusses the RPi hardware platform, explaining the
functionality that is available, summarizing the technical specifications, and
providing some examples of the types of peripherals and HATs that you might
like to connect to the RPi.

The RPi Hardware

At their heart, the RPi boards use the Broadcom BCM2835, BCM2836, and
BCM2837 system on a chip (SoC). Several different RPi models are currently
available, and the content in this book is perfectly applicable to all of them.
However, the book focuses on more recent versions of the RPi that have a 40-pin
GPIO header (for example, the RPi A+, B+, 2, 3, and Zero). If you have yet to
purchase an RPi model, it is recommended that you purchase the RPi 3. It sup-
ports wired and wireless networking, and has a multicore processor, which
means that it supports the superset of all the concepts described in this book.
The RPi A+ and Zero do not have a wired network interface, and the RPi B+
does not have a multicore processor, but the majority of examples in this book

http://www.exploringrpi.com
http://www.derekmolloy.ie
http://www.elinux.org

Chapter 1 = Raspberry Pi Hardware

also work perfectly well with them. If you are to use the RPi A+ or RPi Zero, it
is recommended that you skip forward to the beginning of Chapter 13 so that
you can read about configuring a USB wireless network adapter.

Raspberry Pi Versions

Figure 1-2 provides a summary feature comparison of the different RPi models
that are presently available. Here is a quick summary of this table:

m Jf you need an RPi for general-purpose computing, consider the RPi 3.
The 1 GB of memory and 1.2 GHz quad-core processor provide the best
performance out of all the boards.

m For applications that interface electronics circuits to the Internet on a
wired network, consider the RPi 3, RPi 2, or RPi B+, with cost being the
deciding factor.

m [f you need a small-footprint device with wireless connectivity, consider
the RPi Zero. The RPi A+ could be used to develop the initial prototype.

m [f you want to design your own PCB that uses the RPi (or multiple RPi
boards), investigate the Compute module.

Muodel AP 3 RPi 2 RPi B+ RPi A+ fiPi Zero AP B Compute

Cl p Wi-Fi pi Ethernet Ethernet price price/size original integration/eMMC
Bluetooth/Ethemet
Price 535 535 525 520 554 535 340 (530 volume)
Processor* BCM2837 guad core BCM2E36 quad core BCM2835 BCM2835 BCM2835 BCM2A35 BCMZE3S
| Linux ARNVT Linux ARMNT Linux ARNWE Linux ARMVE Linux ARNWG Linux ARNNE Linux ARMyE
Speed 1.2GHz 500 MHz 700 MHz 700 MHz 1GHz 00 MHz FOOMHz
Memory 1GB 1GB 512 ME 256 MB 512 MB 512 M8 512ME
Typical power 2.5W [up to B.5W) 25W {up to 4.1W} 1W [upto L5W) 1W [upto LEW) I1W(uptoL5W) 1W(uptol5W) 1W jup to L5W)
|US8 Ports 4 4 4 2l 107G 2 via header
Ethernet 104100 Mbps, Wi-Fi, 10/100 Mbps 10/100 MBps none none 10/100Mbps none
and Bluetoath
Storage micro-50 micro-50 micro-50 micro-50 micro-50 50 4GB eMMC
Video HDMI HOMI HOMI HOME mini-HOMI HoMI HOMI via edge
compaosite compasite composite composite composite RCA video TV DAL via edge
Audio HOMI digital audio and analog stereo via a 3.5 mm jack [where available} via edge connector
GPU Dual Core VideoCore IV Multimedia Co-Processor at 250MHz (24 GFLOPS)
Camera [C51) yes Yes yes yes no yes C5lx Zviaedge
Display | D51} ¥es yes yes yes no yes DSl x 2 via edge
GPIO header 40pins 40 pins 40 pins 40 pins 40 pins 26 pins 48 pins via edge
Usage General-purp I-purpose |-purp Low-cost general- Low-cost small- General-purpose Sultable for plugging into
ing and ing. High- [ing. Internet- purpose computing. profile standalone legacy user-created PCBs using &
netwarking. High- performance connected host. Standalone electranics applications. DDR2 S0DIMM connector,
perfarmance interfacing. Video Video streaming electronics interfacing Interfacing Internet- Open-source breakout
interfacing. Video streaming applications projects connected host board available
streaming

Details in this table were gleaned from articles and documents from the RPi Foundation website {www.raspberrypl.org).

* The BCM2835 is an ARMLI76/ZF-5 (ARM1L processor architecture) that has full entitlement to an ARMvE software architecture. The BCM2836 is a quad-core ARM Cortex-AT
processor that has a NEON Data Engine and full entitiement to an ARMY7 software architecture. The BOM2E3T (s a 64-bit ARMVE quad-core ARM Cortex-AS3 processor that has a
MNEON Data Engine and full entittement to an ARMVT software architecture.

Figure 1-2: A summary comparison of commonly available RPi models

10

Part | = Raspberry Pi Basics

The Raspberry Pi Hardware

Figure 1-3 and Figure 1-4 detail the core systems of typical RPi models. Figure
1-3(a) illustrates the RPi Zero, and the key systems identified by the callouts 1-11
are described in more detail in Figure 1-4. Similarly, Figure 1-3(b) illustrates
the equivalent key systems on the RPi 3, and the callouts 1-15 are described in
more detail in Figure 1-4.

(a) 1GHz Broadcom BCM2835 ARM11 SoC
pin (2 » 20) GPIO header

z 0 2
@ ¢ Uy 3] <4 reset button @

512MB LPDDR2 (on top of processor)

unpopulated composite

video header @
2
) @ACT LED

5V power
USB micro

micro-SD

micro USB port

(b) 1200 MHz Broadcom BCM2837 ARM Cortex-A53 SoC
. reset button

©

40 pin (2 % 20) GPIO header 40

-]
c
c
2
= 4 x USB ports
a
1}
K
=5
] SMSC
o E LANS514
w
= 8
= =
28

1) 10/100 BaseT
Ethernet
connector

5
% 5V power 4-pole 3.5mm jack (audio and video)
a USB micro CSl connector

Figure 1-3: The inputs/outputs and subsystems on two RPi models (to relative scale): (a) The RPi
Zero; and (b) The RPi 3

Figure 1-4 details the various inputs and outputs that are available on the
GPIO header. On recent RPi models (A+, B+, 2, 3, and Zero), there are 40 pins in
total on this header (2 x 20); however, not all are available for general-purpose
input/outputs (GPIOs). Several of the connections have a fixed configuration:

m 8§ pins are connected to ground.

Chapter 1 = Raspberry Pi Hardware

11

m 4 pins are allocated to voltage supplies: 3.3 V (up to 50 mA) and to 5 V
(up to 300 mA).

m 2 pins are reserved for HATs (discussed later in this chapter) but they can
be re-tasked (see Chapter 8).

The remaining 26 connectors are available to be multiplexed to many differ-
ent functions, several of which are listed in Figure 1-4 (under the GPIOs head-
ing). The function of each of these input/output types is described in detail in
Chapter 6 and Chapter 8.

Function
Processor

Video Out

GPIOs

©Ooe o0 ©

USB Hub

Reset
Power LED
Activity LED
Network

Camera

Display

Audio and Video

USB-to-Ethemet

Physical
BCM283x (CPU)

| Graphics Engine (GPU)

256MB to 1GE DDR

micro-5D card

micro-USE connector

HOMI or
mini-HOMI connector
40 pin {or 26 pin)
GPIO header

26% GP|Os

2x IPCbus

5Pl bus

UART

PWM

GPCLK
USB Connectors

Unpopulated RUN
4-pole 3.5 mm jack
PWR LED
ACT LED
SMSC LANS514

RI-45 Ethernet
sl

DSl

Details
The RPi boards use the Broadcom BCM2835/BCM2836/BCM2837 processor. The different
boards use slightly different processors that run between 700 MHz and 1.2 GHz and are
based on ARMvE, ARMvY, ARMv11, and ARMvS AS3 processor cores.
Broadcom VideoCore® IV 30 graphics subsystem with a OpenGL ES 1.1and 2.0 driver.
The amount of system memory affects performance and the use of the RPi as a general-
purpose computing device. Memory is shared between the CPU and GPU.
The RPi boards all boot from a micro-5D or 5D card, with the exception of the Compute
module. It has an on-board eMMC, which is effectively an 5D card on a chip. The RPi 3
uses a friction-fit slot, rather than a click-in/click-out slot.
A5V supply is required that should ideally deliver a current of at least 1.1A and ideally
2.5A for the RPi 3. There is over-current protection on this input. Be careful not to confuse
the USB hub and USB power inputs on the RPj Zero.
Used to connect the RPi boards to a monitor or television. The RPi models support 14
output resolutions, including full-HD (1920 % 1080) and 1920x 1200.
40 pins that are multiplexed to provide access to the features listed on the following table
rows. Not all functionality is available at the same time, These inputs and outputs are
described in detail in Chapter 6 and Chapter 8.
General purpose inputs outputs that are used for reading or writing binary data. The
maximum number of GPIOs is 26 on the 40 pin RPi models, All GPIOs are 3.3V tolerant,
Using buses and other interfaces reduces the number of available GPIOs.
1’Cis a digital bus that allows you to connect several modules to each of the two-wire
buses at the same time. One of these two buses is reserved for HAT support,
Serial peripheral interface (SPI) provides a synchronous serial data link over short
distances. It uses a master/slave configuration and requires 4 wires for communication.
The RPi SPI bus has Linux support for two slave select lines.
Used for serial communication between two devices. The RPi typically (except the RPi 3)
has one UART device that is allocated by default to providing a serial console connection.
Pulse width modulation {PWM) outputs allow you to send a type of analog output that can
be used to control devices (e.g., motors), There is at least one hardware PWM output on
all RPi boards, and two on more recent boards,
General purpose clocks (GPCLK) allow you to establish accurate timing signals.
There is an internal USB hub on RPi models with varying numbers of inputs, For example,
the RPi 2/3 has five internal USB ports —one is connected to the Ethernet port and the
other four are available for external connection.
Can be used as a reset button for the RPi. This topic is described later in Chapter 1.
This provides composite video and stereo audio on more recent boards.
Indicates that the board is powered (not on the RPi Zero).
Indicates that there is activity on the board (i.e., it flashes on 5D card activity).
This IC provides a USB 2.0 hub and a 10/100 Ethernet Controller, The RPi boards connect to
the Internet via USB rather than an on-board Ethernet controller within the SoC.
10/100 Mbps Ethernet via a RI45 connector. The RPi 3 has on-board Wi-Fi and Bluetooth
using a BCM43438. See the Optional Accessories section in this chapter.
The RPi has a Mobile Industry Processor Interface (MIPI) Camera Serial Interface (CSI), a
15-pin connector that can be connected to a special-purpose camera. See Chapter 15.
The Display Serial Interface (DS) is an interface that is typically used by mobile phone
vendors to interface to a screen display. There are few displays avallable that support this
interface —one example is the 7" Raspberry Pi Touchscreen (800x 480 display).

Figure 1-4: Table of general RPi subsystems and connectors

12

Part | » Raspberry Pi Basics

A RESET BUTTON FOR THE RASPBERRY Pi

The RPi does not have a power or a reset button, which means that if a system lock-
up occurs you must unplug and replug the micro-USB power supply. This task can be
awkward and can lead to physical damage of the RPi. (On older models, a common
issue is that a large 220 pF capacitor is often used for physical leverage when unplug-
ging the USB power input and it tends to fall off!) A low-cost leaded PC power/reset
switch, such as that in Figure 1-5(a), can be used to provide a solution. A two-pin male
header can be soldered to the unpopulated RUN header on RPi models, as illustrated
in Figure 1-5(b), and the switch attached as in Figure 1-5(c). One advantage of the
leaded switch is that it can be attached to the outside of a case that contains the RPi.

Figure 1-5: A power/reset button for the RPi: (a) A PC power/reset button; (b) A two-pin male
header that is soldered to the board; and (c) Attachment of the PC power/reset button

Should you attach such a button to the RPi, it should not be used to routinely reset
the RPi; rather, software commands should be issued, as described in Chapter 2.

Raspberry Pi Accessories

The RPi has minimal external requirements to use the board, typically as follows:

m A USB 2.0 cable (usually a micro-USB plug to USB-A plug) that is used
to connect the RPi to a power supply, such as a desktop computer or USB
mains supply (e.g., a cell phone charger)

m A micro-SD card that is used to contain the operating system, which is
used to boot the board

m A CAT 5 network patch cable to connect your RPi to the network using
its RJ-45 10/100 Ethernet connector

The RPi can be connected to a display using a HDMI cable (a mini-HDMI

cable for the RPi Zero), but most of the examples in this book assume that the
RPi is used in headless mode—that is, not connected directly to a display; rather,

Chapter 1 = Raspberry Pi Hardware 13

the RPi is used as a networked device that interfaces to electronic circuits, USB
modules, and wireless sensors.

Important Accessories

The following accessories are important for purchase along with your RPi board.

External 5V Power Supply (for Powering the RPi)

The RPi is best powered using a micro-USB cable that is connected to a good-
quality 5 V power supply (+5%) that is rated to deliver a current of at least 1.1
A (1,100 mA) for older boards, and 2.5 A (2,500 mA) for the RPi 3. RPi boards
typically require 500 mA-700 mA, but some USB peripherals (e.g., Wi-Fi adapt-
ers and webcams) have significant power requirements. The micro-USB input
on the RPi boards has a Polyfuse, which limits current input to approximately
1,100 mA (with 700 mA hold current; see Chapter 4) on most RPi models, and
2,500 mA on the RPi 3. You can connect a USB power supply that is capable
of supplying current of greater than 2,500 mA, but do not connect one that sup-
plies voltage outside the range 4.75 V-5.25 V (i.e,, 5 V + 5%).

If you are having stability problems such as random reboots, random crashes,
or keyboard problems, the power supply is the likely culprit. The power supply
may not be able to deliver adequate current or it (or the connecting USB cable) may
be of a poor quality and operating outside of tolerance. For example, some poor-
quality “generic” 5 V power supplies may be advertised by vendors as suitable
for a1 A current supply (possibly referring to a short-circuit current limit), but
their output voltage level may drop to unacceptable levels as the current drawn
increases. Should you suspect such a problem, you should measure the voltage
level on the RPi. On newer models, you use PP1 or PP2 and GND (or any of the
metal shielded components), as illustrated in Figure 1-6(a). On older models use
TP1 and TP2.

(a)]]]] (b)

(USB OTG Adapter J|
GIZD
mini-HDOMI to HDMI Adapter }

[(HOMI to DVI cable |

Figure 1-6: (a) Testing that the RPi supply voltage level is in the range 4.75Vt0 5.25V (i.e, 5V +
5%); (b) The RPi Zero and its associated connectors

14

Part | » Raspberry Pi Basics

Micro-SD Card (for Booting an Operating System)

Purchase a genuine, branded micro-SD card of at least 8 GB capacity. You may
also require a micro-SD-to-SD adapter so that it can be used in your computer’s
card reader. Older RPi boards (e.g., A, B) require full-size SD cards, and such
an adapter can be used with them. Many micro-SD cards are bundled with an
adapter, which is a cheaper option than purchasing them separately.

The micro-SD card should be of Class 10 or greater, because the faster read/
write speed will save you time in writing images in particular. Ideally, you
should use an 8 GB to 32 GB micro-SD card with wear-leveling functionality
because it will extend the lifespan of the card, particularly if you format but do
not consume the full capacity. Larger micro-SD cards also work, but they may
be cost prohibitive. (Alternative approaches to increasing the storage capacity
of the RPi using USB storage devices are shortly discussed.)

Ethernet Cable (for Network Connection)

The RPi B/B+/2/3 can be connected to the Internet using a wired network con-
nection. The RPi A/A+/Zero can be connected to the Internet using a USB wire-
less adapter. If you are connecting an RPi to your wired network, don’t forget
to purchase a CAT 5 network patch cable to connect your RPi to the network
using its RJ-45 10/100 Ethernet connector. If you plan to use more than one RPi
simultaneously, you could invest in a low-cost four-port switch, which can be
placed close to your desktop computer.

Recommended Accessories

The following accessories are recommended for purchase along with your RPi
board. If you are planning to carry out development work with the RPi, you
should probably have all of them.

HDMI Cable (for Connection to Monitors/Televisions)

The RPi can be easily connected to a monitor or television that has a HDMI or
DVI connector. The majority of RPi models have a full-size HDMI connector.
However, the RPi Zero has a mini-HDMI socket (HDMI-C), so be careful to match
that to your monitor/television type (usually HDMI-A or DVI-D). The cable that
you are likely to need for the RPi Zero is an HDMI-Mini-C plug to HDMI-A
male plug. A 1.8 M (6 ft.) cable should cost no more than $10. Be careful with
your purchase; an HDMI-D (micro-HDMI) connector will not fit the RPi Zero.

Alternatively, you can purchase a low-cost ($3) mini-HDMI (HDMI-C) plug
to regular HDMI (HDMI-A) socket adapter or mini-HDMI (HDMI-C) plug to
DVI-D socket adapter cable. These enable you to use regular-size HDMI-A or
to connect to DVI-D devices, respectively (see Figure 1-6(b)).

Chapter 1 = Raspberry Pi Hardware

15

RPi ZERO USB ON-THE-GO (OTG)

The RPi Zero uses USB On-The-Go (OTG) to connect to USB peripherals. USB OTG

is often used for devices that switch between the roles of USB client and host. For
example, USB OTG connectors are often used to allow cell phones or tablet comput-
ers to connect to external USB storage devices. The USB OTG connector allows the RPi
host to connect to a slave device such as a Wi-Fi or Bluetooth adapter, as illustrated in
Figure 1-6(b).

USB to Serial UART TTL 3.3 V (for Finding Problems)

The USB-to-TTL UART serial cable, as illustrated in Figure 1-7(a), is one accessory
that proves really useful when there are problems with the Linux installation
on your board. It can provide you with a console interface to the RPi without
the need for connection to an external display and keyboard.

Ensure that you purchase the 3.3 V level version and ideally purchase a ver-
sion with 0.1” female headers pre-attached. This cable contains a chipset and
requires that you install drivers on your desktop computer, creating a new COM
port. The FTDI TTL-232R-3V3 cable works well and provides a very stable con-
nection (~$20). See tiny.cc/erpi1os for the datasheet and the VCP link to the
software drivers for this adapter cable.

(@) (b)

g
. "e"‘“" \'

T .
|'l*1"]‘|‘11|| |] %‘

(protection Jumper_ -

Figure 1-7: (a) The USB-to-TTL 3.3V serial cable and, (b) its connection to the RPi

The cable connects to the serial UART on the RPi, which is available via the
GPIO header. With the RPi powered using a regular USB 5 V supply, connect
the cable to the RPi in the following way (as illustrated in Figure 1-7(b)):

m The black ground (GND) wire to Pin 6 on the GPIO header, which is the
RPi GND pin

m The yellow receive (RXD) wire to Pin 8 (GPIO14) on the GPIO header,
which is the UART transmit pin (TXDO)

m The orange transmit (TXD) wire to Pin 10 (GPIO15) on the GPIO header,
which is the UART receive pin (RXDO)

16

Part | = Raspberry Pi Basics

Note that the 40-pin GPIO header is described in detail in Chapter 6. The
exact use of this cable is described in Chapters 2, 3, and 8.

This cable is also used to test the UART connection on the RPi in Chapter 8
and to program the Arduino Pro devices in Chapter 11.

m The RPiis 3.3 V tolerant but makes a 5 V supply available on the GPIO
header pins 2 and 4. The easiest way to destroy the RPi is to accidentally connect these
pins to a circuit that requires 3.3 V logic levels, or to accidentally short these pins with
other pins on the GPIO header. To help prevent accidental contact, you can bridge
these pins with an insulated jumper connector, as illustrated in Figure 1-7(b). The plas-
tic cover insulates the pins from contact and prevents you from mistakenly connecting
a 5V supply to your circuit.

Optional Accessories

The following sections describe optional accessories that you may need, depend-
ing on the applications that you are developing.

USB Hub (to Connect to Many USB Devices)

Most RPi models have a built-in USB hub that allows several devices to be con-
nected to the RPi simultaneously. If you plan to connect many devices to the
RPi, you will need an external USB hub. USB hubs are either bus powered or
externally powered. Externally powered hubs are more expensive; however, if
you are using several power-hungry adapters (Wi-Fi in particular), you may
need a powered hub.

One issue that you have to be aware of with powered USB hubs is that many
are back feeding. Back feeding (back powering) is where a USB hub connected
to the RPi hub (not the micro-USB power) supplies power back into the RPi
through the RPi hub. It can cause difficulties if you have two separate power
supplies competing to power the RPi. In addition, there is no protection on
the RPi hub to prevent excessive current from being drawn.

This is not an issue on more-recent RPi models (e.g., the RPi 2/3) because
circuitry is present to prevent back powering. However, it can also be useful to
use a single power supply for your project. The easy way to do this is to attach
a cable from the powered USB hub to the RPi micro-USB power input.

Micro-HDMI to VGA adapters (for VGA Video and Sound)

Several low-cost HDMI-to-VGA adapters are for sale for converting the HDMI
output to a VGA output. As well as providing for VGA video output, many of
these connectors provide a separate 3.5 mm audio line out, which can be used

Chapter 1 = Raspberry Pi Hardware

17

if you want to play audio using your RPi. There are also USB audio adapters
available that can provide high-quality playback and recording functionality.
These adapters and their usage is described in Chapter 15. Many RPi models
also make composite video and stereo audio available via a four-pole 3.5 mm
connector. A standard 3.5 mm four-pole headphone jack (with microphone) can
be used for this task. The tip of the jack is connected to the left audio channel,
followed by the right audio channel, ground connection, and then the video
channel.

Wi-Fi Adapters (for Wireless Networking)

The RPi 3 has on-board Wi-Fi, but this capability can also be added to other
RPi models using the many different Wi-Fi adapters that are available, such as
those in Figure 1-8(a); however, not all adapters will work on the RPi. The Linux
distribution and the chipset inside the adapter will determine the likelihood of
success. Wi-Fi configuration and applications are discussed in detail in Chapter
13, which tests a range of different low-cost adapters that are widely available.
Be aware that manufacturers can change chipsets within the same product and
that buying an adapter from the list in Chapter 13 does not guarantee that it
will work. You are more likely to succeed if you can confirm the chipset in the
adapter you are planning to purchase and evaluate that against the list. You can
use a small low-cost USB current meter, such as the one illustrated in Figure
1-8(c) ($3), which enables you to gain some insight into the power utilization of
the RPi and the impact of connecting a Wi-Fi adapter.

(@) (b) (@

+— USE power source (e.g., computer)

rKeweis/

Figure 1-8: USB adapters: (a) Wi-Fi adapters; (b) Memory card reader/writer; and (c) A low-cost
USB current and voltage monitor

USB Storage Devices (for Additional Storage)

USB flash drives, USB hard disks, and USB SD card reader/writers can be attached
to the RPi for additional storage. The device can be prepared with a Linux file
system and mounted under the RPi file system (see Chapter 3). One such device

Part | » Raspberry Pi Basics

that is particularly useful is a USB card reader/writer, as illustrated in Figure
1-8(b). These devices have similar prices to USB flash drives, and they support
“hot swapping” of the micro-SD card. In addition, they prove particularly use-
ful if you need to mount the root file system of one RPi on another RPi for file
interchange or to correct a configuration error on the card that is preventing
the other RPi from booting (see Chapter 3). In addition, such a device can be
utilized on a desktop machine to write a new Linux image to a micro-SD card.

USB Webcam (for Capturing Images and Streaming Video)

Attaching an RPi camera, as illustrated in Figure 1-9(a) and Figure 1-9(b), or a
USB webcam, as illustrated in Figure 1-9(c), can be a low-cost way to integrate
image and video capture into your RPi projects. In addition, utilizing Linux
libraries such as Video 4 Linux and Open Source Computer Vision (OpenCV)
enables you to build “seeing” applications. This topic is discussed in detail in
Chapter 15.

Figure 1-9: (a) RPi NoIR Camera, (b) RPi Camera bracket, and (c) Logitech C920 USB webcam

USB Keyboard and Mouse (for General-Purpose Computing)

It is possible to connect a USB keyboard and mouse to the RPi or to use a 2.4
GHz wireless keyboard and mouse combination. Very small wireless hand-
held combinations are available, such as the Rii 174 Mini, Rii 110, and ESYNiC
mini, all of which include a handheld keyboard with integrated touchpad. A
USB Bluetooth adapter is also useful for connecting peripherals to the RPi.
A similar Bluetooth keyboard/touchpad is utilized in Chapter 14.

Cases (for Protecting the RPi)

Many different cases are available for protecting your RPi, including the one
illustrated in Figure 1-10(a) ($6). Cases are useful for protecting the RPi from
accidental short circuits (e.g., placing the RPi on a metal surface), but they do

Chapter 1 = Raspberry Pi Hardware

19

have an impact on the temperature that the RPi operates at (see Chapter 12). Try
to ensure that you purchase a case with adequate ventilation, but avoid noisy
active-ventilation solutions or ridiculous water-cooled solutions!

HATs

HATSs (Hardware Attached on Top) are daughter boards that can be attached to
the GPIO expansion header on the RPi. Add-on boards were available for the
26-pin GPIO header on older RPi models, but the RPi had no formal mechanism
for identifying which daughter board was attached. HATs were introduced in
conjunction with the release of the RPi B+. Some pins on the expanded 40-pin
GPIO header (ID_SD and ID_SC) of newer RPi models are utilized to automati-
cally identify which HAT is attached to the RPi. This allows the Linux OS to
automatically configure pins on the GPIO header and to load drivers that make
working with the HATs very easy.

Figure 1-10(b) illustrates the RPi Sense HAT ($35). It contains an: 8 x 8 LED
matrix display, accelerometer, gyroscope, magnetometer, air pressure sensor,
temperature sensor, humidity sensor, and a small joystick. Figure 1-10(d) illus-
trates a low-cost blank prototyping HAT that can be used to design your own
HAT, which includes space on the bottom right for a surface-mounted EEPROM
that can be used to identify the HAT to the RPi.

~

(a) (b)

(d)

Figure 1-10: RPi Accessories: (a) An example case; (b) The Sense HAT; (c) The T-Cobbler board;
and (d) A prototyping HAT

20

Part | = Raspberry Pi Basics

An alternative to designing your own HAT is to use the T-Cobbler board as
illustrated in Figure 1-10(c) to break out the RPi GPIO header to a breadboard
using a 40-pin ribbon cable, which is available with the T-Cobbler. This sits
neatly into a prototyping breadboard (see Chapter 4), providing clear pin labels
for all of the RPi GPIO pins.

How to Destroy Your RPi!

RPi boards are complex and delicate devices that are very easily damaged if
you do not show due care. If you are moving up from boards like the Arduino
to the RPi platform, you have to be especially careful when connecting circuits
that you built for that platform to the RPi. Unlike the Arduino Uno, the micro-
processor on the RPi cannot be replaced. If you damage the microprocessor
SoC, you will have to buy a new board!

Here are some things that you should never do:

= Do not shut the RPi down by pulling out the USB power supply. You
should shut down the board correctly using a software shutdown proce-
dure (see Chapter 2).

m Do not place a powered RPi on metal surfaces (e.g., aluminum-finish com-
puters) or on worktops with stray /cut-off wire segments, resistors, etc. If
you short the pins underneath the GPIO header, you can easily destroy
your board. You can buy a case such as that in Figure 1-10(a). Alternatively,
you can attach small self-adhesive rubber feet to the bottom of the RPi.

m Do not connect circuits that source/sink other than very low currents
from/to the GPIO header. The maximum current that you can source
or sink from many of these header pins is approximately 2 mA to 3 mA.
The power rail and ground pins can source and sink larger currents. For
comparison, some Arduino models allow currents of 40 mA on each
input/output. This issue is covered in detail in Chapter 4 and Chapter 6.

m The GPIO pins are 3.3 V tolerant. Do not connect a circuit that is powered at
5V; otherwise, you will destroy the board. This is discussed in Chapter 4,
Chapter 6, and Chapter 8.

= Do not connect circuits that apply power to the GPIO header while the
RPi is not powered on. Make sure that all self-powered interfacing circuits
are gated by the 3.3 V supply line or using optocouplers. This is covered
in Chapter 6.

Chapter 1 = Raspberry Pi Hardware

21

You should always do the following:

m Carefully check the pin numbers that you are using. There are 40 pins
on the GPIO header, and it is very easy to plug into header connector
21 instead of 19. The T-Cobbler board in Figure 1-10(c) is very useful for
interconnecting the RPi to a breadboard, and it is highly recommended
for prototyping work.

Summary

After completing this chapter, you should be able to do the following;:
m Describe the capability of the Raspberry Pi (RPi) and its suitability for
different project types.
m Describe the major hardware systems and subsystems on the RPi boards.

m Jdentify important accessories that you can buy to enhance the capability
of your RPi.

m Have an appreciation of the power and complexity of the RPi as a physi-
cal computing platform.

m Be aware of the first steps to take in protecting your board from physical
damage.

Support

The key sources of additional support documentation are listed earlier in this
chapter. If you are having difficulty with the RPi platform and the issues are not
described in the documentation, visit the Raspberry Pi Community Forums at
www . raspberrypi.org/forums/. Please remember that the people on these forums
are community members who volunteer their time to respond to questions.

http://www.raspberrypi.org/forums

Raspberry Pi Software

In this chapter, you are introduced to the Linux operating system and soft-
ware tools that can be used with the Raspberry Pi (RPi). This chapter aims to
ensure that you can connect to your board over a network or serial connec-
tion and control it using basic Linux commands. RPi-specific configuration
tools are examined for customizing and for updating the software on your
board. By the end of this chapter, you should be able to control an onboard
system LED having followed a step-by-step guide that demonstrates how
you can use Linux shell commands in a Linux terminal window. The chapter
finishes with a discussion on how to shut down or reset the board safely
and correctly.

Equipment Required for This Chapter:
m Raspberry Pi board (ideally RPi3, RPi2, or RPiB+)
m USB power cable and power supply
m Micro-SD card (8 GB or greater; ideally class 10+)

m Network infrastructure and cabling, serial cable, or Wi-Fi adapter

Further details on this chapter are available at

www.exploringrpi.com/chapter2/.

23

http://www.exploringrpi.com/chapter2

24

Part | = Raspberry Pi Basics

Linux on the Raspberry Pi

A Linux distribution is a publicly available version of Linux that is packaged
with a set of software programs and tools. There are many different Linux dis-
tributions, which are typically focused on different applications. For example,
high-end server owners might install Red Hat Enterprise, Debian, or OpenSUSE;
desktop users might install Ubuntu, Debian, Fedora, or Linux Mint. At the core
of all distributions is a common Linux kernel, which was conceived and created
by Linus Torvalds in 1991.

In deciding which Linux distribution to use for your embedded system plat-
form, it would be sensible to choose one for which the following apply:

m The distribution is stable and well supported.

m There is a good package manager.

m The distribution is lean and suited to a low storage footprint.
m There is good community support for your particular device.

m There is device driver support for any desired peripherals.

Linux Distributions for the RPi

At their heart, the many different distributions of Linux for embedded system
platforms all use the mainline Linux kernel, but each distribution contains dif-
ferent tools and configurations that result in quite different user experiences.
The main open source Linux distributions used by the community on the RPi
board include Raspbian, Ubuntu, OpenELEC, and Arch Linux.

Raspbian is a version of Debian that is released specifically for the RPi. Debian
(contraction of Debbie and Ian) is a community-driven Linux distribution that has
an emphasis on open source development. No commercial organization is involved
in the development of Debian. Raspbian extends Debian with RPi-specific tools
and software packages (e.g., Java, Mathematica, Scratch). Presently, three different
versions of Raspbian are available for download from the Raspberry Pi website:

m Raspbian Jessie: An image based on Debian Jessie (Debian version 8.x)
that has full desktop support. (Image size: approximately 1.3 GB com-
pressed, 4 GB extracted)

m Raspbian Jessie Lite: A minimal image that is based on Debian Jessie. It
has limited desktop support, but this can be added easily at a later stage.
(Image size: approximately 375 MB compressed, 1.4 GB extracted)

m Raspbian Wheezy: An older image based on Debian Wheezy (Debian
version 7.x) that is available for compatibility with some software pack-
ages. You should choose the Jessie image if possible, particularly if you
are planning to cross-compile applications.

Chapter 2 = Raspberry Pi Software

25

Raspbian (Jessie) is used for the practical steps in this book and it is strongly
recommended as the distribution of choice. In addition, Debian is used throughout
this book as the distribution for the Linux desktop computer because it provides
excellent support for cross-platform development through Debian Cross-Toolchains

(www .debian.org).

Ubuntu is closely related to Debian. In fact, it is described on the Ubuntu
website (www.ubuntu.com) as follows: “Debian is the rock upon which Ubuntu is
built.” Ubuntu is one of the most popular desktop Linux distributions, mainly
because of its focus on making Linux more accessible to new users. It is easy to
install, has excellent desktop driver support, and there are binary distributions
available for the RPi. The core strength of the Ubuntu distribution is its desktop
user experience. If you are using the RPi as a general-purpose computing device
(see Chapter 14), you may find that this distribution best suits your needs.

OpenELEC (www.openelec.tv) has a particular focus on multimedia appli-
cations and on Kodi (www.kodi.tv) in particular. If you want to use the RPi
as a home media center, this distribution may provide the best performance.
OpenElec distributions typically use a read-only file system (e.g., squashfs) for
performance and reliability. However, such optimizations make prototyping
and development work difficult.

Arch Linux (www.archlinuxarm.org) is a lightweight and flexible Linux dis-
tribution that aims to “keep it simple,” targeting competent Linux users in
particular by giving them complete control and responsibility over the system
configuration. Prebuilt versions of the Arch Linux distribution are available
for the RPi. However, compared to the other distributions, it currently has less
support for new Linux users with the RPi platform.

The RPi Foundation developed a Linux installer for new users called NOOBS,
which contains Raspbian but provides ease of download and installation of
other Linux distributions. Many RPi hardware bundles include an SD card
that contains NOOBS. However if you have chosen to download and install a
Raspbian image, you should download the image directly using the instruc-
tions in the next section.

Non-Linux solutions, such as Windows 10 IoT Core and RISC OS, have started
to emerge for the RPi. These are interesting and welcome developments. However,
they currently have limited device support and quite specific programming
requirements when compared to Linux. Because this book focuses on Linux-
based solutions, such distributions are best avoided if you want to follow along.

Create a Linux SD Card Image for the RPi

The easiest way to set up an SD card so that it can be used to boot the RPi is to
download a Linux distribution image file (. MG file in a compressed . zip wrap-
per) from www.raspberrypi.org/downloads and write it to an SD card using

http://www.debian.org
http://www.ubuntu.com
http://www.openelec.tv
http://www.kodi.tv
http://www.archlinuxarm.org
http://www.raspberrypi.org/downloads

26

Part | » Raspberry Pi Basics

an image writer utility. The following image writer tools make this process
straightforward.

m When you write a Linux distribution image file to an SD card,
all previous content on the card is lost. Double-check that you are writing the

downloaded image to the correct device when using the following tools.

m Windows: Use Win32DiskImager (available from tiny.cc/erpi202). Insert
the SD card before you start the application—double-check that you chose
the correct drive for your SD card.

m Mac OS and Linux: Use the dd disk cloning tool (carefully). First identify
the device. It should appear as /dev/mmcblkXpl oOr /dev/sddx under
Linux, or /dev/rdiskx under Mac OS, where x is a number. You must
be certain that X refers to the SD card to which you want to write the
image—for example, check that the available capacity of the device (e.g,,
use cat /proc/partitions) matches the SD card capacity. Then using a
terminal window use the dd command with root privileges, where if is
the input file name and of is the output device name (a block size bs of
1M should work fine):

molloydedesktop:~$ sudo dd bs=1M if=RPi_ image file.img of=/dev/XXX

\[e XN The Win32Diskimager and dd command create a partition on the SD card
that is just big enough for the operating system, regardless of the card’s capacity.
That issue is addressed later in this chapter.

Transfer the SD card to the RPj, attach the network cable, and insert the 5V
micro-USB power supply. You can further attach a USB keyboard, USB mouse,
and HDMI monitor to the RPi to use it as a general-purpose computing device
(see Chapter 14), but for electronics interfacing projects the RPi is typically used
as a standalone embedded device that communicates via a network. Therefore,
the next steps are to connect the RPi to a network and to communicate with it
using the network.

Connecting to a Network

There are two main ways to connect to and communicate with the RPi over the
network: using regular Ethernet or using an Ethernet crossover cable. Connecting
to the RPi over a network can be a stumbling block for beginners. It is usually
straightforward if you are working at home with control of your own network.
However, complex networks, such as those in universities, can have multiple
subnets for wired and wireless communication. In such complex networks,

Chapter 2 = Raspberry Pi Software

27

routing restrictions may make it difficult, if not impossible, to connect to the
RPi over regular Ethernet. Both methods are suitable for connecting your RPi
to Windows, Macintosh, and Linux desktop machines.

Regular Ethernet

By “regular” Ethernet, I mean connecting the RPi to a network in the same way
that you would connect your desktop computer using a wired connection. For
the home user and power user, regular Ethernet is probably the best solution
for networking and connecting to the RPi. Table 2-1 lists the advantages and
disadvantages of using this type of connection. The main issue is the com-
plexity of the network. (If you understand your network configuration and
have access to the router settings, this is by far the best configuration.) If your
network router is distant from your desktop computer, you could purchase
a small network switch ($10-$20) or a wireless access point with integrated
multiport router ($25-$35). The latter option is useful for wireless RPi applica-
tions involving the use of the RPi3/Zero/A+ boards and for extending your
wireless network’s range.

This discussion is also relevant to wireless networking. If you must use a wire-
less connection like the RPi Zero, read the section titled “Wi-Fi Communications” at
the beginning of Chapter 13 and return to this point. To modify the configuration files
for a Wi-Fi adapter, you can use the USB-to-TTL cable (described in the next section).
Alternatively, you could mount the micro-SD card for the target RPi under a desktop
Linux OS (or a second RPi) and modify the configuration files directly.

Table 2-1: Regular RPi Ethernet Advantages and Disadvantages

ADVANTAGES DISADVANTAGES

You have full control over IP address settings You might need administrative control or

and dynamic/static IP settings. knowledge of the network infrastructure.
You can connect and interconnect many The RPi needs a source of power, which
RPi boards to a single network (including can be a mains-powered adapter or Power
wireless devices). over Ethernet (PoE)(see Chapter 12).

The RPi can connect to the Internet without The setup is more complex for beginners
a desktop computer being powered on. if the network structure is complex.

The first challenge with this configuration is finding your RPi on the net-
work. By default, the RPi is configured to request a Dynamic Host Configuration
Protocol (DHCP) IP address. In a home network environment, this service is
usually provided by a DHCP server that is running on the integrated modem-
tirewall-router-LAN (or some similar configuration) that connects the home to
an Internet service provider (ISP).

28

Part | » Raspberry Pi Basics

DHCP servers issue IP addresses dynamically from a pool of addresses for a
fixed time interval, called the lease time, which is specified in your DHCP con-
figuration. When this lease expires, your RPi is allocated a different IP address
the next time it connects to your network. This change can be frustrating, as you
may have to search for your RPi on the network again. (Chapter 13 describes
how to set the IP address of your RPi to be static, so that it is fixed at the same
address each time the board connects.)

You can use any of the following methods to identify the RPi’s dynamic IP
address:

m With a web browser: Use a web browser to access your home router
(often address 192.168.1.1, 192.168.0.1, or 10.0.0.1). Log in and look under
a menu such as Status for the DHCP Table. You should see an entry that
details the allocated IP address, the physical MAC address, and the lease
time remaining for a device with hostname raspberrypi. My hostname
is erpi, for example:
DHCP IP Assignment Table

IP Address MAC Address Client Host Name Leased Time
192.168.1.116 B8-27-EB-F3-0E-C6 erpi 12:39:56

m With a port-scanning tool: Use a tool like nmap under Linux or the Zenmap
GUI version, available for Windows (see tiny.cc/erpi203). Issue the com-
mand nmap -T4 -F 192.168.1.* to scan for devices on a subnet. You are
searching for an entry that has an open port 22 for SSH. It should identify
itself with the Raspberry Pi Foundation (see Figure 2-1(a)) as a result of
the range of MAC addresses allocated to the Foundation. You can then
ping test the network connection (see Figure 2-1(b)).

Figure 2-1: (a) Zenmap scan of the network to locate the RPi; (b) A ping test from the desktop
machine

m With zero-configuration networking (Zeroconf): Zeroconf is a set of tools for
hostname resolution, automatic address assignment, and service discovery.
By default the RPi Raspbian distribution uses an avahi service to support
Zeroconf on your network, which makes the hostname visible. For example,
my board’s hostname is erpi. It is therefore possible to connect to the RPi by
using the string erpi.local:

Chapter 2 = Raspberry Pi Software

29

pi@erpi:~$ systemctl status avahi-daemon
e avahi-daemon.service - Avahi mDNS/DNS-SD Stack
Loaded: loaded (/lib/systemd/system/avahi-daemon.service; enabled)
Active: active (running) since Thu 2015-12-17 21:53:46 GMT; 8h ago
Main PID: 385 (avahi-daemon)
Status: "avahi-daemon 0.6.31 starting up."
CGroup: /system.slice/avahi-daemon.service
}—385 avahi-daemon: running [erpi.locall
L 419 avahi-daemon: chroot helper

Windows machines do not support Zeroconf by default. You can install the
Bonjour Print Services for Windows (or alternatively iTunes) using the link tiny . cc/
erpi204. If this is successful, you should be able to perform a ping test (by default the
name is raspberrypi.local):

C:\Users\Derek> ping erpi.local
Pinging erpi.local [fe80::9005:94c0:109e:9ecd%6] with 32 bytes of data:
Reply from feB80::9005:94c0:109e:9ecd%6: time=1lms ...

m With a USB-to-TTL serial connection: A final option is to use a USB-to-
TTL serial connection to connect to the RPi and type ifconfig to find the
IP address. The address is the “inet addr” associated with the etho adapter.

Ethernet Crossover Cable

An Ethernet crossover cable is a cable that has been modified to enable two
Ethernet devices to be connected directly without the need for an Ethernet
switch. It can be purchased as a cable or as a plug-in adapter. Table 2-2 describes
the advantages and disadvantages of this connection type.

Table 2-2: Crossover Cable Network Advantages and Disadvantages

ADVANTAGES DISADVANTAGES

When you do not have access to network If your desktop machine has only one
infrastructure hardware, you can still connect network adapter, you will lose access to
to the RPi. the Internet. It is best used with a device

that has multiple adapters.

RPi may have Internet access if the desktop has RPi still needs a source of power (can be
two network adapters and sharing is enabled. a mains-powered adapter).

Provides a reasonably stable network setup. May require a specialized Ethernet
crossover cable or adapter. However,
your computer likely has Auto-MDIX.

Most modern desktop machines have an automatic crossover detection func-
tion (Auto-MDIX) that enables a regular Ethernet cable to be used. The RPi’s
network interface also supports Auto-MDIX; therefore, this connection type can
be used when you do not have access to network infrastructure. If you have

30

Part | = Raspberry Pi Basics

two network adapters on your desktop machine (e.g., a laptop with a wired and
wireless network adapter), you can easily share the connection to the Internet
with your RPi by bridging both adapters. For example, these are the steps nec-
essary when using the Windows OS:

1. Plug one end of a regular (or crossover) Ethernet cable into the RPi and
the other end into a laptop Ethernet socket.

2. Power on the RPi by attaching a micro-USB power supply.

3. Bridge the two network connections. Under Windows, choose Network and
Internet ©> Network Connections. Select the two network adapters (wired
and wireless) at the same time, right-click, and choose Bridge Connections.
After some time, the two connections should appear with the status Enabled,
Bridged, and a network bridge should appear, as illustrated in Figure 2-2.

4. Reboot the RPi. Ideally, you should use a USB-to-TTL serial cable to do
this, or the reset button described in Chapter 1. Once the RPi has rebooted,
it should obtain an IP address directly from your network’s DHCP server.

You can then communicate with the RPi directly from anywhere on your
network (including the laptop itself) using the steps described in the next
section. Figure 2-2 provides a configuration example subsequent to the steps
in the following section taking place. As illustrated in the figure, the DHCP
server allocates the laptop the IP address 192.168.1.111 and the RPi the IP
address 192.168.1.115. Therefore, an SSH session from the desktop machine at
IP address 192.168.1.4 to the RPi provides the following interaction:

molloydedesktop:~$ ssh pi@192.168.1.115

pi@192.168.1.115's password: raspberry

Debian GNU/Linux comes with ABSOLUTELY NO WARRANTY, to the extent

permitted by applicable law.

pi@erpi ~ $ echo $SSH CLIENT

192.168.1.4 60898 22

pieerpi ~ $ ping www.google.com

PING www.google.com (213.233.153.230) 56(84) bytes of data.

64 bytes from www.google.com (213.233.153.230):icmp seg=1 ttl=61 time=13.6ms

Router/WAP/DHCP server

Internet optional

192.168.1.115 192.168.1.111 192.168.1.4

Figure 2-2: An Ethernet crossover cable configuration example
Image icons by GNOME icon artists (GNU GPL CC-BY-SA-3.0)

Chapter 2 = Raspberry Pi Software

31

This connection type is particularly useful inside of complex network infra-
structures such as those in universities, because the laptop can connect to the RPi
directly. The RPi can also connect to the Internet, as illustrated by its capability
to ping the Google web server in this example.

Communicating with the RPi

After you have networked the RPi, the next thing you might want to do is
communicate with the RPi. You can connect to the RPi using either a serial
connection over USB-to-TTL or a network connection, as described previously.
The network connection should be your main focus, because that type of con-
nection provides your RPi with full Internet access. The serial connection is
generally used as a fallback connection when problems arise with the network
connection. As such, you may skip the next section, but the information is here
as a reference for when problems arise.

\[eMld The default user account for the Raspbian image is username pi with password
raspberry.

Serial Connection with the USB-to-TTL 3.3V Cable

Serial connections are particularly useful when the RPi is close to your desk-
top computer and connected via a USB-to-TTL cable (as shown previously in
Figure 1-7(a) in Chapter 1). It is often a fallback communications method when
something goes wrong with the network configuration or software services on
the RPi. It can also be used to configure wireless networking on an RPi device
that does not have wired network support. You can connect the cable to the RPi
(as shown previously in Figure 1-7(b) in Chapter 1).

To connect to the RPi via the serial connection, you need a terminal program.
Several Windows-compatible third-party applications are available, including
RealTerm (tiny.cc/erpi205) and PuTTY (www.putty.org). Most distributions of
desktop Linux include a terminal program (try Ctrl+Alt+T or Alt+F2 and then
type gnome- terminal under Debian). A terminal emulator is included by default
under Mac OS X (e.g., use a command such as screen /dev/cu.usbserial-XXx
115200) or by installing Z-Term (see dalverson.com/zterm/).

To connect to the RPi over the USB-to-TTL serial connection, you need the
following information:

m Port number: To find this, open the Windows Device Manager (or equiva-
lent) and search under the Ports section. Figure 2-3(a) captures an example
Device Manager, where the device is listed as COM11 in my case. This
differs on different machines.

http://www.putty.org
http://www.putty.org

32

Part | = Raspberry Pi Basics

= Connection speed: By default, you need to enter 115,200 baud to connect
to the RPi.

m Other information you may need for other terminal applications: Data
bits =8; Stop bits =1; Parity =none; and Flow control = XON/XOFF.

(@) (b) (©
File Action \View Help g
= = = Session | Basic options i PuTTY ssssion A
e m Em e - et o &
90g Specily the dest you wart to to ! ho)
% Network adapters ~ - Tomical Serallge Sgeed g £
B Portable Devices | comT1 115200 & 3
+ "F Ports (COM & LPT) | Festures Connaction type £ g
15" USE Serial Port (COMI1) —mmem"] £ Window JRaw (Tehet ORogn OSSH ®Sesal & E
i Prnt queues Aopeorance Load, save or delete & stored session z
B Processors Behaviour Saved Seas =
. Transiation = oy 4]
U Software devices v m’ AP USB4-TTL =
Colours Diafah Sattings

Figure 2-3: (a) Windows Device Manager device identification; (b) a PuTTY serial connection
configuration; and (c) a low-cost USB-to-TTL adapter

Save the configuration with a session name (e.g., RPi USB-to-TTL), as
illustrated in Figure 2-3(b), so that it is available each time you want to
connect. Click Open, and then it is important that you press Enter
when the window displays. When connecting to Raspbian, you should see the
following output:

Raspbian GNU/Linux 8 erpi ttyAMAO

erpi login: pi

Password: raspberry

Last login: Fri Dec 18 02:12:32 GMT 2015 from ...

Linux erpi 4.1.13-v7+ #826 SMP PREEMPT Fri Nov 13 20:19:03 GMT 2015 armv71l
Debian GNU/Linux comes with ABSOLUTELY NO WARRANTY, to the extent
permitted by applicable law.

pieerpi:~$

The connection process enables you to log in with username pi and password
raspberry. Note that when you reboot the board you will also see the full console
output as the RPi boots. This is the ultimate fallback connection because it allows
you to see what is happening during the boot process (described in Chapter 3).

Low-cost alternatives to the USB-to-TTL 3.3V cable, such as the USB
device shown in Figure 2-3(c), are available for as little as $1, but generally come
without any type of protective casing. Before you purchase the device, however,
be sure that it supports 3.3V TTL logic levels. The one shown in Figure 2-3(c) has
a switch that facilitates both 3.3V and 5V logic levels. These devices are used in
Chapter 9 to extend the number of UART devices that are available on the RPi.

Chapter 2 = Raspberry Pi Software

33

On a Linux desktop computer, you can install the screen program and con-
nect to the USB-to-TTL device with these commands:

molloyd@debian:~$ sudo apt-get install screen
molloyd@debian:~$ screen /dev/cu.usbserial-XXX/ 115200

Connecting through Secure Shell (SSH)

Secure Shell (SSH) is a useful network protocol for secure encrypted communica-
tion between network devices. You can use an SSH terminal client to connect
to the SSH server that is running on port 22 of the RPi, which allows you to do
the following:

m [og in remotely to the RPi and execute commands.
m Transfer files to and from the RPi using the SSH File Transfer Protocol (SFIP).

m Forward X11 connections, which allows you to perform virtual network
computing.

By default, the RPi Linux distributions run an SSH server (sshd under Debian)
that is bound to port 22. There are a few advantages in having an SSH server
available as the default method by which you log in remotely to the RPi.
In particular, you can open port 22 of the RPi to the Internet using the port for-
warding functionality of your router. Please ensure that you set a nondefault
password for the pi user account before doing so. You can then remotely log
in to your RPi from anywhere in the world if you know the RPi’s IP address.
A service called dynamic DNS that is supported on most routers enables
your router to register its latest address with an online service. The online service
then maps a domain name of your choice to the latest IP address that your ISP
has given you. The dynamic DNS service usually has an annual cost, for which
it will provide you with an address of the form dereksRrPi.servicename.com.

Secure Shell Connections Using PuTTY

PuTTY was mentioned previously as a method for connecting to the RPi using a
serial connection. PuTTY is a free, open source terminal emulator, serial console,
and SSH client that you can also use to connect to the RPi over the network.
PuTTY has a few useful features:

m |t supports serial and SSH connections.

m [t installs an application called psftp that enables you to transfer files to
and from the RPi over the network from your desktop computer.

m [t supports SSH X11 forwarding (required in Chapter 14).

Figure 2-4 captures the PuTTY configuration settings: Choose SSH as the
connection type, enter your RPi’s IP address (or Zeroconf name), accept Port

34

Part | » Raspberry Pi Basics

22 (the default), and then save the session with a useful name. Click Open
and log in using your username and password. If you see a security alert that
warns about man-in-the-middle attacks, which may be a concern on insecure
networks, accept the fingerprint and continue. Mac OS X users can run the
Terminal application with similar settings (e.g., ssh -XC pi@192.168.1.116 Or
ssh -XC pi@raspberrypi.local).

Category
=i Session

Basic aptions for your PuTTY session

. 'J?'??n;‘ Specity the destination you wart to connect to
in
mn:hoam Host Name jor IP address) Port
Bel 1521681116 2
Features Cenﬂec.m type: ~ . -
Vindow Fayw Teinet () Flogn @) S5H Seyal
Appi =
B:h:::::r-e Load, save or delete a stored session
Transiation Savgd Sessans

Selection RPi 55H

Figure 2-4: PuTTY SSH Configuration settings beside an open SSH terminal connection window

You will see the basic commands that can be issued to the RPi later in this
chapter, but first it is necessary to examine how you can transfer files to and
from the RPi.

Chrome Apps: Secure Shell Client

The Chrome web browser has support for Chrome Apps—applications that
behave like locally installed (or native) applications but are written in HTMLS5,
JavaScript, and CSS. Many of these applications use Google’s Native Client
(NaCl, or Salt!), which is a sandbox for running compiled C/C++ applications
directly in the web browser, regardless of the OS. The benefit of NaCl is that
applications can achieve near-native performance levels, because they can
contain code that uses low-level instructions.

There is a useful “terminal emulator and SSH client” Chrome App available.
Open a new tab on the Chrome browser and click the Apps icon. Go to the
Chrome Web Store and search the store for “Secure Shell.” Once installed, it
will appear as the Secure Shell App when you click the Apps icon again. When
you start up the Secure Shell App, you will have to set the connection settings
as shown in Figure 2-4, and the application will appear as shown in Figure 2-5.

flcldabbghjo/html/nassh.html#profile-id:ec28

Debian GNU/Linux comes with ABSOLUTELY NO WARRANTY, to the extent
permitted by applicable law.

lLast login: Fri Dec 18 16:24:18 2015 from 192.168.1.4
uname -a

lLinux erpi 4.1.13-v7+ #826 SMP PREEMPT Fri Nov 13 28:19:83 GMT 2815 armv71 GNU/Linux

Figure 2-5: The SSH Chrome App

mailto:pi@192.168.1.116
mailto:pi@raspberrypi.local

Chapter 2 = Raspberry Pi Software

35

Transferring Files Using PuTTY/psftp over SSH

The PuTTY installation also includes file transfer protocol (ftp) support that enables
you to transfer files to and from the RPi over your network connection. You can
start up the psftp (PuTTY secure file transfer protocol) application by typing
psftp in the Windows Start command text field.

At the psftp> prompt, type open pi@raspberrypi.local (or with the IP
address) to connect to the RPi. Your desktop machine is now referred to as the
local machine, and the RPi is referred to as the remote machine. When you
issue a command, you are typically issuing it on the remote machine. After
connecting, you are placed in the home directory of the user account that you
used. Therefore, under the RPi Raspbian distribution, if you connect as pi
you are placed in the /home/pi/ directory.

To transfer a single file c: \temp\test. txt from the local desktop computer
to the RPi, you can use the following steps:

psftp: no hostname specified; use "open host.name" to connect
psftp> open pi@erpi.local

Using username "pi".

pieerpi.local's password: raspberry

Remote working directory is /home/pi

psftp> led c:\temp

New local directory is c:\temp

psftp> mkdir test

mkdir /home/pi/test: OK

psftp> cd test

Remote directory is now /home/pi/test

psftp> put test.txt

local:test.txt => remote:/home/pi/test/test.txt

psftp> dir test.*

Listing directory /home/pi/test

-Yw-r--r-- 1 pi pi 8 Dec 18 16:45 test.txt
psftp>

Commands that contain the 1 prefix are commands issued for the local
machine—for example, 1cd (local change directory) or 1pwd (local print work-
ing directory). To transfer a single file from the local machine to the remote
machine, issue the put command. To transfer a file in reverse, use the get com-
mand. To “put” or “get” multiple files, use the mput and mget commands. Use
help if you forget a command.

If you are using a Linux client machine, you can use the command sftp instead
of psftp. Almost everything else remains the same. The sftp client application
is also installed on the RPi distribution by default, so you can reverse the order
of communication; that is, you can have the RPi act as the client and another
machine as the server.

mailto:pi@raspberrypi.local
mailto:pi@erpi.local
mailto:pi@erpi.local's

36 Part | = Raspberry Pi Basics

Here are some useful hints and tips to use with the psftp/sftp commands:

m mget -r * performs a recursive get of a directory. This is useful if you
want to transfer a folder that has several subfolders. The -r option can
also be used with get, put, and mput commands.

m dir *.txt applies a filter to display only the .txt files in the current directory.

= nv moves a file/directory on the remote machine to a new location on
the remote machine.

m reget resumes a download that was interrupted. The partially downloaded
file must exist on the local machine.

The psftp command can be issued as a single line or a local script at the
command prompt. You could create a file test . scr that contains a set of psftp
commands to be issued. You can then execute psftp from the command prompt,
passing the password by using -pw and the script file by using -b (or -be to
continue on error or -be to display commands as they are run), as follows:

c:\temp>more test.scr

lcd c:\temp\down

cd /tmp/down

mget *

quit

c:\temp>psftp pi@erpi.local -pw mypassword -b test.scr
Using username "pi".

Remote working directory is /home/pi ...

Controlling the Raspberry Pi

At this point, you should be able to communicate with the RPi using an SSH
client application. This section investigates the commands that you can issue
to interact with the RPi.

Basic Linux Commands

When you first connect to the RPi with SSH, you are prompted to log in. You
can log in with username pi and password raspberry:

login as: pi

pi@erpi.local's password: raspberry

Debian GNU/Linux comes with ABSOLUTELY NO WARRANTY, to the extent

permitted by applicable law.
pieerpi ~ S

You are now connected to the RPi, and the Linux terminal is ready for
your command. The $ prompt means that you are logged in as a regular user.

mailto:pi@erpi.local
mailto:pi@erpi.local's

Chapter 2 = Raspberry Pi Software

37

A # prompt means that you are logged in to a superuser account (discussed
in Chapter 3). For a new Linux user, this step can be quite daunting because
it is not clear what arsenal of commands is at your disposal. This sec-
tion provides you with sufficient Linux skills to get started. It is writ-
ten as a reference with examples so that you can come back to it when you
need help.

First Steps

The first thing you might do after connecting is determine which version of
Linux you are running. This information can prove useful when you are asking
a question on a forum:

pie@erpi ~ $ uname -a
Linux erpi 4.1.13-v7+ #826 SMP PREEMPT Nov 13 20:19:03 2015 armv7l GNU/Linux

In this case, Linux 4.1.13 is being used, which was built for the ARMv7 archi-
tecture on the date that is listed.

The Linux kernel version is described by numbers in the form X.Y.Z.
The X number changes only rarely (version 2.0 was released in 1996, and
4.0 was released in April 2015). The Y value used to change rarely (every
2 years or so), but for the most recent kernel the value has changed quite
regularly (for example, 4.1 was released in June 2015). The Z value changes
regularly.

Next, you could use the passwd command to set a new password for the pi
user account:

pieerpi ~ $ passwd

Changing password for pi.

(current) UNIX password: raspberry

Enter new UNIX password: supersecretpasswordthatImayforget
Retype new UNIX password: supersecretpasswordthatImayforget

Table 2-3 lists other useful first-step commands.

Table 2-3: Useful First Commands in Linux

COMMAND DESCRIPTION

more /etc/issue Returns the Linux distribution you are using

ps -p $% Returns the shell you are currently using (e.g., bash)

whoami Returns who you are currently logged in as

uptime Returns how long the system has been running

top Lists all of the processes and programs executing. Press Ctrl+C

to close the view.

38 Part | = Raspberry Pi Basics

Finally, you can find out specific information about your RPi using the host -
namectl application, which can be used to query and change some system
settings (e.g., the chassis description and hostname):

pi@erpi ~ $ sudo hostnamectl set-chassis server
pi@erpi ~ $ hostnamectl
Static hostname: erpi
Icon name: computer-server
Chassis: server
Machine ID: 3882d14b5e8d408bbl32425829ac6413
Boot ID: ea403b96c8984e37820b7d1lb0b3fbded
Operating System: Raspbian GNU/Linux 8 (jessie)
Kernel: Linux 4.1.18-v7+

Architecture: arm

Basic File System Commands

This section describes the basic commands that enable you to move around on,
and manipulate, a Linux file system. When using Raspbian/Debian and Ubuntu
user accounts, you often must prefix certain commands with the word sudo.
That is because sudo is a program that allows users to run programs with the
security privileges of the superuser. (User accounts are described in Chapter 3.)
Table 2-4 lists the basic file system commands.

Table 2-4: Basic File System Commands

OPTIONS AND FURTHER
NAME COMMAND INFORMATION EXAMPLE(S)

List files 1s -a shows all (including hidden files). ls -alh
-1 displays long format.
-R gives a recursive listing.
-1 gives a reverse listing.
-t sorts last modified.
- S sorts by file size.

-h gives human readable file sizes.

Current pwd Print the working directory. pwd -P
directory . . .

- P prints the physical location.
Change cd Change directory. cd /home/pi
directory

cd then Enter or cd ~/ takes you to cd /

the home directory.
cd / takes you to the file system root.

cd .. takesyouup alevel.

Chapter 2 = Raspberry Pi Software

39

OPTIONS AND FURTHER

NAME COMMAND INFORMATION EXAMPLE(S)
Make a mkdir Make a directory. mkdir test
directory

Deleteafile rm Delete afile. rm bad.txt

or directory)))
-1 recursive delete (use for directories; rm -r test

be careful) .

-d remove empty directories.

Copy afile cp -x recursive copy. cp a.txt

or directory) . b.txt
-u copy only if the source is newer

than the destination or the destination cp -r test
is missing. testa

-v verbose copy (i.e., show output).

Move a file mv -1i prompts before overwrite. mv a.txt
or directory) . c.txt

No - for directory. Moving to the

same directory performs a renaming. mv test

testb

Create an touch Create an empty file or update the touch d.txt
empty file modification date of an existing file.
View content ~ more View the contents of a file. Use the more d.txt
of afile Space key for the next page.
Get the cal Display a text-based calendar. cal 04 2016
calendar

That covers the basics but there is so much more! The next chapter describes
file ownership, permissions, searching, I/O redirection, and other topics. The aim
of this section is to get you up and running. Table 2-5 describes a few shortcuts
that make life easier when working with most Linux shells.

Table 2-5: Some Time-Saving Terminal Keyboard Shortcuts

SHORTCUT DESCRIPTION

Up arrow Gives you the last command you typed, and then the previous commands
(repeat) on repeated presses.
Tab key Autocompletes the file name, the directory name, or even the executable

command name. For example, to change to the Linux /tmp directory, you
cantype cd /t and then press Tab, which autocompletes the command to
cd /tmp/.If there are many options, press the Tab key again to see all the
options as a list.

Continues

40

Part | = Raspberry Pi Basics

Table 2-5 (continued)

SHORTCUT DESCRIPTION

Ctrl+A Brings you back to the start of the line you are typing.

Ctrl+E Brings you to the end of the line you are typing.

Ctrl+U Clears to the start of the line. Ctrl+E and then Ctrl+U clears the line.

Ctrl+L Clears the screen.

Ctrl+C Kills whatever process is currently running.

Ctrl+z Puts the current process into the background. Typing bg then leaves it run-

ning in the background, and £g then brings it back to the foreground.

Here is an example that uses several of the commands in Table 2-4 to create
a directory called test in which an empty text file hello. txt is created. The
entire test directory is then copied to the /tmp/test2 directory, which is off
the /tmp directory:

pieerpi ~ $ cd /tmp

pieerpi /tmp $ pwd

/tmp

pieerpi /tmp $ mkdir test

pi@erpi /tmp $ cd test

pie@erpi /tmp/test $ touch hello.txt

pieerpi /tmp/test $ 1ls -1 hello.txt
-rw-r--r-- 1 pi pi 0 Dec 17 04:34 hello.txt
pi@erpi /tmp/test $ cd ..

pieerpi /tmp $ cp -r test /tmp/test2
pieerpi /tmp $ cd /tmp/test2

pieerpi /tmp/test2 $ 1ls -1

total 0

-rw-r--r-- 1 pi pi 0 Dec 17 04:35 hello.txt

m Linux assumes that you know what you are doing! It will gladly allow
you to do a recursive deletion of your root directory when you are logged in as root

(Iwon't list the command). Think before you type when logged in as root!

V(o AN Sometimes it is possible to recover files that are lost through accidental
deletion if you use the extundelete command immediately after the deletion.
Read the command manual page carefully, and then use steps such as the following:

pi@erpi ~ $ sudo apt install extundelete

pi@erpi ~ $ mkdir ~/undelete

pieerpi ~ $ cd ~/undelete/

pi@erpi ~/undelete $ sudo extundelete --restore-all --restore-directory
. /dev/mmcblk0p2

pie@erpi ~/undelete $ 1ls -1

drwxr-xr-x 6 root root 4096 Dec 17 04:39 RECOVERED_FILES

Chapter 2 = Raspberry Pi Software

1

pi@erpi ~/undelete $ du -sh RECOVERED FILES/
100M RECOVERED_FILES/

In this example, 100 MB of files were recovered—typically temporary files that were
deleted as a result of package installations.

Environment Variables

Environment variables are named values that describe the configuration of your
Linux environment, such as the location of the executable files or your default
editor. To get an idea of the environment variables that are set on the RPj, issue
an env call, which provides a list of the environment variables on your account.
Here, env is called on the Raspbian image:

pieerpi ~ $ env

TERM=xterm

SHELL=/bin/bash

SSH_CLIENT:fESO::50b4:eb95:2d00:a03f%eth0 2599 22

USER=pi

MAIL=/var/mail/pi

PATH=/usr/local/sbin: /usr/local/bin:/usr/sbin:/usr/bin:...

PWD=/home/pi

HOME=/home/pi

You can view and modify environment variables according to the follow-
ing example, which adds the /home/pi directory to the PATH environment
variable:

pieerpi ~ $ echo $PATH

/usr/local/sbin: /usr/local/bin:/usr/sbin: /usr/bin:/sbin:/bin

pi@erpi ~ $ export PATH=$PATH:/home/pi

pi@erpi ~ $ echo $PATH

/usr/local/sbin: /usr/local/bin: /usr/sbin: /usr/bin:/sbin:/bin:/home/pi

This change will be lost on reboot. Permanently setting environment variables
requires modifications to your .profile file when using sh, ksh, or bash shells;
and to your .1login file when using csh or tcsh shells. To do this, you need to
be able to perform file editing in a Linux terminal window.

Basic File Editing

A variety of editors are available, but one of the easiest to use is also one of
the most powerful: the GNU nano editor. You start the editor by typing nano
followed by the name of an existing or new filename; for example, typing
nano hello.txt displays the view captured in Figure 2-6 (after the text has
been entered). Typing nano -c hello.txt also displays the current line
number, which is useful for debugging. You can move freely around the file
in the window by using the arrow keys and editing or writing text at the

42

Part | = Raspberry Pi Basics

cursor location. You can see some of the nano shortcut keys listed on the
bottom bar of the editor window, but there are many more, some of which
are presented in Table 2-6.

X

File: hello.txt Modified

Figure 2-6: The GNU nano editor being used to edit an example file in a PUTTY Linux terminal
window

Table 2-6: Nano Shortcut Keys: A Quick Reference

KEYS COMMAND KEYS COMMAND
Ctrl+G Help Ctrl+Y Previous page
Ctrl+C Find out the current line number Ctrl+_or Ctrl+/ Go to line number
Ctrl+X Exit (prompts save) Alt+/ Go to end of file
Ctrl+L Enable long line wrapping Ctrl+6 Start marking text

(then move with
arrows to highlight)

Ctrl+O Save Ctrl+K or Alt+6 Cut marked text
Arrows Move around Ctrl+U Paste text
Ctrl+A Go to start of line Ctrl+R Insert content of

another file (prompts
for location of file)

Ctrl+E Go to end of line Ctrl+W Search for a string
Ctrl+Space Next word Alt+W Find next
Alt+Space Previous word Ctrl+D Delete character

under cursor

Ctrl+V Next page Ctrl+K Delete entire line

Ctrl+K appears to delete the entire line but it actually removes the line to
a buffer, which can be pasted using Ctrl+U. This is a quick way of repeating multiple
lines. Also, Mac users may have to set the meta key in the Terminal application to get
the Alt functionality. Select Terminal &> Preferences = Settings = Keyboard, and then
choose Use option as meta key.

Chapter 2 = Raspberry Pi Software

43

What Time s It?

A simple question like “What time is it?” causes more difficulty than you
can imagine. For example, typing date at the shell prompt might produce
the following:

pieerpi ~ $ date
Thu 17 Dec 16:26:59 UTC 2015

This result happens to be the correct time in this instance because the board is
connected to a network. If it is wrong, why did the RPi manufacturer not set the
clock time on your board? The answer is that they could not. Unlike a desktop
computer, the RPi has no battery backup to ensure that the BIOS settings are
retained; in fact, there is no BIOS! That topic is examined in detail in the next
chapter, but for the moment, you need a way to set the time, and for that you
can use the Network Time Protocol (NTP). The NTP is a networking protocol
for synchronizing clocks between computers. If your RPi has the correct time,
that is only because your RPi is obtaining it from your network using an NTP
service that is running the board:

pie@erpi ~ $ systemctl status ntp
e ntp.service - LSB: Start NTP daemon
Loaded: loaded (/etc/init.d/ntp)
Active: active (running) since Sat 2015-12-19 07:18:04 GMT; 22h ago
Process: 499 ExecStart=/etc/init.d/ntp start (code=exited, status=0/SUCCESS)
CGroup: /system.slice/ntp.service
L-544 /usr/sbin/ntpd -p /var/run/ntpd.pid -g -u 107:112

The NTP service is configured using the file /etc/ntp.conf, and the
lines beginning with the word server (hence the ” in the call to grep)
identify the servers to which your RPi is communicating to retrieve the
current time:

pi@erpi ~ $ more /etc/ntp.conf | grep “server
server 0.debian.pool.ntp.org iburst
server 1l.debian.pool.ntp.org iburst
server 2.debian.pool.ntp.org iburst
server 3.debian.pool.ntp.org iburst

To be a good NTP citizen, you should adjust these entries to refer to the
closest NTP server pool by going to www.pool.ntp.org (the closest server to me
is ie.pool.ntp.org for Ireland) and updating the entries accordingly. If you
want to test the settings first, you can install and execute the ntpdate command:

pi@erpi ~ $ sudo apt install ntpdate

pieerpi ~ $ sudo ntpdate -b -s -u ie.pool.ntp.org
pieerpi ~ $ date

Sun 20 Dec 16:02:39 GMT 2015

http://www.pool.ntp.org

Part | = Raspberry Pi Basics

After setting the time, you can set your time zone. Use the following com-
mand, which provides a text-based user interface that allows you to choose your
location. The RPi is set for Irish standard time (IST) in this example:

pi@erpi ~ $ sudo dpkg-reconfigure tzdata

Current default time zone: 'Europe/Dublin'

Local time is now: Sun Dec 20 16:37:48 GMT 2015.
Universal Time is now: Sun Dec 20 16:37:48 UTC 2015.

V[XN If your RPiis not connected to the Internet, you can manually set the date
using the timedatectl tool:

pi@erpi ~ $ sudo timedatectl set-time '2017-1-2 12:13:14'
pieerpi ~ $ date
Mon 2 Jan 12:13:16 GMT 2017

Unfortunately, this date and time will be lost when the RPi restarts. Chapter 8
describes how a battery-backed real-time clock (RTC) can be connected to the RPi
to solve that problem.

Package Management

At the beginning of this chapter, a good package manager was listed as a key
feature of a suitable Linux distribution. A package manager is a set of software tools
that automate the process of installing, configuring, upgrading, and removing
software packages from the Linux operating system. Different Linux distribu-
tions use different package managers: Ubuntu and Raspbian/Debian use APT
(Advanced Packaging Tool) over DPKG (Debian Package Management System),
and Arch Linux uses Pacman. Each has its own usage syntax, but their operation
is largely similar. Table 2-7 lists some common package management commands.

Table 2-7: Common Package Management Commands (Using nano as an Example Package)

COMMAND RASPBIAN/DEBIAN/UBUNTU

Install a package. sudo apt install nano
Update the package index. sudo apt update

Upgrade the packages on your system. sudo apt upgrade

Is nano installed? dpkg-query -1 | grep nano
Is a package containing the string nano available? apt-cache search nano

Get more information about a package. apt-cache show nano

apt-cache policy nano

Get help. apt help

Chapter 2 = Raspberry Pi Software

45

COMMAND RASPBIAN/DEBIAN/UBUNTU

Download a package to the current directory. apt-get download nano
Remove a package. sudo apt remove nano
Clean up old packages. sudo apt-get autoremove

sudo apt-get clean

Over time, the apt binary command is slowly integrating the features of
the apt -get and apt - cache commands. This change should reduce the number of
tools required to manage packages. However, older Linux distributions may require
that you use the apt -get command in place of the apt command.

Wavemon is a useful tool that you can use in configuring Wi-Fi connections
(see Chapter 13). If you execute the following command, you will see that the
package is not installed by default:

pieerpi ~ $ wavemon
-bash: wavemon: command not found

You can use the platform-specific package manager to install the package,
once you determine the package name:

pi@erpi ~ $ apt-cache search wavemon

wavemon - Wireless Device Monitoring Application
pi@erpi ~ $ sudo apt install wavemon

Reading package lists... Done

Building dependency tree ...

Setting up wavemon (0.7.6-2)

The wavemon command now executes, but unfortunately it will not do any-
thing until you configure a wireless adapter (see Chapter 13):

pieerpi ~ $ wavemon

wavemon: no supported wireless interfaces found

It is also worth noting that packages can be manually downloaded and installed.
This method can be useful should you want to retain a specific version or need
to distribute a package to multiple devices. For example, the Wavemon package
can be removed, manually downloaded as a .deb file, and installed:

pi@erpi ~ $ sudo apt remove wavemon

pieerpi ~ $ wavemon

-bash: /usr/bin/wavemon: No such file or directory

pieerpi ~ $ apt-get download wavemon

pi@erpi ~ $ 1ls -1 wavemont*

-rw-r--r-- 1 pi pi 48248 Mar 28 2014 wavemon 0.7.6-2_armhf.deb
pieerpi ~ $ sudo dpkg -i wavemon 0.7.6-2_ armhf.deb

pie@erpi ~ $ wavemon

wavemon: no supported wireless interfaces found

Part | = Raspberry Pi Basics

Sometimes package installations fail, perhaps because another required pack-
age is missing. There are force options available with the package commands to
override checks. (e.g., - - force-yes with the apt -get command). Try to avoid force
options if possible, because having to use them is symptomatic of a different problem.
Typing sudo apt-get autoremove can be useful when packages fail to install.

Configuring the Raspberry Pi

The RPi community and the Raspberry Pi Foundation have developed RPi-
specific tools for configuring your board. These tools simplify some tasks that
would otherwise be quite tricky, as you see in the following sections.

The Raspberry Pi Configuration Tool

The Raspberry Pi Configuration Tool, raspi-config, is useful for getting started
with your RPi. It can be started simply using the following call, whereupon an
interface is presented, as shown in Figure 2-7.

pi@erpi:~$ sudo raspi-config

pi@erpi: ~ x
File Edit View Search Terminal Help

| Raspberry Pi Software Configuration Tool (raspi-config)

1 r
1 Expand Filesystem Ensures that all of the SD card storage is available to the 0S
2 Change User Password Change password for the default user (pi)
3 Boot Options Choose whether to boot into a desktop environment or the command line
4 Wait for Network at Boot Choose whether to wait for network connection during boot
5 Internationalisation Options Set up language and regional settings to match your location
6 Enable Camera Enable this Pi to work with the Raspberry Pi Camera
7 Add to Rastrack Add this Pi to the online Raspberry Pi Map (Rastrack)
8 Overclock Configure overclocking for your Pi
9 Advanced Options Configure advanced settings
0 About raspi-config Information about this configuration tool

<Select> <Finish=

—_
Figure 2-7: The raspi-config tool

The following are tasks that you should perform almost immediately when
you boot the RPi from a fresh SD-card image:

m Expand the root filesystem to fill the SD card: This is the first option in
Figure 2-7. When you write an image to an SD card, it is typically smaller
than the capacity of the card. This option allows the root file system to be
expanded to use the full capacity of the card. After using this option, you
can check the overall capacity as follows:
pi@erpi ~ $ df -kh
Filesystem Size Used Avail Use% Mounted on
/dev/root 156 7.7G 6.2G 56% /

pi@erpi ~ $ 1lsblk

Chapter 2 = Raspberry Pi Software

47

NAME MAJ:MIN RM SIZE RO TYPE MOUNTPOINT
mmcblk0 179:0 0 14.9G 0 disk
f—mmcblkopl 179:1 0 56M 0 part /boot
L—mmcblk0p2 179:2 0 14.8G 0 part /

You can see that the SD card now has a capacity of 15GiB,! which is
consistent with the capacity of the SD card.

m Enable the camera: If you have an RPi camera attached to the CSI interface
on the RPi, enable the camera. This topic is described in detail in Chapter 15.

m Overclock: This option allows you to run the processor at a higher clock
frequency than was originally intended by the manufacturer. For example,
the processor on the RPi2 can run at 1 GHz instead of the listed maximum
of 900 MHz. Note that doing so may reduce the lifespan of your RPi and
possibly lead to instabilities. However, many users overclock the processor,
without ill effects. This option makes changes to the /boot /config. txt file.

m Overscan (Advanced Options; see Figure 2-8): Allows you to adjust
the video output to the full screen of your television. This option makes
changes to the /boot /config.txt file.

pi@erpi: ~ x
File Edit View Search Terminal Help

1 Raspberry Pi Software Configuration Tool (raspi-config)
Overscan You may need to configure overscan if black bars are present on display

A2 Hostname Set the visible name for this Pi on a network
A3 Memory Split Change the amount of memory made available to the GPU
A4 SSH Enable/Disable remote command line access to your Pi using SSH
AS Device Tree Enable/Disable the use of Device Tree
A6 SPI Enable/Disable automatic loading of SPI kernel module (needed for =.g. PiFace)
A7 12C Enable/Disable automatic loading of IZC kernel module
AB Serial Enable/Disable shell and kernel messages on the serial connection
A9 Audio Force audic out through HOMI or 3.5mm jack
AD Update Update this tocl to the latest version

<Select> <Back=

Figure 2-8: The raspi-config tool Advanced Options menu

m Hostname (Advanced Options): This option allows you to adjust the
hostname of the RPi on the network. This option updates the hostname
and hosts files and restarts the networking service:
pieerpi ~ $ cat /etc/hostname

erpi
pieerpi ~ $ cat /etc/hosts

127.0.1.1 erpi

1SD cards and hard disks are usually sold where 1 gigabyte (GB) = 1,000,000,000 bytes (i.e., 1000°
bytes). However, Linux uses gigabyte (technically GiB) to mean 1024° bytes. Therefore there
is a discrepancy when you format an SD card—a 16 GB card will format to a maximum size of
14.901GiB (i.e., 16 x 10°/10243).

48

Partl

Raspberry Pi Basics

This entry now means that my RPi board is found at the Zeroconf address
string erpi.local.

Memory Split (Advanced Options): The CPU and graphics processing
unit (GPU) on the RPi share the DDR memory on the board. This option
allows you to adjust the allocation of memory to the GPU. A good general-
purpose memory allocation for a headful display is 64 MB, but this must
be increased if you are using the RPi CSI camera (typically to 128 MB; see
Chapter 15), or if you are using the GPU for 3D computer graphics. This
value is set at boot time (via /boot/config.txt) and cannot be altered
at runtime.

SSH (Advanced Options): This allows you to enable or disable the SSH
server on the RPi. Clearly you should not disable the SSH server if your
RPi is in headless mode, especially if you do not have an alternative way
of connecting to the board. This option disables the SSH service, which
runs on the RPi as follows:

pi@erpi ~ $ systemctl status sshd
e ssh.service - OpenBSD Secure Shell server
Loaded: loaded (/lib/systemd/system/ssh.service; enabled)
Active: active (running) since Thu 2015-12-17 21:53:47 GMT
Process: 628 ExecReload=/bin/kill -HUP $MAINPID
Main PID: 492 (sshd)
CGroup: /system.slice/ssh.service
L-492 /usr/sbin/sshd -D

The options that remain in Figure 2-8 typically also modify the /boot /config
.txt file and are described throughout Chapter 6 and Chapter 8 in particular.
For many of the options, you have to reboot the RPi for the changes to take effect

because they are initialization settings that are passed to the kernel on startup.

Updating the RPi Software

The Raspbian distribution can be updated on the RPi using a few short steps.
However, be aware that some of these steps (upgrade in particular) can take

quite

some time to complete—perhaps even several hours, depending on the

currency of your image and the speed of your network connection.
A call to apt update downloads the package lists from the Internet loca-

tions

identified in the file /etc/apt/sources.list. This does not install new

versions of the software; rather, it updates the lists of packages and their
interdependencies:

pi@erpi ~ $ sudo apt update

Get
Hit

:1 http://archive.raspbian.org jessie InRelease [15.0 kB]
http://archive.raspberrypi.org jessie InRelease

Building dependency tree Reading state information... Done

Chapter 2 = Raspberry Pi Software

49

When this update is complete, you can automatically download and install
the latest versions of the available software using the apt upgrade command.
Clearly, you should always perform an apt update before an apt upgrade:

pieerpi ~ $ sudo apt upgrade

Reading package lists... Done Building dependency tree
Reading state information... Done Calculating upgrade... Done
After this operation, XXXXX B of additional disk space will be used.
Do you want to continue? [Y/n]

There is an additional RPi-specific tool that enables you to update the Linux
kernel, driver modules, and libraries on the RPi. The rpi-update tool can be
called directly with no arguments, but it also has some expert settings, which
are described at github.com/Hexxeh/rpi-update. For example, these settings
permit you to update the firmware without replacing the kernel file:

pie@erpi ~ $ sudo apt install rpi-update
pieerpi ~ $ sudo rpi-update

*** Raspberry Pi firmware updater by Hexxeh, enhanced by AndrewS and Dom
This update bumps to rpi-4.1.y linux tree

***% Updating firmware

*** Updating kernel modules

*** depmod 4.1.15-v7+

x Updating VideoCore libraries

***% Using HardFP libraries

*** A reboot is needed to activate the new firmware

pie@erpi ~ $ sudo reboot

After you reboot the board, the current kernel version should be aligned with
the newly installed kernel and firmware:

molloydedesktop:~$ ssh pi@erpi.local
pi@erpi ~ $ uname -a
Linux erpi 4.1.15-v7+ #830 SMP Tue Dec 15 17:02:45 GMT 2015 armv71l GNU/Linux

Video Output

The RPi video output can be configured using the tvservice application (/opt/
ve/bin/tvservice). You should plug the HDMI monitor cable into the RPi and
use the tvservice application to list the available modes on the connected CEA
(typically televisions) or DMT (typically computer monitors) display:

pieerpi ~ $ tvservice --modes CEA
Group CEA has 0 modes:
pieerpi ~ $ tvservice --modes DMT
Group DMT has 13 modes:

mode 51: 1600x1200 @ 60Hz 4:3, clock:162MHz progressive
mode 58: 1680x1050 @ 60Hz 16:10, clock:146MHz progressive
(prefer) mode 82: 1920x1080 @ 60Hz 16:9, clock:148MHz progressive
pie@erpi ~ $ tvservice --status
state 0x120006 [DVI DMT(82) RGB full 16:9], 1920x1080 @ 60.00Hz, progressive

mailto:pi@erpi.local

50

Part | » Raspberry Pi Basics

You can set the RPi output resolution explicitly using the same tool. For
example, to update the output resolution to use the DVI 1600 x 1200 mode that
is available in the list above:

pieerpi ~ $ tvservice --explicit="DMT 51"

Powering on HDMI with explicit settings (DMT mode 51)

pieerpi ~ $ tvservice --status

state 0x120006 [DVI DMT (51) RGB full 4:3], 1600x1200 @ 60.00Hz, progressive
pieerpi ~ $ fbset -depth 8 && fbset -depth 16

The last line forces a refresh of the video frame buffer to update the graphics
display. After you have tested the new resolution, you can explicitly set the
value in the /boot /config. txt file (Where hdmi group=1 sets a CEA mode, and
hdmi group=2 sets a DMT mode):

pi@erpi /boot $ more config.txt | grep “hdmi

hdmi group=2
hdmi_mode=51

If you are not using the HDMI output, you can switch it off entirely, which
results in a current saving of approximately 25 mA-30mA.

pi@erpi ~ $ tvservice --off
Powering off HDMI

There are additional RPi-specific tools for capturing image and video data
that are described in detail in Chapter 15.

Interacting with the Onboard LEDs

This section describes how you can alter the behavior of the RPi onboard user
LEDs—the LEDs on the top left corner of the RPi2 board (see Figure 2-9) and
on the bottom left of the RPi3 board. There are two LEDs on the RPi2/3 board,
where each LED provides information about the board’s state:

m The ACT LED (called OK on older models) flashes during micro-SD card
activity by default. Within Linux, this LED is called 1edo.

m The PWR LED lights to indicate that the RPi is powered. Within Linux, this
LED is called 1ed1 on some RPi models (e.g., the RPi 2), but is hardwired
to the power supply on older models.

‘ ‘ Raspberry Pi Model B

Figure 2-9: The RPi onboard power and activity LEDs

Chapter 2 = Raspberry Pi Software

51

You can change the behavior of these LEDs to suit your own needs, but you
will temporarily lose this useful activity and power status information.

Note that the RPiZero has no physical PWR LED (1ed1), despite having Linux
file entries to the contrary. You can set the trigger for the ACT LED (1ed0) as described
later. Note that the polarity of the LED is inverted. In trigger mode “none,” a bright-
ness value of 0 turns on the LED and a brightness value of 1 turns off the LED. This
behavior may be adjusted over time.

Sysfs is a virtual file system that is available under recent Linux kernels. It
provides you with access to devices and drivers that would otherwise only
be accessible within a restricted kernel space. This topic is discussed in detail
in Chapter 6. However, at this point, it would be useful to briefly explore the
mechanics of how sysfs can be used to alter the behavior of the onboard LEDs.

Using your SSH client, you can connect to the RPi and browse to the directory
/sys/class/leds/. The output is as follows on the RPi 2:

pieerpi ~ $ cd /sys/class/leds/

pieerpi /sys/class/leds $ 1ls
led0 1ledl

\[Ol N3 Sysfs directory locations can vary somewhat under different versions of the
Linux kernel and different Linux distributions.

You can see the two LED sysfs mappings: 1edo and led1. You can change
the directory to alter the properties of one of these LEDs. For example, to
alter the behavior of the ACT LED (1edo):

pieerpi /sys/class/leds $ cd led0
pieerpi /sys/class/leds/led0 $ 1s
brightness device max brightness subsystem trigger uevent

Here you see various different file entries that give you further information and
access to settings. Note that this section uses some commands that are explained
in detail in the next chapter.
You can determine the current status of an LED by typing the following:
pieerpi /sys/class/leds/led0 $ cat trigger

none [mmc0] timer oneshot heartbeat backlight gpio cpu0 cpul cpu2
cpu3 default-on input

where you can see that the ACT LED is configured to show activity on the mmco
device—the micro-SD card. You can turn this trigger off by typing the following;:
pieerpi /sys/class/leds/led0 $ sudo sh -c "echo none > trigger"

pieerpi /sys/class/leds/led0 $ cat trigger
[none]l mmcO timer oneshot heartbeat backlight gpio cpuO cpul ...

52

Part | = Raspberry Pi Basics

You will then see that the LED stops flashing completely. You can use cat
trigger to see the new state. Now that the LED trigger is off, you can turn the
ACT LED fully on or off using:

sudo sh -cisused to execute a shell command from a string command
that requires superuser access. It is not possible to execute the command using sudo
alone because of the use of the redirection (>) of the echo command to afile (e.g.,
brightness). This is explained in Chapter 3.

pieerpi /sys/class/leds/led0 $ sudo sh -c "echo 1 > brightness"
pieerpi /sys/class/leds/led0 $ sudo sh -c "echo 0 > brightness"

You can even set the LED to flash at a time interval of your choosing. If you watch
carefully, you will notice the dynamic nature of sysfs. If you perform an 1s com-
mand at this point, the directory will appear as follows, but will shortly change:

pieerpi /sys/class/leds/led0 $ 1s
brightness device max brightness subsystem trigger uevent

To make the LED flash, you need to set the trigger to timer mode by typing
echo timer > trigger. You will see the ACT LED flash at a 1-second interval.
Notice that there are new delay onand delay off file entries in the 1edo direc-
tory, as follows:

pie@erpi /sys/class/leds/led0 $ sudo sh -c "echo timer > trigger"

pieerpi /sys/class/leds/led0 $ 1s

brightness delay off delay on device max brightness subsystem
trigger wuevent

The LED flash timer makes use of these new delay on time and delay off
time file entries. You can find out more information about these values by using
the concatenate (catenate) command. For example, the following reports the
time delay in milliseconds:

pieerpi /sys/class/leds/led0 $ cat delay on

500

pieerpi /sys/class/leds/led0 $ cat delay off
500

To make the ACT LED flash at 5Hz (i.e., on for 100ms and off for 100 ms), you
can use this:

pie@erpi /sys/class/leds/led0 $ sudo sh -c "echo 100 > delay on"
pieerpi /sys/class/leds/led0 $ sudo sh -c "echo 100 > delay off"

Typing echo mmc0 > trigger returns the LED to its default state, which
results in the delay on and delay off file entries disappearing:
pieerpi /sys/class/leds/led0 $ sudo sh -c "echo mmc0 > trigger™"

pieerpi /sys/class/leds/led0 $ 1ls
brightness device max brightness subsystem trigger uevent

Chapter 2 = Raspberry Pi Software

53

A HEARTBEAT POWER INDICATOR

When it is available, the power indicator (PWR LED) on the RPi can be configured to
display a heartbeat pattern instead of the constantly illuminated indicator. You can
test the change using the following:

pieerpi /sys/class/leds/ledl $ 1s
brightness device max_brightness subsystem trigger wuevent
pieerpi /sys/class/leds/ledl $ sudo sh -c "echo heartbeat > trigger"

The PWR LED now flashes in a heartbeat pattern, which is a lively indicator that the
board is functioning. The ACT LED flashes on SD card activity by default, but you can
also alter its behavior in the same way. Should you want to make this change perma-
nent, you can edit the configuration file /boot /config.txt and add the two lines
that are listed here:

pieerpi /boot $ 1ls -1 config.txt

-rwxr-xr-x 1 root root 1705 Dec 5 18:02 config.txt
pieerpi /boot $ sudo nano config.txt

pieerpi /boot $ tail -n2 config.txt
dtparam=pwr led trigger=heartbeat

dtparam=act_led trigger=mmcO

pieerpi /boot $ sudo reboot

Thetail -n2 command displays the last two lines of the config. txt file, which
were added using the nano editor. Once the board reboots, the ACT LED indicates SD
card activity, and the PWR LED displays a heartbeat pattern and will continue to do so
unless the board should lock up.

Shutdown and Reboot

m Physically disconnecting the power without allowing the Linux kernel
to unmount the micro-SD card can cause corruption of your file system.

One final issue to discuss in this chapter is the correct shutdown procedure
for your RPj, as improper shutdown can potentially corrupt the ext4 file system
and/or lead to increased boot times due to file system checks. Here are some
important points on shutting down, rebooting, and starting the RPi:

m Typing sudo shutdown -h now shuts down the board correctly. You can
delay this by five minutes by typing sudo shutdown -h +5.

m Typing sudo reboot will reset and reboot the board correctly.

If your project design is enclosed and you need an external soft power down,
it is possible to wire an external button to an RPi GPIO input and write a shell
script that runs on startup to poll the GPIO for an input. If that input occurs,
/sbin/shutdown -h now can be called directly.

54 Part | » Raspberry Pi Basics

Summary

After completing this chapter, you should be able to do the following;:

m Communicate with the RPi from your desktop computer using a network
connection.

m Communicate with the RPi using a fallback serial connection with a USB-
to-TTL 3.3V cable.

m [nteract with and control the RPi using simple Linux commands.
m Perform basic file editing using a Linux shell terminal.

m Manage Linux packages and set the system time.

m Use RPi-specific utilities to further configure the RPi.

m Use Linux sysfs to affect the state of the RPi onboard LEDs.

m Safely shut down and reboot the RPi.

Exploring Embedded
Linux Systems

This chapter exposes you to the core concepts, commands, and tools required
to effectively manage the Raspberry Pi embedded Linux system. The first part
of the chapter is descriptive; it explains the basics of embedded Linux and the
Linux boot process. After that, you learn step by step how to manage Linux
systems. For this exercise, you are strongly encouraged to open a terminal
connection to your Raspberry Pi or a terminal window on the Raspberry Pi
and follow along. Next, the chapter describes the Git source code management
system. This topic is an important one because the source code examples in this
book are distributed via GitHub. Desktop virtualization is also described; it is
useful for cross-platform development in later chapters. The chapter finishes
by describing how you can download the source code examples for this book.

Equipment Required for This Chapter:

m Any Raspberry Pi model with a terminal connection (see Chapter 2,
“Raspberry Pi Software”) or a terminal window, preferably running
Raspbian

Further details on this chapter are available at www. exploringrpi.com/chapter3/.

55

http://www.exploringrpi.com/chapter3

56

Part | = Raspberry Pi Basics

Introducing Embedded Linux

First things first: Even though the term embedded Linux is used in this chapter’s
title, there is no such thing as embedded Linux! There is no special version of
the Linux kernel for embedded systems; it is just the mainline Linux kernel
running on an embedded system. That said, the term embedded Linux has broad
and common use; therefore, it is used here instead of “Linux on an embedded
system,” which is the more accurate phrasing.

The word embedded in the term embedded Linux is used to convey the presence
of an embedded system, a concept that can be loosely explained as some type of
computing hardware with integrated software that was designed to be used for
a specific application. This concept is in contrast to the personal computer (PC),
which is a general-purpose computing device designed to be used for many
applications, such as web browsing, word processing, and game play. The line is
blurring between embedded systems and general-purpose computing devices.
For example, the Raspberry Pi (RPi) can be both, and many users will deploy
it solely as a capable general-purpose computing device and/or media player.
However, embedded systems have some distinctive characteristics:

m They tend to have specific and dedicated applications.

m They often have limited processing power, memory availability, and
storage capabilities.

m They are generally part of a larger system that may be linked to external
sensors or actuators.

m They often have a role for which reliability is critical (e.g., controls in cars,
airplanes, and medical equipment).

m They often work in real time, where their outputs are directly related to
present inputs (e.g., control systems).

Embedded systems are present everywhere in everyday life. Examples include
vending machines, household appliances, phones/smartphones, manufacturing/
assembly lines, TVs, games consoles, cars (e.g., power steering and reversing sen-
sors), network switches, routers, wireless access points, sound systems, medical
monitoring equipment, printers, building access controls, parking meters, smart
energy/water meters, watches, building tools, digital cameras, monitors, tablets,
e-readers, anything robotic, smart card payment/access systems, and more.

The huge proliferation of embedded Linux devices is thanks in part to the
rapid evolution of smartphone technology, which has helped drive down
the unit price of ARM-based processors. ARM Holdings PLC is a UK company that
licenses the intellectual property of the ARMv6 and ARMv7 on the RPi models,
for upfront fees and a royalty of about 1% to 2% of the sale price of the processor.
Avago Technologies Ltd., the owner of Broadcom Corporation since May 2015,

Chapter 3 = Exploring Embedded Linux Systems

57

does not currently sell processors to retail customers directly, but processors that
are similar to the BCM2835/6/7 are for sale in the $5-$10 price bracket.

Advantages and Disadvantages of Embedded Linux

There are many embedded platform types, each with its own advantages and
disadvantages. There are low-cost embedded platforms, with volume prices of
less than $1, such as the (8/16-bit) Atmel AVR, Microchip PIC, and TI Stellaris, to
high-cost specialized platforms that can cost more than $150, such as multicore
digital signal processors (DSPs). These platforms are typically programmed in C
and/or assembly language, requiring that you have knowledge of the underly-
ing systems architecture before you can develop useful applications. Embedded
Linux offers an alternative to these platforms, in that significant knowledge
of the underlying architecture is not required to start building applications.
However, if you want to interface with electronic modules or components, some
such knowledge is required.
Here are some of the reasons why embedded Linux has seen such growth:

m Linux is an efficient and scalable operating system (OS), running on
everything from low-cost consumer-oriented devices to expensive large-
scale servers. It has evolved over many years, from when computers
were much less powerful than today, but it has retained many of the
efficiencies.

m A huge number of open source programs and tools have already been
developed that can be readily deployed in an embedded application. If
you need a web server for your embedded application, you can install
the same one that you might use on a Linux server.

m There is excellent open source support for many different peripherals and
devices, from network adapters to displays.

m [t is open source and does not require a fee for its use.

m The kernel and application code is running worldwide on so many devices
that bugs are infrequent and are detected quickly.

One downside of embedded Linux is that it is not ideal for real-time appli-
cations due to the OS overhead. Therefore, for high-precision, fast-response
applications, such as analog signal processing, embedded Linux may not
be the perfect solution. However, even in real-time applications, it is often used
as the “central intelligence” and control interface for a networked array of
dedicated real-time sensors (see Chapter 12). In addition, there are constant
developments underway in real-time operating systems (RTOS) Linux that aim
to use Linux in a preemptive way, interrupting the OS whenever required to
maintain a real-time process.

58

Part | = Raspberry Pi Basics

Is Linux Open Source and Free?

Linux is released under the GNU GPL (General Public License), which grants
users the freedom to use and modify its code in any way; so, free generally refers
to “freedom” rather than to “without cost.” In fact, some of the most expensive
Linux distributions are those for embedded architectures. You can find a quick
guide to the GPLv3 at www.gnu. org that lists the four freedoms that every user
should have (Smith, 2013):

The freedom to use the software for any purpose

The freedom to change the software to suit your needs

The freedom to share the software with your friends and neighbors
And, the freedom to share the changes you make

Even if you are using a distribution that you downloaded “for free,” it can cost
you significant effort to tailor libraries and device drivers to suit the particular
components and modules that you want to use in your product development.

Booting the Raspberry Pi

The first thing you should see when you boot a desktop computer is the Unified
Extensible Firmware Interface (UEFI), which provides legacy support for BIOS (Basic
Input/Output System) services. The boot screen displays system information
and invites you to press a key to alter these settings. UEFI tests the hardware
components, such as the memory, and then loads the OS, typically from the
solid-state drive (SSD)/hard drive. Therefore, when a desktop computer is
powered on, the UEFI/BIOS performs the following steps:

1. Takes control of the computer’s processor
2. Initializes and tests the hardware components
3. Loads the OS off the SSD/hard drive

The UEFI/BIOS provides an abstraction layer for the OS to interact with
the display and other input/output peripherals, such as the mouse/keyboard
and storage devices. Its settings are stored in NAND flash and battery-backed
memory—you can see a small coin battery on the PC motherboard that supports
the real-time system clock.

The Raspberry Pi Bootloaders

Like most embedded Linux devices, the RPi does not have a BIOS or battery-
backed memory by default (A battery-backed real-time clock is added to the

http://www.gnu.org

Chapter 3 = Exploring Embedded Linux Systems

59

RPi in Chapter 9). Instead, it uses a combination of bootloaders. Bootloaders are
typically small programs that perform the critical function of linking the specific
hardware of your board to the Linux OS:

m They initialize the controllers (memory, graphics, I/O).

m They prepare and allocate the system memory for the OS.
m They locate the OS and provide the facility for loading it.
m They load the OS and pass control to it.

The bootloader for embedded Linux is a custom program that is tailored for
each and every board type, including the RPi. There are open source Linux
bootloaders available, such as Das U-Boot (“The” Universal Bootloader), that
can be custom built, given detailed knowledge of the hardware description of
the embedded Linux platform, by using board-specific software patches (see
tiny.cc/erpi301). The RPi uses a different approach: It uses efficient but closed-
source bootloaders that were developed specifically for the RPi by Broadcom.
These bootloader and configuration files are located in the /boot directory of
the RPi image:

pieerpi /boot $ 1ls -1 *.bin start.elf *.txt *.img fixup.dat

-rwxXr-xr-x 1 root root 17900 Jun 16 01:57 bootcode.bin
-rwXr-xXr-x 1 root root 120 May 6 23:23 cmdline.txt
-rwxXr-xr-x 1 root root 1581 May 30 14:49 config.txt
-rwxr-xr-x 1 root root 6174 Jun 16 01:57 fixup.dat
-rwxr-xr-x 1 root root 137 May 7 00:31 issue.txt
-rwxr-xr-x 1 root root 3943888 Jun 16 01:57 kernel7.img
-rwxr-xr-x 1 root root 3987132 Jun 16 01:57 kernel.img
-rwxr-xr-x 1 root root 2684312 Jun 16 01:57 start.elf

Figure 3-1 illustrates the boot process on the RPi, where each bootloader stage
is loaded and invoked by the preceding stage bootloader. The bootcode.bin
and start.elf files are closed source bootloaders that are in binary form and
execute on the RPi processor’s GPU (graphics processor unit), not its CPU (central
processor unit). The license file at github.com/raspberrypi/firmware/tree/
master/boot indicates that redistribution is permitted “in binary form, without
modification” and that it can “only be used for the purposes of developing for,
running or using a Raspberry Pi device.” You can find the compressed Linux
kernel at /boot /kernel.img; it is, of course, open source.

The output that follows is a typical boot sequence that was captured using
the USB to UART TTL 3V3 serial cable that is introduced in Chapter 1. The cable
was attached to pins 6 (GND), 8 (UART_TXD), and 10 (UART_RXD) on the RPi
header, and the data was captured at a baud rate of 115,200. Unlike the open
source U-boot loaders that execute on the CPU, the early stage RPi bootloaders
do not provide output to the console—though they do flash the onboard LEDs
with specific patterns should boot problems arise. The following is an extract of

60

Part | = Raspberry Pi Basics

the console output as an RPi3 is booting. It displays important system informa-
tion, such as memory mappings:

Power is applied or the CPU invokes the reset vector to start
the program counter at a defined location in the boot ROM.

Calls the first user-space process /sbin/init (systemd Init);
Moves from kernel context to user context.

Figure 3-1: The full boot sequence on the RPi

Uncompressing Linux... done, booting the kernel.
[0.000000] Booting Linux on physical CPU 0x0

[0.000000] Linux version 4.1.18-v7+ (dc4@dc4-XPS13-9333) (gcc version
4.9.3 (crosstool-NG crosstool-ng-1.22.0-88-g8460611)) #846 SMP Thu Feb
25 14:22:53 GMT 2016

[0.000000] CPU: ARMv7 Processor [410fd034] revision 4 (ARMv7)

[0.000000] Machine model: Raspberry Pi 3 Model B Rev 1.2

[0.000000] cma: Reserved 8 MiB at 0x36400000

[0.000000] Kernel command line: 8250.nr uarts=1 dma.dmachans=0x7£35
bcm2708 fb.fbwidth=656 bcm2708 fb.fbheight=416 bcm2709.boardrev=0xa02082
bcm2709.serial=0xbbffd b2c smsc95xx.macaddr=B8:27:EB:FF:DB:2C
bcm2708_fb.fbswap=1 bcm2709.uart_clock=48000000 vc_mem.mem base=0x3dc00000
vc mem.mem size=0x3f000000 dwc otg.lpm enable=0 console=ttyS0,115200

Chapter 3 = Exploring Embedded Linux Systems

root=/dev/mmcblk0p2 rootfstype=ext4 elevator=deadline fsck.repair=yes root-
wait
[0.000000] Memory: 874456K/901120K available (6024K kernel code, 534K
rwdata, 1660K rodata, 448K init, 757K bss, 18472K reserved, 8192K cma-
reserved)
[0.000000] Virtual kernel memory layout:

vector : Oxffff0000 - Oxffff1000 (4 kB

)
fixmap : O0xffc00000 - O0xf£f£00000 3072 kB)
vmalloc : 0xb7800000 - 0x££000000 1144 MB)
lowmem : 0x80000000 - 0xb7000000 880 MB)

(
(
(
modules : 0x7£000000 - 0x80000000 (16 MB)
(
(
(
(

.text : 0x80008000 - 0x807895a0 7686 kB)
.init : 0x8078a000 - 0x807fa000 448 kB)
.data : 0x807fa000 - 0x8087facO 535 kB)
.bss : 0x80882000 - 0x8093f79c 758 kB)

.052103] Brought up 4 CPUs

.052201] SMP: Total of 4 processors activated (153.60 BogoMIPS) .
.052231] CPU: All CPU(s) started in HYP mode.

.467927] console [ttyS0] enabled

H O O O

[3.307558] systemd[1l]: Detected architecture 'arm'.

[3.321650] smsc95xx 1-1.1:1.0 eth0: register 'smsc95xx' at
usb-3£980000.usb-1.1, smsc95xx USB 2.0 Ethernet, b8:27:eb:ff:db:2c
3.488061] NET: Registered protocol family 10

.498204] systemd[1l]: Inserted module 'ipvé'

.510056] systemd[1]: Set hostname to <erpi>

.450070] spi spi0.0: setting up native-CS0 as GPIO 8

[
[
[
[
[.450453] spi spi0.1l: setting up native-CS1 as GPIO 7

u W W

Raspbian GNU/Linux 8 erpi ttySO
erpi login:

The same information is available by typing dmesg|more in a terminal win-
dow. You can see that the initial hardware state is set, but most entries will

seem quite mysterious for the moment. There are some important points to note
(as highlighted in the preceding output segment):

m The Linux kernel is uncompressed into memory and then booted. A slightly
modified kernel image is used for the ARMv7 RPi2/3, (kernel7.img) than
for the ARMv6 RPi/RPiB+ (kernel. img).

m The Linux kernel version is identified (e.g., 4.1.18-v7+).

m The machine model is identified so that the correct device tree binary
can be loaded.

m The default network MAC address (a usually unique hardware address
that identifies the device on the physical network) is passed as a kernel

62

Part | = Raspberry Pi Basics

command-line argument. The MAC address is automatically set on the
RPi using the last 3 bytes of the CPU’s serial number, which is set at
manufacture. Call cat /proc/cpuinfo to display your board’s serial
number. For this board, the number is 00000000bbffdb2c, where ££fdb2c
is utilized to provide the unique MAC address.

m Several of the remaining kernel arguments can be user configured by editing
the cmdline. txt file (e.g., by using sudo nano cmdline.txt) as follows:

pieerpi /boot $ more cmdline.txt

dwc_otg.lpm enable=0 console=serial0,115200 console=ttyl root=/dev/
mmcblk0p2

rootfstype=ext4 elevator=deadline fsck.repair=yes rootwait

m The virtual kernel memory layout is presented. The modules entry is
particularly important and is utilized in Chapter 8.

The primary configuration file for the RPi is /boot/config.txt. Changes
that you make using the raspi-config tool are reflected in this file. You can
manually edit this file (e.g.,, sudo nano /boot/config.txt) to enable/disable
bus hardware, overclock the processors, and so on:

pie@erpi /boot $ more config.txt

For more options and information see

http://www.raspberrypi.org/documentation/configuration/config-txt.md ...

Uncomment some or all of these to enable the optional hardware interfaces

dtparam=i2c_arm=on

#dtparam=i2s=on

dtparam=spi=on

Additional overlays and parameters are documented /boot/overlays/README

The RPi bootloader uses a board configuration file called a device tree (also
called a device tree binary) that contains the board-specific information that the
kernel requires to boot the RPi. This file contains all the information needed to
describe the memory size, clock speeds, onboard devices, and so on. This device
tree binary or DTB (the binary) is created from a DTS (the source) file using the
Device Tree Compiler (dtc). (This topic is described in detail in Chapter 8.) The
/boot directory contains the device tree binaries for the different RPi models:

pieerpi /boot $ 1ls -1 *.dtb

-rwXr-xXr-x 1 root root 10841 Feb 25 23:22 bcm2708-rpi-b.dtb
root root 11120 Feb 25 23:22 bcm2708-rpi-b-plus.dtb
root root 10871 Feb 25 23:22 bcm2708-rpi-cm.dtb

1
1

-IYWXr-xr-x 1 root root 12108 Feb 25 23:22 bcm2709-rpi-2-b.dtb
1 root root 12575 Feb 25 23:22 bcm2710-rpi-3-b.dtb

- IYWXr-Xr-X

“ITWXr-Xr-X
-~ YWXr-Xr-X

The source code for these DTBs is publicly available in DTS form. Each of the
RPi model DTS files has syntax similar to the following extract, which details
a hardware description of the two onboard LED pins and one of the two I°C
buses on the RPi2:

&iz2cl |

pinctrl-names = "default";

Chapter 3 = Exploring Embedded Linux Systems

63

pinctrl-0 = <&i2cl_pins>;
clock-frequency = <100000>;

}i

&leds {
act_led: act {
label = "ledO";
linux,default-trigger = "mmcO";

gpios = <&gpio 47 0>;

}i

pwr_led: pwr {
label = "ledl";
linux,default-trigger = "input";
gpios = <&gpio 35 0>;

}

}i

The full source code for the DTS file for the RPi2 (bcm2709-rpi-2-b.dts) is
available at: tiny.cc/erpi3o02. Additional device tree binary files for devices,
such as sensors, HATs, and LCD displays, may be attached to the RPi:

pi@erpi /boot/overlays $ ls
ads7846-overlay.dtb i2s-mmap-overlay.dtb pps-gpio-overlay.dtb

hifiberry-amp-overlay.dtb mcp2515-can0-overlay.dtb rpi-proto-overlay.dtb
hy28b-overlay.dtb piscreen-overlay.dtb wl-gpio-pullup-overlay.dtb
i2c-rtc-overlay.dtb pitft28-resistive-overlay.dtb

The full description for the device tree source for the RPi distribution is avail-
able with the source code distribution of this book in the /chpo3/dts directory.

EXAMPLE: BUILDING DEVICE TREE BINARIES FOR THE RPi

The device tree source files for the RPi are available in the chp03 /dts directory or
from tiny.cc/erpi302.Itis possible to build the DTB files yourself using the DTS
files—it is even possible (but not recommended) to modify the DTS files and build
custom DTBs. Please note that changing these files may prevent the RPi from booting,
however, so you need a mechanism in place for mounting and editing the file system
should a problem arise (see the examples later in this chapter). The device tree com-
piler (dtc) is first installed and then invoked on the DTS file (all steps take place within
/chp03/dts/):

pi@erpi ../dts $ sudo apt install device-tree-compiler

pi@erpi ../dts $ dtc -0 dtb -o bem2709-rpi-2-b.dtb -b 0 -@ bem2709-rpi-2-b.dts

pi@erpi ../dts $ 1ls -1 *.dtb

-rw-r--r-- 1 pi pi 6108 Jun 16 12:30 bcm2709-rpi-2-b.dtb

pi@erpi ../dts $ 1ls -1 /boot/*rpi-2*

-rwxXr-xXr-x 1 root root 6108 Jun 16 01:57 /boot/bcm2709-rpi-2-b.dtb

You can see that the DTB file sizes are consistent with those already on the board.

Part | = Raspberry Pi Basics

Kernel Space and User Space

The Linux kernel runs in an area of system memory called the kernel space,
and regular user applications run in an area of system memory called
user space. A hard boundary between these two spaces prevents user applica-
tions from accessing memory and resources required by the Linux kernel. This
helps prevent the Linux kernel from crashing due to badly written user code,
and because it prevents applications that belong to one user from interfering
with applications and resources that belong to another user, it also provides a
degree of security.

The Linux kernel “owns” and has full access to all of the physical memory
and resources on the RPi. Therefore, you have to be careful that only the most
stable and trusted code is permitted to run in kernel space. You can see the
architectures and interfaces illustrated in Figure 3-2, where user applications
use the GNU C Library (glibc) to make calls to the kernel’s system call interface.
The kernel services are then made available to the user space in a controlled
way through the use of system calls.

user-level programs
/sbin/init usercode Linux terminal

GNU Clibrary (glibc)

system call interface

kernel services

device modules & drivers

CPU memory devices \

Figure 3-2: The Linux user space and kernel space architectures

A kernel module is an object file that contains binary code, which can be loaded
and unloaded from the kernel on demand. In many cases, the kernel can even
load and unload modules while it is executing, without needing to reboot the
RPi. For example, if you plug a USB Wi-Fi adapter into the RPj, it is possible
for the kernel to use a loadable kernel module (LKM) to utilize the adapter.
Without this modular capability, the Linux kernel would be extremely large,
as it would have to support every driver that would ever be needed on the RPi.
You would also have to rebuild the kernel every time you wanted to add new

Chapter 3 = Exploring Embedded Linux Systems

65

hardware. One downside of LKMs is that driver files have to be maintained for
each device. (Interaction with LKMs is described throughout the book, and you
will see how you can write your own LKMs in Chapter 16.)

As described in Figure 3-1, the bootloader stages pass control to the kernel
after it has been decompressed into memory. The kernel then mounts the root
file system. The kernel’s last step in the boot process is to call systemd init
(/sbin/init on the RPi with Raspbian Jessie), which is the first user-space
process that is started, and the next topic that is discussed.

The systemd System and Service Manager

A system and service manager starts and stops services (e.g., web servers, Secure
Shell [SSH] server) depending on the current state of the RPi (e.g., starting up,
shutting down). The systemd system and service manager is a recent and some-
what controversial addition to Linux that aims to replace, and remain backward
compatible with System V' (SysV) init. One major drawback of SysV init is that
it starts tasks in series, waiting for one task to complete before beginning the
next, which can lead to lengthy boot times. The systemd system is enabled by
default in Debian 8/Raspbian 8 (Jessie). It starts up system services in parallel,
helping to keep boot times short, particularly on multicore processors such as
the RPi2/3. In fact, you can display the boot time using the following:

pi@erpi ~ $ systemctl --version

systemd 215 +PAM +AUDIT +SELINUX +IMA +SYSVINIT +LIBCRYPTSETUP +GCRYPT

+ACL +XZ -SECCOMP -APPARMOR

pi@erpi ~ $ systemd-analyze time
Startup finished in 2.230s (kernel) + 6.779s (userspace) = 9.009s

m If you see a “command not found” message at this point, you might
be using a Raspbian 7 distribution, which uses SysV init. For more information, check

this chapter’s web page: www . exploringrpi.com/chapter3/.

As well as being a system and service manager, systemd consists of a software
bundle for login management, journal logging, device management, time syn-
chronization, and more. Critics of systemd claim that its development project
has suffered from “mission creep,” and that it has taken on development work
that is outside of its core mission. To some extent, this change in mission has
resulted in systemd becoming core to the future of Linux itself, possibly even
removing choice from users; however, it is clear that systemd is being widely
adopted by many Linux distributions and here to stay.

You can use the systemctl command to inspect and control the state of
systemd. If called with no arguments, it provides a full list of the services that
are running on the RPi (use the spacebar to page, and Q to quit):

pieerpi ~ $ systemctl
networking.service loaded active exited LSB: Raise network interfaces

http://www.exploringrpi.com/chapter3

66

Part | = Raspberry Pi Basics

ntp.service loaded active
serial-getty@ttyAMAO loaded active
ssh.service loaded active
getty.target loaded active

running
running
running
active

LSB: Start NTP daemon
Serial Getty on ttyAMAO
OpenBSD Secure Shell server
Login Prompts

systemd uses service files, which have a . service extension to configure how
the different services should behave on startup, shutdown, reload, and so on;
see the /1ib/systemd/system directory.
The Network Time Protocol (NTP) service runs by default upon installa-
tion. The systemd system can be used to manage such services on the RPi. For
example, you can identify the exact service name and get its status using the

following steps:

pi@erpi:~$ systemctl list-units -t service | grep ntp

ntp.service loaded active running LSB: Start NTP daemon

pieerpi:~$ systemctl status ntp.service

e ntp.service - LSB: Start NTP daemon

Loaded: loaded (/etc/init.d/ntp)

Active: active (running) since Mon 2016-01-02 13:00:48 GMT; 2h 21min ago
Process: 502 ExecStart=/etc/init.d/ntp start (code=exited, status=0/ SUCCESS)

CGroup: /system.slice/ntp.service

}—552 /usr/sbin/ntpd -p /var/run/ntpd.pid -g -u 107:112
L559 /usr/sbin/ntpd -p /var/run/ntpd.pid -g -u 107:112

You can stop the ntp service using the systemctl command, whereupon it
will no longer update the clock according to the network time.

pieerpi:~$ sudo systemctl stop ntp
pieerpi:~$ systemctl status ntp

e ntp.service - LSB: Start NTP daemon

Loaded: loaded (/etc/init.d/ntp)

Active: inactive (dead) since Mon 2017-01-02 17:42:26 GMT; 6s ago

Process: 1031 ExecStop=/etc/init.d/ntp stop
Process: 502 ExecStart=/etc/init.d/ntp start

The service can then be restarted as follows:

pi@erpi ~ $ sudo systemctl start ntp

(code=exited, status=0/SUCCESS)
(code=exited, status=0/SUCCESS)

Table 3-1 provides a summary of systemd commands, using the ntp service
as a syntax example. Many of these commands require elevation to superuser
permissions by the use of the sudo tool, as described in the next section.

Table 3-1: Common systemd Commands

COMMAND DESCRIPTION

systemctl

List all running services.

systemctl start ntp

Start a service. Does not persist after reboot.

Chapter 3 = Exploring Embedded Linux Systems

67

COMMAND DESCRIPTION

systemctl stop ntp Stop a service. Does not persist after reboot.

systemctl status ntp Display the service status.

systemctl enable ntp Enable a service to start on boot.

systemctl disable ntp Disable a service from starting on boot.

systemctl is-enabled ssh Display if a system service starts on boot.

systemctl restart ntp Restart a service (stop and then start).

systemctl condrestart ntp Restart a service only if it is running.

systemctl reload ntp Reload configuration files for a service without
halting it.

journalctl -f Follow the systemd log file. Press Ctrl+C to quit.

hostnamectl --static set- Change the hostname.

hostname ERPi

timedatectl Display the time and time zone information.

systemd-analyze time Display the boot time.

The runlevel describes the current state of the RPi and can be used to control
which processes or services are started by the init system. Under SysV, there
are different runlevels, identified as o (halt), 1 (single-user mode), 2 through
5 (multi-user modes), 6 (reboot), and s (start-up). When the init process
begins, the runlevel starts at N (none). It then enters runlevel s to initialize the
system in single-user mode, and finally enters one of the multi-user runlevels
(2 through s5). To determine the current runlevel, type the following:

pieerpi ~ $ who -r
run-level 5 2016-01-02 03:23

In this case, the RPi is running at runlevel 5. You can change the runlevel by
typing init followed by the level number. For example, you can reboot your
RPi by typing the following:

pi@erpi ~ $ sudo init 6

As demonstrated, systemd retains some backward compatibility with the
SysV runlevels and their numbers, as the previous SysV commands work cor-
rectly under systemd. However, the use of runlevels in systemd is considered to
be dated practice. Instead, systemd uses named target units, some of which are
listed in Table 3-2, which includes an indicative alignment with SysV runlevels.
You can identify the current default target on the RPi:

pi@erpi ~ $ systemctl get-default
graphical.target

68

Part | = Raspberry Pi Basics

This indicates that the current configuration is for the RPi to have a headful
windowing display. You can also see the list of units that the target loads using
the following;:

pieerpi ~ $ systemctl list-units --type=target

UNIT LOAD ACTIVE SUB DESCRIPTION
basic.target loaded active active Basic System
cryptsetup.target loaded active active Encrypted Volumes
getty.target loaded active active Login Prompts
graphical.target loaded active active Graphical Interface
multi-user.target loaded active active Multi-User System

Table 3-2: systemd Targets Aligned with SysV Runlevels

TARGET NAMES SYSV DESCRIPTION AND EXAMPLE USE

poweroff.target 0 Halt the system: shutdown state for all services

rescue.target 1,5 Single-user mode: for administrative functions
such as checking the file system

multi-user.target 2-4 Regular multi-user modes with no windowing
display

graphical.target 5 Regular multi-user mode with windowing
display

reboot . target 6 Reboot the system: reboot state for all services

emergency.target — Emergency shell only on the main console

If you are using the RPi as a network-attached device that does not have a
display attached (i.e., headless), it is wasteful of CPU/memory resources to have
the windowing services running. You can switch to a headless target using the
following call, whereupon the LXDE windowing interface will no longer be pres-
ent, and the graphical.target entry will no longer appear in the list of units:

pieerpi ~ $ sudo systemctl isolate multi-user.target
pieerpi ~ $ systemctl list-units --type=target | grep graphical

And, you can re-enable the headful graphical display using the following:

pieerpi ~ $ sudo systemctl isolate graphical.target

Finally, to set up the RPi so that it uses a different default runlevel on boot
(e.g., for a headless display), you can use the following:

pieerpi ~ $ sudo systemctl set-default multi-user.target

Created symlink from /etc/systemd/system/default.target to /lib/systemd/sys
tem/multi-user.target.

pieerpi ~ $ systemctl get-default

multi-user.target

Chapter 3 = Exploring Embedded Linux Systems

69

After reboot, the windowing services do not start, and the notional equivalent
SysV runlevel is displayed as runlevel 3.

Managing Linux Systems

In this section, you examine the Linux file system in more detail, building on
the commands and tools described in Chapter 2, to ensure that you have full
administrative control of the RPi.

The Super User

On Linux systems, the system administrator account has the highest level of
security access to all commands and files. Typically, this account is referred
to as the root account or superuser. Under Raspbian/Debian, this user account
has the user name root, but it is typically disabled by default; however, you can
enable it by typing sudo passwd root from a shell that is logged in with the pi
user account (username: pi, password: raspberry):

pieerpi ~ $ sudo passwd root

Enter new UNIX password: mySuperSecretPassword

Retype new UNIX password: mySuperSecretPassword
passwd: password updated successfully

\'[* 24 The naming of the user account as “root” is related to the fact that it is the
only user account with permission to alter the top-level root directory (/). For more
information, see www.linfo.org/root .htm.

It is recommended when performing general operations on a Linux system
that you try to avoid being logged in as the superuser; however, it is impor-
tant to also remember that when using the RPi you are typically not running
a server with thousands of user accounts! In many applications, a single root
user account, with a nondefault password, is likely sufficient. However, using
a non-superuser account for your development work could protect you from
yourself—for example, from accidentally deleting the file system. The pi user
account in Raspbian has been carefully configured to simplify the interaction
with hardware, enabling it to be used for the majority of tasks that are described
in this book. However, it is important to understand how this custom user
account is configured and how it works so well.

Under many Linux distributions, including Raspbian, a special tool called
sudo (superuser do) is used whenever you want to perform system administra-
tion commands. Typically, the tool prompts you for the administrator password
and then authorizes you to perform administrator operations for a short time

http://www.linfo.org/root.htm

70

Part | = Raspberry Pi Basics

period, also warning you that “with great power comes great responsibility.”
The pi user account in Raspbian has been configured so that it does not require
you to enter the root password for superuser elevation.

The next section discusses user accounts management, but if you create a
new user account and want to enable it to use the sudo tool, the account name
must be added to the sudoers file, /etc/sudoers, by using the visudo tool (type
visudo while logged in as root, or sudo visudo if logged in as pi). The last lines
of the /etc/sudoers file provide the configuration for the pi user account, which
explains why no password is required for the user pi to execute the sudo tool:

#User privilege specification

Root ALL= (ALL:ALL) ALL

#username hostnames= (users permitted to run commands as) permitted commands
pi ALL= (ALL) NOPASSWD: ALL

In this configuration, the user pi is granted privileges on all (first ALL) hostnames
to execute commands as any user (second ALL) and to execute all commands
(third aLL) with no password required. The sudo tool works well; however, it
can make the redirection of the output of a command more complex, which is
apparent later in this chapter.

There is another command in Linux that enables you to run a shell with a
substitute user: su. Typing su - (same as su - root) opens a new shell with full
superuser access, and it can be used as follows, after you have enabled root login:

pieerpi ~ $ su -

Password: mySuperSecretPassword

root@erpi:~# whoami

root

root@erpi:~# exit

logout

pi@erpi ~ $ whoami

p1

The # prompt indicates that you are logged in to the superuser account. To
re-disable root login to the RPi, you can type sudo passwd -1 root.

System Administration

The Linux file system is a hierarchy of directories used to organize files on a Linux
system. This section examines the ownership of files, the use of symbolic links,
and the concept of file system permissions.

The Linux File System

Linux uses data structures, called inodes, to represent file system objects such
as files and directories. When a Linux extended file system (e.g., ext3/ext4) is
created on a physical disk, an inode table is created. This table links to an inode
data structure for each file and directory on that physical disk. The inode data

Chapter 3 = Exploring Embedded Linux Systems

71

structure for each file and directory stores information such as permission
attributes, pointers to raw physical disk block locations, time stamps, and link
counts. You can see this with an example by performing a listing 1s -ail of
the root directory, where -i causes 1s to display the inode indexes. You will
see the following for the /tmp directory entry:

pieerpi ~ $ ed /

pieerpi / $ ls -ail | grep tmp
269 drwxrwxrwt 7 root root 4096 Jun 18 01:17 tmp

Therefore, 269 is the /tmp directory’s inode index. If you enter the /tmp direc-
tory by using cd, create a temporary file (a. txt), and perform 1s -ail, you will
see that the current (.) directory has the exact same inode index:

pieerpi / $ ed tmp

pi@erpi /tmp $ touch a.txt

pi@erpi /tmp $ 1ls -ail

269 drwxrwxrwt 7 root root 4096 Jun 18 01:41 .

2 drwxr-xr-x 22 root root 4096 Jun 16 01:57 ..
4338 -rw-r--r-- 1 pi pi 0 Jun 18 01:41 a.txt

You can also see that the root directory (. .) has the inode index of 2 and thata
text file (a . txt) also has an inode index, 4338. Therefore, you cannot cd directly
to an inode index, because the inode index might not refer to a directory.

Figure 3-3 illustrates the Linux directory listing and file permissions that relate
to working with files under Linux. The first letter indicates the file type—for
example, whether the listing is a (d) directory, (1) link, or (-) regular file. There
are also some more obscure file types: (c) character special, (b) block special, (p)
tifo, and (s) socket. Directories and regular files do not need further explanation,
but links need special attention, as described next.

(d = directory, 1 =symboliclink, - = regular file }

w = write

x = execute/search for directory l

File System Permissions

" permissions exampies &
§4+2+1 0+0+0 O+0+0
. r W — r W= r W —i all can read and write
44240 14+2+0 44240 |
r W — - — X L= Il can read, owner can write

ir W XIE W XIf W X Il can read, write, and execute

il

700 |user can read, write, and execute :

Figure 3-3: Linux directory listing and file permissions

72

Part | = Raspberry Pi Basics

Links to Files and Directories

There are two types of links in Linux: soft links and hard links. A soft link (or
symbolic link) is a file that refers to the location of another file or directory. Hard
links, conversely, link directly to the inode index, but they cannot be linked to a
directory. You create a link using 1n /path/to/file.txt linkname. You create
a symbolic link by adding -s to the call. To illustrate the usage, the following
example creates a soft link and a hard link to a file /tmp/test . txt:

pieerpi ~ $ cd /tmp

pieerpi /tmp $ touch test.txt

pieerpi /tmp $ 1ln -s /tmp/test.txt softlink
pieerpi /tmp $ 1ln /tmp/test.txt hardlink

pieerpi /tmp $ 1ls -al

total 8

drwxrwxrwt 2 root root 4096 Jun 18 01:55 .
drwxr-xr-x 22 root root 4096 Jun 16 01:57 ..
-rw-r--r-- 2 pi pi 0 Jun 18 01:55 hardlink

lrwxrwxrwx 1 pi pi 13 Jun 18 01:55 softlink -> /tmp/test.txt
-rw-r--r-- 2 pi pi 0 Jun 18 01:55 test.txt

You can see there is a number 2 in front of the file test . txt (after the file per-
missions). This is the number of hard links that are associated with the file. This
is a count value that was incremented by 1 when the hard link, called hardlink,
was created. If you were to delete the hard link (e.g., using rm hardlink), this
counter would decrement back to 1. To illustrate the difference between soft
links and hard links, some text is added to the test . txt file:

pieerpi /tmp $ echo "testing links on the RPi" >> test.txt

pi@erpi /tmp $ more hardlink

testing links on the RPi

pie@erpi /tmp $ more softlink

testing links on the RPi

pi@erpi /tmp $ mkdir subdirectory

pieerpi /tmp $ mv test.txt subdirectory/

pie@erpi /tmp $ more hardlink

testing links on the RPi

pi@erpi /tmp $ more softlink
softlink: No such file or directory

You can see that when the test . txt file is moved to the subdirectory, the soft
link breaks but the hard link still works perfectly. Therefore, symbolic links are
not updated when the linked file is moved, but hard links always refer to the
source, even if moved or removed. To illustrate the last point, the file test . txt
can be removed using the following:

pieerpi /tmp $ rm subdirectory/test.txt

pi@erpi /tmp $ more hardlink
testing links on the RPi

Yet, the file still exists! And it will not be deleted until you delete the hard link
called hardlink, thus decrementing the link count to zero. Therefore, if a file has

Chapter 3 = Exploring Embedded Linux Systems

73

a hard link count of zero, and it is not being used by a process, it will be deleted.
In effect, the filename itself, test . txt, was just a hard link. Note that you cannot
hard link across different file systems, because each file system will have its own
inode index table that starts at 1. Therefore, inode 269, which is the inode index of
the /tmp directory, is likely describing something quite different on another file
system. Type the command man 1n to see a particularly useful guide on linking.

You can type history to list all previous commands that you have typed. You
can also press Ctrl+R to get an interactive search of your history to find a recently used
command. Pressing Enter activates the command, and pressing Tab places it on your
command line, so that it can be modified.

Users and Groups

Linux is a multi-user OS, which uses the following three distinct classes to
manage access permissions:

m User: You can create different user accounts on your RPi. This is useful
if you want to limit access to processes and areas of the file system. The
root user account is the superuser of the RPi and has access to every file;
so, for example, it may not be safe to run a public web server from this
account or the pi user account if the server supports local scripting.

m Group: User accounts may be flagged as belonging to one or more groups,
whereby each group has different levels of access to different resources
(e.g., UART devices, I>C buses).

m Others: All users of the RPi besides the file’s owner, or a member of the
group listed in the permissions.

You can create users at the Linux terminal. The full list of groups is available
by typing more /etc/group. The following example demonstrates how you can
create a new user account on the RPi and modify the properties of that account
to suit your needs.

EXAMPLE: CREATING A NEW USER ACCOUNT ON THE RPi

This example demonstrates how you can create a user account and then retrospec-
tively change its properties, using the following steps:

1. The creation of a new user account called mol1oyd on the RPi

2. The addition of the account to a new group of your own design

3. The addition of the user account to the standard RPi interfacing groups
4. The reset of the password for the new user account

5. Verification that the account is working correctly

74 Part | = Raspberry Pi Basics

Step 1: Create a user molloyd as follows:
pi@erpi ~ $ sudo adduser molloyd

Adding user 'molloyd'

Adding new group 'molloyd' (1002)

Adding new user 'molloyd' (1001) with group 'molloyd'’
Creating home directory '/home/molloyd'
Copying files from '/etc/skel!

Enter new UNIX password: ThePassword
Retype new UNIX password: ThePassword
passwd: password updated successfully
Changing the user information for molloyd

Enter the new value, or press ENTER for the default

Full Name []: Derek Molloy
Room Number []: Home

Work Phone []: XXXX

Home Phone []: XXXX

Other []: XXXX

Is the information correct? [Y/n] ¥

Step 2: Add the user to a new group of your design:
pieerpi ~ $ sudo groupadd newgroup

pi@erpi ~ $ sudo adduser molloyd newgroup
Adding user 'molloyd' to group 'newgroup'
Adding user molloyd to group newgroup

Done.

pi@erpi ~ $ groups molloyd

molloyd : molloyd newgroup

Step 3: Add the user to the standard RPi user and interface groups:

pi@erpi ~ $ sudo usermod -a -G pi,adm,dialout,cdrom, sudo,audio,video,
plugdev,users,games,netdev,gpio, i2c, spi, input molloyd

pieerpi ~ $ groups molloyd

molloyd : molloyd adm dialout cdrom sudo audio video plugdev games users pi

netdev input spi i2c gpio newgroup

Step 4: Reset the password, if required:
pieerpi ~ $ sudo passwd molloyd

Enter new UNIX password: ABetterPassword
Retype new UNIX password: ABetterPassword
passwd: password updated successfully

pi@erpi ~ $ sudo chage -d 0 molloyd

You can force the password to expire on login by using sudo chage -d 0
molloyd. For security, the encrypted passwords are stored in the restricted file
/etc/shadow, not the public readable /etc/passwd file.

Step 5: Test the account by typing su molloyd from the pi user account and/or
log in with a new Linux terminal (using pwd to print the working directory):

pi@erpi ~ $ su molloyd

Password: ABetterPassword

Chapter 3 = Exploring Embedded Linux Systems

75

You are required to change your password immediately (root enforced)
Changing password for molloyd.

(current) UNIX password: ABetterPassword

Enter new UNIX password: MyPrivatePassword

Retype new UNIX password: MyPrivatePassword
molloyd@erpi:/home/pis$ whoami

molloyd

molloyde@erpi:/home/pis pwd

/home /pi

molloyd@erpi:/home/pi$ ed /home/molloyd
molloydeerpi:~S$ touch test.txt

molloydeerpi:~$ 1ls -1 test.txt

-rw-r--r-- 1 molloyd molloyd 0 Jun 18 23:26 test.txt
molloyd@erpi:~$ more /etc/group |grep newgroup

newgroup:x:1003:molloyd

The user’s home directory for each user account is represented as ~ at the shell
prompt. You can see that the test . txt file is created with the correct user and group
ID. Also, note that the newgroup group only has one member, mol1loyd. To delete an
account, type sudo deluser --remove-home molloyd, which removes the user
account and its home directory.

To practice with the topics that are introduced earlier in this chapter, the
following examples are performed using the molloyd user account. The first
example demonstrates how to change the ownership of a file using the change
ownership chown command and to change the group ownership of the file using
the change group chgrp command.

For the sudo tool to be invoked correctly in the example, the user molloyd
must be present in the sudoers file, which is achieved by the pi user account
executing the visudo command. The file can be modified to include a mo11oyd
entry, such as the following;:

pi@erpi ~ $ sudo visudo
pi@erpi ~ $ sudo tail -n 2 /etc/sudoers
pi ALL= (ALL) NOPASSWD: ALL

molloyd ALL=(ALL) ALL

The molloyd user account can now execute the sudo command, but must
enter their user password to do so.

EXAMPLE: CHANGING THE OWNERSHIP AND GROUP OF A FILE

SSH to the RPi and log in as the molloyd user. Use superuser access to change a file
test.txt inthe /tmp directory that is owned by the user mo11oyd with the group
molloyd, to have owner root and group root:

molloyd@erpi:~$ cd /tmp

molloyd@erpi:/tmpS touch test.txt

76

Part | = Raspberry Pi Basics

molloyd@erpi:/tmps 1ls -1 test.txt

-rw-r--r-- 1 molloyd molloyd 0 Jun 19 00:06 test.txt
molloyd@erpi:/tmp$ sudo chgrp root test.txt

[sudo] password for molloyd: MyPrivatePassword
molloyd@erpi:/tmp$ sudo chown root test.txt
molloyd@erpi:/tmp$ 1ls -1 test.txt

-rw-r--r-- 1 root root 0 Jun 19 00:06 test.txt

File System Permissions

The file system permissions state what levels of access each of the permissions
classes have to a file or directory. The change mode command chmod enables a
user to change the access permissions for file system objects. You can specify
the permissions in a relative way. For example, chmod a+w test.txt gives all
users write access to a file test . txt but leaves all other permissions the same.
You can also apply the permissions in an absolute way. For example, chmod
a=r test.txt sets all users to only have read access to the file test.txt. The
next example demonstrates how to modify the file system permissions of a file
using the chmod command.

EXAMPLE: USING THE CHMOD COMMAND IN DIFFERENT FORMS

Changeafile testl. txt in the /tmp directory so that users and group members
have read and write access, but others only have read access. Perform this task in
three different ways:

molloyd@erpi:/tmpS touch testl.txt

molloyd@erpi:/tmp$ 1ls -1 testl.txt

-rw-r--r-- 1 molloyd molloyd 0 Jun 19 00:18 testl.txt

molloyd@erpi:/tmpS chmod g+w testl.txt

molloyd@erpi:/tmp$ 1ls -1 testl.txt

-rw-rw-r-- 1 molloyd molloyd O Jun 19 00:18 testl.txt

molloyd@erpi:/tmpS chmod 664 testl.txt

molloyde@erpi:/tmpS 1ls -1 testl.txt

-rw-rw-r-- 1 molloyd molloyd O Jun 19 00:18 testl.txt

molloyd@erpi:/tmp$S chmod u=rw,g=rw,o=r testl.txt

molloyde@erpi:/tmpS 1ls -1 testl.txt

-rw-rw-r-- 1 molloyd molloyd O Jun 19 00:18 testl.txt

All three calls to chmod have the exact same outcome.

Table 3-3 provides examples of the command structure for chown and chgrp.
It also lists some example commands for working with users, groups, and
permissions.

Chapter 3 = Exploring Embedded Linux Systems 77

Table 3-3: Commands for Working with Users, Groups, and Permissions

COMMAND DESCRIPTION

chown molloyd a.txt Change file owner.
chown molloyd:users Change owner and group at the same time.
a.txt
Recursively change ownership of /tmp/test.
chown -Rh molloyd -h affects symbolic links instead of referenced files.
/tmp/test
chgrp users a.txt Change group ownership of the file.
chgrp -Rh users Recursively change with same -h as chown.
/tmp/test
chmod 600 a.txt Change permissions (as in Figure 3-3) so that the user has

read/write access to the file; group or others have no access.
chmod ugo+rw a.txt Give users, group, and others read/write access to a . txt.

Remove write access for all users using a, which describes

chmod a-w a.txt all (the set of users, group, and others).

chmod ugo=rw a.txt Set the permissions for all to be read/write.

umask List the default permissions settings. Using - S displays the
umask in a more readable form.

umask -8

umask 022 Change the default permissions on all newly created

files and directories. The two umask commands here
are equivalent. If you set this mask value and create a file
or directory, it will be: drwxr-xr-x for the directory
and -rw-r--r- - for the file. You can set a user-specific
umask in the account’s . 1login file.

umask u=rwx,g=rx, o=rx

chmod u+s myexe Set a special bit called the setuid bit (set user ID on execute)
and setgid bit (set group ID on execute), s, that allows a
program to be executed as if by another logged-in user,
but with the permissions of the file’s owner or group. For
example, you could use this to allow a particular program
to execute as if the root user account executed it. If the file
is not executable, a capital S appears, instead of a lower-

chmod g+s myexe

case s.
chmod 6750 myexe Set the setuid bit in an absolute way. Both examples will
give myexe the permissions -rwsr-s- - -, where both
chmodu=rwxs,g=rxs, 0= ha setuid and setgid bits are set (note the space before
myexe myexe).
For security reasons, the setuid bit cannot be applied to
shell scripts.
stat /tmp/test.txt Provides useful file system status information for a file or

directory, such as its physical device and inode informa-
tion, last access, and modify/change times.

78

Part | = Raspberry Pi Basics

Here is an example of the last entry in Table 3-3, the stat command:

molloydeerpi:/tmpS stat test.txt
File: 'test.txt'

Size: 0 Blocks: 0 IO Block: 4096 regular empty file
Device: b302h/458264 Inode: 6723 Links: 1
Access: (0644/-rw-r--r--) Uid: (o/ root) Gid: (o/ root)

Access: 2015-06-19 00:06:28.551326384 +0000

Modify: 2015-06-19 00:06:28.551326384 +0000
Change: 2015-06-19 00:07:13.151016841 +0000
Birth: -

Note that each file in Linux retains an access, modify, and change time. You
can update the access and modify times artificially using touch -a text.txt
and touch -m test.txt, respectively (the change time is affected in both cases).
The change time is also affected by system operations such as chmod; the modify
time is affected by a write to the file; and the access time is in theory affected
by a file read. However, such operational behavior means that reading a file
causes a write! This feature of Linux causes significant wear on the RPi’s SD
card and results in I/O performance deficiencies. Therefore, the file access time
feature is typically disabled on the RPi boot SD card using the mount option
noatime within the /etc/fstab configuration file (covered in the next section).
Note that there is also a similar nodiratime option that can be used to disable
access time updates for directories only; however, the noatime option disables
access time updates for both files and directories.

Just to finish the discussion of Figure 3-3: The example in the figure has 22
hard links to the file. For a directory this represents the number of subdirec-
tories, the parent directory (. .) and itself (.). The entry is owned by root and
it is in the root group. The next entry of 4096 is the size required to store the
metadata about files contained in that directory (the minimum size is one sec-
tor, typically 4,096 bytes).

One final point: If you perform a directory listing 1s -1d in the root direc-
tory you will see a t bit in the permissions of the /tmp directory. This is called
the sticky bit, meaning that write permission is not sufficient to delete files.
Therefore, in the /tmp directory any user can create files, but no user can delete
another user’s files:

molloyd@erpi:/tmps ed /

molloydeerpi:/$ ls -dhl tmp
drwxrwxrwt 7 root root 4.0K Jun 19 00:18 tmp

The 1s -dhl command lists (d) directory names (not their contents), with (h)
human-readable file sizes, in (1) long format.

The Linux Root Directory

Exploring the Linux file system can be daunting for new Linux users. If you go
to the top-level directory using ca / on the RPi and type 1s, you will get the
top-level directory structure, of the following form:

Chapter 3 = Exploring Embedded Linux Systems 79

molloydeerpi:/$ ls
bin boot .bak etc lib media opt root sbin sys usr
boot dev home lost+found mnt proc run srv tmp var

What does it all mean? Well, each of these directories has a role, and if you
understand the roles, you can start to get an idea of where to search for con-
figuration files or the binary files that you need. Table 3-4 briefly describes the
content of each top-level Linux subdirectory.

Table 3-4: The Linux Top-Level Directory

DIRECTORY DESCRIPTION

bin Contains the binary executables used by all of the users and is present in the
PATH environment variable by default. Another directory, /Jusr/bin, con-
tains executables that are not core to booting or repairing the system.

boot Contains the files for booting the RPi.

boot.bak Contains a backup copy of /boot after a system upgrade.

dev Contains the device nodes (linked to device drivers).

etc Configuration files for the local system.

home Contains the user’s home directories (/home /p1 is the pi user home).

lib Contains the standard system libraries.

lost+ After running f£sck (file system check and repair) unlinked files display here. The
found mklost+found command recreates the lost+found directory if it is deleted.
media Used for mounting removable media, such as micro-SD cards.

mnt Used typically for mounting temporary file systems.

opt A good place for installing third-party (non-core Linux) optional software.
proc A virtual file representation of processes running on the RPi. (For example, if

youcd /procandtype cat iomemyou can see some memory mapping
addresses.)

root The home directory of root account under the Raspbian and Debian Linux
distributions. (This is /home /root on many other distributions.)

run Provides information about the running system since the last boot.
sbin Contains executables for root user (superuser) system management.
srv Stores data related to ftp, web servers, rsync, etc.

sys Contains a virtual file system that describes the system.

tmp Contains temporary files.

usr Contains programs for all of the users, and many subdirectories such as

/usr/include (C/C++ header files), /usr/1ib (C/C++ library files), /usr/
src (Linux kernel source), /usr/bin (user executables), /usr/local (sim-
ilar to /usr but for local users), and /usr/share (shared files and media
between users).

var Contains variable files such as system logs.

80

Part | = Raspberry Pi Basics

Commands for File Systems

In addition to commands for working with files and directories on file systems,
there are commands for working with the file system itself. The first commands
you should examine are df (remember as disk free) and mount. The af com-
mand provides an overview of the file systems on the RPi. Adding -t lists the
file system types:

pieerpi / $ 4f -T

Filesystem Type 1K-blocks Used Available Use% Mounted on
/dev/root ext4 15186900 3353712 11165852 24% /

devtmpfs devtmpfs 470400 0 470400 0% /dev

tmpfs tmpfs 474688 0 474688 0% /dev/shm

tmpfs tmpfs 474688 0 474688 0% /sys/fs/cgroup
/dev/mmcblk0pl vfat 57288 19824 37464 35% /boot

The af command is useful for determining whether you are running short
on disk space; you can see that the root file system /dev/root is 24% used in
this case, with 11.2GB (of a 16 GB SD card) available for additional software
installations. Also listed are several temporary file system (tmpfs) entries that
actually refer to virtual file systems, which are mapped to the RPi's DDR RAM.
(The /sys/fs/* entries are discussed in detail in Chapter 8.) In addition, the
/dev/mmcblkopl entry has a 57 MB vfat (virtual file allocation table, which was
introduced in Windows 95) file system partition on the SD card. A vfat partition
is required by the bootloaders and for firmware updates.

If you are running out of space on the RPi SD card root file system, check the
system logs: /var/log. Excessively large log files are symptomatic of system prob-
lems, so review them for any issues. When you have resolved any issues, you can clear
the messages log by typing cat /dev/null > /var/log/messages with root
permission (also check kern. 1log, dpkg. log, and syslog). For example, to clear the
dpkg . Log using the pi account without deleting the file or resetting its file permis-
sions, use the following:

pieerpi /var/log $ sudo sh -c "cat /dev/null > dpkg.log"
The shell sh -c call executes the entire command string in quotations with super
user permissions. This is required, because in a call to sudo cat /dev/null >
dpkg. log on its own, sudo does not perform the output redirection >, rather itis
performed as the pi user and therefore will fail due to insufficient permissions. This is
the redirection issue with sudo that is alluded to earlier in the chapter.

The list block devices command 1sblk provides you with a concise tree-
structure list of the block devices, such as SD cards, USB memory keys, and USB
card readers (if any), that are attached to the RPi. As shown in the following
output, you can see that mmcb1ko (the boot SD card) is split into two partitions:
p1, which is attached to /boot, and p2, which is attached to the root of the file

Chapter 3 = Exploring Embedded Linux Systems

81

system: /. In this example, there is a USB micro-SD card reader containing a
32GB card (see Figure 1-8(b)) that is plugged into one of the USB ports. This
appears as the block device sda with a single partition sda1, as follows:

pieerpi ~ $ 1sblk

NAME MAJ:MIN RM SIZE RO TYPE MOUNTPOINT
sda 8:0 1 29.8G 0 disk

L sdal 8:1 1 29.8G 0 part

mmcblkO0 179:0 0 14.9G 0 disk
f—mmcblkopl 179:1 0 56M 0 part /boot
Lmmcblk0p2 179:2 0 14.8G 0 part /

Clearly, the USB ports can be used for additional storage, which is useful if
you are capturing video data and there is insufficient capacity on the system
SD card. You can test the performance of SD cards to ensure that they meet the
needs of your applications using the example that follows.

EXAMPLE: TESTING SD CARD READ PERFORMANCE

You can test the read performance of your SD cards and controllers using the hdparm
program. For example, on the RPi2 (and on the RPiB+):

pieerpi ~ $ sudo apt install hdparm

pieerpi ~ $ sudo hdparm -tT /dev/mmcblk0 /dev/sdal

/dev/mmcblkO :

Timing cached reads: 868 MB in 2.00 seconds = 433.95 MB/sec
Timing buffered disk reads: 56 MB in 3.11 seconds = 18.01 MB/sec
/dev/sdal:

Timing cached reads: 890 MB in 2.00 seconds = 444.34 MB/sec
Timing buffered disk reads: 74 MB in 3.09 seconds = 27.24 MB/sec

You can see that the SD card in the USB adapter (sdal) performs slightly better
than the SD card that is attached to the onboard MMC controller (nmcb1k0). Both
cards have the same specification (SanDisk Ultra Class 10, 30 MB/sec), so the difference
in data read rate appears to be due to the performance of the respective controllers.
You can utilize the dd command to test write performance, but be careful, as incorrect
usage will result in data loss.

Using the mount command with no arguments provides you with further
information about the file system on the RPi.

pi@eerpi ~ $ mount

/dev/mmcblk0p2 on / type ext4 (rw,noatime,data=ordered)

sysfs on /sys type sysfs (rw,nosuid,nodev,noexec,relatime)
proc on /proc type proc (rw,relatime)

As previously discussed, the file system is organized as a single tree that is
rooted at the root: /. Typing ca / brings you to the root point. The mount command
can be used to attach a file system on a physical disk to this tree. File systems
on separate physical devices can all be attached to named points at arbitrary

82

Part | = Raspberry Pi Basics

locations on the single tree. Table 3-5 describes some file system commands that
you can use to manage your file system, and thereafter follows two examples
that demonstrate how to utilize the mount command for important RPi system
administration tasks.

Table 3-5: Useful Commands for File Systems

COMMAND DESCRIPTION

du -h /opt
du -hs /opt/*

du -hc *.jpg

Disk usage: Find out how much space a directory tree uses.
Options: (-h) human readable form, (- s) summary, (- c) total. The
last command finds the total size of the JPG format files in the
current directory.

df -h

Display system disk space in (-h) human-readable form.

1sblk

List block devices.

ddif=test.img
of=/dev/sdX

dd if=/dev/sdX
of=test.img

dd converts and copies a file, where i £ is the input file and of is
the output file. Use this command under Linux to write an image
to an SD card. This is typically used under desktop Linux with the
following form:

sudo dd if=./RPi*.img of=/dev/sdX

where /dev/sdX is the SD card reader/writer device.

cat /proc/
partitions

List all registered partitions.

mkfs /dev/sdX

Make a Linux file system. Alsomkfs . ext4, mkfs.vfat. This
destroys data on the device. Use carefully!

fdisk -1

Note that £disk can be used to manage disks, create partitions,
delete partitions, etc. £tdisk -1 displays all existing partitions.

badblocks /dev/

mmcblkX

Check for bad blocks on the SD card. SD cards have wear leveling
controller circuitry. If you get errors, get a new card; don’t record
them using fsck. Run this with root permissions and be aware
that it takes some time to run.

mount /media/
store

Mount a partition if it is listed in /etc/fstab.

umount /media/

store

Unmount a partition. You will be informed if a file is open on this
partition.

sudo apt
install tree

tree ~/
exploringrpi

Install the tree command and use it to display the code reposi-
tory for this book as a directory tree structure.

Chapter 3 = Exploring Embedded Linux Systems

83

EXAMPLE: FIXING PROBLEMS ON A SD CARD BOOT IMAGE

Occasionally, you make a change to a Linux configuration file on the RPi Linux boot
image that prevents the image from booting, or causes the failure of network adapt-
ers so that you no longer have access to the device. If you have a RPi-compatible USB
card reader (see Figure 1-8(b), shown in Chapter 1), you can use a second “backup”
Linux SD card boot image to boot the RPi, whereupon you can mount the “damaged”
SD card image as follows:

pieerpi ~ $ 1lsblk

NAME MAJ:MIN RM SIZE RO TYPE MOUNTPOINT
sda 8:0 1 14.7G 0 disk

f—sdal 8:1 1 56M 0 part

L-sda2 8:2 1 14.6G 0 part

mmcblk0 179:0 0 14.9G 0 disk
f—mmcblkopl 179:1 0 56M 0 part /boot
L—mmcblk0p2 179:2 0 14.8G 0 part /

You can create mount points for the vfat and ext4 partitions of the “damaged” SD
card that is present in the USB SD card reader as follows:

pi@erpi ~ $ sudo mkdir /media/fix vfat
pi@erpi ~ $ sudo mkdir /media/fix ext
pieerpi ~ $ sudo mount /dev/sdal /media/fix vfat/
pieerpi ~ $ sudo mount /dev/sda2 /media/fix ext/

You can then browse the file systems on the “damaged” SD card using your RPi and
undo any invalid configuration settings:

pieerpi ~ $ cd /media/fix vfat/
pieerpi /media/fix vfat $ 1s
issue.txt start.elf cmdline. txt kernel7.img
start x.elf config. txt kernel.img
pieerpi /media/fix vfat $ ed ../fix ext/
pieerpi /media/fix ext $ 1ls
bin boot .bak etc 1lib media opt root sbin srv tmp var

boot dev home 1lost+found mnt proc run selinux sys wusr

As above, you can edit files on the vfat and ext4 partitions. After completing your
changes, remember to unmount the media before physically ejecting the SD card. You
can then safely remove the mount points:

pi@erpi /media/fix vfat $ cd ..
pi@erpi /media $ sudo umount /media/fix vfat
pieerpi /media $ sudo umount /media/fix ext

pieerpi /media $ sudo rmdir fix vfat fix ext

84 Part | = Raspberry Pi Basics

EXAMPLE: MOUNTING AN SD CARD AS ADDITIONAL STORAGE ON THE RPi

1. Formatting the secondary SD card to have a Linux ext4 file system
2. Mounting the secondary SD card as /media/store

3. Mounting the secondary SD card automatically at boot time

4

Configuring the card for user write access and displaying its capacity

In this example, the card is a 32 GB micro-SD card that has been placed in a micro-
USB card reader (see Figure 1-8(b), shown in Chapter 1). Ensure that the card is blank,
because this step will destroy its contents; skip to Step 2 if you want to retain the SD
card’s contents.

Step 1: Use 1sb1k to identify the device:

pieerpi ~ $ lsblk

NAME MAJ:MIN RM SIZE RO TYPE MOUNTPOINT
sda 8:0 1 29.8G 0 disk

Lsda1 8:1 1 29.8G 0 part

mmcblk0 179:0 0 14.9G 0 disk
f-mmcblkopl 179:1 0 56M 0 part /boot
Lmmcblk0p2 179:2 0 14.8G 0 part /

The 32 GB card appears as block device /sdal and can be prepared for a file system
of choice (Note that using mmcb1k0pl or mmcb1lk0p2 for the next step will destroy
the contents of your primary boot SD card.)

Build a file system as follows:

pieerpi ~ $ sudo mkfs.ext4 /dev/sdal

mke2fs 1.42.12 (29-Aug-2014)

/dev/sdal contains a vfat file system

Proceed anyway? (y,n) y

Creating filesystem with 7814912 4k blocks and 1954064 inodes
Filesystem UUID: e9562aa9-4565-4dfd-b986-4c45d089c7ce

Writing superblocks and filesystem accounting information: done

Step 2: A mount point can be created, and the secondary card mounted using the
mount command (- t indicates the file type; when omitted, mount attempts to auto-
detect the file type):

pieerpi ~ $ sudo mkdir /media/store

pieerpi ~ $ sudo mount -t ext4 /dev/sdal /media/store
pieerpi ~ $ cd /media/store

pieerpi /media/store $ 1ls

lost+found

pi@erpi /media/store $ 1lsblk

NAME MAJ:MIN RM SIZE RO TYPE MOUNTPOINT

sda 8:0 1 29.8G 0 disk

L-sdal 8:1 1 29.8G 0 part /media/store

Chapter 3 = Exploring Embedded Linux Systems

85

Step 3: To configure this secondary storage device to be mounted automatically at
boot time involves adding an entry to the /etc/fstab file. Add an entry to the last
line of the file, as follows:

pieerpi ~ $ sudo nano /etc/fstab

pi@erpi ~ $ more /etc/fstab

proc /proc proc defaults 0 0
/dev/mmcblk0pl /boot vfat defaults 0 2
/dev/mmcblk0p2 / ext4 defaults,noatime 0 1
/dev/sdal /media/store ext4 defaults,nofail,user, auto 0 0

pieerpi ~ $ sudo reboot

This entry configures the /dev/sdal tobe mounted at /media/store, identi-
fies the file system as ext4 format and sets the following mount options: defaults
(use default settings), nofail (mount the device when present but ignore if absent),
user (users have permissions to mount the system), and auto (the card is mounted
on start-up, or if the user types mount -a).The 0 0 values are the dump frequency
(archive schedule) and pass number (order for file checking at boot) and should both
be set to 0 by default. After reboot, you will see that the SD card is mounted correctly
at /media/store.

Unfortunately, this approach may not be satisfactory if you have multiple USB SD
card readers, as the /sda1 device could refer to a different SD card, depending on the
order of device initialization. An alternative approach is to use the UUID (universally
unique identifier) of the SD card itself to configure the mounting instruction. The UUID
for this 32 GB card is actually displayed toward the end of Step 1, but to identify it
explicitly at this point, you can use the following:

pieerpi ~ $ sudo blkid /dev/sdal
/dev/sdal: UUID="e9562aa9-4565-4dfd-b986-4c45d089c7ce" TYPE="ext4"

Inthe /etc/fstabfile, you canreplace the /dev/sdal entry with the UUID as fol-
lows (it should all appear on a single line in the file):

pie@erpi ~ $ more /etc/fstab

UUID=e9562aa9-4565-4dfd-b986-4c45d089c7ce /media/store ext4 defa -

ults,nofail,user,auto 0 0

Again, the RPi boots correctly, regardless of the presence or absence of the micro-
SD card. If an alternative micro-SD card is placed in the USB card reader, it will not be
mounted at /media/store, butyou can use its UUID to configure an additional
entry in /etc/fstab. In addition, you can hot swap SD cards, whereupon they will
be automatically mounted at their individually defined mount points. Ensure that you
execute sudo sync or sudo umount /dev/sdal before hot swappingany SD
cards. For example, to ready the SD card for removal, use umount; to remount it with-
out physical removal and reinsertion, use mount -a:

pieerpi ~ $ sudo umount /dev/sdal

pi@erpi ~ $ sudo mount -a

Continues

86

Part | = Raspberry Pi Basics

EXAMPLE: MOUNTING AN SD CARD AS ADDITIONAL (continued)

Step 4: The preceding steps result in a mount point that has root user write access
only. The mount point can be adapted to give permission so that user accounts who
are members of the users group can write to the card:

pieerpi /media $ 1ls -1

drwxr-xr-x 3 root root 4096 Jun 20 00:58 store

pi@erpi /media $ sudo chgrp users store

pieerpi /media $ sudo chmod g+w store

pieerpi /media $ 1ls -1

drwxrwxr-x 3 root users 4096 Jun 20 00:58 store

pieerpi /media $ cd store

pieerpi /media/store $ df -k | grep /media/store

/dev/sdal 30638016 44992 29013660 1% /media/store

pie@erpi /media/store $ touch test.txt

pi@erpi /media/store $ ls

lost+found test.txt

The df command is used to display the available capacity. Also, the mount point
permissions changes persist through reboot.

find and whereis

The £ind command is useful for searching a directory structure for a particular
file. It is incredibly comprehensive; type man £ind for a full list of options. For
example, use the following call to find the C++ header file iostream somewhere
on the RPi file system (using sudo avoids access permission problems):

pieerpi / $ sudo find . -name iostream*

./usr/include/c++/4.9/iostream
./usr/include/c++/4.6/iostream

Using -iname instead of -name ignores upper/lowercase letters in the search
name.

The following example finds files in /home that were modified in the last 24
hours and prior to the last 24 hours, respectively:

pi@erpi ~ $ echo "RPiTest File" >> new.txt
pieerpi ~ $ sudo find /home -mtime -1
/home/pi

/home/pi/.bash history

/home/pi/new. txt

pieerpi ~ $ sudo find /home -mtime +1
/home/pi/.profile

/home/pi/.bashrc

Alternatively, you can use access time (-atime), size (-size), owner (-user),
group (-group), and permission (-perm).

W [* AN Use the grep command to recursively search a directory for files that contain
a specific string using, where -r specifies a recursive search, -n displays the location
line number in an identified file, and -e is followed by the search pattern:

Chapter 3 = Exploring Embedded Linux Systems

87

pie@erpi ~ $ sudo grep -rn /home -e "RPiTest"
/home/pi/new.txt:1:RPiTest File

For more options use man grep.

The whereis command is different in that it can be used to search for the
binary executable, source code, and manual page for a program:

pi@erpi ~ $ whereis find
find: /usr/bin/find /usr/share/man/manl/find.1.gz

In this case, the binary command is in /usr/bin and the man page is in
/usr/share/man/man1 (stored in gzip form to save space).

more or less

The more command has been used several times already, and you have likely
gleaned its use. It enables you to view a large file or output stream, one page at
a time. Therefore, to view a long file you can type more filename.For example,
the log file /var/log/dmesg contains all the kernel output messages. You can
view this file page by page by typing more /var/log/dmesg. However, if you
want to keep the display concise, use -5 to set the page length to be five rows:

pieerpi ~ $ more -5 /var/log/dmesg

[0.000000] Booting Linux on physical CPU 0x£f00

[0.000000] Initializing cgroup subsys cpu

[0.000000] Initializing cgroup subsys cpuacct

[0.000000] Linux version 3.18.11-v7+ (dc4@dc4-XPS13-9333) (gcc version 4.8.3

20140303 (prerelease) (crosstool-NG linaro-1.13.1+bzr2650-Linaro GCC 2014.03)
--More--(2%)

You can use the spacebar to page through the content and the Q key to quit.
There is an even more powerful command called less that you can access:

pi@erpi ~ $ less /var/log/dmesg

The 1ess command gives you a fully interactive view using the keyboard.
There are too many options to list here. For example, you can use the arrow
keys to move up and down. Or you can page down using the spacebar, search
for a string by typing / (e.g., type /usb to find messages related to USB devices),
and then press the N key to go to the next match (or Shift+N key to go to the
previous match).

The Reliability of SD Card File Systems

One of the most likely points of failure of the RPi is its SD card, which is more
generally known as a multimedia card (MMC). NAND-based flash memory,
such as that in MMCs, has a large capacity and a low cost, but it is prone to
wear, which can result in file system errors.

The large capacity of MMCs is largely due to the development of multi-level
cell (MLC) memory. Unlike single-level cell (SLC) memory, more than 1 bit can
be stored in a single memory cell. The high voltage levels required in the process

Part | = Raspberry Pi Basics

of deleting a memory cell disturbs adjacent cells, so NAND flash memory is
erased in blocks of 1 KB to 4KB. Over time, the process of writing to the NAND
flash memory causes electrons to become trapped, reducing the conductivity
difference between the set and erased states. (For a discussion on SLC versus
MLC for high-reliability applications, see tiny.cc/erpi305.) MLCs use different
charge levels and higher voltages to store more states in a single cell. (Commercial
MLC products typically offer 4 to 16 states per cell.) Because SLCs only store a
single state, they have a reliability advantage (typically 60,000-100,000 erase/
write cycles) versus MLC (typically 10,000 cycles). MMCs are perfectly suitable
for daily use in applications such as digital photography; 10,000 cycles should
last over 27 years at one entire card write per day.

However, embedded Linux devices constantly write to their MMCs for tasks
such as logging system events in /var/log. If the RPi writes to a log file 20
times per day, the lifespan of the SD card could be as low as 8 months. These
are conservative figures, and thanks to wear leveling algorithms, the lifespan may
be much longer. Wear leveling is employed by MMCs during data writes to
ensure that rewrites are evenly distributed over the entire MMC media, thus
avoiding system failure of Linux devices due to concentrated modifications,
such as changes to log files.

For your RPj, ensure that you purchase a high-quality branded SD card. In
addition, the more unused space you have on the SD card, the better, because it
further enhances the wear leveling performance. Out of interest, other embed-
ded Linux boards such as the BeagleBone Black use eMMC (embedded MMC)
storage—essentially an MMC on a chip. These eMMCs are typically also MLC
based and have the same order of reliability as SD cards. However, one advantage
is that the board manufacturer has control over the quality and specification
of the eMMC device used. Finally, most consumer SSDs are also MLC based,
with the more expensive SLC-based SSDs typically reserved for enterprise-class
applications.

For RPi applications that require extended reliability, a RAM file system
(tmpfs) could be used for the /tmp directory, the /var/cache directory, and for
log files (particularly /var/log/apt). You can achieve this by editing the /etc/
f£stab file to mount the desired directories in memory. For example, if you have
processes that require file data to be shared between them for the purpose of
data interchange, you could use the /tmp directory as a RAM file system (tmp£s)
by editing the /etc/fstab file as follows:

pieerpi /etc $ sudo nano fstab
pieerpi /etc $ more fstab

proc /proc proc defaults 0 0
/dev/mmcblk0Opl /boot viat defaults 0 2
/dev/mmcblk0Op2 / ext4 defaults,noatime 0 1
tempfs /tmp tmpfs size=100M 0 0

Chapter 3 = Exploring Embedded Linux Systems

89

You can then apply these settings using the mount command:

pieerpi /etc $ sudo mount -a

And then check that the settings have been applied:

pieerpi /etc $ mount

tempfs on /tmp type tmpfs (rw,relatime,size=102400k)

The root directory is mounted by default with the noat ime attribute set, which
dramatically reduces the number of writes and increases I/O performance
(as described earlier in the chapter). You should apply this attribute when possible
to all solid-state storage devices (e.g., USB memory keys), but it is not necessary
for RAM-based storage.

Remember that any data written to a temp£s will be lost on reboot. Therefore,
if you use a tmpfs for /var/log, any system errors that caused your board
to crash will not be visible on reboot. You can test this fact by creating a file in
the /tmp directory as configured above and rebooting,.

The actual RAM allocation grows and shrinks depending on the file usage
on the tmpfs disk; therefore, you can be reasonably generous with the memory
allocation. For example, with the 100 MB /tmp tmpfs mounted:

pi@erpi /tmp $ cat /proc/meminfo | grep MemFree:

MemFree: 824368 kB

pieerpi /tmp $ fallocate -1 75000000 test.txt

pieerpi /tmp $ 1ls -1 test.txt

-rw-r--r-- 1 pi pi 75000000 Jul 17 00:04 test.txt

pieerpi /tmp $ cat /proc/meminfo | grep MemFree:
MemFree: 750788 kB

Certain RPi distributions use a read-only file system to improve the lifespan of
the SD card and the stability of the file system (e.g., OpenElec with the SquashFS
compressed file system), but this requires significant effort and is not suitable
for the type of prototype development that takes place in this book. However,
keep it in mind for a final project deployment where system stability is crucial.

Linux Commands

When you are working at the Linux terminal and you type commands such as
date, the output of these commands is sent to the standard output. As a result,
the output is displayed in your terminal window.

Output and Input Redirection (>, >>, and <)

It is possible to redirect the output to a file using redirection symbols > and >>.
The >> symbol was used previously in this chapter to add text to temporary
files. The > symbol can be used to send the output to a new file. For example:

20

Part | = Raspberry Pi Basics

pieerpi ~ $ cd /tmp

pieerpi /tmp $ date > a.txt
pieerpi /tmp $ more a.txt
Sat 20 Jun 12:59:43 UTC 2015
pieerpi /tmp $ date > a.txt
pie@erpi /tmp $ more a.txt
Sat 20 Jun 12:59:57 UTC 2015

The >> symbol indicates that you want to append to the file. The following
example illustrates the use of >> with the new file a. txt:

pieerpi /tmp $ date >> a.txt

pieerpi /tmp $ more a.txt

Sat 20 Jun 12:59:57 UTC 2015
Sat 20 Jun 13:00:17 UTC 2015

Standard input using the < symbol works in much the same way. The inclusion
of -e enables parsing of escape characters, such as the return (\n) characters,
which places each animal type on a new line:

pieerpi /tmp $ echo -e "dog\ncat\nyak\ncow" > animals.txt

pie@erpi /tmp $ sort < animals.txt

cat

cow

dog

yvak

You can combine input and output redirection operations. Using the same
animals.txt file, you can perform operations such as the following:

pieerpi /tmp $ sort < animals.txt > sorted.txt

pie@erpi /tmp $ more sorted.txt

cat

cow

dog

vak

Pipes (| and tee)

Simply put, pipes (|) enable you to connect Linux commands. Just as you redirected
the output to a file, you can redirect the output of one command into the input
of another command. For example, to list the root directory (from anywhere
on the system) and send (or “pipe”) the output into the sort command, where
it is listed in reverse (-r) order, use the following;:

pieerpi ~ $ 1ls / | sort -r

var

usr
bin

You can identify which user installations in the /opt directory occupy the
most disk space: du gives you the disk used. Passing the argument -d1 means

Chapter 3 = Exploring Embedded Linux Systems

91

only list the sizes of 1 level below the current directory level, and -h means list
the values in human-readable form. You can pipe this output into the sort filter
command to do a numeric sort in reverse order (largest at the top). Therefore,
the command is:

pi@erpi ~ $ du -dl -h /opt | sort -nr

113M /opt

69M /opt/sonic-pi

41M /opt/vec

4 .4M /opt/minecraft-pi

Another useful tool, tee, enables you to both redirect an output to a file and
pass it on to the next command in the pipe (e.g., store and view). Using the
previous example, if you want to send the unsorted output of du to a file but
display a sorted output, you could enter the following:

pi@erpi ~ $ du -dl -h /opt | tee /tmp/unsorted.txt | sort -nr

113M /opt

69M /opt/sonic-pi

41M /opt/ve

4.4M /opt/minecraft-pi

pie@erpi ~ $ more /tmp/unsorted.txt

4 .4M /opt/minecraft-pi

69M /opt/sonic-pi

41M /opt/vc

113M /opt

You can also use tee to write the output to several files simultaneously:

pi@erpi ~ $ du -dl -h /opt | tee /tmp/l.txt /tmp/2.txt /tmp/3.txt

Filter Commands (from sort to xargs)

Each of the filtering commands provides a useful function:

m sort: This command has several options, including (-r) sorts in reverse;
(-£) ignores case; (-d) uses dictionary sorting, ignoring punctuation; (-n)
numeric sort; (-b) ignores blank space; (-1) ignores control characters;
(-u) displays duplicate lines only once; and (-m) merges multiple inputs
into a single output.

m wc (word count): Calculates the number of words, lines, or characters in
a stream. For example:
pieerpi /tmp $ wc < animals.txt

4 4 16
This command returns that there are 4 lines, 4 words, and 16 characters.
You can select the values independently by using (-1) line count, (-w)
word count, (-m) character count, and (-c) prints out the byte count (which
would also be 16 in this case).

92

Partl

Raspberry Pi Basics

head: Displays the first lines of the input, which is useful if you have a
long file or stream of information and want to examine only the first few
lines. By default, it displays the first 10 lines. You can specify the number
of lines using the -n option. For example, to get the first two lines of out-
put of the dmesg command (display message or driver message), which
displays the message buffer of the kernel, use the following:

pi@erpi ~ $ dmesg | head -n2

[0.000000] Booting Linux on physical CPU 0xf00

[0.000000] Initializing cgroup subsys cpu

tail: Works like head except that it displays the last lines of a file or stream.
Using it in combination with dmesg provides useful output, as shown:
pi@erpi ~ $ dmesg | tail -n2

[8.896654] smsc95xx 1-1.1:1.0 ethO:1link up,100Mbps, full-duplex...

[9.340019] Adding 102396k swap on /var/swap.

grep: Parses lines using text and regular expressions. You can use this
command to filter output with options, including (-1i) ignore case;
(-m 5) stop after five matches; (-q) silent, will exit with return status o if
any matches are found; (-e) specify a pattern; (-c) print a count of matches;
(-o) print only the matching text; and (-1) list the filename of the file con-
taining the match. For example, the following examines the dmesg output
for the first three occurrences of the string usb, using -1 to ignore case:
pieerpi ~ $ dmesg | grep -i -m3 usb

[1.280089] usbcore: registered new interface driver usbfs

[1.285762] usbcore: registered new interface driver hub
[1.291220] usbcore: registered new device driver usb

You can combine pipes. For example, you get the exact same output by
using head and displaying only the first three lines of the grep output:
pi@erpi ~ $ dmesg | grep -i usb | head -n3

[1.280089] usbcore: registered new interface driver usbfs

[1.285762] usbcore: registered new interface driver hub
[1.291220] usbcore: registered new device driver usb

xargs: Enables you to construct an argument list that you use to call
another command or tool. In the following example, a text file args . txt
that contains three strings is used to create three new files. The output
of cat is piped to xargs, where it passes the three strings as arguments
to the touch command, creating three new files a. txt, b.txt, and c. txt:
pieerpi /tmp $ echo "a.txt b.txt c.txt" > args.txt

pi@erpi /tmp $ cat args.txt | xargs touch

pi@erpi /tmp $ 1ls
args.txt a.txt b.txt c.txt

Other useful filter commands include awk (to program any type of filter), fmt
(to format text), uniq (to find unique lines), and sed (to manipulate a stream).
These commands are beyond the scope of this text; for example, awk is a full
programming language! Table 3-6 describes useful piped commands to give
you some ideas of how to use them.

Chapter 3 = Exploring Embedded Linux Systems

93

Table 3-6: Useful Pipe Examples

COMMAND DESCRIPTION

apt list --installed | List the installed packages and search for one that

grep camera contains the search string camera. Each command in
this table is entered on a single line.

1s -1t | head Display the files in the current directory in order of age.

cat urls.txt | xargs Download the files, listed in URLs within a text file

wget urls.txt.

dmesg | grep -c usb Count the number of times usb is found in the output
of dmesg.

find . -name "*.mp3" | Search your RPi (e.g., run from/with sudo) for mp3 files,

grep -vi "effects" > ignoring any sound effects files, in order to create a

/tmp/playlist.txt playlist file in /tmp.

echo and cat

The echo command simply echoes a string, output of a command, or a value to
the standard output. Here are a few examples:

pi@erpi /tmp $ echo 'hello’

hello

pieerpi /tmp $ echo "Today's date is $(date)"

Today's date is Sat 20 Jun 14:31:21 UTC 2015

pieerpi /tmp $ echo $PATH

/usr/local/sbin: /usr/local/bin:/usr/sbin:/usr/bin:/sbin:/bin

In the first case, a simple string is echoed. In the second case, the " " are pres-
ent as a command is issued within the echo call, and in the final case the paTu
environment variable is echoed.

The echo command also enables you to see the exit status of a command
using $?. For example:

pieerpi ~ $ 1ls /tmp

args.txt a.txt b.txt c.txt playlist playlist.txt

pi@erpi ~ $ echo $?

0

pieerpi ~ $ ls /nosuchdirectory

ls: cannot access /nosuchdirectory: No such file or directory

pi@erpi ~ $ echo $?

2

Clearly, the exit status for 1s is o for a successful call and 2 for an invalid argu-
ment. This can be useful when you are writing scripts and your own programs
that return a value from the main () function.

The cat command (concatenation) facilitates you in joining two files together
at the command line. The following example uses echo to create two files a.. txt

94

Part | = Raspberry Pi Basics

and b. txt; cat concatenates the files to create a new file c¢. txt. You need to use
-e if you want to enable the interpretation of escape characters in the string
that is passed to echo.

pieerpi ~ $ cd /tmp

pie@erpi /tmp $ echo "hello" > a.txt

pieerpi /tmp $ echo -e "from\nthe\nRPi" > b.txt
pieerpi /tmp $ cat a.txt b.txt > c.txt

pieerpi /tmp $ more c.txt

hello

from

the

RPi

diff

The diff command facilitates you in finding the differences between two files.
It provides basic output:

pieerpi /tmp $ echo -e "dog\ncat\nbird" > listl.txt

pieerpi /tmp $ echo -e "dog\ncow\nbird" > list2.txt

pieerpi /tmp $ diff listl.txt list2.txt

2c2
< cat

> COw

The value 2c2 in the output indicates that line 2 in the first file changed to line
2 in the second file, and the change is that cat changed to cow. The character a
means appended, and d means deleted. For a side-by-side comparison, you can
use the following:

pieerpi /tmp $ diff -y -W70 listl.txt list2.txt

dog dog
cat | cow
bird bird

where -y enables the side-by-side view and -w7o0 sets the width of the display
to 70 character columns.

If you want a more intuitive (but challenging) difference display between two
files, you can use the vimdiff command (installed using sudo apt install
vim), which displays a side-by-side comparison of the files using the vim (Vi
IMproved) text editor (type vimdiff listl.txt list2.txt and use the VIkey
sequence: Escape : q ! twice to quit, or Escape : w qto save the changes and
quit). Vim requires practice to master the key sequences.

tar

The tar command is an archiving utility that enables you to combine files and
directories into a single file (like an uncompressed zip file). This file can then

Chapter 3 = Exploring Embedded Linux Systems

95

be compressed to save space. To archive and compress a directory of files, such
as /tmp, use the following:

pieerpi ~ $ tar cvfz tmp backup.tar.gz /tmp
where (c) means new archive, (v) means verbosely list files, (z) means compress

with gzip, and (£) means archive name follows. You might also see .tar.gz
represented as .tgz. See Table 3-7 for more examples.

Table 3-7: Useful tar Commands

COMMAND DESCRIPTION

tar cviz name.tar.gz Compress with gzip form.
/tmp

tar cvfj name.tar.bz2 Compress with bzip2 compression (typically a longer
/tmp delay, but smaller, file). Enter all commands in this table
on asingle line.

tar cviJ name.tar.xz Compress with xz file format (used in . deb package files)
/tmp
tar xvf name.tar.* Decompress compressed file (x indicates extract). It will

auto-detect the compression type (e.g., 9zip, bz2).

tar xvf name.tar.* Extract a single file from an archive. Works for a single
/dir/file directory too.
tar rvf name.tar Add another file to the archive.
filename
tar cfz name-$(date Create an archive with the current day’s date; useful for
+%m¥d%y) .tar.gz /dir/ scriptsand cron job backups. Note that there must be a
filename space between date and +%m%d%y.

md5sum

The mdssum command enables you to check the hash code, to verify that the files
have not been corrupted maliciously or accidentally in transit. In the following
example, the wavemon tool is downloaded as a .deb package, but not installed.
The mdssum command can be used to generate the md5 checksum:

pi@erpi ~ $ sudo apt-get download wavemon

Get:1 http://mirrordirector.raspbian.org/raspbian/ jessie/main

wavemon armhf 0.7.6-2 [48.2 kB] Fetched 48.2 kB in 0s (71.4 kB/s)

pi@erpi ~ $ 1ls -1 *.deb

-rw-r--r-- 1 root root 48248 Mar 28 2014 wavemon 0.7.6-2 armhf.deb

pieerpi ~ $ md5sum wavemon 0.7.6-2 armhf.deb
1dffa011736e25b63a054£f1515d18b3e wavemon 0.7.6-2 armhf.deb

You can now check this checksum against the official checksum to ensure
you have a valid file. Unfortunately, it can be difficult to find the checksums for

96

Part | = Raspberry Pi Basics

individual packages online. If wavemon is installed, the checksums are in /var/
1ib/dpkg/info/wavemon.mdSsums. You can install a utility under Debian called
debsums to check the integrity of the file and its constituent parts:

pieerpi ~ $ sudo apt install debsums wavemon
pieerpi ~ $ debsums wavemon 0.7.6-2_ armhf.deb

/usr/bin/wavemon OK
/usr/share/doc/wavemon/AUTHORS OK
/usr/share/doc/wavemon/NEWS.gz OK

If you are building your own packages that you want to distribute, it would
be useful to also distribute a checksum file against which users can verify their
downloaded repository. An alternative to mdssum is sha256sum, which can be
used in the same way.

Linux Processes

A process is an instance of a program that is running on the OS. You need to
be able to manage the processes that are running on your RPi, understand
foreground and background processes, and kill a process that becomes locked.

How to Control Linux Processes

The ps command lists the processes currently running on the RPi. Typing ps
shows that the following RPi is running two user processes, the bash shell with
process ID (PID) 912 and the ps command itself, which is running with PID
25481. The ps PID is different every time you run it because it runs to comple-
tion each time:

pieerpi ~ $ ps

PID TTY TIME CMD
912 pts/o0 00:00:05 bash
25481 pts/0 00:00:00 ps

To see all running processes, use ps ax. In the following example, it is filtered
to search for the string “ntp” to discover information about the ntp processes
that are running on the RPi:

pieerpi ~ $ ps ax | grep ntp

1069 ? Ss 00 /usr/sbin/ntpd -p /var/run/ntpd.pid -g -u 107:112

0:
1077 ? IS] 0:00 /usr/sbin/ntpd -p /var/run/ntpd.pid -g -u 107:112
0:

1132 ttyAMAO S+ 00 grep --color=auto ntp

It is clear that three different processes are running for the service, enabling
it to handle multiple simultaneous connections. In this example, all threads are
currently waiting for an event to complete (s), PID 1069 is the session leader
(ss), 1077 is its clones (s), and the 1132 grep process is in the foreground group

Chapter 3 = Exploring Embedded Linux Systems

97

(s+). As described earlier, a call to systemctl status ntp provides information
about the services running on the RPi—if you execute the call, you will see that
the process PIDs match those displayed by a call to ps.

Foreground and Background Processes

Linux is a multitasking OS that enables you to run processes in the background
while using a program that is running in the foreground. This concept is similar
to the behavior of a windowing system (e.g., Windows, Mac OS X). For example,
the desktop clock continues to update the time while you use a web browser.
The same is true of applications that run in a terminal window. To demonstrate
that, here is a small segment of C code to display “Hello World!” every 5 seconds
in a Linux terminal. Exactly how this works is covered in Chapter 5, but for the
moment, you can enter the code verbatim into a file called Hel1lorPiSleep.c
using the nano file editor within the pi user home directory, as follows:
pieerpi ~ $ cd ~/
pi@erpi ~ $ nano HelloRPiSleep.c
pi@erpi ~ $ more HelloRPiSleep.c
#include<unistd.h>
#include<stdio.h>
int main() {
int x=0;
do{
printf ("Hello Raspberry Pil!\n");
sleep(5);
}while (x++<50) ;
return 0O;

}

The program has 50 iterations, displaying a message and sleeping for 5 seconds
on each iteration. After saving the file as Hel1orPiSleep.c, it can be compiled
to an executable by typing the following (-o specifies the executable file name):

pi@erpi ~ $ gcc HelloRPiSleep.c -o helloRPiSleep

pi@erpi ~ $ 1ls -1 helloRPiSleep
-rwxr-xr-x 1 pi pi 5864 Jun 20 16:40 helloRPiSleep

If this works correctly, you will now have the source file and the executable
program called hellorpPisleep (note that the executable x flag is set). It can
then be executed:

pi@erpi ~ $./helloRPiSleep

Hello Raspberry Pi!
Hello Raspberry Pi! ...

It will continue to output this message every 5 seconds; it can be killed using
Ctrl+C. However, if you would like to run this in the background, you have
two options.

Part | = Raspberry Pi Basics

The first way is that, instead of using Ctrl+C to kill the process, use Ctrl+Z,
and then at the prompt type the bg (background) command:

pi@erpi ~ $./helloRPiSleep
Hello Raspberry Pi!

A

Z
[1]+ Stopped ./helloRPiSleep
pi@erpi ~ $ bg
[1]1+ ./helloRPiSleep &
pieerpi ~ $ Hello Raspberry Pi!
Hello Raspberry Pi!
Hello Raspberry Pi!

When you type Ctrl+Z, the *z displays in the output. When bg is entered, the
process is placed in the background and continues to execute. In fact, you can
continue to use the terminal but it will be frustrating, because “Hello Raspberry
Pil” displays every 5 seconds. You can bring this process back into the foreground
using the £g command:

pieerpi ~ $ fg

./helloRPiSleep

Hello Raspberry Pi!

*c

pieerpi ~ $
The application is killed when Ctrl+C is typed (displays as “c).

The second way to place this application in the background is to execute the
application with an & symbol after the application name:

pieerpi ~ $./helloRPiSleep &

[1] 30965

pi@erpi ~ $ Hello Raspberry Pi!
Hello Raspberry Pi!

The process has been placed in the background with PID 30965 in this case. To
stop the process, use ps to find the PID:
pieerpi ~ $ ps aux|grep hello

pi 30965 0.0 0.0 1612 304 pts/0 S 20:14 0:00 ./helloRPiSleep
pi 30978 0.0 0.1 4208 1828 pts/0 S+ 20:15 0:00 grep hello

To kill the process, use the ki1l command:

pieerpi ~ $ kill 30965
[1]+ Terminated ./helloRPiSleep

You can confirm that a process is dead by using ps again. If a process doesn’t
die, you can use a -9 argument to ensure death! (e.g, kill -9 30965). A separate
command, pkill, will kill a process based on its name, so in this case you can
kill the process as follows:

pi@erpi ~ $ pkill helloRPiSleep

Chapter 3 = Exploring Embedded Linux Systems

One more command worth mentioning is watch, which executes a command
at a regular interval and shows the outcome full screen on the terminal. For
example, to watch the kernel message log, use the following:

pieerpi ~ $ watch dmesg

You can specify the time interval between each execution using -n followed
by the number of seconds. A good way to understand watch is to execute it as
follows:

pieerpi ~ $ watch -n 1 ps a

Every 1.0s: ps a Sat Jun 20 20:22:39 2015
PID TTY STAT TIME COMMAND
912 pts/0 Ss 0:06 -bash

31184 pts/0 S+ 0:01 watch -n 1 ps a

31257 pts/0 S+ 0:00 watch -n 1 ps a

31258 pts/0 S+ 0:00 sh -c ps a

31259 pts/0 R+ 0:00 ps a

You will see the PID of ps, sh, and watch changing every one (1) second, mak-
ing it clear that watch is actually executing the command (ps) by passing it to a
new shell using sh -c. The reason why watch appears twice in the list is that it
spawns itself temporarily at the exact moment that it executes ps a.

Other Linux Topics

At this point of the book, you have covered the core commands for working
with Linux on the RPi; however, there is much more to cover on the topic of
managing Linux systems. For example, how do you configure a Wi-Fi adapter?
How do you use cron to schedule jobs with the RPi? These topics and many
others are detailed as you work through the book. For example, cron jobs are
covered in Chapter 12, in the context of the Internet of Things.

Using Git for Version Control

Simply put, Git is a system that enables you to track changes to the content of a
software project as it develops. Git, designed by Linus Torvalds, is used today
for mainline Linux kernel development. Git is an incredibly useful system to
understand for two main reasons: You can use Git when developing your own
software, and you can gain an appreciation of how to work with Linux kernel
source distributions.

Git is a distributed version control system (DVCS) for source control manage-
ment. A version control system (VCS) tracks and manages changes to documents
of any type. Typically, documents that have been changed are marked with

100 Partl = Raspberry Pi Basics

revision numbers and time stamps. It is possible to compare revisions and even
revert to older versions of the documents. There are two types of VCSs:

m Centralized (CVCS): These systems, such as Apache Subversion (SVN),
work on the basis that there is a single “master” copy of the project. The
workflow is straightforward: You pull down changes from a central server,
make your changes, and commit them back to the master copy.

m Distributed(DVCS): Using these systems, such as Git and Selenic Mercurial,
you do not pull down changes; instead, you clone the entire repository,
including its entire history. The clone of the repository is just as complete
as the master copy and can even become the master copy if required.
Thankfully, by today’s standards, text documents and programming source
code do not occupy much disk space. Importantly, the DVCS model does
not prevent you from having a central master repository that everybody
uses; take a look at git.kernel.org.

The main advantage of a DVCS over a CVCS is that you can quickly commit
and test changes locally, on your own system, without ever having to push them
to a master copy; however, changes can be pushed when they reach an appro-
priate level of quality. The only significant disadvantage is the amount of disk
space required to store the project and its entire history, which grows over time.

Git is a DVCS that is focused on programming source control and management.
It enables you to create parallel developments that do not affect the original. You
can even revert to an older version of one of the source code files, or an older
version of the entire project. The project, with its associated files and history, is
called a repository. This capability is particularly useful in large-scale program-
ming projects for which you may go down a development pathway with the
project that is ultimately unsuccessful. The facility for parallel development is
also important if you have several people working on the same project.

Git is written in C, and although it originated from the need for version control
tools in the development of Linux kernel code, it is used by many other open
source developments such as Eclipse and Android.

The easiest way to understand Git is to go through the steps of actually using
it. Therefore, the next section is structured as a step-by-step guide. If it is not
already, Git is easily installed using sudo apt install git, so you should be
able to follow the steps, directly at the terminal. GitHub is used in this book as
the remote repository for providing the source code examples. Except for push-
ing the source code to the server, you can do everything in this guide without a
GitHub account. GitHub provides free public repository accounts, but charges a
fee for private repositories, such as those that would be required for retaining
intellectual property rights.

Chapter 3 = Exploring Embedded Linux Systems

101

If you are planning to write a large software project and do not want to make
it publicly available on www . github. comor pay a subscription fee, you can currently
host small-scale private repositories at sites such as bitbucket .organd gitlab
. com. With some work, you can even set up GitLab on your own server, as there is an
open source version of the platform.

A Practice-Based Introduction

In this guide, I create a repository called “test” on GitHub. Initially, it contains
only a README . md file with a short description of the “test” project.

As shown in Figure 3-4, nearly all operations are local operations. A checksum
is performed on every file in Git before it is stored. The checksum ensures that
Git will be aware if a modification is made outside of Git itself, including file
system corruption. Git uses 40-character hash codes for the checksums. This
helps Git to keep track of changes between the local repository and remote
repository, which enables the range of local operations.

Remote
Repository

e~ commit_

local machine (e.g., RPi) | remote server (e.q., GitHub)

Figure 3-4: The basic Git workflow

Cloning a Repository (git clone)

Cloning a repository means making a copy of all the files in the repository on
your local file system, as well as the history of changes to that project. You do
this operation only once. To clone the repository, issue the command git clone
followed by the fully formed repository name:

pieerpi / $ ed ~/

pieerpi ~ $ git clone https://github.com/derekmolloy/test.git

Cloning into 'test'...

remote: Counting objects: 14, done.
remote: Compressing objects: 100% (5/5), done.

http://www.github.com

102

Part | = Raspberry Pi Basics

remote: Total 14 (delta 1), reused 0 (delta 0), pack-reused 9
Unpacking objects: 100% (14/14), done.
Checking connectivity... done.

You now have a full copy of the “test” repository in the /test directory. Your
repository is just as complete as the version on the GitHub server; if you were
to deploy it over a network, file system, other Git server, or even on a different
GitHub account, it could assume the role as the main version of this repository.
Although there is no need for a central server, it is usually the case, because it
enables multiple users to “check in” source code to a known master repository.
The repository is created in the /test directory, and it currently contains the
following:

pieerpi ~/test $ 1ls -al

total 20

drwxr-xr-x 3 pi pi 4096 Jun 20 22:00

drwxr-xr-x 6 pi pi 4096 Jun 20 22:00

drwxr-xr-x 8 pi pi 4096 Jun 20 22:00 .git
-rw-r--r-- 1 pi pi 59 Jun 20 22:00 README.md

You can see the README . md that was created when the project was initialized
on GitHub; you can use more to view the contents of this file. The directory
also contains a hidden .git subdirectory, which contains the following files
and directories:

pieerpi ~/test/.git $ 1s

branches description hooks info objects refs
config HEAD index 1logs packed-refs

The hidden .git folder contains all the information about the repository,
such as commit messages, logs, and the data objects. For example, the remote
repository location is maintained in the config file:

pi@erpi ~/test/.git $ more config | grep url
url = https://github.com/derekmolloy/test.git

The “Further Reading” section at the end of this chapter directs you to an
excellent book on Git, which is freely available online, that describes the nature
of the .git directory structure in detail. Thankfully, in the following discussion,
you do not have to make changes in the .git directory structure, because you
have Git commands to do that for you.

This step-by-step guide uses my “test” repository; however, you can easily
create your own repository on GitHub. After you set up a free account on GitHub, go
to Create New, and then New repository. Give the repository a name and a descrip-
tion, make it publicly available, choose to initialize it with a README, and then choose
Create Repository. You can then follow these instructions using your own account,
and as a result you will be able to push back from the RPi to your own repository on
GitHub.

Chapter 3 = Exploring Embedded Linux Systems

103

Getting the Status (git status)

Now that the repository exists, the next step is to add a new text file to the
working directory, where it will be it in an untracked state. When you call the
command git status, you can see a message stating that “untracked files”
are present:

pi@erpi ~/test $ echo "Just some text" > newfile.txt

pi@erpi ~/test $ git status

On branch master

Your branch is up-to-date with 'origin/master'.

Untracked files:

(use "git add <file>..." to include in what will be committed)
newfile.txt

nothing to commit, untracked files present (use "git add" to track)

The next step is to add any untracked files to the staging area. However, if
you did not want to add a set of files, you could also create a .gitignore file to
ignore those files. For example, this could be useful if you are building C/C++
projects and you decide that you do not want to add intermediate .o files. Here
is an example of creating a .gitignore file in order to ignore C/C++ .o files:

pieerpi ~/test $ echo "*.o" > .gitignore

pieerpi ~/test $ more .gitignore

* .0

pieerpi ~/test $ touch testobject.o

pi@erpi ~/test $ git status

On branch master

Your branch is up-to-date with 'origin/master'.

Untracked files:

(use "git add <file>..." to include in what will be committed)
.gitignore
newfile.txt
nothing to commit, untracked files present (use "git add" to track)

In this case, two files are untracked, but there is no mention of the testobject .o
file, as it is being correctly ignored. Note that the .gitignore file is itself part
of the repository and so will persist when the repository is cloned, along with
its revision history and so on.

Adding to the Staging Area (git add)

The files in the working directory can now be added to the staging area by typing
git add .—this command adds all of the files in the working directory, with
the exception of the ignored files. In this example, two files are added from the
working directory to the staging area, and the status of the repository can then
be displayed using the following;:

pieerpi ~/test $ git add .
pieerpi ~/test $ git status

104

Part | = Raspberry Pi Basics

On branch master
Your branch is up-to-date with 'origin/master'.

Changes to be committed:

(use "git reset HEAD <file>..." to unstage)
new file: .gitignore
new file: newfile.txt

To delete (remove) a file from the staging area, use git rm somefile.ext.

Committing to the Local Repository (git commit)

After you add files to the staging area, you can commit the changes from the
staging area to the local Git repository. First, you may want to add your name
and e-mail address variables, to identify who is committing the changes:

pieerpi ~/test $ git config --global user.name "Derek Molloy"
pi@erpi ~/test $ git config --global user.email derek@my.email.com

These values are set against your Linux user account, so they will persist when
you next log in. You can see them by typing more ~/.gitconfig.
To permanently commit the file additions to the local Git repository, use the
git commit command:
pi@erpi ~/test $ git commit -m "Testing the repository"
[master 3eea9a2] Testing the repository
2 files changed, 2 insertions (+)

create mode 100644 .gitignore
create mode 100644 newfile.txt

The changes are flagged with the username, and a message is also required.
If you want to detail the message inline, use -m to set the commit message.

\[* AN Theshortcutgit commit -a commits modified files directly to the local
repository, without requiring a call to add. It does not add new files. Refer back to
Figure 3-4, shown earlier in this chapter.

Pushing to the Remote Repository (git push)

To perform this step, you must have your own GitHub account. The git push
command pushes any code updates to the remote repository. You must be reg-
istered to make changes to the remote repository for the changes to be applied.
In Git 2.0, a new more conservative approach, called simple, has been taken to
push to remote repositories. It is chosen by default, but a warning message can
be squelched, and the push can be performed as follows (replace the user details
and repository name with your own account details):

pieerpi ~/test $ git config --global push.default simple
pieerpi ~/test $ git push

Chapter 3 = Exploring Embedded Linux Systems

105

Username for 'https://github.com': derekmolloy
Password for 'https://derekmolloyegithub.com': mySuperSecretPassword
Counting objects: 4, done.
Delta compression using up to 4 threads.
Compressing objects: 100% (2/2), done.
Writing objects: 100% (4/4), 350 bytes | 0 bytes/s, done.
Total 4 (delta 0), reused 0 (delta 0)
To https://github.com/derekmolloy/test.git
f5c45f4..3eea%a2 master -> master

After the code has been pushed to the remote repository, you can pull changes
back to a local repository on any machine by issuing a git pull command from
within the local repository directory:

pieerpi ~/test $ git pull
Already up-to-date.

In this case everything is already up-to-date.

Git Branching

Git supports the concept of branching, which enables you to work on multiple
different versions of the set of files within your project. For example, to develop
a new feature in your project (version 2) but maintain the code in the current
version (version 1), you could create a new branch (version 2). New features and
changes that are made to version 2 will not affect the code in version 1. You can
then easily switch between branches.

Creating a Branch (git branch)

Suppose, for example, you want to create a new branch called mybranch; you
can do so using the command git branch mybranch, and then you can switch
to that branch using git checkout mybranch, as shown:

pieerpi ~/test $ git branch mybranch
pieerpi ~/test $ git checkout mybranch
Switched to branch 'mybranch'

Now, to demonstrate how this works, suppose that a temporary file called
testmybranch. txt is added to the repository. This could be a new code file for
your project. You can see that the status of the branch makes it clear that the
working directory contains an untracked file:

pieerpi ~/test $ touch testmybranch.txt
pi@erpi ~/test $ 1ls
newfile.txt README.md testmybranch.txt testobject.o
pieerpi ~/test $ git status
On branch mybranch
Untracked files:
(use "git add <file>..." to include in what will be committed)

106 Partl = Raspberry Pi Basics

testmybranch. txt

nothing to commit, untracked files present (use "git add" to track)

You can then add this new file to the staging area of the branch using the
same commands:

pieerpi ~/test $ git add .
pieerpi ~/test $ git status
On branch mybranch
Changes to be committed:
(use "git reset HEAD <file>..." to unstage)
new file: testmybranch. txt

You can commit this change to the mybranch branch of the local repository.
This change will affect the mybranch branch but have no impact on the master
branch:

pieerpi ~/test $ git commit -m "Test commit to mybranch"

[mybranch d4cabf3] Test commit to mybranch

1 file changed, 0 insertions(+), 0 deletions(-
create mode 100644 testmybranch.txt

pieerpi ~/test $ git status

On branch mybranch

nothing to commit, working directory clean

pieerpi ~/test $ 1ls

newfile.txt README.md testmybranch.txt testobject.o

You can see from the preceding output that the file testmybranch.txt is
committed to the local repository and you can see the file in the directory.

If you now switch from the branch mybranch to the master branch using the
call git checkout master, you will see that something interesting happens
when you request the directory listing:

pi@erpi ~/test $ git checkout master

Switched to branch 'master'

Your branch is up-to-date with 'origin/master'.

pieerpi ~/test $ 1ls

newfile.txt README.md testobject.o

Yes, the file testmybranch. txt has disappeared from the directory! It still exists,
but it is in a blob form inside the .git/objects directory. If you return to the
branch and list the directory, you will see the following:

pieerpi ~/test $ git checkout mybranch

Switched to branch 'mybranch'

pieerpi ~/test $ 1s

newfile.txt README.md testmybranch.txt testobject.o

The file now reappears. Therefore, you can see just how well integrated the
branching system is. At this point, you can go back to the master branch and
make changes to the original code without the changes in the mybranch branch

Chapter 3 = Exploring Embedded Linux Systems

107

having any impact on the master code. Even if you change the code in the same
file, it has no effect on the original code in the master branch.

Merging a Branch (git merge)

What if you want to apply the changes that you made in the mybranch branch
to the master project? You can do this by using git merge:

pi@erpi ~/test $ git checkout master
Switched to branch 'master’
Your branch is up-to-date with 'origin/master'.
pi@erpi ~/test $ git merge mybranch
Updating 3eea9a2..d4cabf3
Fast-forward
testmybranch.txt | 0
1 file changed, 0 insertions(+), 0 deletions(-)
create mode 100644 testmybranch.txt
pieerpi ~/test $ git status
On branch master
Your branch is ahead of 'origin/master' by 1 commit.
(use "git push" to publish your local commits)
nothing to commit, working directory clean
pieerpi ~/test $ ls
newfile.txt README.md testmybranch.txt testobject.o

Now the testmybranch. txt file is in the master branch and any changes
that were made to other documents in the master have been applied. The local
repository is now one commit ahead of the remote repository and you can use
git push to update the remote repository.

Deleting a Branch (git branch -d)

If you want to delete a branch, use the git branch -d mybranch command:

pieerpi ~/test $ git branch -d mybranch

Deleted branch mybranch (was d4cabf3).

pieerpi ~/test $ 1ls

newfile.txt README.md testmybranch.txt testobject.o

In this case the file testmybranch. txt is still present in the master project—
and it should be, because the branch was merged with the master project. If
the branch had been deleted before the merge was performed, the file would
have been lost.

Common Git Commands

Table 3-8 provides a summary of the main Git commands. At this point, you
have seen the core use of Git. If you are developing code directly on the RPj,

108

Part | = Raspberry Pi Basics

Git can be highly useful, because you can easily push your developments to a
remote repository. That capability can be useful in backing up your code and
redeploying the code to multiple RPis.

Table 3-8: Summary of the Main Git Commands

OPERATION DESCRIPTION OPERATION DESCRIPTION

git clone Clone from the remote git rm Delete a file or directory
repository. from the staging area.

git init Create a wholly new git mv Move or rename a file
repository. or folder in the staging

area.

git pull Merge changes from a git log Display a log of commits.
master repository. The project history.

git fetch Find what has changedin ~ git tag Give a commit a name
a master repository with- (e.g., version 2).
out merging.

git status Show the project’s status. 9git merge Merge the branch.

[name]

git add Add a new file or edit an git show Get details about the cur-
existing file. rent or other commit.

git diff Show the differencesthat ~ git branch Create a new branch.
are to be committed. [name] (Use -d to delete.)

git commit Committotherepository. git check- Switch to a different

out [name] branch.

git push Push changes from the
local repository to a

remote repository.

Using Desktop Virtualization

The RPi is a capable general-purpose computing platform, but if you are planning
to build a Linux kernel or perform cross-platform development (see Chapter 7),
a PC-based Linux installation is highly recommended. You can either use a
single/dual boot Linux PC, or if you are a Windows/Mac native, you should
investigate desktop virtualization.

Desktop virtualization enables a single desktop computer to run multiple OS
instances simultaneously. It uses technology called hypervisors, which consist of
hardware, firmware, and software elements, to create and run software-emulated
machines, known as virtual machines (VMs). If you want to run multiple OS

Chapter 3 = Exploring Embedded Linux Systems

109

instances on a single computer, VMs provide an alternative to creating a multi-
boot configuration.

In virtualization, there are usually two or more distinct OS instances. The host
OS is the one that was first installed on the physical machine. The hypervisor
software is then used to create a guest OS within a VM. Figure 3-5 captures a
host Windows 8.1 desktop computer running a guest Debian 64-bit Linux Jessie
VM within a window. The Debian installation has the Cairo-Dock desktop
interface installed.

< g 3
Debian (Jessie Final) [Running] - Oracle VM VirtualBox

pi@erpi: /tmp

pi@erpi: ~

E File Edit View Search Terminal Help

94 SMP PREEWPT Sun Jun 7
u:

|pigerpi 1

|

B0 PP D @ Brhtcr

Figure 3-5: VirtualBox running Debian (Jessie) as a guest OS on a Windows host machine

Many virtualization products are available, but most have significant costs,
proprietary licenses, and are limited in the type of guest and host OSs that
they support. Two of the most popular Linux desktop virtualization prod-
ucts are VMware Player and VirtualBox. VMware Player (www.vmware.com/
products/player/) is free for personal use. VirtualBox (www.virtualbox.org)
is available under a GNU GPLv2 license (some features are available free under
a proprietary license).

Both products use hosted hypervisors (Type 2) for virtualization, meaning that
they run within a regular OS, enabling you to use both machines simultaneously.
VirtualBox is available to run on Windows, Mac OS X, and Linux machines,
and it can be used to host guest OSs such as Linux, Windows, and Mac OS
X. Currently, VMware Player is not available for Mac OS X host installations;
instead, you must purchase a product called VMware Fusion.

http://www.vmware.com/products/player
http://www.vmware.com/products/player
http://www.virtualbox.org

110

Part | = Raspberry Pi Basics

Both products are powerful and it is difficult to distinguish between them;
however, VirtualBox is released under a GPL, and it supports a useful feature
called snapshots. A user interface makes it possible to take a snapshot of the guest
OS that can be saved for later use. For example, you could take a snapshot before
you make a significant configuration change to your guest OS, enabling you to
roll back to that configuration should problems arise. The snapshot stores the
VM settings; changes in the contents of the virtual disks; and the memory state
of the machine at that point in time. Therefore, when a snapshot is restored, the
VM continues running at the exact same point as when the snapshot was taken.

If you install the VirtualBox Guest Additions, you are able to copy and paste
text between your guest and host OSs, share directories, and even resize the win-
dow dynamically. This chapter’s web page (www.exploringrpi.com/chapter3/)
provides advice on installing a Linux guest OS under a Windows host OS.

All Linux packages and software in this book are built and tested using a
Debian 64-bit desktop distribution that is installed within a VirtualBox VM.

W[eAN3 All Linux packages and software in this book are built and tested using a
Debian 64-bit desktop distribution that is installed within a VirtualBox VM.

Code for This Book

Now that you have your Desktop Linux installation up and running under
VirtualBox, or you are running a regular Linux desktop installation, you can
download all of the source code, scripts, and documentation discussed in this
book by opening a Linux terminal session/window and typing the following
(on the desktop machine and RPi):

pi@erpi ~ $ sudo apt install git

pie@erpi ~ $ git clone https://github.com/derekmolloy/exploringRPi.git
Cloning into 'exploringRPi'...

If you want to download the code from within Windows or Mac OS X, a
graphical user interface for working with GitHub repositories is available from
windows.github.com and mac.github.com.

If you have your own GitHub account, you can use its web interface to fork
this repository to your own account or you can watch the repository for updates and
changes. A GitHub account without private repositories is currently free of charge. In
addition, students and academics can apply for a free Micro account, which provides
for five private repositories for 2 years.

http://www.exploringrpi.com/chapter3
http://www.exploringrpi.com/chapter3

Chapter 3 = Exploring Embedded Linux Systems

111

Summary

After completing this chapter, you should be able to do the following;:

m Describe the basic concept of an embedded Linux system.

m Describe how an embedded Linux device, such as the RPi, boots the
Linux OS.

m Describe important Linux concepts, such as kernel space, user space, and
system initialization using systemd.

m Perform Linux system administration tasks on the RPi.

m Use the RPi file system effectively.

m Use a range of Linux commands for file and process management.
m Manage your own software development projects using Git.

m [nstall a Linux distribution on your desktop computer host OS using
desktop virtualization tools, such as VirtualBox.

m Download the source code for this book using Git.

Further Reading

The following texts can help you learn more about embedded Linux, Linux
administration, Git, and virtualization:

m Christopher Hallinan’s Embedded Linux Primer: A Practical Real-World
Approach, Second Edition (Upper Saddle River, NJ: Prentice Hall, 2011)

m The Debian Policy Manual: tiny.cc/erpi303

m To learn more about Git, start with a call toman gittutorial and then if
you need detailed information, see Scott Chacon’s excellent reference Pro
Git, at tiny.cc/erpi304; also available in paperback (New York: Apress
Media, 2009).

Bibliography

m ARM Holdings. (2015, February 11). ARM Holdings PLC Reports Results
for the Fourth Quarter and Full Year 2014. Retrieved June 14, 2015, from
www.arm.com/about /newsroom/arm-holdings-plc-reports-results-

for-the-fourth-quarter-and-full-year-2014.php.

http://www.arm.com/about/newsroom/arm-holdings-plc-reports-results-for-the-fourth-quarter-and-full-year-2014.php
http://www.arm.com/about/newsroom/arm-holdings-plc-reports-results-for-the-fourth-quarter-and-full-year-2014.php
http://www.arm.com/about/newsroom/arm-holdings-plc-reports-results-for-the-fourth-quarter-and-full-year-2014.php

112 Partl = Raspberry Pi Basics

m McCracken, J., Sherman, A., & King, I. (2015, May 27). Avago to Buy Broadcom
for $37 Billion in Biggest Tech Deal Ever. Bloomberg Business. Retrieved
June 14, 2015, from www.bloomberg.com/news/articles/2015-05-27/
avago-said-near-deal-to-buy-wireless-chipmaker-broadcomn.

m Git FAQ. (2013, March 9). Retrieved 2 22, 2014, from Git Wiki: git .wiki

.kernel.org/index.php/GitFag#Why the .27git.27 name.3F.

m Smith, B. (2013, July 29). A Quick Guide to GPLv3. Retrieved June 14,
2015, from www.gnu.org/licenses/quick-guide-gplv3.html.

http://www.bloomberg.com/news/articles/2015-05-27
http://www.gnu.org/licenses/quick-guide-gplv3.html
http://www.bloomberg.com/news/articles/2015-05-27/avago-said-near-deal-to-buy-wireless-chipmaker-broadcom

Interfacing Electronics

This chapter introduces you to the type of practical electronics that you need to
work correctly and effectively in interfacing electronic circuits with the Raspberry
Pi (RPi) platform. The chapter begins by describing some equipment that can be
very helpful in developing and debugging electronic circuits. It continues with
a practical introductory guide to circuit design and analysis, in which you are
encouraged to build the circuits and utilize the equipment that is described at
the beginning of the chapter. The chapter continues with a discussion on the
typical discrete components that can be interfaced to the general-purpose input/
outputs (GPIOs) on the RPj, including diodes, capacitors, transistors, optocouplers,
switches, and logic gates. Finally, the important principles of analog-to-digital
conversion (ADC) are described, as such knowledge is required in Chapter 9
to build circuits that interface the RPi to analog sensors.

Equipment Required for This Chapter:

m Components for this chapter (if following along): The full list is provided
at the end of this chapter.

m Digilent Analog Discovery (version 1 or 2) or access to a digital multimeter,
signal generator, and oscilloscope.

Further details on this chapter are available at www. exploringrpi.com/chapter4/.

113

http://www.exploringrpi.com/chapter4/

14

Part | = Raspberry Pi Basics

One chapter cannot be a substitute for full textbooks on digital and analog
electronics; however, there are concepts with which you should be comfortable before
connecting electronics to the GPIO interface header on the Raspberry Pi, as incorrect
configurations can easily destroy the board. Later chapters depend heavily on the
electronics concepts that are described in this chapter; however, it is not vital that
you assimilate all of the content in this chapter before you move on. Importantly, this
chapter is here as a reference for electronics concepts mentioned in later chapters.

Analyzing Your Circuits

When developing electronics circuits for the RPi platform, it is useful to have
the following tools so that you can analyze a circuit before you connect it to the
RPi inputs/outputs, in order to reduce the chance of damaging your board. In
particular, it is useful to have access to a digital multimeter and a mixed-signal
oscilloscope.

The tools listed here are for your consideration. Be sure to do your homework
and seek independent advice before choosing any such product. None of the prod-
ucts linclude are the result of any type of product placement agreement or request.
All prices are approximate.

Digital Multimeter

A digital multimeter (DMM) is an invaluable tool for measuring the voltage,
current, and resistance/continuity of RPi circuits. If you don't already have one,
try to purchase one with the following features:

m Auto power off: It is easy to waste batteries.

= Auto range: It is vital that you can select different measurement ranges.
Mid-price meters often have automatic range selection functionality that
can reduce the time required to take measurements.

m Continuity testing: This feature should provide an audible beep unless
there is a break in the conductor (or excessive resistance).

m True RMS readings: Most low-cost meters use averaging to calculate
AC(~) current/voltage. True RMS meters process the readings using
a true root mean square (RMS) calculation, which makes it possible to
account for distortions in waveforms when taking readings. This feature
is useful for analyzing phase controlled equipment, solid-state devices,
motorized devices, etc.

Chapter 4 = Interfacing Electronics

115

m Other useful options: These options are not strictly necessary but are
helpful: backlit display, a measurement hold, large digit displays, a greater
number of significant digits, PC connectivity (ideally opto-isolated), tem-
perature probe, and diode testing.

m Case: Look for a good-quality rubberized plastic case.

Generally, most of the preceding features are available on mid-price DMMs
with a good level of accuracy (1% or better), high input impedances (>10 M(),
and good measurement ranges. High-end multimeters mainly offer faster mea-
surement speed and greater levels of measurement accuracy; some may also
offer features such as measuring capacitance, frequency, temperature using an
infrared sensor, humidity, and transistor gain. Some of the best known brands
are Fluke, Tenma, Agilent, Extech, and Klein Tools.

Oscilloscopes

Standard DMMs provide you with a versatile tool that enables you to measure
average voltage, current, and resistance. Oscilloscopes typically only measure
voltage, but they enable you to see how the voltage changes with respect to time.
Typically, you can simultaneously view two or more voltage waveforms that are
captured within a certain bandwidth and number of analog samples (memory).
The bandwidth defines the range of signal frequencies that an oscilloscope can
measure accurately (typically to the 3 dB point, i.e,, the frequency at which a
sine wave amplitude is ~30% lower than its true amplitude). To achieve accurate
results, the number of analog samples needs to be a multiple of the bandwidth
(you will see why later in this chapter when the Nyquist rate is discussed); and
for modern oscilloscopes, this value is typically four to five times the bandwidth,
so a 25 MHz oscilloscope should have 100 million samples per second or greater.
The bandwidth and number of analog samples have the greatest influence on
the cost of an oscilloscope.

Several low-cost two-channel oscilloscopes are available, such as those by
Owon PDS5022S 25 MHz (~$200), feature-rich Siglent SDS1022DL 25 MHz (~$325),
Rigol DS1052 50MHz (~$325), and Owon SDS6062 60 MHz (~$349). Prices rise
considerably as the bandwidth increases, to around $1,500 for a 300 MHz scope.
Agilent digital storage (DSOX) and mixed-signal (MSOX) series scopes would be
considered to be mid/high range and cost $3,000 (100 MHZz) to $16,000 (1 GHz).
Mixed-signal scopes also provide you with digital bus analysis tools.

The Digilent Analog Discovery with Waveforms (see Figure 4-1) is used to test
all of the circuits in this book. The Analog Discovery (and very similar Analog
Discovery 2) is a USB oscilloscope, waveform generator, digital pattern genera-
tor, and logic analyzer for the Windows environment. The recently released
Waveforms 2015 software now has support for Linux (including ARM) and
Mac OS X. The Analog Discovery is generally available for $259-$279. If you

116

Part | = Raspberry Pi Basics

are starting out, or refreshing your electronics skills, it is a really great piece of
equipment for the price.

i DWF 1 - Arbitrary Waveform Generator 1

s[E] =
File Edit Control View Seftngs Window Help
W Stop All || £ Select Channels + | Mode: [Options @) Help
Channel 1 (AWG 1) &R
Enabled || M Stop AWG 1 | A~ Preview || Components: = Auto scale ~ | Show: from
Basic | Sweep| Advanced Moduiation: Volts:
Tig: None - Wai: none = Fun: confiuous v Repeat
Carrier FM AM N
N
[Sended Er[Swenderd [r]|[Senderd G 1 - av
N
Sne ~| [sine =] [sine - X
—_— i | | { L] b
\
LY
i owr 1 - oscilloscope 1 \ oo v
Edit Control View Settings \Window Help
1w
[y Bxport | [=] Persistence [Add XY [ad] Histogram [2] FFT [Data [y, Measure ¥ Cument @ Audio | Y Digtal | @, Zoom [Zoom 0 | 4 Options | i@ Help
F ButoSet Buffer 16cf 16 - |Source Chamel2 ~ Cond. Rising -] Time = ov
Single Run Pos. Oc -
Op AddChannel | Mode Auto - [Type Level 560mV -
Base 100usiv - || -1V
<2 @ 2014/04/12 23:32:57.901 - 8192 Samples at 7.69 MHz / 130 ns Zoom: 1.04X & [y [|mcica &R =
v | v - =N 1Y
BV 1 1 1oV T ™t Offcet OV
6V 1 2V Range 1 V/div Al av
v ev o |
av | jvi 2 E o
2v 2v Offset OV -
ov ov Range
5V
2V
2V ms
4V
av v
6V 3V
8V | | -1ov i HEH
-1V [N AR LRL IIRRERARiinE R - o oY
[X] -500us 400us -300us -200us -100us Ous 100us 200us 300us 400us 500us f [yt | XVA2 | vi3
FFT R
Top: 30.00 dBY W
30dBV
0dBYV
-30dBV
-60dBV
-S0dBV
12048V |

Analog ICs provided by

0 MHz 0.38MHz 0.77MHz 1.15MHz 1.54MHz 1.92MHz 2.31MHz 2.69MHz 3.08MHz 3.46MHz 3.85M DANALOG
FFT | Histogram DEVICES

Ready last acq. 2014104112 23:32:57.901

Figure 4-1: The Waveforms application generating a signal and displaying the response from
the physical circuit

A video | made about the use of the Analog Discovery is available at this
chapter’s web page: www . exploringrpi.com/chapter4 . It demonstrates three
different measurement applications of the Analog Discovery: analog analysis of a
rectifier diode; using the digital pattern generator and logic analyzer to investigate
the behavior of a JK flip-flop; and using the logic analyzer and its I2C interpreter to
connect to the BeagleBone Black I?C bus and analyze how it behaves. The analysis per-
formed would be identical on the RPi platform.

The Analog Discovery is used to generate all of the oscilloscope plots that
are presented in this book, as all examples have been implemented using real
circuits. The scope is limited to two channels at 5MHz per channel and 50 mil-
lion samples per second, for both the waveform generator and the differential
oscilloscope. As such, the Analog Discovery is mainly focused on students and
learners; however, it can also be useful in deciding upon “must-have” features
for your next, more expensive, equipment.

http://www.exploringrpi.com/chapter4
http://www.exploringrpi.com/chapter4

Chapter 4 = Interfacing Electronics

117

There are alternative mixed-signal USB scopes, such as PicoScopes, which
range from $160 to $10,000 (www.picotech.com), and the BitScope DSO, from
$150 to $1,000 (www.bitscope.com), which has Linux support. However, based
on the feature set that is currently available on USB oscilloscopes, it may be
the case that a bench scope with a USB logic analyzer (to provide mixed-mode
functionality, such as the Saleae logic analyzer, www.saleae.com) provides the
best “bang for your buck.”

The BitScope Micro (~$145) is a special version of the BitScope that is built
especially for the RPi. Similar to the Analog Discovery, it is a two-channel oscilloscope
(20 MHz), logic analyzer (6 channel), and spectrum analyzer. The BitScope Micro is
designed to be connected directly to the RPi, and it can be used to create a standalone
or network-accessible measurement and data acquisition platform. In addition, it
includes software libraries that you can use to build custom acquisition applications.
For more information, see bitscope.com/pi/.

Basic Circuit Principles

Electronic circuits contain arrangements of components that can be described as
being either passive or active. Active components, such as transistors, are those
that can adaptively control the flow of current, whereas passive components
cannot (e.g., resistors, capacitors, diodes). The challenge in building circuits is
designing a suitable arrangement of appropriate components. Fortunately, there
are circuit analysis equations to help you.

Voltage, Current, Resistance, and Ohm’s Law

The most important equation that you need to understand is Ohm’s law. It is
simply stated as follows:

V=IxR

where:

m Voltage (V), measured in volts (V), is the difference in potential energy
that forces electrical current to flow in the circuit. A water analogy is very
useful when thinking of voltage; many houses have a buffer tank of water
in the attic that is connected to the taps in the house. Water flows when a
tap is turned on, due to the height of the tank and the force of gravity. If
the tap were at the same height as the top of the tank of water, no water
would flow, because there would be no potential energy. Voltage behaves
in much the same way; when a voltage on one side of a component, such
as a resistor, is greater than on the other side, electrical current can flow
across the component.

http://www.picotech.com
http://www.bitscope.com
http://www.saleae.com
http://www.picotech.com
http://www.bitscope.com

118

Partl

Raspberry Pi Basics

As

Current (I), measured in amps (A), is the flow of electrical charge. To con-
tinue the water analogy, current would be the flow of water from the tank
(with a high potential) to the tap (with a lower potential). Remember that
the tap still has potential and water will flow out of the drain of the sink,
unless it is at ground level (GND). To put the level of current in context,
when we build circuits to interface with the RPi’s GPIOs, they usually
source or sink only about 3mA, where a milliamp is one thousandth of
an amp.

Resistance (R), measured in ohms (Q), discourages the flow of charge.
A resistor is a component that reduces the flow of current through the
dissipation of power. It does this in a linear fashion, where the power dis-
sipated in watts (W), is given by P = V x I or, alternatively by integrating
Ohm’s law: P = I* R = V?/R. The power is dissipated in the form of heat,
and all resistors have a maximum dissipated power rating. Common metal
film or carbon resistors typically dissipate 0.125W to 1W, and the price
increases dramatically if this value has to exceed 3W. To finish with the
water analogy, resistance is the friction between the water and the pipe,
which results in a heating effect and a reduction in the flow of water. This
resistance can be increased by increasing the surface area over which the
water has to pass, while maintaining the pipe’s cross-sectional area (e.g.,
placing small pipes within the main pipe).

an example, if you had to buy a resistor that limits the flow of current to

100mA when using a 5V supply, as illustrated in Figure 4-2(a), which resistor
should you buy? The voltage dropped across the resistor, V, must be 5V, as
it is the only component in the circuit. Because V = I; x R, it follows that the
resistor should have the value R = V/ (I =5V)/(100mA) = 50(, and the power
dissipated by this resistor can be calculated using any of the general equations
P=VI=I?R=V?%*'Ras05W.

(a)

(o)

— X

IResistorI (b) I R1] 9—0

+ Vr - + Vri — A

1 /’\« P ;
D Iz= 100 mAY | szl:giI Vi
\4/ e 4 :

\ 4

9—0

Figure 4-2: (a) Ohm’s law circuit example, and (b) a voltage divider example

Buying one through-hole, fixed-value metal-film resistor with a 1% tolerance
(accuracy) costs about $0.10 for a 0.33 W resistor and $0.45 for a 1 W power rat-
ing. You should be careful with the power rating of the resistors you use in your

Chapter 4 = Interfacing Electronics

119

circuits, as underspecified resistors can blow. A 30 W resistor will cost $2.50 and
can get extremely hot—not all resistors are created equally!

m Why would it be bad practice to connect a voltage supply’s positive
terminal to the negative terminal without a resistor? This is called a short circuit, and

it is the quickest way to damage a sensitive device like the RPi. Connection (hook-up)
wire by its nature is a good conductor, and it has a very small resistance. A 100 M (328’)
roll of 0.6 mm (0.023”) hook-up wire has a total resistance of about 5 Q; therefore, con-
necting a 6” length of connection wire between a RPi 3.3V supply and its GND terminal
would in theory draw 433 A (/=V/R=3.3V/0.0076 Q). In practice this will not happen, but
the available maximum current would likely damage your RPi! Also, remember that
LEDs do not include a fixed internal resistance, so they behave somewhat like a short
circuit when forward biased—LEDs nearly always require current-limiting resistors for
this reason!

Voltage Division

If the circuit in Figure 4-2(a) is modified to add another resistor in series as
illustrated in Figure 4-2(b), what will be the impact on the circuit?

m Because one resistor is after the other (they’re in series), the total resistance
that the current must pass through to circulate in the circuit is the sum of
the two values: R; = R1 + R2.

m The supply voltage must drop across the two resistors, so you can say that
Vuppy = Vri + Vio- The voltage that drops across each resistor is inversely
proportional to the resistor’s value. This circuit is called a voltage divider.
Suppose you want to calculate on paper the voltage value at point X in
Figure 4-2(b) if R1 = 25Q and R2 = 75(. The total resistance in the circuit is
R =25+75=100(), and the total voltage drop across the resistors must be 5V;
therefore, by using Ohm’s law, the current flowing in the circuitis I = V/R =
5V/100Q = 50mA. If the resistance of R1 is 25(), then the voltage drop across
Vii=1xR=0.05A x250 =125V and the voltage drop across Vi, =1 x R =
0.05 A x 75Q = 3.75V. You can see that the sum of these voltages is 5V, thus
obeying Kirchoff’s voltage law, which states that the sum of the voltage drops
in a series circuit equals the total voltage applied.

To answer the question fully: In this circuit, 1.25V is dropped across R1 and
3.75V is dropped across R2, so what is the voltage at X? To know that, you have
to measure X with respect to some other point! If you measured X with respect to
the negative terminal of the supply, the voltage drop is V in Figure 4-2(b), and it is
the same as the voltage drop across R2, so it is 3.75 V. However, it would be equally
as valid to ask the question, “What is the voltage at X with respect to the positive
terminal of the supply?” In that case, it would be the negative of the voltage drop
across Rl (as X is at 3.75V with respect to the negative terminal and the positive

120

Part | = Raspberry Pi Basics

terminal is at +5V with respect to the negative terminal); therefore, the voltage at
X with respect to the positive terminal of the supply is -1.25V.

To calculate the value of Vy in Figure 4-2(b), the voltage divider rule can be
generalized to the following:

R2

Vx =V ol i ro

You can use this rule to determine a voltage Vy, but unfortunately this con-
figuration is quite limited in practice, because it is very likely that the circuit
to which you connect this voltage supply, Vy, will itself have a resistance (or
load). This will alter the characteristic of your voltage divider circuit, changing
the voltage V. However, most circuits that follow voltage dividers are usually
input circuits that have very high input impedances, and therefore the impact
on Vy will be minimal.

Figure 4-3(a) captures a variable resistor, or potentiometer (pot), and an
associated circuit where it is used as a standalone voltage divider. The resis-
tance between pins 1 and 3 is a fixed value, 10k} in the case of the multiturn
pot; however, the resistance between pins 3 and the wiper pin (pin 2) varies
between 0() and 10k(Q). Therefore, if the resistance between pins 2 and 3 is 2k(),
then the resistance between pins 1 and 2 will be 10k — 2k = 8kQ). In such a
case, the output voltage, V,,,, will be 1V and it can be varied between 0V and

out’

5V by turning the small screw on the pot, using a trim tool or screwdriver.

@ 10002 (b)
—®
1 3 Is i 7]
wiper 2 1 & n
+ 912 + :
5V = 5V I | g | Vs & |Vr:
_ A _ - -
10k 3 ' Vout(0-5V)
wiper Y
*—0 &
123
Figure 4-3: (a) Potentiometers and using a variable voltage supply, and (b) a current divider

example

Current Division

If the circuit is modified as in Figure 4-3(b) to place the two resistors in paral-
lel, you now have a current divider circuit. Current will follow the path of least
resistance, so if R1 = 100Q) and R2 =200(), then a greater proportion of the cur-
rent will travel through R1. So, what is this proportion? In this case the voltage
drop across R1 and R2 is 5V in both cases. Therefore, the current I; will be
I=V/R =5V/100Q = 50mA and the current [, will be [= 5V/200Q = 25mA.

Chapter 4 = Interfacing Electronics

121

Therefore, twice as much current travels through the 100 resistor as the 200
resistor. Clearly, current favors the path of least resistance.

Kirchoff’s current law states that the sum of currents entering a junction equals
the sum of currents exiting that junction. This means that Ig=I; + [, = 25mA +
50mA =75mA. The current divider rule can be stated generally as follows:

R2 R2
: X(R1+R2]’ and I X(R1+R2j

However, this requires that you know the value of the current I (I in this case)
that is entering the junction. To calculate I directly, you need to calculate the
equivalent resistance (R;) of the two parallel resistors, which is given as follows:

1 1,1 _RIXR2

1 _ 1. 1 L Rr.-
Re Ri R T TRI+R2

This is 66.66) in Figure 4-3(b); therefore Is= V/R = 5V/66.66) = 75mA, which
is consistent with the initial calculations.

The power delivered by the supply: P = VI =5V x 0.075A = 0.375W. This
should be equal to the sum of the power dissipated by R1 = V2/R = 5*/100 =
0.25 W and, R2 = V2/R =5%/200 = 0.125 W giving 0.375 W total, confirming that
the law of conservation of energy applies!

Implementing RPi Circuits on a Breadboard

The breadboard is a great platform for prototyping circuits and it works per-
fectly with the RPi. Figure 4-4 illustrates a breadboard, describing how you
can use the two horizontal power rails for 3.3V and 5V power. The RPi GPIO
header consists of male header pins, which means that you typically require
relatively expensive female jumper connectors for wiring circuits. RPi GPIO
extension boards (e.g., the Adafruit Pi T-Cobbler Plus), as illustrated in Figure
4-4, are widely available for interfacing to breadboards. They solve the prob-
lem of connecting to the male headers on the RPi using female jumper cables,
provide a very stable connection, and allow you to use low-cost hook-up wire
for your circuits. Please be especially careful when connecting the RPi end of
a GPIO extension board cable to the RPj, as the connector is not polarized and
therefore can be connected backward.

A good-quality breadboard like that in Figure 4-4 (830 tie points) costs about
$6 to $10. Giant breadboards (3,220 tie points) are available for about $20. Here
are some tips for using breadboards:

m Whenever possible, place Pin 1 of your ICs on the bottom left so that you
can easily debug your circuits. Always line up the pins carefully with the
breadboard holes before applying pressure and “clicking” it home. Also,
ICs need power!

m [eaving a wire disconnected is not the same as connecting it to GND
(discussed later in this chapter).

122

Part | » Raspberry Pi Basics

m Use a flat-head screwdriver to slowly lever ICs out of the breadboard

from both ends to avoid bending the IC’s legs.

m Be careful not to bridge resistors and other components by placing two of

their pins in the same vertical rail. Also, trim resistor leads before placing
them in the board, as long resistor leads can accidentally touch and cause
circuit debugging headaches.

Momentary push buttons typically have four legs that are connected in
two pairs; make sure that you orient them correctly (use a DMM conti-
nuity test).

Staples make great bridge connections!

Some boards have a break in the power rails; bridge this where necessary.

m Breadboards typically have 0.1” spacing (lead pitch) between the tie points,

which is 2.54mm metric. Try to buy all components and connectors with
that spacing. For ICs, choose the DIP /PDIP (the IC code ends with an N);
and for other components, choose the “through-hole” form.

Use the color of the hook-up wire to mean something—e.g., use red for
5V and black for GND; it can really help when debugging circuits. Solid-
core 22AWG wire serves as perfect hook-up wire and is available with
many different insulator colors. Pre-formed jumper wire is available, but
long wires lead to messy circuits. A selection of hook-up wire in differ-
ent colors and a good-quality wire-stripping tool enables the neatest and
most stable breadboard layouts.

5V power rail — resistor is badly placed {shorted) prototyping area

to RPi GFIO header

=X 7 —= o ——
ground rail —--':f/" 3.3V power rail *——-") \chips bridge center gap {remember power!)

Figure 4-4: The breadboard with an RPi GPIO extension board and a 7408 IC (quad two-input
AND gates)

Chapter 4 = Interfacing Electronics

123

EXAMPLE: MAKING CUSTOM CABLES FOR THE RPI GPIO HEADER

As an alternative to using GPIO expansion boards or pre-crimped female jumper
wires, you can make custom cables for the RPi’s DuPont PCB interconnector. Custom
cables allow for deployable stable connections, custom cable lengths, custom break-
out directions, and mixed male/female end connectors. Figure 4-5(a) illustrates a
custom-built connector that is attached to the RPi header. Figure 4-5(b) illustrates a
typical budget-price crimping tool ($20-$35). A video on this topic is available on the
chapter web pageand at tiny.cc/erpi401.

(a) (b)

Figure 4-5: (a) The custom-built connector attached to an RPi (model B), and (b) a low-cost
crimping tool

Digital Multimeters (DMMs) and Breadboards

Measuring voltage, current and resistance is fairly straightforward once you
take a few rules into account (with reference to Figure 4-6):

m DC voltage (DCV) is measured in parallel with (i.e., across) the component
that experiences the voltage drop. The meter should have the black probe
in the COM (common) DMM input.

m DC current (DCA) is measured in series, so you will have to “break” the
connection in your circuit and wire the DMM as if it were a component
in series with the conductor in the circuit in which you are measuring
current. Use the black probe lead in COM and the red lead in the uAmA
input (or equivalent). Do not use the 10 A unfused input.

m Resistance cannot usually be measured in-circuit, because other resistors
or components will act as parallel/series loads in your measurement.
Isolate the component and place your DMM red probe in the V() input and
set the meter to measure (). The continuity test can be reasonably effec-
tively used in-circuit, provided that it is de-energized.

124

Part | = Raspberry Pi Basics

to supply
measure DC voltage (DCV) measure DC current (DCA) measure resistance ,I

EEE mEm mEa = {]I smmsn mman el
. SEE BESE ||ncorrect[--'I SEEES :l ' incorrect T '-'.J+
wn =]]] =]]]
_";I -I.I:III-':-III‘:IIII?I.II:’IIII:II.I -?-Ill‘lﬂlllﬂ
Zan T T e ™ T
ODam EEEEEEEEE Sl pEnENEEEEEEEENEEED SR EEEEEEREEE]
Lem SEEsEsEEEER EEmENEmEm SEEsEEEEER L] LB B'S
't i | { parallel
Wwem TTI IR T R | b.l.ll... EEEEEEEm mEEm oW
=% & (ISR RERRY | %Illlllll FEEEEEEE EmEm (=]
(&% I | (RS RS EE RN 4] mammsEm EEEEEEm EEnm { N&]
[EEEEEEEEER EEREREm EERERRm EERw L]
<LEm EsEEEEEES EsEsEES EsEEEm sEsnEm o
= : - —) $
1 ' B 1
L LR B - .Ill' L L] EEW =
man asEm L] sEsmEm L] L] L a
+ +
VQ COM pAmA com HAMA com

Figure 4-6: Measuring voltage, current, and resistance

If your DMM is refusing to function, you may have blown the internal fuse.
Disconnect the DMM probes and open the meter to find the small glass fuse. If
you have a second meter you can perform a continuity test to determine whether
it has blown. Replace it with a like value (or PTC)—not a mains fuse!

m Measuring current directly across a voltage supply (even a 9V bat-
tery) with no load is the quickest way to blow the DMM fuse, as most are rated at

about 200 mA. Check that the probe is in the VQ input before measuring voltage.

Example Circuit: Voltage Regulation

Now that you have read the principles, a more complex circuit is discussed in
this section, and then the components are examined in detail in the following
sections. Do not build the circuit in this section; it is intended as an example to
introduce the concept of interconnected components.

A voltage regulator is a complex but easy-to-use device that accepts a varied
input voltage and outputs a constant voltage almost regardless of the attached
load, at a lower level than the input voltage. The voltage regulator maintains the
output voltage within a certain tolerance, preventing voltage variations from
damaging downstream electronics devices.

The RPi B+ and RPi 2/3 models have a dual high-efficiency PWM step-down
DC-DC converter (PAM2306 on U3, see tiny.cc/erpi402) that can supply
different fixed voltage levels to on-board devices, along with short-circuit pro-
tection. For example, there is a 5V, 3.3V, and a 1.8V output. You can use these
5V and 3.3V outputs as supplies on the RPi GPIO header to drive your cir-
cuits, but only within certain current supply limits. The RPi can supply up to
200mA-300mA on the 5V pins (Pins 2 and 4), and approximately 50mA on the
3.3V pins (Pins 1 and 17).

Chapter 4 = Interfacing Electronics

125

If you want to draw larger currents for applications like driving motors, you
may need to use voltage regulators like that in Figure 4-7. You can build this
directly on a breadboard or you can purchase a “breadboard power supply stick
5V/3.3V” from SparkFun (www. sparkfun.com) for about $15.

(@) (b) Typical power supply circuit

switch

voltage voltage
in out

o + O
£
GND GND = GND

Figure 4-7: The KA7805A/LM7805 voltage regulator and an example regulator circuit

As shown in Figure 4-7, the pin on the left of the regulator is the voltage
supply input. When delivering a current of 500mA, the KA7805/LM7805 volt-
age regulator will accept an input voltage range of 8 V-20V, and will output a
voltage (on the right) in the range of 4.8 V-5.2V. The middle pin should be
connected to the ground rail. The aluminum plate at the back of the voltage
regulator is there to dissipate heat. The hole enables you to bolt on a heat sink,
allowing for greater output currents, of up to 1 A.

The minimum input voltage required is about 8V in order to drive the KA7805/
LM7805 voltage regulator. If your supply voltage is lower than that, then you
could use a low-dropout (LDO) voltage regulator, which can require a supply
as low as 6V to operate a 5V regulator. The implementation circuit in Figure
4-7 has the following additional components that enable it to deliver a clean
and steady 5V, 1 A supply:

m The diode ensures that if the supply is erroneously connected with the
wrong polarity (e.g., 9V and GND are accidentally swapped), then
the circuit is protected from damage. Diodes like the 1N4001 (1 A supply)
are very low cost, but the downside is that there will be a small forward
voltage drop (approximately 1V at 1 A) across the diode in advance of
the regulator.

m The switch can be used to power the circuit on or off. A slider switch
enables the circuit to remain continuously powered.

m The Positive Temperature Coefficient (PTC) resettable fuse is very use-
ful for preventing damage from overcurrent faults, such as accidental
short circuits or component failure. The PTC enables a holding current
to pass with only a small resistance (about 0.25(Q)); but once a greater trip-
ping current is exceeded, the resistance increases rapidly, behaving like a

http://www.sparkfun.com

126

Part | = Raspberry Pi Basics

circuit breaker. When the power is removed, the PTC will cool (for a few
seconds) and it regains its pre-tripped characteristics. In this circuit a 60R110
or equivalent Polyfuse would be appropriate, as it has a holding current
of 1.1 A and a trip current of 2.2 A, at a maximum voltage of 60V DC.

m The 0.33 uF capacitor is on the supply side of the regulator and the
0.1 pF capacitor is on the output side of the regulator. These are the values
recommended in the datasheet to remove noise (ripple rejection) from the
supply. Capacitors are discussed shortly.

m The LED and appropriate current-limiting resistor provide an indicator
light that makes it clear when the supply is powered.

There are two main notations to represent current flow: The first is electron
current flow, and it is the flow of negative charge. The second is conventional flow
notation, and it is precisely the opposite: It is the flow of positive charge, and it is con-
sistent with all semiconductor symbols. This book uses the conventional flow notation
to describe current flow direction.

Discrete Components

The previous example circuit used a number of discrete components to build a
standalone power supply circuit. In this section, the types of components that
compose the power supply circuit are discussed in more detail. These compo-
nents can be applied to many different circuit designs, and it is important to
discuss them now, as many of them are used in designing circuits that interface
to the RPi input/outputs in Chapter 6.

Diodes

Simply put, a diode is a discrete semiconductor component that allows current to
pass in one direction but not the other. As the name suggests, a “semi” conductor
is neither a conductor nor an insulator. Silicon is a semiconductive material, but
it becomes much more interesting when it is doped with an impurity, such as
phosphorus. Such a negative (n-type) doping results in a weakly bound electron
in the valence band. It can also be positively doped (p-type) to have a hole in
the valence band, using impurities such as boron. When you join a small block
of p-type and n-type doped silicon together, you get a pn-junction—a diode!
The free electrons in the valence band of the n-type silicon flow to the p-type
silicon, creating a depletion layer and a voltage potential barrier that must be
overcome before current can flow.

Chapter 4 = Interfacing Electronics

127

When a diode is forward biased it allows current to flow through it; when it
is reverse-biased, no current can flow. A diode is forward-biased when the volt-
age on the anode (+ve) terminal is greater than the voltage on the cathode (—ve)
terminal; however, the biasing must also exceed the depletion layer potential
barrier (knee voltage) before current can flow, which is typically between 0.5V
and 0.7V for a silicon diode. If the diode is reverse-biased by applying a greater
voltage on the cathode than the anode, then almost no current can flow (maybe
1 nA or so). However, if the reverse-biased voltage is increasingly raised, then
eventually the diode will break down and allow current to flow in the reverse
direction. If the current is low then this will not damage the diode—in fact, a
special diode called a Zener diode is designed to operate in this breakdown
region, and it can be configured to behave just like a voltage regulator.

The 1N4001 is a low-cost silicon diode that can be used in a simple circuit
(see Figure 4-8) to demonstrate the use and behavior of diodes. The 1N4001 has
a peak reverse breakdown voltage of 50 V. In this circuit, a sine wave is applied
that alternates from +5V to -5V, using the waveform generator of the Analog
Discovery. When the V,, voltage is positive and exceeds the knee voltage, then
current will flow and there will be a voltage drop across the load resistor V,,;
which is slightly less than V. There is a small voltage drop across the diode V,
and you can see from the oscilloscope measurements that this is 0.67 V, which
is within the expected range for a silicon diode.

(a) () | i 0 1 - Oscitioncope 1 - Zoom | i

— cathode Wirdow | B Zoom Dime SpiAddsY [[tiecgum EFT [0ets o, Messerw o Coroe
aM_——- ot P 2l
o s g % 4 3
T

Dlm:mm A \ | “ =
o i V}Dad 1 I L] mie:) - .-

Figure 4-8: Circuit and behavior of a TN4001 diode with a 5V AC supply and a 1 kQ load resistor

The diode is used in the circuit in Figure 4-7 as a reverse polarity protector.
It should be clear from the plot in Figure 4-8 why it is effective, as when V,, is
negative, the V, ,, is zero. This is because current cannot flow through the diode
when it is reverse-biased. If the voltage exceeded the breakdown voltage for the
diode then current would flow; but since that is 50V for the 1N4001, it will not
occur in this case. Note that the bottom right-hand corner of Figure 4-8 shows
an XY-plot of output voltage (y-axis) versus input voltage (x-axis). You can see
that for negative input voltage the output voltage is 0, but once the knee voltage
is reached (0.67 V), the output voltage increases linearly with the input voltage.

128

Part | = Raspberry Pi Basics

This circuit is called a half-wave rectifier. It is possible to connect four diodes in
a bridge formation to create a full-wave rectifier.

Light-Emitting Diodes (LEDs)

A light-emitting diode (LED) is a semiconductor-based light source that is often
used as a state indication light in all types of devices. Today, high-powered LEDs
are being used in car lights, in back lights for televisions, and even in place of
filament lights for general-purpose lighting (e.g., home lighting, traffic lights,
etc.) mainly due to their longevity and extremely high efficiency in converting
electrical power to light output. LEDs provide very useful status and debug
information about your circuit, often used to indicate whether a state is true
or false.

Like diodes, LEDs are polarized. The symbol for an LED is illustrated in Figure
4-9. To cause an LED to light, the diode needs to be forward biased by connect-
ing the anode (+) to a more positive source than the cathode (-). For example,
the anode could be connected to +3.3V and the cathode to GND; however, also
remember that the same effect would be achieved by connecting the anode to
0V and the cathode to -3.3V.

Figure 4-9 illustrates an LED that has one leg longer than the other. The lon-
ger leg is the anode (+) and the shorter leg is the cathode (-). The plastic LED
surround also has a flat edge, which indicates the cathode (-) leg of the LED.
This flat edge indication is particularly useful when the LED is in-circuit and
the legs have been trimmed.

+3.3V
+2.0V , +1.3V

F
h
ES
v

flat edge

‘/ 5 50 .' + M L
anode(+) cathode(-) 3

longer wire shorter wire 9mA

Figure 4-9: An LED example and a circuit to drive an LED with appropriate forward current and
voltage levels

LEDs have certain operating requirements, defined by a forward voltage and
a forward current. Every LED is different, and you need to reference the data-
sheet of the LED to determine these values. An LED does not have a significant

Chapter 4 = Interfacing Electronics

129

resistance, so if you were to connect the LED directly across your RPi’s 3.3V
supply, the LED would act like a short circuit, and you would drive a very large
current through the LED, damaging it—but more important, damaging your
RPi! Therefore, to operate an LED within its limits you need a series resistor,
called a current-limiting resistor. Choose this value carefully to maximize the
light output of the LED and to protect the circuit.

m Do not connect LEDs directly to the GPIOs on the RPi’s GPIO header
without using current-limiting resistors and/or transistor switching, as you will likely
damage your board. The maximum current that the RPi should source from, or sink to
a GPIO pin should be kept at about 2-3 mA.

Referring to Figure 4-9, if you are supplying the LED from the RPi’s 3.3V sup-
ply and you want to have a forward voltage drop of 1.3 V across the LED, you
need the difference of 2V to drop across the current-limiting resistor. The LED
specifications require you to limit the current to 9mA, so you need to calculate
a current-limiting resistor value as follows:

As V =IR, then R = V/I =2V/0.009 A = 2220

Therefore, a circuit to light an LED would look like that in Figure 4-9. Here
a 220 resistor is placed in series with the LED. The combination of the 3.3V
supply and the resistor drives a current of 9mA through the forward-biased
LED; as with this current the resistor has a 2V drop across it, then accordingly
the LED has a forward voltage drop of 1.3V across it. Note that this current is
fine if you are connecting to the RPi’s 3.3V output, but it is not fine for use with
the RPi’s GPIOs, as the maximum current that the RPi can realistically source
from a GPIO pin is about 2mA-3mA. You will see a solution for this shortly,
and again in Chapter 6.

It is also worth mentioning that you should not dim LEDs by reducing the
voltage across the LED. An LED should be thought of as a current-controlled
device, where driving a current through the LED causes the forward voltage
drop. Therefore, trying to control an LED with a variable voltage will not work
as you might expect. To dim an LED you can use a pulse-width modulated
(PWM) signal, essentially rapidly switching the LED on and off. For example,
if a rapid PWM signal is applied to the LED that is off for half of the time and
on for half of the time, then the LED will appear to be only emitting about half
of its regular operating condition light level. Our eyes don't see the individual
changes if they are fast enough; they average over the light and dark interval
to see a constant, but dimmer illumination.

Figure 4-10 illustrates a PWM square wave signal at different duty cycles. The
duty cycle is the percentage of time that the signal is high versus the time that
the signal is low. In this example, a high is represented by a voltage of 3.3V and

130

Part | = Raspberry Pi Basics

alow by a voltage of 0V. A duty cycle of 0% means that the signal is constantly
low, and a duty cycle of 100% means that the signal is constantly high.

50% Duty Cycle

\ 75% Duty Cycle

L
Ll

25% Duty Cycle

»
g
»

ta
i
L
|
At
o
w

Voltage (V)
Voltage (V)
Voltage (V)

LI 1 11 ; 1 1 LI L L ;
01234567 809Tmelms) 0123456789 Time(ms)
Figure 4-10: Duty cycles of pulse width modulation (PWM) signals

(=]

o

LI »
9 Time (ms)

o
P
w
'
=
Ol

PWM can be used to control the light level of LEDs, but it can also be used to
control the speed of DC motors, the position of servo motors, and many more
applications. You will see such an example in Chapter 6 when the built-in PWM
functionality of the RPi is used.

The period (T) of a repeating signal (a periodic signal) is the time it takes to
complete a full cycle. In the example in Figure 4-10, the period of the signal in
all three cases is 4 ms. The frequency (f) of a periodic signal describes how often
a signal goes through a full cycle in a given time period. Therefore, for a signal
with a period of 4 ms, it will cycle 250 times per second (1/0.004), which is 250
hertz (Hz). We can state that f (Hz) = 1/T (s) or T (s) = 1/f (Hz). Some high-end
DMMs measure frequency, but generally you use an oscilloscope to measure
frequency. PWM signals need to switch at a frequency to suit the device to be
controlled; typically, the frequency is in the kHz range for motor control.

Smoothing and Decoupling Capacitors

A capacitor is a passive electrical component that can be used to store electrical
energy between two insulated plates when there is a voltage difference between
them. The energy is stored in an electric field between the two plates, with posi-
tive charge building on one plate and negative charge building on the other
plate. When the voltage difference is removed or reduced, then the capacitor
discharges its energy to a connected electrical circuit.

For example, if you modified the diode circuit in Figure 4-8 to add a 10 uF
smoothing capacitor in parallel with the load resistor, the output voltage would
appear as shown in Figure 4-11. When the diode is forward biased there is a
potential across the terminals of the capacitor and it quickly charges (while a
current also flows through the load resistor in parallel). When the diode is reverse
biased, there is no external supply generating a potential across the capacitor/
resistor combination, so the potential across the terminals of the capacitor
(because of its charge) causes a current to flow through the load resistor, and
the capacitor starts to discharge. The impact of this change is that there is now

Chapter 4 = Interfacing Electronics

131

a more stable voltage across the load resistor that varies between 2.758 V and
4.222V (the ripple voltage is 1.464 V), rather than between 0V and 4.34 V.

Figure 4-11: Circuit and behavior of a TN4001 diode with a 5V AC supply, 1kQ load, and parallel
10 yF capacitor

Capacitors use a dielectric material, such as ceramic, glass, paper, or plastic, to
insulate the two charged plates. Two common capacitor types are ceramic and
electrolytic capacitors. Ceramic capacitors are small and low cost and degrade
over time. Electrolytic capacitors can store much larger amounts of energy, but
also degrade over time. Glass, mica, and tantalum capacitors tend to be more
reliable, but are considerably more expensive.

Figure 4-12 illustrates a 100 nF (0.1 uF) ceramic capacitor and a 47 uF electrolytic
capacitor. Note that the electrolytic capacitor is polarized, with the negative lead
marked on the capacitor surface with a band; like the LED, the negative lead is
shorter than the positive lead.

—I |— _’l+_ Vee o—. & $=ce e
[VCC [VCC
4 0 I |0‘1 uF]] |
47 1F oy — ——0.1pF
I] I]
|-EGND I |-EGND]
Ceramic Electrolytic enoQ—e I I. eee

Figure 4-12: Ceramic (non polarized) and electrolytic (polarized) capacitors and an example
decoupling circuit

The numbering for capacitors is reasonably straightforward; unfortunately,
on ceramic capacitors it can be small and hard to read:

m The first number is the first digit of the capacitor value.

m The second number is the second digit of the capacitor value.

132 Partl = Raspberry Pi Basics

m The third number is the number of zeroes, where the capacitor value is
in pF (picofarads).

m Additional letters represent the tolerance and voltage rating of the capaci-
tor but can be ignored for the moment.

Therefore, for example:
= 104 = 100000 pF =100 nF = 0.1 uF
m 102 = 1,000 pF = 1 nF
m 472 = 4,700 pF = 4.7 nF

The voltage regulator circuit presented earlier (refer to Figure 4-7) used two
capacitors to smooth out the ripples in the supply by charging and discharging
in opposition to those ripples. Capacitors can also be used for a related function
known as decoupling.

Coupling is often an undesirable relationship that occurs between two parts
of a circuit due to the sharing of power supply connections. This relationship
means that if there is a sudden high power demand by one part of the circuit,
then the supply voltage will drop slightly, affecting the supply voltages of other
parts of the circuit. ICs impart a variable load on the power supply lines—in fact,
a load that can change very quickly causes a high-frequency voltage variation
on the supply lines to other ICs. As the number of ICs in the circuit increases,
the problem will be compounded.

Small capacitors, known as decoupling capacitors, can act as a store of energy
that removes the noise signals that may be present on your supply lines as a
result of these IC load variations. An example circuit is illustrated in Figure
4-12, where the larger 47 uF capacitor filters out lower-frequency variations and
the 0.1 uF capacitors filter out higher-frequency noise. Ideally the leads on the
0.1 pF capacitors should be as short as possible to avoid producing undesirable
effects (relating to inductance) that will limit it from filtering the highest-level
frequencies. Even the surface-mounted capacitors used on the RPi to decouple
the ball grid array (BGA) pins on the BCM2835/6/7 SoC produce small induc-
tances (approximately 1nH — 2nH).

Transistors

Transistors are one of the core ingredients of the RPi’s microprocessor, and
indeed almost every other electronic system. Simply put, their function can be
to amplify a signal or to turn a signal on or off, whichever is required. The RPi
GPIOs can only handle very modest currents, so we need transistors to help us
when interfacing them to electronic circuits that require larger currents to operate.

Bipolar junction transistors (B]Ts), usually just called transistors, are formed
by adding another doped layer to a pn-junction diode to form either a p-n-p

Chapter 4 = Interfacing Electronics

133

or an n-p-n transistor. There are other types of transistors, such as field effect
transistors (FETs), which are discussed shortly. The name bipolar comes from
the fact that the current is carried by both electrons and holes. They have three
terminals, with the third terminal connected to the middle layer in the sandwich,
which is very narrow, as illustrated in Figure 4-13.

Figure 4-13 presents quite an amount of information about transistors, includ-
ing the naming of the terminals as the base (B), collector (C), and emitter (E).
Despite there being two main types of BJT transistor (NPN and PNP), the NPN
transistor is the most commonly used. In fact, any transistor examples in this
chapter use a single BC547 NPN transistor type.

NPN jocccocans of PNP [oosooacaa r1BJT Packages | ----- Ir{NPN Characterislicsl———‘
Collector (€)1 Collector (C) 1 | D Vee-VasVee ¢ l
N L P o o | I " l

e) T L 547C | | | |
| ase | | (B | |
] i : : 025 LI | |
i N - i ¥ & X |
| B ! cllfI e @ i
i Emitter (E) 1| | Emiter () | ! : ! iVee
| . o 5 WL
I i I U | B LI | I
] L} L (| !
! 2 - B ! 1 DCcurrent e ;
| F A | 1 Mote: TO-82A/B/C have different 1 1 gain: Ie |
| i i ! configurations 1 hee= = E !
; E 11 B ! ! AlwaysCheck Datasheets | | e le=ls+lc |

Figure 4-13: Bipolar junction transistors (BJTs)

The BC547 is a 45V, 100mA general-purpose transistor that is commonly
available, is low cost, and is provided in a leaded TO-92 package. The identifi-
cation of the legs in the BC547 is provided in Figure 4-13, but please be aware
that this order is not consistent with all transistors—always check the datasheet!
The maximum V; (ak.a. Vo) is 45V and the maximum collector current ()
is 100mA for the BC547. It has a typical DC current gain (k) of between 180
and 520, depending on the group used (e.g., A, B, C). Those characteristics are
explained in the next sections.

Transistors as Switches

\[ol 3 For the remainder of this book, FETs rather than BJTs are used in the RPi
circuits for switching loads. If you become overwhelmed by the detail in this section,
please skip ahead to FETs, which are somewhat easier to apply.

Let’s examine the characteristics for the NPN transistor as illustrated in Figure
4-13 (on the rightmost diagram). If the base-emitter junction is forward biased

134

Part | = Raspberry Pi Basics

and a small current is entering the base (I), the behavior of a transistor is such
that a proportional but much larger current (I-= hy; x I) will be allowed to flow
into the collector terminal, as hi;; will be a value of 180 to 520 for a transistor
such as the BC547. Because I is much smaller than I, you can also assume that
I is approximately equal to I

Figure 4-14 illustrates the example of a BJT being used as a switch. In part (a)
the voltage levels have been chosen to match those available on the RPi. The
resistor on the base is chosen to have a value of 2.2k(), so that the base current
will be small (I = V/R = (3.3V - 0.7V)/2200 Q) which is about 1.2mA). The resis-
tor on the collector is small, so the collector current will be reasonably large
(I=V/R=(5BV-~02V)/100Q = 48mA).

[vin=+33v -BJTON }----x- Vin=0V - BJTOFF |----~--
I (N}

11 {C

5V i () 5\
[N
[N
(R}

Ic 2 Ic

A

__

Figure 4-14: The BJT as a switch

Figure 4-14(b) illustrates what happens when an input voltage of 3.3V is applied
to the base terminal. The small base current causes the transistor to behave like
a closed switch (with a very low resistance) between the collector and the emit-
ter. This means that the voltage drop across the collector-emitter will be almost
zero and all of the voltage is dropped across the 100 load resistor, causing a
current to flow directly to ground through the emitter. The transistor is saturated
because it cannot pass any further current. Because there is almost no voltage
drop across the collector-emitter, the output voltage, V,,,, will be almost 0 V.

Figure 4-14(c) illustrates what happens when the input voltage V;, = 0V is
applied to the base terminal and there is no base current. The transistor behaves
like an open switch (very large resistance). No current can flow through the

Chapter 4 = Interfacing Electronics

135

collector-emitter junction, as this current is always a multiple of the base cur-
rent and the base current is zero; therefore, almost all of the voltage is dropped
across the collector-emitter. In this case the output, V,,,, can be up to +5V (though
as implied by the illustrated flow of I through the output terminal, the exact
value of V,, depends on the size of I, as any current flowing through the
100 Q) resistor will cause a voltage drop across it).

Therefore, the switch behaves somewhat like an inverter. If the input voltage
is 0V, the output voltage is +5V, and if the input voltage is +3.3V, the output
voltage will be 0 V. You can see the actual measured values of this circuit in
Figure 4-15, when the input voltage of 3.3V is applied to the base terminal.
In this case, the Analog Discovery Waveform Generator is used to output a
1kHz square wave, with an amplitude of 1.65V and an offset of +1.65V (form-
ing a 0V to 3.3V square wave signal), so it appears like a 3.3V source turning
on and then off, 1,000 times per second. All the measurements in this figure
were captured with the input at 3.3V. The base-emitter junction is forward
biased, and just like the diode before, this will have a forward voltage of about
0.7 V. The actual voltage drop across the base-emitter is 0.83V, so the voltage
drop across the base resistor will be 2.440 V. The actual base current is 1.1mA
(I = V/R =2.44V/2,185(). This current turns on the transistor, placing the tran-
sistor in saturation, so the voltage drop across the collector-emitter is very
small (measured at 0.2V). Therefore, the collector current is 49.8mA ([= V/R =
493V -0.2V)/96 Q) approx.). To choose an appropriate base resistor to place the
BJT deep in saturation, use the following practical formula:

_ v

B VBE(sut))

R
Base (2 X(I. + hFF,(miﬂ)))

For the case of a base supply of 3.3 V, with a collector current of 50mA and a
minimum gain g, of 100, Ry, = (3.27 — 0.83)/(2 x (0.05/100)) = 2,440 ().

You can find all of these values in the transistor’s datasheet. V) is typi-
cally provided on a plot of V5, versus I- at room temperature, where we require
I- to be 50mA. The value of Vi, is between 0.6V and 0.95V for the BC547,
depending on the collector current and the room temperature. The resistor
value is further divided by two to ensure that the transistor is placed deep in
the saturation region (maximizing I-). Therefore, in this case a 2.2k resistor is
used, as it is the closest generally available nominal value.

136

Part | = Raspberry Pi Basics

e £ OWF 1 - Oscilioseape 1 - Zoom 1 [ESmE

|
lc=498ma |
[
[

Window | i ZoomTme [GlAddXY [silHistogrem [ZIFFT B [b &
Zoom R
aes IDIV. M:500us M1:1mA M2 10mA ||
Vea= Ver — Vae H ; :
Vee=0.20- 083V
Ves=-0.63V

le=ls+lc
le=lc
U DCourent
gain:
hrz:ﬂ
1

hre=45.3

oB26v

M1 is I8 (1 mA per division) M2 is /¢ (10 mA per division)

Figure 4-15: Realization of the transistor as a switch (saturation) and confirmation that all
relationships hold true’

Why should you care about this with the RPi? Well, because the RPi can only
source or sink very small currents from its GPIO pins, you can connect the RPi
GPIO pin to the base of a transistor so that a very small current entering the
base of the transistor can switch on a much larger current, with a much greater
voltage range. Remember that in the example in Figure 4-15, a current of 1.1 mA
is able to switch on a large current of 49.8mA (45 times larger, but still lower
than the 100mA limit of the BC547). Using this transistor arrangement with
the RPi will allow a 5mA current at 3.3V from an RPi GPIO to safely drive a
100mA current at up to 45 V by choosing suitable resistor values.

One constraint in using transistors to drive a circuit is that they have a maxi-
mum switching frequency. If you increase the frequency of the input signal to
the circuit in Figure 4-16 to 500kHz, the output is distorted, though it is still
switching from low to high. However, increasing this to 1 MHz means that the
controlled circuit never switches off.

m 500kHz BJT Switching Frequency'm m 1MHz BJT Switching Frequency |- & i

[“ﬂ'mrlm | B ZoomTime [MiAddXy [afiHetogram EOFFT B [& i ﬂ.nuuu; B¢ Zoom Time [ByAdd XY [3] Hestogram |—_>if_Pf B bk & |
MDIV: M:Tus MI-TmA MZ 10mA /DIV: M:Tus MT:TmA MZ 10ma
50 mA S0 mA :
o

40 mA 40 mA

30 mA

20 mA
10 mA \

OmA

30 mA

0 mA r_l r__1

— — ——

20 mA

X}us Jus Zus lus Qus Tus Zus Xhus dus 2us “Tus Ous Tus Zus

Figure 4-16: Frequency response of the BJT circuit (frequency is 500 kHz and 1 MHz)

1'You can use the Analog Discovery’s differential input feature to “measure” current by placing
the probes on either side of a resistor (to measure the voltage across it), and then creating a cus-
tom math channel that divides the waveform by the resistor’s known resistance value. You then
set the units to amps in the channel settings.

Chapter 4 = Interfacing Electronics

137

Field Effect Transistors (FETs) as Switches

A simpler alternative to using B]Ts as switches is to use field effect transis-
tors (FETs). FETs are different from BJTs in that the flow of current in the load
circuit is controlled by the voltage, rather than the current, on the controlling
input. Therefore, it is said that FETs are voltage-controlled devices and BJTs are
current-controlled devices. The controlling input for a FET is called the gate
(G) and the controlled current flows between the drain (D) and the source (S).

Figure 4-17 illustrates how you can use an n-channel FET as a switch. Unlike
the BJT, the resistor on the controlling circuit (1 M() is connected from the input
to GND, meaning that a very small current (I = V/R) will flow to GND, but the
voltage at the gate will be the same as the V;, voltage. A significant advantage
of FETs is that almost no current flows into the gate control input. However, the
voltage on the gate is what turns on and off the controlled current, I,, which
flows from the drain to the source in this example.

DVee |, TO-92 O+5V

" BA41
BS270

o Vout !

Io

__

Figure 4-17: The field effect transistor (FET) as a switch

When the input voltage is high (3.3 V), the drain-source current will flow
(Ip=50mA), so the voltage at the output terminal will be 0.17 V, but when the
input voltage is low (0 V), no drain-source current will flow. Just like the BJT, if
you were to measure the voltage at the drain terminal, the output voltage (V,,,)
would be high when the input voltage is low, and the output voltage would be
low when the input voltage is high, though again the actual value of the “high”
output voltage depends on the current drawn by the succeeding circuit.

The Fairchild Semiconductor BS270 N-Channel Enhancement Mode FET
is a low-cost device (~$0.10) in a TO-92 package that is capable of supplying a
continuous drain current (I;;) of up to 400 mA at a drain-source voltage of up to
60 V. However, at a gate voltage (V;) of 3.3V the BS270 can switch a maximum
drain current of approximately 130 mA. This makes it ideal for use with the RPj,

138

Part | = Raspberry Pi Basics

as the GPIO voltages are in range and the current required to switch on the FET
is about 3pA-6 1A depending on the gate resistor chosen. One other feature of
using a FET as a switch is that it can cope with much higher switching frequen-
cies, as shown in Figure 4-18. Remember that in Figure 4-16 the BJT switching
waveform is very distorted at 1 MHz. It should be clear from Figure 4-18 that
the FET circuit is capable of dealing with much higher switching frequencies
than the BJT circuit.

ml 1MHz FET Switching Frequency |".‘E'| e a_wl 5MHz FET Switching Frequency k&l@ﬂiﬂ

| Window B ZoomTime [Sy|AddXY [ad|Histogram [EFT IZ;_[“ ¥ Window S ZoomDTime [SjAddxY [uflHstogam [T 5] [&
Zsom R | |2om %
DN M:Tus C1 1V M2 10mA &[] |mnr_ M:200ms C1.1V M2 10mA -]
soma 1 JD(MA ey H = b (MA)
= snsnl| B I NniT /ﬂ
ol ol |] A
SRANINNIR 11
10 mA v / 1| [!1 ! || f ||
OmA ? ’ : M, _ !‘-' i 'JII . "} -;:r "_r ‘-‘--.;J
B -Jus 2us “Tus ous Tus 2us X)ns G00ns 400ns -200ms Oms 0w 400

Figure 4-18: Frequency response of the FET circuit as the switching frequency is set at 1 MHz
and 5MHz

The BS270 also has a high-current diode that is used to protect the gate from
the type of reverse inductive voltage surges that could arise if the FET were
driving a DC motor.

As mentioned, one slight disadvantage of the BS270 is that can only switch
a maximum drain current of approximately 130mA at a gate voltage of 3.3 V.
However, the high input impedance of the gate means that you can use two (or
indeed more) BS270s in parallel to double the maximum current to approximately
260mA at the same gate voltage. Also, the BS270 can be used as a gate driver
for Power FETs, which can switch much larger currents.

Optocouplers/Opto-isolators

Optocouplers (or opto-isolators) are small, low-cost digital switching devices that
are used to isolate two electrical circuits from each other. This can be important
for your RPi circuits if you have a concern that a design problem with a con-
nected circuit could possibly source or sink a large current from/to your RPi.
They are available in low-cost (~$0.15) four-pin DIP form.

An optocoupler uses an LED emitter that is placed close to a photodetec-
tor transistor, separated by an insulating film within a silicone dome. When
a current ([) flows through the LED emitter legs, the light that falls on the

Chapter 4 = Interfacing Electronics

139

photodetector transistor from the LED allows a separate current (I) to flow
through the collector-emitter legs of the photo detector transistor (see Figure
4-19). When the LED emitter is off, no light falls on the photo detector transistor,
and there will be almost no collector emitter current (I). There is no electrical
connection between one side of the package and the other, as the signal is trans-
mitted only by light, providing electrical isolation for up to 5,300 Vg for an
optocoupler such as the SFH617A. You can even use PWM with optocouplers,
as it is a binary on/off signal.

Figure 4-19 illustrates an example optocoupler circuit and the resulting oscil-
loscope traces for the resistor and voltage values chosen. These values were
chosen to be consistent with those that you might use with the RPi. The resistor
value of 470() was chosen to allow the 3.3V output to drive a forward current
If of about 4.5mA through the LED emitter. From Figure 4 in the datasheet?,
this results in a forward voltage of about 1.15V across the diode); R = V/I =
(3.3V -1.15V)/0.0045 A =478 (). Therefore, the circuit was built using the closest
nominal value of 470 ().

+ I OWF 1 - Oscilloscope 1 - Zoom 1 B OWF 1~ Oscilloscope 1 - | i |
Window B ZoomTime [SpiAdd XY [ad] Histogram || Wimdew Show Ovner ‘
' 200 Foi % & 3 |
MOIV: M- 1ms M1 TmA M2 1mA e |
.. _ ‘
i B2 e
- G - or R e e YR S i e
y 15 N —
|: 3 |
Tm ! :
! I,-':I‘C
0 mi l
X -25 -15 05))
Channel M1 = Ir, Channel M2 = [c | e = & 5] t= 8= = wm e

Figure 4-19: Optocoupler (617 A) circuit with the captured input and output characteristics

The oscilloscope is displaying current by using the differential inputs of the
Analog Discovery to measure the voltage across the known resistor values, and
using two mathematical channels to divide by the resistance values. In Figure
4-19 you can see that I;is 4.571 mA and that I, is 2.766 mA. The proportionality
of the difference is the current transfer ratio (CTR) and it varies according to
the level of I;and the operating temperature. Therefore, the current transfer at
4.571mA is 60.5% (100 x I./ 1), which is consistent with the datasheet. The rise
time and fall time are also consistent with the values in the datasheet of t, =
4.6 ps and f;= 15 ps. These values limit the switching frequency. Also, if it is
important to your circuit that you achieve a high CTR, there are optocouplers

2 Vishay Semiconductors (2013, January 14). SFH617A Datasheet. Retrieved April 13, 2014,
from Vishay Semiconductors: www . vishay.com/docs/83740/sfh6l7a.pdf.

http://www.vishay.com/docs/83740/sfh617a.pdf

140

Part | = Raspberry Pi Basics

with built-in Darlington transistor configurations that result in CTRs of up to
2,000% (e.g., the 6N138 or HCPL2730). Finally, there are high-linearity analog
optocouplers available (e.g., the HCNR200 from Avago) that can be used to
optically isolate analog signals.

L\ [o 2 lq In Chapter 6, example circuits are provided for how to use an optocoupler to
protect the RPi GPIOs from both an independently powered output circuit (Figure 6-7)
and an independently-powered input circuit (Figure 6-8).

Switches and Buttons

Other components with which you are likely to need to work with are switches
and buttons. They come in many different forms: toggle, push button, selector,
proximity, joystick, reed, pressure, temperature, etc. However, they all work
under the same binary principles of either interrupting the flow of current (open)
or enabling the flow of current (closed). Figure 4-20 illustrates several different
common switch types and outlines their general connectivity

Momentary push button switches (SPST—single pole, single throw) like the
one illustrated in Figure 4-20 are either normally open (NO) or normally closed
(NC). NO means that you have to activate the switch to allow current to flow,
whereas NC means that when you activate the button, current does not flow. For
the particular push button illustrated, both pins 1 and both pins 2 are always
connected, and for the duration of time you press the button, all four pins are
connected together. Looking at slider switches (SPDT—single pole, double throw),
the common connection (COM) is connected to either 1 or 2 depending on the
slider position. In the case of microswitches and the high-current push button,
the COM pin is connected to NC if the switch is pressed, and is connected to
NO if the switch is depressed. Finally, the rocker switch illustrated often has
an LED that lights when the switch is closed, connecting the power (VCC) leg
to the circuit (CCT) leg.

SPDT r\-'mmentary.r Slider Switch High-Current Rocker Switch
: Momentary Push

_o)— Button Button

| [«] | :

1,COM: 2

Microswitch

Figure 4-20: Various switches and configurations

NC NO

Chapter 4 = Interfacing Electronics

141

All of these switch types suffer from mechanical switch bounce, which can be
extremely problematic when interfacing to microprocessors like the RPi. Switches
are mechanical devices and when they are pressed, the force of contact causes
the switch to repeatedly bounce from the contact on impact. It only bounces for
a small duration (typically milliseconds), but the duration is sufficient for the
switch to apply a sequence of inputs to a microprocessor.

Figure 4-21 (a) illustrates the problem in action using the rising/falling-edge
trigger condition of the Analog Discovery Oscilloscope. A momentary push
button is placed in a simple series circuit with a 10k(} resistor and the voltage
is measured across the resistor. When the switch hits the contact, the output is
suddenly high, but the switch then bounces back from the contact and the voltage
falls down again. After about 2 ms-3 ms (or longer) it has almost fully settled.
Unfortunately, this small bounce can lead to false inputs to a digital circuit. For
example, if the threshold were 3V, this may be read in as 101010101, rather than
a more correct value of 000001111.

There are a number of ways to deal with switch bounce in microprocessor
interfacing:

m A Jow-pass filter can be added in the form of a resistor-capacitor circuit
as illustrated in Figure 4-21(c) using a 1 pF capacitor. Unfortunately this
leads to delay in the input. If you examine the time base, it takes about
2 ms before the input reaches 1V. Also, bounce conditions can delay this
further. These values are chosen using the RC time constant = R x C, so
T(s)=1,000Q x 10°F = 1 ms, which is the time taken to charge a capaci-
tor to ~63.2% or discharge it to ~36.8%. This value is marked on Figure
4-21(b) at approximately 1.9V.

m Software may be written so that after a rising edge occurs, it delays a few
milliseconds and then reads the “real” state.

m For slider switches (SPDT), an SR-latch can be used.

m For momentary push button switches (SPSTs), a Schmitt trigger (74HC14N),
which is discussed in the next section, can be used with an RC low-pass
filter as in Figure 4-21(c).

N[Ol §3 There are videos on debouncing SPDT and SPST switches on the web page
associated with this chapter: www. exploringrpi.com/chapter4.

Hysteresis

Hysteresis is designed into electronic circuits to avoid rapid switching, which
would wear out circuits. A Schmitt trigger exhibits hysteresis, which means
that its output is dependent on the present input and the history of previous

http://www.exploringrpi.com/chapter4

142 Part | = Raspberry Pi Basics

inputs. This can be explained with an example of an oven baking a cake at 350
degrees Fahrenheit:

m Without hysteresis: The element would heat the oven to 350°F. Once 350°F
is achieved the element would switch off. It would cool below 350°F and
the element would switch on again. Rapid switching!

m With hysteresis: The circuit would be designed to heat the oven to 360°F
and at that point the element would switch off. The oven would cool, but
it is not designed to switch back on until it reaches 340°F. The switching
would not be rapid, protecting the oven, but there would be a greater
variation in the baking temperature.

With an oven that is designed to have hysteresis, is the element on or off at
350°F? That depends on the history of inputs—it is on if the oven is heating; it
is off if the oven is cooling.

(a) original switch circuit (0.5 ms per division) (b) low-pass filtered (1 ms per division)

[1~ g

MDY (e T Ci0ae M

K|28ms ms dSes lms OSms Oms GS%ma e 15w Hfim Am dm dm e Om tmd fm 1w

(c) (d) Schmitt Trigger output (1 ms per division)
D7 1 - Coibancape 1 - Tonre 1 1 =
Use 3.3V for RPi GPIOs == fomm fime (AddEY [ibetvgam GOBT (J0ds [Meme o Coner
5ve Inverting Schmitt | CoorE ' : T
Trigger il : i ' |
M74HC14 | Cia@A | Qal |

+
]j.lFI

Hime dwa dms Ims ims Om tms Ims dms

Figure 4-21: (a) Switch bouncing with no components other than the switch and 10 kQ resistor;
(b) low-pass filtered output at point B; (c) a Schmitt trigger circuit; and (d) output of the Schmitt
trigger circuit at point C, versus the input at point A

The Schmitt trigger in Figure 4-21(c) exhibits the same type of behavior.
The V, for the M74HC14 Schmitt trigger is 2.9V and the V;_is 0.93 V when
running at a 5V input, which means that a rising input voltage has to reach
2.9V before the output changes high, and a falling input voltage has to drop
to 0.93 V before the output changes low. Any bounce in the signal within this

Chapter 4 = Interfacing Electronics

143

range is simply ignored. The low-pass filter reduces the possibility of high-
frequency bounces. The response is presented in Figure 4-21(d). Note that the
time base is 1 ms per division, illustrating how “clean” the output signal is. The
configuration uses a pull-up resistor, the need for which is discussed shortly.

Logic Gates

Boolean algebra functions have only two possible outcomes, either true or false,
which makes them ideal for developing a framework to describe electronic cir-
cuits that are either on or off (high or low). Logic gates perform these Boolean
algebra functions and operations, forming the basis of the functionality inside
modern microprocessors, such as the BCM2835/6/7 SoC on the RPi. Boolean
values are not the same as binary numbers. (Binary numbers are a base 2 rep-
resentation of whole and fractional numbers, whereas Boolean refers to a data
type that has only two possible values, either true or false.)

It is often the case that you will need to interface to different types of logic
gates and systems using the RPi’s GPIOs to perform an operation such as gat-
ing an input or sending data to a shift register. Logic gates fall into two main
categories:

m Combinational logic: The current output is dependent on the current
inputs only (e.g., AND, OR, decoders, multiplexers, etc.).

m Sequential logic: The current output is dependent on the current inputs
and previous inputs. They can be said to have different states, and what
happens with a given input depends on what state they are in (e.g,, latches,
flip-flops, memory, counters, etc.).

BINARY NUMBERS

Simply put, binary numbers are a system for representing numbers (whole or frac-
tional) within a device whereby the only symbols available are 1s and 0s. That is a
strong only, as when you are implementing binary circuits, you don’t have a minus
sign or a decimal point (binary point to be precise). Like decimal numbers, you use a
place-weighted system to represent numbers of the form:

1001,=(1x23)+(0%x22)+(0x2")+(1x2°)=8+0+0+1=9,,

If you only have four bits to represent your numbers, you can only represent 2*=
16 possible decimal numbers in the range 0 to 15. You can add and subtract numbers,
just as you can in decimal, but you tend to add the negative value of the right-hand
side of the operation, instead of building subtraction circuits. Therefore, to perform
9-5, you would typically perform 9 + (—5).To represent negative numbers, the two’s
complement form is used. Essentially, this involves inverting the symbols in the

Continues

144

Part | = Raspberry Pi Basics

BINARY NUMBERS (continued)

binary representation of the positive number and adding 1, so —5 would be +5 (0101),
inverted to (1010) + 1 = 1011,. Importantly, you need to know that this number is in
two’s complement form, otherwise it could be mistaken for 11,,. Therefore, to perform
9-5 on a 4-bit computer, perform 9 + -5 = 1001 + (1011) = 10100. The four-bit com-
puter ignores the fifth bit (otherwise it would be a 5-bit computer!), so the answer is
0100, which is 4,,. See the video at the chapter web page: www . exploringrpi
.com/chapter4.

To multiply by 2, you simply shift the binary digits left (inserting a 0 on the right-
most position), e.g., 4,, = 0100,. Shift all the digits left, bringing in a 0 on the right-
hand side, giving 1000, = 8,,. Divide by 2 by shifting to the right.

Finally, understanding binary makes the following infamous joke funny: “There are
10 types of people, those who understand binary and those who don’t!”—well, almost
funny!

Combinational logic circuits will provide the same output for the same set

of inputs, regardless of the order in which the inputs are applied. Figure 4-22
illustrates the core combinational logic gates with their logic symbols, truth
tables, and IC numbers. The truth table provides the output that you will get
from the gate on applying the listed inputs.

\[eMN3 You can find a video on wiring an AND gate at the web page associated with

this chapter: www.exploringrpi.com/chapter4.

ICs have a number that describes their manufacturer, function, logic fam-

ily, and package type. For example, the MM74HCO8N in Figure 4-23(a) has a
manufacturer code of MM (Fairchild Semiconductor), is a 7408 (quad two-input
AND gates), is of the HC (CMOS) logic family, and is in an N (plastic dual in-
line package) form.

m > >

=

[E;f] o
i
m

=
L]
!!
| ﬁlé%f? ElFE

7408
~ s

LP]

EJ 3

lolaby
NN O

. =
FlELELFE

=1 (=1]=]

—=lol=o

Figure 4-22: General logic gates

http://www.exploringrpi.com/chapter4
http://www.exploringrpi.com/chapter4

Chapter 4 = Interfacing Electronics

145

ICs are available in different package types. Figure 4-23(a) shows to scale a
PDIP (plastic dual in-line package) and a small outline package TSSOP (thin
shrink small outline package). There are many types: surface mount, flat pack-
age, small outline package, chip-scale package, and ball grid array (BGA). You
have to be careful when ordering ICs that you have the capability to use them.
DIP/PDIP ICs have perfect forms for prototyping on breadboards as they have a
0.1” leg spacing. There are adapter boards available for converting small outline
packages to 0.1” leg spacing. Unfortunately, BGA ICs, such as the BCM2835/6/7,
require sophisticated equipment for soldering.

(a) (b) dual -ve edge triggered JK flip-flop DM74LS73AN

J @1 o1 GND K2 Q2 @2
14 13 ||2 |n ||n

=
a

]
J

. Y= |
a
CLR} CLR

! L :I x CLK

—
MPROB3 capacitive _? |
touch sensar T550P I_
Pin 1o e it 1]

1 |1 |3 |.| 5 IE 17
CLK1 CLR1 K1 Ve CLKZ CLR2 J2

Figure 4-23: (a) IC package examples (to scale), and (b) the JK flip-flop

The family of currently available ICs is usually transistor-transistor logic (TTL)
(with Low-power Schottky (LS)) or some form of complementary metal-oxide-
semiconductor (CMOS). Table 4-1 compares these two families of 7408 ICs using
their respective datasheets. The propagation delay is the longest delay between
an input changing value and the output changing value for all possible inputs
to a logic gate. This delay limits the logic gate’s speed of operation.

Table 4-1: Comparison of Two Commercially Available TTL and CMOS ICs for a 7408 Quadruple
Two-input AND gates IC

CHARACTERISTIC SN74LSO08N SN74HCO8N

Family Texas TTL PDIP Texas CMOS PDIP
Low-power Schottky (LS) High-speed CMOS (HC)

Ve supply voltage 4.5Vt05.5V (5V typical) 2Vto6V

V,,high-level input voltage ~ min2V Vecat5Vmin=3.5V

V,, low-level input voltage max 0.8V Vecat5Vmax=15V

Time propagation delay Typical 12 ns (T) 17.5 ns ({) Typical 8 ns (T)

(Tpp)

Power (at 5V) 5mW (max) 0.1 mW (max)

Figure 4-24 illustrates the acceptable input and output voltage levels for both
TTL and CMOS logic gates when V,, = 5V. The noise margin is the absolute

146

Part | = Raspberry Pi Basics

difference between the output voltage levels and the input voltage levels. This
noise margin ensures that if the output of one logic gate is connected to the
input of a second logic gate, that noise will not affect the input state. The CMOS
logic family input logic levels are dependent on the supply voltage, V},;,, where
the high-level threshold is 0.7 x V;,, and the low-level threshold is 0.3 x Vp.
It should be clear from Figure 4-24 that there are differences in behavior. For
example, if the input voltage were 2.5V, then the TTL gate would perceive a logic
high level, but the CMOS gate (at 5V) would perceive an undefined level. Also,
the output of a CMOS gate, with V,, = 3.3V, would provide sufficient output
voltage to trigger a logic high input on a TTL gate, but would not on a CMOS
gate with V,, =5.0V.

@) TTL Gate Signal Levels (b) CMOS Gate Signal Levels
Gate Input Gate Cutput Gate Input Gate Output
sV e SV ===scsna050T -z;v Y
= -ig High-teved nokse margin High
& I -
& I Y e
z 35 0.7 Voo 1
Thgnisvelnass margn. | 27V at Voo=5.0V
X R . =N
. 18 e DSV
0EY 41 Low
g—x— T Ea-8vEI HiisE margn_ - 0 5V_r § Low-level noisa margin Q=S)\
=3 0V b E OV e — = === === — === ——

Figure 4-24: Gate signal levels on the input and output of logic gates (a) TTL, and (b) CMOS at 5V

High-Speed CMOS (HC) can support a wide range of voltage levels, including
the RPi 3.3V input/outputs. The GND label is commonly used to indicate the
ground supply voltage, where V. is often used for BJT-based devices and Vg
for FET-based devices. Traditionally, V- was used as the label for the positive
supply voltage on BJT-based devices and V,, for FET-based devices; however,
it is now very common to see V- being used for both.

Figure 4-23(b) illustrates a sequential logic circuit, called a JK flip-flop. JK
flip-flops are core building blocks in circuits such as counters. These differ from
combinational logic circuits in that the current state is dependent on the cur-
rent inputs and the previous state. You can see from the truth table that if] = 0
and K = 0 for the input, then the value of the output Q, will be the output value
that it was at the previous time step (it behaves like a one-bit memory). A time
step is defined by the clock input (CLK), which is a square wave synchroniz-
ing signal. The same type of timing signal is present on the RPj; it is the clock
frequency, and the clock goes through up to 1,200,000,000 square wave cycles
per second on the RPi 3!

L[AN The web page associated with this chapter has a video that explains JK flip-
flops in detail, and a video on building a 555 timer circuit, which can be used as a low-
frequency clock signal for testing logic circuits.

Chapter 4 = Interfacing Electronics

147

Floating Inputs

One very common mistake when working with digital logic circuits is to leave
unused logic gate inputs “floating,” or disconnected. The family of the chip has
a large impact on the outcome of this mistake. With the TTL logic families these
inputs will “float” high and can be reasonably expected to be seen as logic-high
inputs. With TTL ICs it is good practice to “tie” (i.e., connect) the inputs to ground
or the supply voltage, so that there is absolutely no doubt about the logic level
being asserted on the input at all times.

With CMOS circuits the inputs are very sensitive to the high voltages that
can result from static electricity and electrical noise and should also never be
left floating. Figure 4-25 gives the likely output of an AND gate that is wired as
shown in the figure. The correct outcome is displayed in the “Required (A.B)”
column.

Unused CMOS inputs that are left floating (between V},, and GND) can
gradually charge up due to leakage current, and depending on the IC design
could provide false inputs, or waste power by causing a DC current to flow
(from V, to GND). To solve this problem you can use pull-up or pull-down
resistors, depending on the desired input state (these are ordinary resistors
with suitable values—it’s their role that is “pull up” or “pull down”), which are
described in the next section.

5V
o+ 7408 AND gate 7408 AND gate 74LS08 74HCOB
Switch | Switch | Required | TTL | CMOS
4 _A — A B (A.B) Output | Output
/ Closed | Closed On | On On

8 Closed | Open off | On ~Off

Open | Closed Off | On ~Off

Open Open Off On ~Off

Figure 4-25: An AND gate with the inputs accidentally left floating when the switches are open

Pull-Up and Pull-Down Resistors

To avoid floating inputs, you can use pull-up or pull-down resistors as illus-
trated in Figure 4-26. Pull-down resistors are used if you want to guarantee
that the inputs to the gate are low when the switches are open, and pull-up
resistors are used if you want to guarantee that the inputs are high when the
switches are open.

The resistors are important, because when the switch is closed, the switch
would form a short circuit to ground if they were omitted and replaced by lengths
of wire. The size of the pull-down/up resistors is also important; their value
has to be low enough to solidly pull the input low/high when the switches are

148

Part | = Raspberry Pi Basics

open but high enough to prevent too much current flowing when the switches
are closed. Ideal logic gates have infinite impedance and any resistor value
(short of infinite) would suffice. However, real logic gates leak current and
you have to overcome this leakage. To minimize power consumption, you
should choose the maximum value that actually pulls the input low/high. A
3.3k0-10kQ resistor will usually work perfectly, but 3.3V will drive 1mA-0.33mA
through them respectively and dissipate 3.3 mW-1mW of power respectively
when the switch is closed. For power-sensitive applications you could test larger
resistors of 50k() or greater.

+3.3V +3.3Vd

AND (7408) Pull-Up
A 7 Resistors

B

Pull-Down
Resistors

AND (7408)
Figure 4-26: Pull-down and pull-up resistors, used to ensure that the switches do not create
floating inputs

The RPi has weak internal pull-up and pull-down resistors that can be used
for this purpose. This is discussed in Chapter 6. One other issue is that inputs
will have some stray capacitance to ground. Adding a resistor to the input
creates an RC low-pass filter on the input signal that can delay input signals.
That is not important for manually pressed buttons, as the delay will be on the
order of 0.1 us for the preceding example, but it could affect the speed of digital
communication bus lines.

Open-Collector and Open-Drain Outputs

To this point in the chapter, all of the ICs have a regular output, where it is driven
very close to GND or the supply voltage of the IC (V). If you are connecting
to another IC or component that uses the same voltage level, then that should
be fine. However, if the first IC had a supply voltage of 3.3V and you needed to
drive the output into an IC that had a supply voltage of 5V, then you may need
to perform level shifting.

Many ICs are available in a form with open-collector outputs, which are
particularly useful for interfacing between different logic families and for
level shifting. This is because the output is not at a specific voltage level, but
rather attached to the base input of an NPN transistor that is inside the IC. The
output of the IC is the “open” collector of the transistor, and the emitter of the
transistor is tied to the IC’s GND. It is possible to use a FET (74HCO03) instead

Chapter 4 = Interfacing Electronics

149

of a BJT (74LS01) inside the IC, and while the concept is the same it is called an
open-drain output. Figure 4-27, illustrates this concept and provides an example
circuit using a 74HCO03 (quad, two-input NAND gates with open-drain outputs)
to drive a 5 V circuit. The advantage of the open-drain configuration is that
CMOS ICs support the 3.3 V level available on the RPi’s GPIOs. Essentially, the
drain resistor that is used in Figure 4-17 is placed outside the IC package, as
illustrated in Figure 4-27, it has a value of 10k() in this case.

Interestingly, a NAND gate with one input tied high (or the two inputs tied
together) behaves like a NOT gate. In fact, NAND or NOR gates, each on their
own, can replicate the functionality of any of the logic gates, and for that reason
they are called universal gates.

Open-collector outputs are often used to connect multiple devices to a bus.
You will see this in Chapter 8 when the RPi’s I°C buses are described. When
you examine the truth table in the datasheet of an IC, such as the 74HCO03, you
will see the letter Z used to represent the output (as in Figure 4-27). This means
that it is a high-impedance output and the external pull-up resistor can pull the
output to the high state.

Interconnecting Gates

To create useful circuits, logic gates are interconnected to other logic gates and
components. It is important to understand that there are limits to the intercon-
nect capabilities of gates.

+3.3V D+5V NAND Truth Table I DWF 1 - Oscilloscope 1 - Zoom 1 [ESE===]
A Window | [ZoomTme [(al] (4] B [&
II ZE Vochd o] 0 0 4 Zoom SR
E 13A é 0 1 Z /DIV: M: 50 us : c2:v : - ol B
e 1 0 Z e :
Bl —iz 110 i '
[- Ot Z: High Impedance &y i * i
g [\ E[g
E)K ru I LH.” 2v
B : A +3.3V | +5V Note: when A=1(high)
GND R 5 X NAND behaves like an v
7 5] ¥ inverter (NOT gate) |
= 74HC03 (quad 2-input -3- i A N
open-drain NAND gate) £ S0es e e i

Figure 4-27: Open-drain level-shifting example

The first limit is the ability of the logic gate to source or sink current. When
the output of a gate is logic high, it acts as a current source, providing cur-
rent for connected logic gates or the LEDs shown in Figure 4-26. If the output
of the gate is logic low, the gate acts as a current sink, whereby current flows into
the output. Figure 4-28(a) demonstrates this by placing a current-limiting resistor
and an LED between V- and the output of the logic gate, with the LED cathode
connected to the logic gate output. When the output of the gate is high, there
is no potential difference and the LED will be off; but when the output is low,

150

Part | = Raspberry Pi Basics

a potential difference is created and current will flow through the LED and be
sinked by the output of the logic gate. According to the datasheet of the 74HCO0S,
it has an output current limit (I5) of £25mA, meaning that it can source or sink
25mA. Exceeding these values will damage the IC.

It is often necessary to connect the output of a single (driving) gate to the
input of several other gates. Each of the connected gates will draw a current,
thus limiting the total number of connected gates. The fan-out is the number
of gates that are connected to the output of the driving gate. As illustrated in
Figure 4-28(b), for TTL the maximum fan-out depends on the output (I;)) and
input current (I)) requirement values when the state is low (= I} ;a0/Ii1 onax)
and the state is high (= Iy uu0/Iimma)- Choose the lower value, which is com-
monly 10 or greater. The fan-in of an IC is the number of inputs that it has. For
the 7408 they are two-input AND gates, so they have a fan-in of 2.

CMOS gate inputs have extremely large resistance and draw almost no cur-
rent, allowing for large fan-out capability (>50); however, each input adds a small
capacitance (C; = 3-10 pF) that must be charged and discharged by the output of
the previous stage. The greater the fan-out, the greater the capacitive load on the
driving gate, which lengthens the propagation delay. For example, the 74HC08
has a propagation delay (t,,) of about 11 ns and an input capacitance (C)) of
3.5 pF (assuming for this example that this leads to t,,= RC = 3.5 ns per connec-
tion). If one 78HCO8 were driving 10 other similar gates, and each added 3.5 ns
of delay, then the propagation delay would increase to 11 + (10 x 3.5) = 46 ns of
delay, reducing the maximum operating frequency from 91 MHz to 22MHz.

o _ (b) Wi

7408 fi L—)_
1 loy gy

J : [
1 :

!’JIJ
.) | — —
output sinking current Logic h'ghj 1
If either A or B is closed, output will fis L
i sink current and the LED will light — =

Figure 4-28: (a) Sinking current on the output, and (b) TTL fan-out example

Analog-to-Digital Conversion

Analog-to-digital converters (ADC) can be used to take an analog signal and
create a digital representation of this signal. Attaching external ADCs to the
RPi (see Chapter 9) enables you to connect to many different types of sensors,
such as distance sensors, temperature sensors, light-level sensors, and so on.
However, you have to be careful with these inputs, as they should not source
or sink current, because the analog outputs of the sensors are likely to be very

Chapter 4 = Interfacing Electronics

151

sensitive to any additional load in parallel with the output. To solve this problem,
you need to first look at how operational amplifiers function.

Analog signals are continuous signals that represent the measurement of
some physical phenomenon. For example, a microphone is an analog device,
generally known as a transducer, which can be used to convert sound waves into
an electrical signal that, for example, varies between -5V and +5V depending
on the amplitude of the sound wave. Analog signals use a continuous range
of values to represent information, but if you want to process that signal using
your RPj, then you need a discrete digital representation of the signal. This is
one that is sampled at discrete instants in time, and subsequently quantized to
discrete values of voltage, or current. For example, audio signals will vary over
time; so to sample a transducer signal to digitally capture human speech (e.g,,
speech recognition), you need be cognizant of two factors:

m Sampling rate: Defines how often you are going to sample the signal.
Clearly, if you create a discrete digital sample by sampling the voltage
every one second, the speech will be indecipherable.

m Sampling resolution: Defines the number of digital representations that
you have to represent the voltage at the point in time when the signal is
sampled. Clearly, if you had only one bit, you could only capture if the
signal were closer to +5V or -5V, and again the speech signal would be
indecipherable.

Sampling Rate

To represent a continuous signal perfectly in a discrete form requires an infi-
nite amount of digital data. Fortunately (!), there are limits to how well human
hearing performs and therefore we can place limits on the amount of data to be
discretized. For example, 44.1kHz and 48kHz are common digital audio sam-
pling rates for encoding MP3 files, which means that if you use the former, you
will have to store 44,100 samples of your transducer voltage every second. The
sample rate is generally determined by the need to preserve a certain frequency
content of the signal. For example, humans (particularly children) can hear audio
signals at frequencies from about 20 Hz up to about 20 kHz. Nyquist’s sampling
theorem states that the sampling frequency must be at least twice the highest
frequency component present in the signal. Therefore, if you want to sample
audio signals, you need to use a sampling rate of at least twice 20kHz, which is
40kHz, which helps explain the magnitude of the sampling rates used in encod-
ing MP3 audio files (typically 44,100 samples per second—that is, 44.1kS/s).

Quantization

In Chapter 9, 10-bit and 12-bit ADCs are interfaced to the RPi so that you can
sample analog sensors. If you interface a 12-bit ADC that utilizes a voltage
reference of 3.3V, it will sample in the range of 0V-3.3V, which means that

152

Part | = Raspberry Pi Basics

there are 2! = 4,096 possible discrete representations (numbers) for this sam-
pling resolution. If the voltage is exactly 0V, we can use the decimal number
0 to represent it. If the voltage is exactly 3.3V, we can use the number 4,095
to represent it. So, what voltage does the decimal number 1 represent? It is
(1 x 3.3)/4096 = 0.00080566 V. Therefore, each decimal number between 0 and
4,095 (4,096 values) represents a step of approximately 0.8 mV.

The preceding audio sampling example also illustrates one of the challenges
you face with the RPi. If the sensor outputs a voltage of -5V to +5V, or more
commonly 0V to +5V, you need to alter that range to be between 0V and 3.3V
to be compatible with the ADC that you have chosen. In Chapter 9, you'll look
at how you can solve this problem. A second and more complex problem is
that we must not typically source or sink current from/to ADC circuitry, and
to solve that we need to briefly introduce a powerful concept that predates the
digital computer, called the operational amplifier.

Operational Amplifiers

Operational amplifiers (op-amps) are composed from many BJTs or FETs within
the one IC (e.g., the LM741). They can be used to create several very useful circuits,
one of which you will need in Chapter 9 to correctly interface to analog sensors.

Ideal Operational Amplifiers

Figure 4-29(a) illustrates an ideal op-amp, placed in a very basic circuit with no
feedback (a.k.a. open-loop). The op-amp has two inputs: a noninverting input (+)
and an inverting input (=), and it produces an output that is proportional to the
difference between them, i.e., V,, = G(V; - V,), where V; and V, are the voltage

levels on these two inputs, respectively. Some of the characteristics of an ideal
op-amp include the following:

m An infinite open-loop gain, G
= An infinite input impedance

m A zero output impedance

No real-world op-amp has an infinite open-loop gain, but voltage gains of
200,000 to 30,000,000 are commonplace. Such a gain can be treated as infinite,
which means in theory that even a very small difference between the inputs
would lead to a completely impractical output. For example, a difference of 1V
between V; and V, would lead to a voltage output of at least 200,000 V! If that
were really the case, I would now be issuing health warnings on the use of
op-amps! The output voltage is of course limited by the supply voltage (V-, and
Ve in Figure 4-29(a)). Therefore, if you supply V-, =+5V and V.. =0V (GND)

Chapter 4 = Interfacing Electronics

153

to an op-amp using the RPi, the maximum real-world output would be in
the range of 0V to 5V approximately, depending on the exact op-amp used.
Likewise, a real-world op-amp does not have infinite input impedance, but it is
in the range of 250k() to 2 M(). The term impedance is used instead of resistance,
as the input may be an AC rather than just a DC supply. Likewise, a zero output
impedance is not possible, but it will likely be <100().

The LM358 Dual Operational Amplifier is used for the following circuit
configurations (www. ti.com/product/1m358). It is an eight-pin IC in a PDIP that
contains two op-amps that have a typical open-loop differential voltage gain of
100 dB, which is 100,000 in voltage gain (voltage gain in dB = 20 x log (V,,,/V,)).
One advantage of this IC is that it has a wide supply range, in the range of 3V
to 32V, meaning that you can use the RPi’s 3.3V or 5V power rails. The LM358
can typically source up to 30mA or sink up to 20mA on the output.

(a) Ideal operational amplifier (b) Open-loop example

Figure 4-29: (a) The ideal op-amp, and (b) an open-loop comparator example

The behavior of an open-loop op-amp is best explained with an example,
which is illustrated in Figure 4-29(b). Note that in this case the input is con-
nected to the inverting input of the op-amp (-ve), rather than the noninvert-
ing input (+ve), which means that V,,, will be positive when V,, is lower than
the reference voltage. The circuit was built using the LM358, with a supply of
Ve, =5Vand V. =0V (GND). A 100k() potentiometer was used to allow the
voltage on the +ve input to be varied. This is the voltage that we are effectively
comparing the input voltage with, so this circuit is called a comparator. When
the voltage on the —ve input is greater than the +ve input, by even a very small
amount, the output will quickly saturate in the negative direction to 0 V. When
the voltage on the —ve input is less than the voltage on the +ve input, the output
V.. will immediately saturate in the +ve direction to the maximum allowable
by this configuration with the value of V- applied.

The actual output of this circuit can be seen in Figure 4-30(a). In this view,
the potentiometer is adjusted to give a voltage on the V+ input of 1.116 V. When
V- is lower than this value, the output V,, is saturated to the maximum positive
value, in this case it is 3.816 V (LM358 positive saturation voltage). When V- is

http://www.ti.com/product/lm358

154

Part | = Raspberry Pi Basics

greater than 1.116 V, then the output V, , saturates to the lowest value, which is
almost zero (-2 mV). Note the inversion that is taking place.

If everything remains exactly the same but the potentiometer is adjusted to
give a different value for V4, in this case 0.645 V, the output will be as shown
in Figure 4-30(b), where the duty cycle of the output V,, will be different. This
comparator circuit could also be used to detect low voltage conditions—for
example, lighting a warning LED if a battery’s voltage output fell below a certain
value. The circuit example used in 4-29(b) could be used to generate a PWM

signal with a controllable duty cycle, according to the controlling voltage V+.

(@) |Moghoem i e . S

Figure 4-30: Output of the comparator circuit

The very large open-loop gain means that op-amps are generally used with
feedback, which is directed to the negative or positive op-amp input. This
feedback opens up an enormous range of other applications for the op-amp.

Negative Feedback and Voltage Follower

Negative feedback is formed when you connect the output of an op-amp
(V,,.») back to the inverting input (V-). When you apply a voltage (V,,) to the
noninverting input (V+) and increase it slowly, as V;, increases, then so would
the difference between V+ and V—; however, the output voltage also increases
according to G(V; - V,) and this feeds back into the V- input, causing the
output voltage V,,, to be reduced. Essentially, the op-amp attempts to keep
the voltage on the inverting (V-) input the same as the noninverting (V+) input
by adjusting the output. The impact of this action is that the value of V,,, is
stabilized to be the same as the V;, voltage on V+; the higher the gain of the
op-amp, the closer this difference will be to zero.

Chapter 4 = Interfacing Electronics

155

That action on its own is not very useful to us, except for the fact that the
current required to set the voltage on the input is very small, and the op-amp
can control much larger currents on the output side. Because the negative feed-
back keeps the output voltage the same as the input voltage, the configuration
as a whole has a gain of 1. This configuration is known as a voltage follower, or
unity-gain buffer, and is illustrated in Figure 4-31. This configuration is very
important, as it is used in Chapter 9 to protect the ADC circuitry that is attached
to the RPi, and it is also used to ensure that the ADC reference voltage is not
modified by connecting it to a circuit.

(a) ‘Voltage follower gain = 1 (b)

1 8
w1~ v
1= [é] 2007
1IN+ [&] 21N-

] 21N+

v_

Small current in

Larger current out
e
—

= /i GND
Vin Vout = Vin [:

o o age o LM358

Figure 4-31: The voltage follower op-amp circuit

Positive Feedback

Negative feedback is the most common type of feedback used with op-amps
due to its stabilizing impact. An op-amp in a positive feedback configuration
is one in which the output is returned to the positive noninverting input of
the op-amp. In such a case the feedback signal supports the input signal. For
example, positive feedback can be used to add hysteresis to the open-loop op-
amp comparator circuit, by connecting V,, to V+ through a positive feedback
resistor. This can be used to reduce the comparator’s response to noise on the
input signal.

Concluding Advice

There is a lot of material covered in this chapter. So to finish, here is some general
advice for working with electrical components and the RPi:

m Never leave inputs floating. Use pull-up /pull-down resistors on all switches.
Check if unused IC pins need to be tied high/low.

m Ensure that all of the GNDs in your circuit are connected.

m Remember to power your chips with the correct voltage level.

156

Part | = Raspberry Pi Basics

m Don’t assume that a new diode, FET, BJT, or logic gate has the same pin
layout as the previous component that you used.

m Just like programming, build a simple circuit first, test it, and then add
the next layer of complexity. Never assume something works!

m Don’t leave wire joints and croc clip connections hanging where they could
touch off each other—the same for resistors on breadboards.

m Use a flat-head screwdriver to remove ICs from breadboards, as it is very
easy to bend the IC legs beyond repair.

m CMOS ICs are statically sensitive, so touching them with your fingers
may damage them, due to the buildup of static electricity on your body.
Touch the back of a computer or some grounding metal object before you
touch the ICs.

= Don’t assume that components have exact or consistent values—in par-
ticular, transistor gains and resistor ranges.

Summary

After completing this chapter, you should hopefully be able to do the following:

m Describe the basic principles of electrical circuit operation, build circuits
on breadboards, and measure voltage and current values.

m Use discrete components such as diodes, LEDs, transistors, and capacitors
in your own circuit designs.

m Use transistors and FETs as switches to control higher current and voltage
signals than would be possible by using the RPi outputs on their own.

m [nterconnect and interface to logic gates, being particularly aware of the
issues that arise with “floating” inputs.

m Describe the principles of analog-to-digital conversion and design basic
operational-amplifier circuits.

m Combine all of these skills to build the type of circuits that are important
for safely interfacing to the RPi GPIOs.

Chapter 4 = Interfacing Electronics 157

Further Reading

Documents and links for further reading have been listed throughout this
chapter, but here are some further reference documents:

m T. R. Kuphaldt, “Lessons in Electric Circuits,” a free series of textbooks
on the subjects of electricity and electronics: www. ibiblio.org/kuphaldt/

electricCircuits/.

m All About Circuits: www.allaboutcircuits.com provides excellent applied
examples of many types of electronic circuits.

m The Electronics Club: www.electronicsclub.info provides electronics
projects for beginners and for reference.

m Neil Storey, Electronics: A Systems Approach, 5th ed., New York: Pearson, 2013.
Here is a full list of the components that are used in this chapter:

m Breadboard

m Diodes: 1IN4001, general-purpose LED

m Transistors: NPN: BC547, FET: BS270

m Voltage regulator: KA7805/LM7805

m PTC: 60R110

m Button and Switch: General purpose SPST and SPDT

m [Cs: 74HC73N, 74HCO3N, 74LS08N, 74HCO8N, 74HC14, LM358N

m Resistors: 1MQ, 2.2k}, 2 x 10kQ, 50k, 100Q, 500, 1kQ, 4700, 2200,
100kQ POT

m Capacitors: 10pF, 1pF, 0.33pF, 0.1pF
m Opto-isolator: SFH617A

http://www.ibiblio.org/kuphaldt
http://www.allaboutcircuits.com
http://www.electronicsclub.info
http://www.ibiblio.org/kuphaldt/electricCircuits/

Programming on
the Raspberry Pi

This chapter describes several different programming options for the Raspberry
Pi (RPi), including scripted and compiled languages. An external LED control
program is provided in most of the languages so that you can investigate
each language’s structure and syntax. The advantages and disadvantages
of each language type are discussed along with example uses. The chapter
then focuses on the C/C++ and Python programming languages, describing
their principles, and why object-oriented programming (OOP) is appropriate
for the development of scalable embedded systems applications. The chapter
details how you can interface directly to the Linux kernel using the GNU C
library and finishes with a discussion on how the computational performance
of Python code can be greatly improved. A single chapter can only scratch the
surface on this topic, so this one focuses on physical programming with the RPi.

Equipment Required for This Chapter:

m A terminal connection to the RPi (see Chapter 2)

m LEDs, resistors, breadboard, hook-up wires, and a FET (BS270) or transis-
tor (BC547) (see Chapter 4)

See www.exploringrpi.com/chapters/ for further details on this chapter.

159

http://www.exploringrpi.com/chapter5

160

Part | = Raspberry Pi Basics

Introduction

As discussed in Chapter 3, embedded Linux is essentially “Linux on an embed-
ded system.” If your favorite programming language is available under Linux,
it is also likely to be available for the RPi. So, is your favorite language suitable
for programming the RPi? That depends on what you intend to do with the
board. Are you interfacing to electronics devices/modules? Do you plan to
write rich user interfaces? Are you planning to write a device driver for Linux?
Is performance very important, or are you developing an early pre-prototype?
Each of the answers to these questions will impact your decision regarding
which language you should use. In this chapter, you are introduced to several
different languages, and the advantages and disadvantages of each category of
language are outlined. As you read through the chapter, try to avoid focusing
on a favorite language, but instead try to use an appropriate language for the
job at hand.

How does programming on embedded systems compare to programming
on desktop computers? Here are some points to consider:

= You should always write the clearest and cleanest code that is as main-
tainable as possible, just as you would on a desktop PC.

m Don’t optimize your code until you are certain that it is complete.

= You typically have to be more aware of how you are consuming resources
than when programming on the desktop computer. The size of data types
matters, and passing data correctly really matters. You have to be con-
cerned with memory availability, file system size, and data communication
availability /bandwidth.

= You often have to learn about the underlying hardware platform. How
does it handle the connected hardware? What data buses are available?
How do you interface with the operating system and low-level libraries?
Are there any real-time constraints?

For the upcoming discussion, it is assumed that you are planning to do some
type of physical computing—that is, interfacing to the different input or outputs
on the RPi. Therefore, the example that is used to describe the structure and
syntax of the different languages is a simple interfacing example to control an
LED circuit. Before looking at the languages themselves, we will begin with a
brief performance evaluation of different languages running on the RPj, to put
the following discussions in context.

Performance of Languages on the RPi

Which language performs the best on the RPi? Well, that is an incredibly emo-
tive and difficult question to answer. Different languages perform better on

Chapter 5 » Programming on the Raspberry Pi

161

different benchmarks and different tasks. In addition, a program written in a
particular language can be optimized for that language to the point that it is
barely recognizable as the original code. Nor is speed of execution always an
important factor; you may be more concerned with memory usage, the portabil-
ity of the code, or the ability to quickly apply changes.

However, if you are planning to develop high-speed or real-time number-
crunching applications, performance may be a key factor in your choice of
programming language. In addition, if you are setting out to learn a new lan-
guage, and you may possibly be developing algorithmically rich programs in
the future, it may be useful to keep performance in mind.

A simple test has been put in place on different RPi models to determine the
performance of the languages discussed in this chapter. The test uses the n-body
benchmark (gravitational interaction of planets) code from tiny.cc/erpiso1. The
code uses the exact same algorithm for all languages and the RPi is running in
the same state in all cases. The test uses five million iterations of the algorithm
to ensure that the script used for timing does not have to be highly accurate.
All of the programs gave the same correct result (i.e., —0.169083134), indicating
that they all ran correctly and to completion. The various tests are available in
the book’s Git repository in the directory chpos/performance/.

All the code for the following tests were compiled and executed on the RPi
platform. Not all the languages used are available on Raspbian by default, but
the test has the added value of giving you confidence that you can utilize these
languages on the RPi. Importantly, the code examples that I used in this test
contain only typical coding constructs, purposefully avoiding custom optimi-
zation libraries. Use the following call to execute the test:

pieerpi ~/exploringrpi/chp05/performance $./run

The C/C++ Code Example

-0.169075164

-0.169083134
It took 6544 milliseconds to run the C/C++ test

The results of the tests are displayed in Table 5-1. In the third column you can
see the results for an RPi 3 (in ARMv7 mode), running at a processor frequency
of 1.2 GHz (with default CPU/GPU memory allocation). C/C++ takes 6.5 seconds
to complete this number-crunching task, so this time is used as the benchmark
and is weighted as 1.00 units. Therefore, Haskell takes 1.16 times longer to
complete the same task, Java takes 1.52 times longer, Python 94.1 times longer,
and Ruby 147 times longer. The processing durations in seconds are provided
in parentheses and the table is ordered with respect to language performance.
As you move across the columns, you can see that this performance is relatively
consistent, even as the processor frequency is adjusted (discussed in the next
section) or a desktop i7 64-bit processor is used.

162

Part | = Raspberry Pi Basics

Table 5-1: Numeric Computation Time for 5,000,000 Iterations of the n-Body Algorithm on
Raspbian (Jessie Minimal Image)

RPi 3 at RPi 2 at RPi B+ at 64-BIT i7
VALUE TYPE 1.2 GHZ' 1 GHZ? 1 GHZ3 PC*
C/C++ Compiled 1.00 % (6.55) 1.00 X (9.3s) 1.00 x (10.0s) 1.00 % (0.61s)
CG+11 Compiled 1.06 X (6.95) 0.69 X (6.4s) 0.70 x (7.03s) 0.95 % (0.58s)
Haskell Compiled 1.16 X (7.65) 1.17 x (10.8s) 1.07 % (10.8s) 1.15 % (0.70s)
Java® JIT 1.52 % (9.94s) 1.45 % (13.4s) 2.29 X (23.0s) 1.36 % (0.83s)
Mono C# JIT 2.72 % (17.8s) 247 x(229s) 3.62x(36.4s) 2.16 X (1.32s)

Cython® Compiled 2.74 x (17.95s) 2.67 X (24.8s) 2.80%(28.0s) 1.26 x (0.77s)

Node.js’ JIT 2.76 x (18.1s) 6.23 x (57.75) 50.1 x (503s) 6.54 % (3.99s)
Lua Interpreted 20.2 X (1325) 21.2 x (197s) 25.7 X (258¢) 34.3 x (20.9s)
Cython Compiled 64.2 x (420s) 66.6 X (618s) 163 x (1633s) 58.0 X (34.4s)
Perl Interpreted 92.6 x (601s) 81.5 X (7565) 171 x (17165) 82.0 % (50.0s)
Python Interpreted 94.1 X (6165) 89.9 x (834s) 198 X (1992s) 89.7 X (54.75)
Ruby Interpreted 147 x (962s) 140 % (1298s) 265X (2662s) 47.4 x (28.9s)

"' RPi 3 running at 1.2 GHz, quad core (only one core utilized), ARMV7 (rev 4 with a 32-bit Linux distribution: Linux
4.1.19-v7+) supports: half thumb fastmult vfp edsp neon vfpv3 tls vfpv4 idiva idivt vfpd32 Ipae evtstrm crc32.
Please ensure that you use a high-quality power supply that is capable of delivering at least 1.5 A.

2 RPi 2 overclocked at 1 GHz, quad core (only one core utilized), ARMv7 (rev 5) supports: half thumb fastmult vfp
edsp neon vfpv3 tls vfpv4 idiva idivt vfpd32 Ipae evtstrm. Note: Overclocking your RPi may reduce its lifespan.

* RPi B+ overclocked at 1 GHz, single core, ARMV6 (rev 7 v6) supports: half thumb fastmult vfp edsp java tls.

“Windows 8.1 PC running a 64-bit Debian Jessie VirtualBox VM that was allocated 3 threads (of 12) on an Intel
i7-5820K @ 3.3 GHz, with the VM allocated 16 GB of RAM. Only one thread is used.

°You can use sudo apt install oracle-java8-7jdk toinstall the Oracle JDK on the Raspberry Pi
platform.

6 This Cython test involved modifying the Python source code to optimize it. It is not simply the compilation of
raw Python code. The second Cython test represents the simple compilation of raw Python source code.

’Nodejs (node -wv)is version v5.10.1 and it supports the ARM NEON accelerator processor. NEON is available
on the RPi 2/3 (ARMV7) but not on the RPi B+ (ARMV6), which contributes to the poor performance of Node.js on
the RPi B+ of 50.1x the baseline. See the feature titled “LAMP and MEAN" in Chapter 12 for instructions on how to
install the latest version of Node.js on the RPi.

The code examples have not been optimized for multicore processors, so for
example, the C/C++ code only uses a single core of the RPi 3 processor. Albeit,
regular Linux threads are automatically offloaded to other cores and the full
memory bandwidth is available to the one core. Multicore programming is
discussed in the next chapter, where you can see that the performance of the
RPi 2/3 can be further improved relative to the RPi B+, which has a single-core
processor. All the programs use between 98% and 99% of the CPU while they
are executing.

The second column in Table 5-1 indicates the language type, where compiled
refers to natively compiled languages, JIT refers to just-in-time compiled languages,

Chapter 5 » Programming on the Raspberry Pi

163

and interpreted refers to code that is executed by interpreters. The distinction in
these language types is described in detail throughout this chapter and is not
quite as clear-cut as presented in the table.

THE 64-BIT RPi 3 BCM2837 SYSTEM ON A CHIP (SOC)

The RPi 3 utilizes a quad-core, Cortex-A53 BCM2837 SoC that supports 64-bit opera-
tions. It is clear from the indicative tests at the beginning of this chapter that its per-
formance is impressive, delivering approximately 30% faster performance than the
overclocked RPi 2 in the C/C++ test, despite running in 32-bit mode. This performance
improvement is mainly due to the faster CPU clock frequency, rather than the 64-bit
processor. The move to full Linux support for 64-bit embedded Linux on the RPi 3 will
eventually provide advantages (e.g., improved NEON floating-point performance,
improved instruction sets). However, Eben Upton from the Raspberry Pi Foundation
has indicated that it will take some time before the RPi firmware is updated to support
a 64-bit Linux kernel.

It is worth noting that the relative performance of Java is impressive given
that code is compiled dynamically (“just-in-time”), which is discussed later
in this chapter. Any dynamic compilation latency is included in the timings,
because the test script includes the following Bash script code to calculate the
execution duration of each program:

Duration="5000000"

echo -e "\nThe C/C++ Code Example"

T="3$ (date +%s%N)"

./n-body $Duration

T="$(($(date +%s3N)-T))"

T=$((T/1000000))

echo "It took ${T} milliseconds to run the C/C++ test"

The C++11 code is the version of the C++ programming language that was
approved in mid-2011. C++11 requires g++ version 4.7 or greater, and is dis-
cussed again in Chapter 7. The binary code has been built using optimizations
that do not involve modifications to the binary code (e.g., -03 for C/C++ and
the +aggressiveopts flag is set for Java).

Despite the “Pi” in Raspberry® Pi being derived from “Python,” the performance
results for the language are particularly poor due to the algorithmic nature of the
problem. However, the benchmarks at (debian.org, 2013), indicate that the range
will be 9-100 times slower than the optimized C++ code for general processing
to algorithm-rich code, respectively. If you are very comfortable with Python and
you would like to improve upon its performance, you can investigate Cython, a
compiler that supports the removal of Python’s dynamic typing capability and

8 The RPi brand name continues a global trend of naming devices after fruits (e.g., Apple, Black-
Berry)! According to Liz Upton of the Raspberry Pi Foundation, the name is a throwback to
Apricot Computers in particular, a 1980s UK company that produced desktop PCs.

164

Part | = Raspberry Pi Basics

facilitates you to generate C code directly from your Python code. Cython and
the extension of Python with C/C++ are discussed at the end of this chapter.

The final column provides the results for the same code running on a desk-
top computer virtual machine. You can see that the relative performance of
the applications is broadly in line, but also note that the C++ program runs
10 times faster on a single i7 thread than it does on a single core of the RPi 3.
The computational performance of the RPi 3 is very impressive, but it will still
struggle with computationally expensive applications like signal processing
and computer vision.

As previously discussed, this is only one numerically oriented benchmark test,
but it is somewhat indicative of the type of performance you should expect from
each language. There have been many studies on the performance of languages.
However, a well-specified analysis by Hundt (2011) has found that in terms of
performance, “C++ wins out by a large margin. However, it also required the
most extensive tuning efforts, many of which were done at a level of sophisti-
cation that would not be available to the average programmer” (Hundt, 2011).

RASPBERRY Pi BENCHMARKS

Roy Longbottom’s (roylongbottom. org. uk) Benchmark Collection is a well-known
set of benchmark tests that can be executed on many platforms, including the RPi. As
an alternative to the simple tests in this section, you can download and execute these
tests on the RPi using the following:
pi@erpi:~ $ mkdir perf
pieerpi:~ $ cd perf/
..~/perf $ wget http://www.roylongbottom.org.uk/Raspberry Pi Benchmarks.zip
.~/perf $ unzip Raspberry Pi Benchmarks.zip
.~/perf $ cd Raspberry Pi Benchmarks /Source\ Code/
/Source Code $ gcc whets.c cpuidc.c -lm -03 -o whets
/Source Code $./whets
Whetstone Single Precision C Benchmark vfpv4 32 Bit, Mon Apr 11 00:20:12 2016

Loop content Result MFLOPS MOPS Seconds
N1 floating point -1.12475013732910156 170.579 0.082
N2 floating point -1.12274742126464844 181.435 0.539
N3 if then else 1.00000000000000000 898.271 0.084
N4 fixed point 12.00000000000000000 748.817 0.306
N5 sin,cos etc. 0.49911010265350342 10.533 5.750
N6 floating point 0.99999982118606567 299.770 1.310
N7 assignments 3.00000000000000000 1198.997 0.112
N8 exp,sgrt etc. 0.75110864639282227 8.721 3.105

MWIPS 644.874 11.289

Chapter 5 » Programming on the Raspberry Pi

165

The RPi 3 delivers 644.9 million Whetstone instructions per second (MWIPS) in
this test. According to the benchmark results at tiny . cc/erpi507 the RPi Model B
delivers 390.6 MWIPS and the RPi 2 (at 1 GHz) delivers 568.4 MWIPS, which is broadly
in line with the performance tests described in this section.

Setting the RPi CPU Frequency

In the preceding tests, the clock frequency of the RPi was adjusted dynami-
cally at run time. The RPi has various governors that can be used to profile
its performance/power usage ratio. For example, if you were building a
battery-powered RPi application that has low processing requirements, you
could reduce the clock frequency to conserve power. You can find out infor-
mation about the current state by typing (called on the RPi 2):

pi@erpi ~ $ sudo apt install cpufrequtils
pieerpi ~ $ cpufreg-info
. analyzing CPU O0:
driver: BCM2835 CPUFreq
CPUs which run at the same hardware frequency: 0 1 2 3
CPUs which need to have their frequency coordinated by software: 0 1 2 3
maximum transition latency: 355 us.
hardware limits: 600 MHz - 1000 MHz
available frequency steps: 600 MHz, 1000 MHz
available cpufreqg governors: conservative, ondemand, userspace, powersave,
performance. current policy: frequency should be within 600 MHz and 1000 MHz.
The governor "ondemand" may decide which speed to use within this range.
current CPU frequency is 600 MHz.

As listed above, the RPi 2 has four CPU cores (0-3), so each will display an
output. In this example, the RPi 2 is overclocked by setting arm_freg=1000 in
/boot /config.txt. You can see that different governors are available, with the
profile names conservative, ondemand, userspace, powersave, and perfor-
mance. To enable one of these governors or to explicitly set the clock frequency,
enter the following:
pi@erpi ~ $ sudo cpufreg-set -g performance
pieerpi ~ $ cpufreg-info
. current CPU frequency is 1000 MHz.
pieerpi ~ $ sudo cpufreqg-set -f 600MHz
pieerpi ~ $ cpufreqg-info
. current CPU frequency is 600 MHz.

The default governor is ondemand, which dynamically switches the CPU
frequency. For example, if the CPU frequency is currently 600 MHz and the
average CPU usage between governor samplings is above the threshold (called
the up_threshold) then the CPU frequency will be automatically increased.

166

Part | = Raspberry Pi Basics

You can tweak these and other settings using their sysfs entries. For example,
to set the threshold at which the CPU frequency rises to the point at which the
CPU load reaches 90% of available capacity, use the following;:

pieerpi ~ $ sudo cpufreqg-set -g ondemand
pieerpi ~ $ cd /sys/devices/system/cpu/cpufreq/ondemand/

pi@erpi .../ondemand $ 1ls

ignore nice load powersave bias sampling rate up_threshold
io_is_busy sampling_down_factor sampling rate_min

pi@erpi .../ondemand $ cat up threshold

50

pieerpi .../ondemand $ sudo sh -c "echo 90 > up threshold"

pi@erpi .../ondemand $ cat up threshold

90

Finally, if you decide to permanently change the default governor on the RPi
to be performance rather than ondemand, you can edit the cpufrequtils file in
/etc/init.d/ as follows:

pieerpi ~ $ cd /etc/init.d/

pieerpi /etc/init.d $ more cpufrequtils | grep GOVERNOR=

GOVERNOR="ondemand"

pie@erpi /etc/init.d $ sudo nano cpufrequtils

pieerpi /etc/init.d $ more cpufrequtils | grep GOVERNOR=

GOVERNOR="performance"

pie@erpi /etc/init.d $ sudo reboot

A First Circuit for Physical Computing

Figure 5-1 illustrates a circuit that you can connect to the RPi for safely driving
an LED using (a) a BS270 FET, and (b) a BC547 NPN transistor. You can use either
of these circuits to test the code that is described in this chapter.

As described in Chapter 4, a FET or NPN transistor can be used to switch a
load using a very low current. In this example the GPIO pin (GPIO4), which is
connected to Pin 7 on the GPIO header, provides the low current required to
switch the FET/transistor on or off, depending on whether the GPIO state is high
or low. The relatively large current that is required to light the LED (~10 mA-
15 mA) is sourced from the 3.3 V supply pin on the RPi using the calculation
that is described in Figure 4-9. These circuits are described in more detail in
Chapter 6.

m Be very careful when wiring circuits such as those in Figure 5-1.
Incorrect connections or the use of the wrong header pin can destroy your RPi. It
is good practice to wire such circuits with the power to the RPi disconnected. Only
power the RPi once you have carefully checked the circuit configuration.

mailto:pi@erpi.../ondemand$catup_threshold90Finally
mailto:pi@erpi.../ondemand$catup_threshold90Finally
mailto:pi@erpi.../ondemand$catup_threshold90Finally
mailto:pi@erpi/etc/init.d$sudorebootAFirstCircuitforPhysicalComputingFigure5-1illustratesacircuitthatyoucanconnecttotheRPiforsafelydrivinganLED
mailto:pi@erpi/etc/init.d$sudorebootAFirstCircuitforPhysicalComputingFigure5-1illustratesacircuitthatyoucanconnecttotheRPiforsafelydrivinganLED
mailto:pi@erpi/etc/init.d$sudorebootAFirstCircuitforPhysicalComputingFigure5-1illustratesacircuitthatyoucanconnecttotheRPiforsafelydrivinganLED
mailto:pi@erpi/etc/init.d$sudorebootAFirstCircuitforPhysicalComputingFigure5-1illustratesacircuitthatyoucanconnecttotheRPiforsafelydrivinganLED

Chapter 5 » Programming on the Raspberry Pi 167

(a) LED BS270 (b) LED 3054?

g ﬂ m
> D _— S

- (1l)es270

; |

Figure 5-1: (a) Driving an LED with a GPIO using a FET, and (b) driving an LED with a GPIO using
an NPN transistor

Once this circuit is wired correctly, you can use Linux sysfs to control the
GPIO so that you become familiar with the workflow in the code that follows.
The first step is to enable GPIO4 on the RPi using the following steps:

pieerpi ~ $ cd /sys/class/gpio

pieerpi /sys/class/gpio $ 1ls

export gpiochip0 unexport

pieerpi /sys/class/gpio $ echo 4 > export

pieerpi /sys/class/gpio $ 1ls

export gpio4 gpiochip0 unexport

pieerpi /sys/class/gpio $ cd gpio4

pieerpi /sys/class/gpio/gpio4 $ 1ls

active_low device direction edge subsystem uevent value

GPIO4 can now be controlled using the entries in the Linux gpio4 directory.
For example, you can set up the GPIO to be an output, and change its state to
be high or low using the following steps:

pieerpi /sys/class/gpio/gpio4 $ echo out > direction

pieerpi /sys/class/gpio/gpio4 $ echo 1 > value

pieerpi /sys/class/gpio/gpio4 $ echo 0 > value
If the LED circuit in Figure 5-1 is wired correctly, the change in the GPIO state
results in the LED switching on and off. You can read the state of the GPIO
using the following calls:

pieerpi /sys/class/gpio/gpio4 $ cat direction
out

168

Part | = Raspberry Pi Basics

pieerpi /sys/class/gpio/gpio4 $ cat value
0

Finally, if you want to redisable the GPIO, you can perform this step:

pieerpi /sys/class/gpio $ echo 4 > unexport
pieerpi /sys/class/gpio $ 1s
export gpiochip0 unexport

The various code examples in the remainder of this chapter utilize Linux sysfs
to automate the preceding tasks. It is important to note that sysfs is mapped to
memory and that therefore these file operations are actually reasonably efficient.

Scripting Languages

A scripting language is a computer programming language that is used to
specify script files, which are interpreted directly by a runtime environment
to perform tasks. Many scripting languages are available, such as Bash, Perl,
Lua, and Python, and these can be used to automate the execution of tasks on
the RPi, such as system administration, interaction, and even interfacing to
electronic components using sysfs.

Scripting Language Options

Which scripting language should you choose for the RPi? There are many strong
opinions and it is a difficult topic, because Linux users tend to have a favorite
scripting language. However, you should choose the scripting language with
features that suit the task at hand. For example:

m Bash scripting: Is a great choice for short scripts that do not require advanced
programming structures. Bash scripts are used extensively in this book for
small, well-defined tasks, such as the timing code in the previous section. You
can use the Linux commands discussed in Chapter 3 in your Bash scripts.

m [ua:Isafast and lightweight scripting language that can be used for embed-
ded applications because of its very small footprint. Lua supports the object-
oriented programming (OOP) paradigm (using tables and functions) and
dynamic typing, which is discussed shortly. Lua has an important role in
Chapter 13 for the programming of NodeMCU Wi-Fi modules.

m Perl: Is a great choice for scripts that parse text documents or process
streams of data. It enables you to write straightforward scripts and even
supports the OOP paradigm.

m Python: Is great for scripts that need more complex structure and are likely
to be built upon or modified in the future. Like Lua, Python supports the
OOP paradigm and dynamic typing.

Chapter 5 » Programming on the Raspberry Pi

169

These four scripting languages are available preconfigured on the Raspbian
image. It would be very useful to have some knowledge of all of these scripting
languages, because you may find third-party tools or libraries that make your
current project very straightforward. This section provides a brief overview of
each of these languages, including a concise segment of code that performs the
same function in each language. It finishes with a discussion about the advan-
tages and disadvantages of scripting languages in general.

All the code that follows in this chapter is available in the associated GitHub
repository in the chp05 directory. If you have not done so already, use git clone
https://github.com/derekmolloy/exploringrpi.git inaLinux terminal
window to clone this repository.

Bash

Bash scripts are a great choice for short scripts that do not require advanced
programming structures, and that is exactly the application that is described
here. The first program in Listing 5-1 allows a user to set up a GPIO, turn an
LED on or off, get the status of a GPIO, and close the GPIO. Essentially this script
automates the steps that are performed using sysfs earlier in this chapter. For
example, using this script by calling . /bashLED setup followed by . /bashLED
on would light the LED in Figure 5-1.

Listing 5-1: chp05/bashLED/bashLED

#!/bin/bash
LED_GPIO=4 # Use a variable -- easy to change GPIO number

An example Bash functions

function setLED

{ # $1 is the 1st argument passed to this function
echo $1 >> "/sys/class/gpio/gpioSLED GPIO/value"

}

Start of the program -- start reading from here

if [$S# -ne 1 1; then # if there is not exactly one argument
echo "No command was passed. Usage is: bashLED command, "
echo "where command is one of: setup, on, off, status and close"
echo -e " e.g., bashLED setup, followed by bashLED on"

exit 2 # error that indicates invalid number of arguments
f£i
echo "The LED command that was passed is: $1"
if ["$1" == "setup"]; then

echo "Exporting GPIO number $1"
echo $LED GPIO >> "/sys/class/gpio/export"

https://github.com/derekmolloy/exploringrpi.git

170 Part | = Raspberry Pi Basics

sleep 1 # to ensure gpio has been exported before next step
echo "out" >> "/sys/class/gpio/gpio$LED GPIO/direction"

elif ["$1" == "on"]; then

echo "Turning the LED on"

setLED 1 # 1 is received as $1 in the setLED function
elif ["$1" == "off"]; then

echo "Turning the LED off"

setLED 0 # 0 is received as $1 in the setLED function
elif ["$1" == "status"]; then

state=$(cat "/sys/class/gpio/gpio$SLED GPIO/value")
echo "The LED state is: Sstate"
elif ["$1" == "close"]; then
echo "Unexporting GPIO number $LED_GPIO"
echo $LED_GPIO >> "/sys/class/gpio/unexport"
£i
The script is available in the directory /chpos/bashLED/. If you entered the
script manually using the nano editor, the file needs to have the executable
flag set before it can be executed. (The Git repository retains executable flags.)
Therefore, to allow all users to execute this script, use the following call:

/chp05/bashLEDS chmod ugo+x bashLED

What is happening within this script? First, all of these command scripts
begin with a sha-bang #: followed by the name and location of the interpreter
to be used, so #! /bin/bash in this case. The file is just a regular text file, but
the sha-bang is a magic-number code to inform the OS that the file is an execut-
able. Next, the script defines the GPIO number for which you want to change
state using the variable LED_Gp10. Using a variable allows the default value to
be easily altered should you want to use a different GPIO for this task.

The script contains a function called setLED, mainly to demonstrate how
functions are structured within Bash scripting. This function is called later in
the script. Each if is terminated by a £i. The ; after the if statement terminates
that statement and allows the statement then to be placed on the same line. The
elif keyword means else if, which allows you to have multiple comparisons
within the one if block. The newline character \n terminates statements.

The first i f statement checks if the number of arguments passed to the script
(s#) is not equal to 1. The correct way to call this script is in the form . /bashLED
on, where on is the first user argument that is passed ($1) and there is one argu-
ment in total. If there were no arguments passed, the correct usage would be
displayed and the script would exit with the return code 2. This value is consis-
tent with Linux system commands, where an exit value of 2 indicates incorrect
usage. Success is indicated by a return value of o, so any non-zero return value
generally indicates the failure of a script.

If the argument passed is on then the code displays a message and writes the

o1

string “1” to the value file in the /gpio4/ directory. The remaining functions

Chapter 5 » Programming on the Raspberry Pi

171

modify the GPIO4 state in the same way as described in the last section. You
can execute the script as follows:
pieerpi ~/exploringrpi/chp05/bashLED $./bashLED
No command was passed. Usage is: bashLED command,
where command is one of: setup, on, off, status and close
e.g., bashLED setup, followed by bashLED on
pieerpi ~/exploringrpi/chp05/bashLED $./bashLED setup
The LED command that was passed is: setup
Exporting GPIO number setup
pie@erpi ~/exploringrpi/chp05/bashLED $./bashLED on
The LED command that was passed is: on
Turning the LED on
pie@erpi ~/exploringrpi/chp05/bashLED $./bashLED status
The LED command that was passed is: status
The LED state is: 1
pieerpi ~/exploringrpi/chp05/bashLED $./bashLED close
The LED command that was passed is: close
Unexporting GPIO number 4

Interestingly, the script does not have to be prefixed by sudo when it is executed
by the pi user under Raspbian. On other Linux distributions this is not the case,
because GPIOs are typically owned exclusively by the superuser. However,
Raspbian has special udev rules which ensure that the GPIOs are shared within
the gpio Linux group, and because the pi user is a member of that group it is
permitted access. The user molloyd that is described in Chapter 3 would have
to be added to the gpio group to execute the script. This topic is described in
more detail in Chapter 6, but for the moment you can confirm group ownership
and access permissions as follows:

pieerpi /sys/class/gpio $ groups

pi adm ... gpio i2c spi input

pieerpi /sys/class/gpio $ 1ls -1d gpio4
lrwxrwxrwx 1 root gpio 0 Jun 27 12:22 gpio4 -> ...

You might ask why the setuid bit could not be used on the bashLED script
to give it superuser permissions instead. Well, for security reasons, you cannot
use the setuid bit on a script to set it to execute as root. If users had write access
to a script that is owned by root and its setuid bit was set, the users could inject
any command that they wished into the script and would therefore have de facto
superuser access to the system.

For a comprehensive online guide to Bash scripting, see Mendel Cooper’s
“Advanced Bash-Scripting Guide” tiny.cc/erpiso2

Lua

Lua is the best performing interpreted language in Table 5-1 by a significant
margin. In addition to good performance, Lua has a clean and straightforward

172

Part | = Raspberry Pi Basics

syntax that is accessible for beginners. The interpreter for Lua has a small foot-
print—on the RPi it is only 130 KB in size (1s -1h /usr/bin/luas.1), which
makes it very suitable for low-footprint embedded applications. For example, Lua
can be used successfully on the ultra-low-cost ($2-$5) ESP8266 Wi-Fi modules
that are described in Chapter 13, despite their modest memory allocations. In
fact, once a platform has an ANSI C compiler then the Lua interpreter can be
built for it. However, one downside is that the standard library of functions is
somewhat limited in comparison to other more general scripting languages,
such as Python.

Listing 5-2 provides a Lua script that has the same structure as the Bash script,
so it is not necessary to discuss it in detail.

Listing 5-2: chp05/luaLED/luaLED.lua

#!/usr/bin/lua

local LED4 PATH = "/sys/class/gpio/gpio4/" -- gpio4 sysfs path
local SYSFS DIR = "/sys/class/gpio/" -- gpio sysfs path
local LED NUMBER = "4" -- The GPIO used

-- Example function to write a value to the GPIO

function writeGPIO (directory, filename, value)
file = io.open(directory..filename, "w") -- append dir and file names
file:write (value) -- write the value to the file
file:close()

end

print ("Starting the Lua LED Program")

if arg[l]l==nil then -- no argument provided?
print ("This program requires a command")
print (" usage is: ./luaLED.lua command")
print ("where command is one of setup, on, off, status, or close")
do return end

end
if arg[l]l=="on" then
print ("Turning the LED on")
writeGPIO(LED4_PATH, "value", "1")
elseif arg[l]=="off" then
print ("Turning the LED off")
writeGPIO (LED4_PATH, "value", "O")
elseif arg[l]=="setup" then

print ("Setting up the LED GPIO")
writeGPIO (SYSFS DIR, "export", LED NUMBER)

os.execute ("sleep 0.1") -- ensure the GPIO is exported by Linux
writeGPIO(LED4_PATH, "direction", "out")
elseif arg[l]=="close" then

print ("Closing down the LED GPIO")

writeGPIO (SYSFS_DIR, "unexport", LED NUMBER)
elseif arg[l]=="status" then

print ("Getting the LED status")

file = io.open(LED4_ PATH.."value", "r")

Chapter 5 » Programming on the Raspberry Pi

173

print (string.format ("The LED state is %s.", file:read()))
file:close()

else
print ("Invalid command!")

end

print ("End of the Lua LED Program")

You can execute this script in the same manner as the bashLED script
(e.g., ./luaLED.lua setup Or by typing lua luaLED.lua setup from the
/chp05/1uaLED/ directory) and it will result in a comparable output. There are
two things to be careful of with Lua in particular: strings are indexed from 1,
not 0; and, functions can return multiple values, unlike most languages. Lua
has a straightforward interface to C/C++, which means that you can execute
compiled C/C++ code from within Lua, or use Lua as an interpreter module
within your C/C++ programs. There is an excellent reference manual at www
.1lua.org/manual/ and a six page summary of Lua at tiny.cc/erpiso03.

Perl

Perl is a feature-rich scripting language that provides you with access to a huge
library of reusable modules and portability to other OSs (including Windows).
Perl is best known for its text processing and regular expressions modules. In
the late 1990s it was a very popular language for server-side scripting for the
dynamic generation of web pages. Later it was superseded by technologies such
as Java servlets, Java Server Pages (JSP), and PHP. The language has evolved
since its birth in the 1980s and now includes support for the OOP paradigm.
Perl 5 (v20+) is installed by default on the Raspbian image.

A Perl version of the LED program is provided in the /chpos/per1LED/ direc-
tory. Apart from general syntax changes that are described in the comments
within the code, very little has actually changed in the translation to Perl. To
execute this code, simply type. /per1LED.pl on, because the sha-bang identifies
the Perl interpreter. You could also execute it by typing perl perlLED.pl status.

For a good resource about getting started with installing and using Perl 5,
see the guide “Learning Perl” at learn.perl.org.

Python

Python is a dynamic and strongly typed OOP language that was designed to
be easy to learn and understand. Dynamic typing means that you do not have
to associate a type (e.g., integer, character, string) with a variable; rather, the
value of the variable “remembers” its own type. Therefore, if you were to cre-
ate a variable x=5, the variable x would behave as an integer; but if you subse-
quently assign it using x="test”, it would then behave like a string. Statically
typed languages such as C/C++ or Java would not allow the re-definition of a

http://www.lua.org/manual/
http://www.lua.org/manual/

174

Part | = Raspberry Pi Basics

variable in this way (within the same scope). Strongly typed languages require
that the conversion of a variable from one type to another must have an explicit
conversion. Unfortunately, dynamic typing has a heavy performance cost, which
is apparent from the performance of Python in Table 5-1.

Python is installed by default on the Raspbian image and it is a very popular
general-purpose language within the RPi community. The Python3 example
to control the GPIO is provided in Listing 5-3. A Python2 example, which has
minor modifications, is provided in the same directory.

Listing 5-3: chp05/pythonLED/pythonLED3.py

#!/usr/bin/python3
import sys

from time import sleep

LED4 PATH = "/sys/class/gpio/gpio4/"
SYSFS DIR = "/sys/class/gpio/"
LED_NUMBER = "4"

def writeLED (filename, value, path=LED4 PATH) :
"This function writes the value passed to the file in the path"
fo = open(path + filename, "w")
fo.write (value)
fo.close()

return

print ("Starting the GPIO LED4 Python script")
if len(sys.argv) !=2:
print ("There is an incorrect number of arguments"
print (" wusage is: pythonLED.py command")
print (" where command is one of setup, on, off, status, or close")
sys.exit (2)
if sys.argv[l]=="on":
print ("Turning the LED on")
writeLED (filename="value", value="1"
elif sys.argv[l]=="off":
print ("Turning the LED off"
writeLED (filename="value", value="0"
elif sys.argv[l]=="setup":
print ("Setting up the LED GPIO")
writeLED (filename="export", value=LED NUMBER, path=SYSFS DIR)
sleep(0.1)
writeLED (filename="direction", value="out")
elif sys.argv[l]=="close":
print ("Closing down the LED GPIO")
writeLED (filename="unexport", value=LED NUMBER, path=SYSFS DIR)
elif sys.argv[l]=="status":
print ("Getting the LED state value")
fo = open(LED4_PATH + "value", "r")
print (fo.read())

Chapter 5 » Programming on the Raspberry Pi

175

fo.close()
else:
print ("Invalid Command!"

print ("End of Python script")

The formatting of this code is important; in fact, Python enforces the layout
of your code by making indentation a structural element. For example, after
the line “if len(sys.argv)!=2:" the next few lines are “tabbed” in. If you
did not tab in one of the lines—for example, the sys.exit (2) line—then it
would not be part of the conditional if statement and the program would
always exit at this point in the code. To execute this example, in the pythonLED
directory enter the following:

pi@erpi .../chp05/pythonLED $./pythonLED3.py setup

Starting the GPIO LED4 Python script

Setting up the LED GPIO

End of Python script

pi@erpi .../chp05/pythonLED $./pythonLED3.py on

Starting the GPIO LED4 Python script

Turning the LED on
End of Python script

Python is particularly popular on the RPi for very good pedagogical reasons,
but as users turn their attention to more advanced applications it is difficult
to justify the performance deficit. This chapter concludes with a discussion on
how you can use either Cython, or combine Python with C/C++ to dramatically
improve the performance of Python. However, the complexity of Cython itself
should motivate you to consider using C/C++ directly.

To conclude this discussion of scripting, there are several strong choices for
applications on the RPi. Table 5-2 lists some of the key advantages and disad-
vantages of command scripting on the RPi, when considered in the context of
the compiled languages that are discussed shortly.

Table 5-2: Advantages and Disadvantages of Command Scripting on the RPi

ADVANTAGES DISADVANTAGES

Perfect for automating Linux system Performance is poor for complex numeric
administration tasks that require callsto or algorithmic tasks.
Linux commands.

Easy to modify and adapt to changes. Generally, relatively poor/slow programming
Source code is always present and support for data structures, graphical user
complex toolchains (see Chapter 7) are interfaces, sockets, threads, etc.

not required to make modifications.
Generally, nano is the only tool that
you need.

Continues

176

Part | = Raspberry Pi Basics

Table 5-12 (continued)

ADVANTAGES DISADVANTAGES

Generally, straightforward program- Generally, poor support for complex applica-
ming syntax and structure that is rea- tions involving multiple, user-developed mod-
sonably easy to learn when compared ules or components.

to languages like C++ and Java.

Generally, quick turnaround in coding Code is in the open. Direct access to view your
solutions by occasional programmers or ~ code can be an intellectual property or a secu-
for prototyping. rity concern.

Lack of development tools (e.g., refactoring).

Dynamically Compiled Languages

With the interpreted languages just discussed, the source code text file is “exe-
cuted” by the user passing it to a runtime interpreter, which then translates and
executes each line of code. JavaScript and Java have different life cycles and are
quite distinct languages.

JavaScript and Node.js on the RPi

Node js is JavaScript that is run on the server side. JavaScript is an interpreted
language by design. However, thanks to the V8 engine that was developed by
Google for their Chrome web browser, Node.js actually compiles JavaScript into
native machine instructions as it is loaded by the engine. This is called just-in-
time (JIT) compilation or dynamic translation. As demonstrated at the beginning
of this chapter, the performance of Node,js for numeric computation tasks is
impressive for a non-compiled language, specifically on the RPi 2/3 due to
optimizations for the ARMv?7 platform.

Listing 5-4 shows the same LED code example written using JavaScript and
executed by passing it to the Node js interpreter:

Listing 5-4: chp05/nodejsLED/nodejsLED.js

// Ignore the first two arguments (nodejs and the program name)
var myArgs = process.argv.slice(2)

var GPIO4 PATH = "/sys/class/gpio/gpio4/"

var GPIO SYSFS = "/sys/class/gpio/"

var GPIO_NUMBER = 4

function writeGPIO(filename, value, path) {
var fs = require('fs')
try {
fs.writeFileSync (path+filename, value)

}

catch (err) {

Chapter 5 » Programming on the Raspberry Pi

177

console.log("The Write Failed to the File: " + path+filename)

console.log("Starting the RPi LED Node.js Program") ;
if (myArgs[0]==null) {
console.log("There is an incorrect number of arguments.");

console.log (" Usage is: nodejs nodejsLED.js command")
console.log(" where command is: setup, on, off, status, or close.")
process.exit (2) //exits with the error code 2 (incorrect usage)

}
switch (myArgs([0])

case 'on':
console.log ("Turning the LED On")
writeGPIO ("value", "1", GPIO4 PATH)
break

case 'off':
console.log ("Turning the LED Off"
writeGPIO ("value", "0", GPIO4 PATH)
break

case 'setup':
console.log ("Exporting the LED GPIO")
writeGPIO ("export", GPIO_NUMBER, GPIO SYSFS)
// need to delay by 100ms or the GPIO will not be exported correctly
setTimeout (function () {writeGPIO("direction", "out", GPIO4_PATH)},100)
break

case 'close':
console.log ("Unexporting the LED GPIO")
writeGPIO ("unexport", GPIO_NUMBER, GPIO_SYSFS)
break

case 'status':

The code is available in the /chpo5/nodejsLED/ directory and it can be executed
by typing nodejs nodejsLED.js setup, Or node nodejsLED.js setup for more
recent versions of Nodejs.

The code has been structured in the same way as the previous examples and
there are not too many syntactical differences. However, there is one major dif-
ference between Node.js and other languages: functions are called asynchronously.
Up to this point, all of the languages discussed followed a sequential-execution
mode. Therefore, when a function is called, the program counter (also known
as the instruction pointer) enters that function and does not reemerge until the
function is complete. Consider, for example, code like this:

functionA() ;
functionB () ;

The functiona () is called and functions () will not be called until func-
tiona () is fully complete. This is not the case in Node.js! In Node.js, functiona ()
is called first and then Node.js continues executing the subsequent code, includ-
ing entering functions (), while the code in functiona () is still being executed.

Node.js permits asynchronous calls because they help ensure that the code
is “lively.” For example, if you performed a database query, your code may be

178

Part | = Raspberry Pi Basics

able to do something else useful while awaiting the result. When the result
is available, a callback function is executed to process the received data. This
asynchronous structure is perfect for Internet-attached applications, where
posts and requests are being made of websites and web services, and it is not
clear when a response will be received (if at all). Node.js has an event loop that
manages all the asynchronous calls, creating threads for each call as required,
and ensuring that the callback functions are executed when an asynchronous
call completes its assigned tasks. Node.js is revisited again in Chapter 12 when
the Internet of Things is discussed.

Java on the RPi

Up to this point in the chapter, interpreted languages are examined, meaning the
source code file (a text file) is executed using an interpreter or dynamic transla-
tor at run time. Importantly, the code exists in source code form, right up to the
point when it is executed using the interpreter.

With traditional compiled languages, the source code (a text file) is translated
directly into machine code for a particular platform using a set of tools, which
we will call a compiler for the moment. The translation happens when the code
is being developed; once compiled, the code can be executed without needing
any additional runtime tools.

Java is a hybrid language: You write your Java code in a source file, e.g,,
example.java, which is a regular text file. The Java compiler (javac) compiles
and translates this source code into machine code instructions (called bytecodes)
for a Java virtual machine (VM). Regular compiled code is not portable between
hardware architectures, but bytecode files (.c1ass files) can be executed on any
platform that has an implementation of the Java VM. Originally, the Java VM
interpreted the bytecode files at run time. However, more recently, dynamic
translation is employed by the VM to convert the bytecodes into native machine
instructions at run time.

The key advantage of this life cycle is that the compiled bytecode is portable
between platforms; and because it is compiled to a generic machine instruc-
tion code, the dynamic translation to “real” machine code is very efficient. The
downside of this structure when compared to compiled languages is that the
VM adds overhead to the execution of the final executable.

The Oracle Java Development Kit (JDK) and Java Runtime Environment (JRE)
are currently installed by default on the RPi Raspbian full image. To install the
JDK on the Raspbian Minimal Image, use sudo apt install oracle-java8-jdk.
Listing 5-5 provides a source code example that is also available in the GitHub
repository in bytecode form.

Chapter 5 » Programming on the Raspberry Pi

179

Large installations such as Oracle Java might cause you to run out of space
on your RPi SD card. You can identify the five largest packages that are installed on
your distribution using the command dpkg-query -Wf '${Installed-Size}\
t${Package}\n' | sort -n | tail -n5.You canthenremove large unused
packages using apt remove. Here are the five largest on the RPi Raspbian image—
note that Oracle Java 8 is presently the second largest package.

55920 pypy-upstream
65025 sonic-pi
104249 raspberrypi-bootloader

181992 oracle-java8-jdk
448821 wolfram-engine

Listing 5-5: chp05/javaLED/LEDExample.java (Segment)

package exploringRPi;

import java.io.*;
public class LEDExample {

private static String GPIO4 PATH = "/sys/class/gpio/gpio4/";
private static String GPIO_SYSFS

"/sys/class/gpio/";

private static void writeSysfs(String filename, String value, String path) {
try{
BufferedWriter bw = new BufferedWriter (new FileWriter (path+filename)) ;
bw.write (value) ;
bw.close() ;
}
catch (IOException e) {
System.err.println("Failed to access RPi sysfs file: " + filename);

public static void main(String[] args) ({

System.out.println("Starting the LED Java Application");

if (args.length!=1) {
System.out.println("There is an incorrect number of arguments.");
System.out.println(" Correct usage is: LEDExample command") ;
System.out.println("command is: setup, on, off, status, or close");
System.exit (2) ;

}

if (args[0].equalsIgnoreCase("On") || args[0].equalsIgnoreCase ("Off")) {
System.out.println("Turning the LED " + args[0]);
writeSysfs ("value",args[0] .equalsIgnoreCase ("On")?"1":"0",GPIO4_PATH) ;

180

Part | » Raspberry Pi Basics

The program can be executed using the run script that is in the /chpos/
javaLED/ directory. You can see that the class is placed in the package direc-
tory exploringRPi.

Early versions of Java suffered from poor computational performance. However,
more recent versions take advantage of dynamic translation at runtime (just-in-
time, or JIT, compilation) and, as demonstrated at the start of this chapter, the
performance is approximately 50% slower (including dynamic translation) than
that of the natively compiled C++ code, with only a minor additional memory
overhead. Table 5-3 lists some of the advantages and disadvantages of using
Java for development on the RPi.

Table 5-3: Advantages and Disadvantages of Java on the RPi

ADVANTAGES DISADVANTAGES

Code is portable. Code compiled on Sandboxed applications do not have access to
the PC can be executed on the RPi or system memory, registers or system calls (except
another embedded Linux platform. through /proc) or JNI (Java Native Interface).

There is a vast and extensive library of Executing as root is slightly difficult due to

code available that can be fully inte- required environment variables. This is
grated in your project. pre-configured for the RPi pi user account.
Well-designed OOP support. It is not suitable for scripting.

Can be used for user-interface applica- Computational performance is very respectable,
tion development on the RPi whenitis but slower than optimized C/C++ programs.

attached to a display Slightly heavier on memory.
Strong support for multi-threading. Strictly typed and no unsigned integer types.
Has automatic memory allocation and Royalty payment is required if deployed to a plat-
de-allocation using a garbage collec- form that “involves or controls hardware” (Oracle,
tor, removing memory leak concerns. 2014).

C and C++ on the RPi

C++ was developed by Bjarne Stroustrup at Bell Labs (now AT&T Labs) during
1983-1985. It is based on the C language (named in 1972) that was developed
at AT&T for UNIX systems in the early 1970s (1969-1973) by Dennis Ritchie.
As well as adding an object-oriented (OO) framework (originally called “C with
Classes”), C++ also improves the C language by adding features such as better
type checking. It quickly gained widespread usage, which was largely due to its
similarity to the C programming language syntax, and the fact that it allowed
existing C code to be used when possible. C++ is not a pure OO language but
rather a hybrid, having the organizational structure of OO languages but retain-
ing the efficiencies of C, such as typed variables and pointers.

Chapter 5 » Programming on the Raspberry Pi

181

Unlike Java, C++ is not “owned” by a single company. In 1998 the ISO
(International Organization for Standardization) committee adopted a world-
wide uniform language specification that aimed to remove inconsistencies
between the various C++ compilers (Stroustrup, 1998). This standardization
continues today with C++11 approved by the ISO in 2011 (gcc 4.7+ supports the
flag -std=c++11) and more new features appearing in compilers today with the
approval of C++14 in August 2014.

Why am I covering C and C++ in more detail than other languages in this book?

m First, I believe that if you can understand the workings of C and C++, you
can understand the workings of any language. In fact, most compilers (Java
native methods, Java virtual machine, JavaScript, etc.) and interpreters
(Bash, Lua, Perl, Python, etc.) are written in C.

m At the beginning of this chapter, a significant performance advantage of C/
C++ over other languages was described (yes, it was demonstrated using
only one random test!). It is also important to remember that the same
code running on the RPi 3 at 1.2 GHz was 10 times slower than the same
code running on only one thread (12 total) of an Intel i7-5820K at 3.3 GHz.

m Chapter 16 explains how to develop Linux loadable kernel modules (LKM),
which requires a reasonable grasp of the C programming language. Later
in this chapter, code is provided that demonstrates how you can commu-
nicate directly with Linux kernel space using the GNU C Library (glibc).

m Many of the application examples in this book such as streaming network
data and image processing use C++ and a comprehensive library of C++
code called Qt.

Table 5-4 lists some advantages and disadvantages of using C/C++ on the
RPi. The next section reviews some of the fundamentals of C and C++ pro-
gramming, to ensure that you have the skills necessary for the remaining
chapters in this book. It is not possible to cover every aspect of C and C++
programming in part of one chapter of one book. The Further Reading section
at the end of this chapter directs you to recommended texts.

Table 5-4: Advantages and Disadvantages of C/C++ on the RPi

ADVANTAGES DISADVANTAGES

You can build code directly on the RPior ~ Compiled code is not portable. Code compiled
you can cross-compile code using pro- for your x86 desktop will not run on the RPi
fessional toolchains. Runtime environ- ARM processor.

ments do not need to be installed.

C++ has full support for procedural pro- Many consider the languages to be complex
gramming, OOP, and support for gener- to master. There is a tendency to need to know
ics through the use of STL (Standard everything before you can do anything.
Template Library).

Continues

182

Part | = Raspberry Pi Basics

Table 3-12 (continued)

ADVANTAGES DISADVANTAGES

It gives the best computational perfor- The use of pointers and the low-level control

mance, especially if optimized. However, available makes code prone to memory leaks.

optimization can be difficult and can With careful coding these can be avoided and

reduce the portability of your code. can lead to efficiencies over dynamic memory
management schemes.

Can be used for high-performance By default, C and C++ do not support graphical

user-interface application development user interfaces, network sockets, etc. Third-

on the RPi using third-party libraries. party libraries are required.

Libraries such as Qt and Boost provide
extensive additional libraries for compo-
nents, networking, etc.

Offers low-level access to glibc for inte- Not suitable for scripting (there is a C shell,

grating with the Linux system. Programs csh, that does have syntax like C). You can

can be setuidto root. integrated Lua. Not ideal for web development
either.

The Linux kernel is written in C and hav- C++ attempts to span from low-level to high-

ing knowledge of C/C++ can help if you level programming tasks, but it can be dif-

ever have to write device drivers or con- ficult to write very scalable enterprise or web

tribute to Linux kernel development. applications.

The C/C++ languages are ISO standards,
not owned by a single company.

The next section provides a revision of the core principles that have been
applied to examples on the RPi. It is intended to serve as an overview and a set of
reference examples that you can come back to again and again. It also focuses on
topics that cause my students difficulties, pointing out common mistakes. Also,
remember that course notes for my object-oriented programming module are
publicly available at ee402 . eeng. dcu. ie along with further support materials.

C and C++ Language Overview

The following examples can be edited using the nano editor and compiled on
the RPi directly using the gcc and g++ compilers, which are installed by default.
The code is in the directory chpos/overview.

The first example you should always write in any new language is “Hello
World.” Listing 5-6 and 5-7 provide C and C++ code respectively, for the purpose
of a direct comparison of the two languages.

Listing 5-6: chp05/overview/helloworld.c

#include <stdio.h>

int main(int argc, char *argvl]) {
printf ("Hello World!\n") ;
return 0;

Chapter 5 » Programming on the Raspberry Pi

183

Listing 5-7: chp05/overview/helloworld.cpp

#include<iostream>

int main(int argc, char *argv[]){
std::cout << "Hello World!" << std::endl;
return O0;

The #include call is a pre-processor directive that effectively loads the contents
of the stdio.hfile (/usr/include/stdio.h)in the C case, and the iostream header
(/usr/include/c++/4.X/iostream) file in the C++ case, and copies and pastes the
code in at this exact point in your source code file. These header files contain (or
link to) the function prototypes, enabling the compiler to understand the format
of functions such as printf () in stdio.h and streams like cout in iostream. The
actual implementation of these functions is in shared library dependencies.
The angular brackets (< >) around the include filename means that it is a standard,
rather than a user-defined include (which would use double quotes).

The main () function is the starting point of your application code. There can
only be one function called main () in your application. The int in front of main ()
indicates that the program will return a number back to the shell prompt. As
stated before, it is good to use o for successful completion, 2 for invalid usage,
and any other set of numbers to indicate failure conditions. This value is returned
to the shell prompt using the line return o; in this case. The main () function
will return o by default in C++, and an arbitrary value in C. Remember that
you can use echo $? at the shell prompt to see the last value that was returned.

The parameters of the main () function are int argc and char *argv[].Asyou
saw in the scripting examples, the shell can pass arguments to your application,
providing the number of arguments (argc) and an array of strings (xargv[1).
In C/C++ the first argument passed is argv [0] and it contains the executable
name and full path used to execute the application.

The C code line printf ("Hello World!\n") ; allows you to write to the Linux
shell, with the \n representing a new line. The printf () function provides you
with additional formatting instructions for outputting numbers, strings, etc.
Note that every statement is terminated by a semicolon.

The C++ code line std: :cout << "Hello World!" << std::endl; outputs
a string just like the print£ () function. In this case cout represents the output
stream; and the function used is actually the <<, which is called the output
stream operator. The syntax is discussed later, but std: : cout means the output
stream in the namespace std. The endl (end line) representation is similar to
\n. These programs can be compiled and executed directly on the RPi by typ-
ing the following;:

pieerpi ~/exploringrpi/chp05/overview $ gcc helloworld.c -o helloworldc

pieerpi ~/exploringrpi/chp05/overview $./helloworldc

Hello World!

pieerpi ~/exploringrpi/chp05/overview $ g++ helloworld.cpp -o helloworldcpp

pieerpi ~/exploringrpi/chp05/overview $./helloworldcpp
Hello World!

184

Part | = Raspberry Pi Basics

The sizes of the C and C++ executables are different from account for the
different header files, output functions, and exact compilers that are used:
pieerpi ~/exploringrpi/chp05/overview $ 1ls -1 helloworldc*

-rwxr-xr-x 1 pi pi 5744 Jun 27 23:30 helloworldc
-rwxr-xr-x 1 pi pi 7500 Jun 27 23:30 helloworldcpp

Compiling and Linking

You just saw how to build a C or C++ application, but there are a few
intermediate steps that are not obvious in the preceding example, because
the intermediate stage outputs are not retained by default. Figure 5-2 illustrates the
full build process from preprocessing right through to linking.

You can perform the steps in Figure 5-2 yourself by using the Helloworld
.cpp code example. The steps can be performed explicitly as follows, so that
you can view the output at each stage:

pieerpi ~/tmp $ 1ls -1 helloworld.cpp

-rw-r--r-- 1 pi pi 114 Jun 28 11:56 helloworld.cpp

pieerpi ~/tmp $ g++ -E helloworld.cpp > processed.cpp

pieerpi ~/tmp $ 1ls -1

total 424

-rw-r--r-- 1 pi pi 114 Jun 28 11:56 helloworld.cpp

-rw-r--r-- 1 pi pi 428379 Jun 28 11:57 processed.cpp

pieerpi ~/tmp $ g++ -S processed.cpp -o helloworld.s

pieerpi ~/tmp $ 1ls

helloworld.cpp helloworld.s processed.cpp

pi@erpi ~/tmp $ g++ -c helloworld.s

pieerpi ~/tmp $ 1ls

helloworld.cpp helloworld.o helloworld.s processed.cpp

pi@erpi ~/tmp $ g++ helloworld.o -o helloworld

pie@erpi ~/tmp $ 1ls

helloworld helloworld.cpp helloworld.o helloworld.s processed.cpp

pieerpi ~/tmp $./helloworld

Hello World!

You can see the text file output that results from preprocessing by typing less
processed.cpp, Where the necessary header files are “pasted in” above your
code. At the very bottom of this much larger file you will find your code. This
file is passed to the C/C++ compiler, which validates the code and generates
platform-independent assembler code (. s). You can view this code by typing
less helloworld.s, as illustrated in Figure 5-2.

This . s text file is then passed to the assembler, which converts the platform-
independent instructions into binary instructions for the RPi platform (the .o
file). You can see the assembly language code that is generated if you use the
objdump (object file dump) tool on the RPi by typing objdump -D helloworld.o,
as illustrated in Figure 5-2.

Chapter 5 » Programming on the Raspberry Pi

185

Platform-Independent Source Code (¢, cpp, .h T ——
pi@erpi ~/tmp § less helloworld.s

External Libraries |

|
Header Files (.h) /L_,(

LCO:
aascil "Hello Worldhooo"
text
.align 2
.global main
Stype main, %function
main:
fnstart
LFB1020:

=
|

|

|

|

|

|

|

| |

| o = _ |

Platform-Independent Assembler File (.s) ¥ Lo @aigs=0,pretend =0, frame =8 - 1]
|

|

|

|

|

|

|

g

o

P e e oy

Tempmary Processed Source Code (.c, .cpp)

|
|
|
| o 1
| code |
|

Convert assembly lang. into binary object files pi@erpi ~/tmp $ objdump -D helloworld.o | less

X helloworld.o: file format elf32-littlearm

Building C/C++ Programs

|
| Disassembly of section .text:
|

tibEaras: Platform-Specific Objective Code (.0) 4 00000000 <mainz:
SlaticLibmliest:]_\ ; — — = 0: e92d4800 push {fp,Ir}
Dynamic Linked/ Lil++ Linker 4: e28db004 add fp. sp, #4
Shared Libraries (.so} 8: e24ddoos sub sp, sp, #8
© e50b0008 str 10, [fp, #-8]
_ 10: e50b100c str r1, [fp, #-12]
e_:_‘::,;'dll:b:j :),_5 I (Platform-Specific Binary Executable J e S

SR it AR = = =

_—— - - -

Figure 5-2: Building C/C++ applications on the RPi

Object files contain generalized binary assembly code that does not yet con-
tain sufficient information to be executed on the RPi. However, after linking the
final executable code, helloworld contains the target-specific assembly language
code that has been combined with the libraries, statically and dynamically as
required. You can use the objdump tool again to disassemble the executable,
which results in the following output:

pieerpi ~/tmp $ objdump -d helloworld | more

helloworld: file format elf32-littlearm

Disassembly of section .init:
00010568 <_init>:

10568: e92d4008 push {r3, 1r}
1056c: eb00002f bl 10630 <call weak_ fn>
10570: e8bd8008 pop {r3, pc}...

The first column is the memory address, which steps by 4 bytes (32-bits) between
each instruction (i.e., 1056c — 10568 = 4). The second column is the full 4-byte
instruction at that address. The third and fourth columns are the human-read-
able version of the second column that describes the opcode and operand of
the 4-byte instruction. For example, the first instruction at address 10568 is a
push, which pushes r3, which is one of the ARM processor’s 16, 32-bit registers
(labeled ro0-r1s), followed by 1r (the link register, r14) onto the stack.
Understanding ARM instructions is another book in and of itself (see
infocenter.arm.com). However, it is useful to appreciate that any natively com-
piled code, whether it uses the OOP paradigm or not, results in low-level machine
code, which does not support dynamic typing, OOP, or any such high-level

186

Part | = Raspberry Pi Basics

structures. In fact, whether you use an interpreted or compiled language, the
code must eventually be converted to machine code so that it can execute on
the RPi’s ARM processor.

Writing the Shortest C/C++ Program

Is the Helloworld example the shortest program that can be written in C or
C++? No, Listing 5-8 is the shortest valid C and C++ program.

Listing 5-8: chp05/overview/short.c

main () {}

This is a fully functional C and C++ program that compiles with no errors and
works perfectly, albeit with no output. Therefore, in building a C/C++ program,
there is no need for libraries; there is no need to specify a return type for main (),
because it defaults to int; the main () function returns o by default in C++ and
an arbitrary number in C (see echo $? call below); and an empty function is
a valid function. This program will compile as a C or C++ program as follows:

pi@erpi .../overview $ gcec short.c -o shortc
pi@erpi .../overview $ g++ short.c -o shortcpp
pieerpi .../overview $ 1ls -1 short*
-rwxr-xr-x 1 pi pi 5580 Jun 28 14:08 shortc
-rw-r--r-- 1 pi pi 9 Jun 16 01:56 short.c
-rwxr-xr-x 1 pi pi 5792 Jun 28 14:09 shortcpp
pieerpi .../overview $./shortc

pie@erpi .../overview $ echo $?

232

pi@erpi .../overview $./shortcpp

pieerpi .../overview $ echo $?

0

This is one of the greatest weaknesses of C and C++. There is an assumption
that you know everything about the way the language works before you write
anything. In fact, aspects of the preceding example might be used by a program-
mer to demonstrate how clever they are, but they are actually demonstrating
poor practice in making their code unreadable by less “expert” programmers.
For example, if you rewrite the C++ code in short . cpp to include comments
and explicit statements, to create short2.cpp, and then compile both using the
-03 optimization flag, the output will be as follows:

pi@erpi .../overview $ g++ --version
g++ (Raspbian 4.9.2-10) 4.9.2

pi@erpi .../overview $ more short.cpp
main () {}

pi@erpi .../overview $ more short2.cpp

// A really useless program, but a program nevertheless
int main(int argc, char *argv[]){
return 0;

}

Chapter 5 » Programming on the Raspberry Pi

187

pi@erpi .../overview $ g++ -03 short.cpp -o short 1
pieerpi .../overview $ g++ -03 short2.cpp -o short 2
pieerpi .../overview $ 1ls -1 short *

-rwxr-xr-x 1 pi pi 5776 Jun 28 14:15 short_ 1
-rwxr-xr-x 1 pi pi 5776 Jun 28 14:16 short_2

Note that the executable size is exactly the same! Adding the comment, the
explicit return statement, the explicit return type, and explicit arguments has
had no impact on the size of the final binary application. However, the benefit
is that the actual functionality of the code is much more readily understood by
a novice programmer.

Static and Dynamic Compilation

You can build a program with the flag -static to statically link the libraries,
rather than the default form of linking dynamically with shared libraries. This
means that the compiler and linker effectively place all the library routines
required by your code directly within the program executable:

pieerpi .../overview $ g++ -03 short.cpp -static -o short_static

pieerpi .../overview $ 1ls -1 short static
-rwxr-xr-x 1 pi pi 581804 Jun 28 14:23 short_static

Itis clear that the program executable size has grown significantly. One advantage
of this form is that the program can be executed by ARM systems on which the
C++ standard libraries are not installed; however, unlike dynamic linking, it is
not possible to update the linked library code without recompiling.
With dynamic linking, it is useful to note that you can discover which shared
library dependencies your compiled code is using, by calling 1da:
pi@erpi ~/exploringrpi/chp05/overview $ 1dd shortcpp
/usr/lib/arm-linux-gnueabihf/libcofi rpi.so (0x76efa000)
libstdc++.s80.6 => /usr/lib/arm-linux-gnueabihf/libstdc++.s0.6 (0x76de8000)
libm.so.6 => /lib/arm-linux-gnueabihf/libm.so.6 (0x76d6d000)
libgcc_s.so.l => /lib/arm-linux-gnueabihf/libgcc s.so.1l (0x76d40000)

libc.so.6 => /lib/arm-linux-gnueabihf/libc.so.6 (0x76c03000)
/1lib/1d-1linux-armhf.so.3 (0x76ed8000)

You can see that the g++ compiler (and glibc) on the Raspbian image for
the RPi (all models) has been patched to support the generation of hard
floating-point (gnueabihf) instructions. This allows for faster code execution
with floating-point numbers than if it used the soft floating-point ABI (applica-
tion binary interface) to emulate floating-point support in software (gnueabi).

The gcc/g++ compilers automatically search certain include and library paths.
The include paths are typically /usr/include/, /usr/local/include/, and
/usr/include/target/ (or /usr/target/include/), where target inthe
case of the RPi is typically arm- 1inux-gnueabihf. The library paths are typically
/usr/1lib/, /usr/local/lib/,and /usr/lib/target/ (or /usr/target/
1lib/).Useg++ -v,orc++ -vformoreinformation,including yourtarget name.

188

Part | = Raspberry Pi Basics

Variables and Operators in C/C++

A variable is a data item stored in a block of memory that has been reserved for
it. The type of the variable defines the amount of memory reserved and how
it should behave (see Figure 5-3). This figure describes the output of the code
example sizeofvariables.c in Listing 5-9.

variable name---... Memory Space value .

Po g o _ b __ a

08 |09 0a Ob|Oc od|oe|[of a0 |11 12]13]14][15 16 17

03|04 05 06 07

|

Tg‘ 9| longint ‘ int |.» float double
Jel2] @2bits) | (B2bits) L (B2bits) | ... (64 bits)
“..0x7edc1602 variable type-"': ::r"nemory used (1 byte = 8 bits)

Figure 5-3: Memory allocation for variables on the 32-bit RPi

Listing 5-9 details various variables available in C/C++ When you create a
local variable c below, it is allocated a box/block of memory on the stack (prede-
termined reserved fast memory) depending on its type. In this case, cis an int
value; therefore, four bytes (32 bits) of memory are allocated to store the value.
Assume that variables in C/C++ are initialized with random values; therefore,
in this case ¢ = 545; replaces that initial random value by placing the number
545 in the box. It does not matter if you store the number 0 or 2,147,483,647in
this box; it will still occupy 32 bits of memory! Note that there is no guarantee
regarding the ordering of local variable memory—it was fortuitously linear in
this particular example.

Listing 5-9: chp05/overview/sizeofvariables.c

#include<stdio.h>
#include<stdbool.h> // required for the C bool typedef

int main() {
double a = 3.14159;
float b = 25.0;

int ¢ = 545; // note: variables are not = 0 by default!
long int d = 123;

char e = 'A';

bool f = true; // no need for definition in C++

printf ("a val %.4f & size %d bytes (@addr %p).\n", a, sizeof (a),é&a);
printf ("b val %4.2f & size %d bytes (@addr %p).\n", b, sizeof (b),&b);
printf("c val %d (oct %o, hex %x) & " \

"size %d bytes (@addr %p).\n", ¢, c, ¢, sizeof(c), &c);
printf("d val %d & size %d bytes (@addr %p).\n", d, sizeof(d), &d);
printf("e val %c & size %d bytes (@addr %p).\n", e, sizeof(e), &e);
printf ("f val %5d & size %d bytes (@addr %p).\n", £, sizeof (f), &f);

Chapter 5 » Programming on the Raspberry Pi

189

The sizeof (c) operator returns the size of the type of the variable in bytes.
In this example, it returns 4 for the size of the int type. The &c call can be read
as the “address of” c. This provides the address of the first byte that stores the
variable c, in this case returning ox7edc1608. The %.4f on the first line means
display the floating-point number to four decimal places. Executing this program
on the RPi gives the following output:

pieerpi
value
value
value
value
value

Hh 0 Q Q0 O o

value

~/exploringrpi/chp05/overview $./sizeofvariables
3.1416 and size 8 bytes (@addr 0x7edcl610).
25.00 and size 4 bytes (@addr 0x7edclé60c) .
545 (oct 1041, hex 221) and size 4 bytes (@addr 0x7edclé608) .
123 and size 4 bytes (@addr 0x7edcl604) .
A and size 1 bytes (@addr 0x7edcl603).
1 and size 1 bytes (@addr 0x7edclé602).

On the RPi with a 32-bit Linux image, you typically use four bytes to repre-
sent the int type. The smallest unit of memory that you can allocate is 1 byte;
S0, yes, you are representing a Boolean value with 1 byte, which could actually
store eight unique Boolean values. You can operate directly on variables using
operators. The program operators.c in Listing 5-10 contains some points that
often cause difficulty in C/C++.

Listing 5-10: chp05/overview/operators.c

#include<stdio.h>

int main () {
int a=1, b=2, c,
float £=9.9999;
c = ++a;
printf ("The value
d = b++;
printf ("The value
e = (int) £;
printf ("The value
g = "'A";
printf ("The value

return O;

d, e, g;

of c=%d and a=%d.\n", c, a);

of d=%d and b=%d.\n", 4, b);

of f=%.2f and e=%d.\n", £, e);

of g=%d and g=%c.\n", g, 9);

This code will give the following output:

pieerpi ~/exploringrpi/chp05/overview $./operators

The value of c=2 and a=2.
The value of d=2 and b=3.
The value of £=10.00 and e=9.
The value of g=65 and g=A.

On theline c=++a;, the value of a is pre-incremented before the equals assign-
ment to c on the left side. Therefore, a is increased to 2 before assigning the
value to ¢, so this line is equivalent to two statements: a=a+1; c=a; However,
on the line d=b++; the value of b is post-incremented and is equivalent to two

190

Part | = Raspberry Pi Basics

statements: d=b; b=b+1; The value of 4 is assigned the value of b, which is 2,
before the value of b is incremented to 3.

On the line e= (int) £; a C-style cast is being used to convert a floating-point
number into an integer value. Effectively, when programmers use a cast they are
notifying the compiler that they are aware that there will be a loss of precision
in the conversion of a floating-point number to an int (and that the compiler
will introduce conversion code). The fractional part is truncated, so 9.9999 is
converted to e=9, because the. 9999 is removed by the truncation. It is worth
noting that printf ("%.2£", £) displays the floating-point variable to two decimal
places, in contrast, rounding the value.

On theline g='2", gis assigned the ASCII equivalent value of capital A, which
is 65. The printf ("%d %c",g, g); will display either the int value of g if 34 is
used, or the ASCII character value of g if 3¢ is used.

A const keyword can be used to prevent a variable from being changed.
There is also a volatile keyword that is useful for notifying the compiler that
a particular variable might be changed outside its control, and that the compiler
should not apply any type of optimization to that value. This notification is
useful on the RPi if the variable in question is shared with another process or
physical input/output.

It is possible to define your own type in C/C++ using the typedef keyword.
For example, if you did not want to include the header file stdbool.h in the
sizeofvariables.c previous example, it would be possible to define it in this
way instead:

typedef char bool;

#define true 1
#define false 0

Probably the most common and most misunderstood mistake in C/C++
programming is present in the following code segment:

if (x=y){ // perform a statement Z }

When will the body statement z be performed? The answer is whenever y
is not equal to 0 (the current value of x is irrelevant!). The mistake is placing
a single = (assignment) instead of == (comparison) in the if condition. The
assignment operator returns the value on the right side of the operator, which
is automatically converted to true if y is not equal to o. If y is equal to zero, a
false value is returned. Java does not allow this error, because it has no implicit
conversion between o0 and false, and 1 and true.

Pointers in C/C++

A pointer is a special type of variable that stores the address of another variable
in memory—we say that the pointer is “pointing at” that variable. Listing 5-11

Chapter 5 » Programming on the Raspberry Pi

is a code example that demonstrates how you can create a pointer p and make
it point at the variable y.

Listing 5-11: chp05/overview/pointers.c

#include<stdio.h>

int main() {
int y = 1000;
int *p;
p = &y;
printf ("The variable has value %d and the address %p.\n", vy, &y);
printf ("The pointer stores %$p and points at value %d.\n", p, *p);
printf ("The pointer has address %$p and size %d.\n", &p, sizeof(p));

return 0;

When this code is compiled and executed, it gives the following output:

pieerpi ~/exploringrpi/chp05/overview $./pointers

The variable has value 1000 and the address 0x7e8a0634.
The pointer stores 0x7e8a0634 and points at value 1000.
The pointer has address 0x7e8a0630 and size 4.

So, what is happening in this example? Figure 5-4 illustrates the memory
locations and the steps involved. In Step 1, the variable y is created and assigned
the initial value of 1000. A pointer p is then created with the dereference type
of int. In essence, this means that the pointer p is being established to point at
int values. In Step 2, the statement p = &y; means “let p equal to the address
of y,” which sets the value of p to be the 32-bit address 0x7e8a0634. We now
say that p is pointing at y. These two steps could have been combined using the
call int *p = &y; (ie, create a pointer p of dereference type int and assign it
to store the address of y).

1000
OxTedal&ld
OxTedale3C

Step 1 Step 2
int y = 1000; address of y P = &y:
int *p; 7

~[30[31 323334353637 [
i . 0x7eBa0630 . Ao oa
int int int *oink
(T w e type &y

-T30 |3 33[34 35

0x7e8a0630

Figure 5-4: Example of pointers in C/C++ on the RPi

Why does a pointer need a dereference type? For one example, if a pointer
needs to move to the next element in an array, it needs to know whether it
should move by 4 bytes, 8 bytes, etc. Also, in C++ you need to be able to know
how to deal with the data at the pointer based on its type. Listing 5-12 is another

192

Part | = Raspberry Pi Basics

example of working with pointers that explains how a simple error of intention
can cause serious problems.

Listing 5-12: chp05/overview/pointers2.c

#include<stdio.h>

int main() {
int y = 1000, z;
int *p = &y;
printf ("The pointer p has the value %d and stores addr: %p\n", *p, p);
// Let z = 1000 + 5 and the increment p and y to 1001 -- wrong!!!
Z = *p++ + 5;
printf ("The pointer p has the value %d and stores addr: $p\n", *p, p);
printf ("The variable z has the value %d\n", z);

return 0;

This code gives the following output:

pi@erpi ~/exploringrpi/chp05/overview $./pointers2

The pointer p has the value 1000 and stores addr: 0x7eeb5861lc
The pointer p has the value 1005 and stores addr: 0x7ee58620
The variable z has the value 1005

In this example, the pointer p is of dereference type int, and it is set to point
at the address of y. At this point in the code, the output is as expected, because
p has the “value of” 1000 and the “address of” 0x7ee5861c. On the next line,
the intention may have been to increase (post-increment) the value of y by 1 to
1001 and assign z a value of 1005 (i.e., before the post-increment takes place).
However, perhaps contrary to your intention, p now has the “value of” 1005
and the “address of” 0x7ee58620.

Why has this occurred? Part of the difficulty of using pointers in C/C++ is
understanding the order of operations in C/C++, called the precedence of the
operations. For example, if you write the statement

int x =1 + 2 * 3;

what will the value of x be? In this case it will be 7, because in C/C++ the mul-
tiplication operator has a higher level of precedence than the addition operator.
Similarly, the problem in Listing 5-12 is your possible intention of using *p++
to increment the “value of” p by 1.

In C/C++ the post-increment operator (p++) has precedence over the derefer-
ence operator (*p). This means that *p++ actually post-increments the “address
of” the pointer p by one int (i.e., 4 bytes), not the dereferenced value *p (as 1000
in this example). Most worrying is the second output line, because it is clear
that p is now “pointing at” z, which just happens to be at the next address—it
could actually refer to an address outside the program’s memory allocation.
Such errors of intention are very difficult to debug without using the debug-
ging tools that are described in Chapter 7. To fix the code to suit your intention,

Chapter 5 » Programming on the Raspberry Pi

193

simply use (*p) ++, which makes it clear that it is the “value of” p that should be
post-incremented by 1, resulting in p having the “value of” 1001 and z having
the value 100s.

There are approximately 58 operators in C++, with 18 different major prece-
dence levels. Even if you know the precedence table, you should still make it
clear for other users what you intend in a statement by using round brackets
(0)), which effectively groups and overrides operator precedence. Therefore, you
should always write the following even if you know that the round brackets
are not required:

int x = 1 + (2 * 3);
Finally, on the topic of C pointers, there is also a void pointer that can be
declared as void *p;, which effectively states that the pointer p does not have

a dereference type and it will have to be assigned at a later stage (see /chpo5/
overview/void.c) using the following syntax:

int a = 5;
void *p = &a;
printf ("p points at address %p and value %d\n", p, *((int *)p));

When executed, this code gives an output like the following;:
The pointer p points at address Oxbea546c8 and value 5

Therefore, it is possible to cast a pointer from one deference type to another and
the void pointer can potentially be used to store a pointer of any dereference
type. In Chapter 6 void pointers are used to develop an enhanced GPIO interface.

C-Style Strings

The C language has no built-in string type but rather uses an array of the char-
acter type, terminated by the null character (\0), to represent a string. There is
a standard C library for strings that can be used as shown in Listing 5-13:

Listing 5-13: chp05/overview/cstrings.c

#include<stdio.h>
#include<string.h>
#include<stdlib.h>

int main() {

char a[20] = "hello ";

char b[] = {'w','o','r', "1, 'd"',"1','\0"}; // the \0 is important
al0]="H'; // set the first character to be H

char *c = strcat(a,b); // join/concatenate a and b

printf ("The string ¢ is: %$s\n", c);
printf ("The length of ¢ is: %d\n", strlen(c)); // call string length

194

Part | = Raspberry Pi Basics

// find and replace the w with a W

char *p = strchr(c,'w'); // returns pointer to first 'w' char
*po= "W

printf ("The string c is now: %s\n", c);

if (strcmp("cat", "dog")<=0){ // ==0 would be equal
printf ("cat comes before dog (lexiographically)\n");
}
//insert "to the" into middle of "Hello World!" string - very messy!
char *d = " to the";
char *cd = malloc(strlen(c) + strlen(d));
memcpy (cd, c, 5);
memcpy (cd+5, d, strlen(d));
memcpy (cd+5+strlen(d), c+5, 6);
printf ("The cd string is: %s\n", cd);

//tokenize cd string using spaces
p = strtok(cd," ");
while (p!=NULL) {

printf ("Token:%s\n", p);

p = strtok (NULL, " ");

}

return 0;

The code is explained by the comments within the example. When executed,
this code gives the following output:

pieerpi ~/exploringrpi/chp05/overview $./cstrings
The string c is: Hello world!

The length of c is: 12

The string c is now: Hello World!

cat comes before dog (lexiographically)

The cd string is: Hello to the World

Token:Hello

Token:to

Token:the

Token:World

LED Control in C

Now that you have covered enough C programming to get by, you can look at
how to write the external LED control application in C. In Listing 5-14 the same
structure as the other examples is retained:

Listing 5-14: chp05/makeLED/makeLED.c

#include<stdio.h>
#include<stdlib.h>
#include<string.h>

#define GPIO_NUMBER "4"
#define GPIO4_ PATH "/sys/class/gpio/gpio4/"

Chapter 5 » Programming on the Raspberry Pi 195

#define GPIO_SYSFS "/sys/class/gpio/"

void writeGPIO(char filename[], char valuel]) {
FILE* fp; // create a file pointer fp
fp = fopen(filename, "w+"); // open file for write/update
fprintf (fp, "%s", value); // send the value to the file
fclose (fp) ; // close the file using fp

}

int main(int argc, char* argv([]) {
if (arge!=2){ // program name is argument 1

printf ("Usage is makeLEDC and one of:\n");

printf (" setup, on, off, status, or close\n");

printf (" e.g. makeLEDC on\n") ;

return 2; // invalid number of arguments
}
printf ("Starting the makeLED program\n") ;
if (strcmp (argv([1], "setup")==0) {

printf ("Setting up the LED on the GPIO\n");

writeGPIO (GPIO_SYSFS "export", GPIO_NUMBER) ;

usleep (100000) ; // sleep for 100ms
writeGPIO(GPIO4_PATH "direction", "out");

}

else if (strcmp(argv[l],"close")==0) {

printf ("Closing the LED on the GPIO\n") ;
writeGPIO (GPIO_SYSFS "unexport", GPIO_NUMBER) ;

}

else if (strcmp(argv[1l],"on")==0) {
printf ("Turning the LED on\n") ;
WriteGPIO(GPIO4_PATH "value", "1");
}
else if (strcmp(argv([1l],"off")==0)
printf ("Turning the LED off\n");
WriteGPIO(GPIO4_PATH "value", "0");
}
else if (strcmp(argv[l],"status")==0) {
FILE* fp; // see writeGPIO function above for description

char 1line[80], fullFilename[100];
sprintf (fullFilename, GPIO4 PATH "/value");
fp = fopen(fullFilename, "rt"); // reading text this time
while (fgets(line, 80, fp) != NULL){
printf ("The state of the LED is %s", line);
}
fclose (fp) ;
}
else(
printf ("Invalid command!\n") ;

}

printf ("Finished the makeLED Program\n") ;

return 0;

}

Build this program by calling the . /build script in the /chp05/makeLED/
directory, and execute it using . /makeLEDC setup, ./makeLEDC on, etc.

196

Part | = Raspberry Pi Basics

The only topic that you have not seen before is the use of files in C,
but the worked example should provide you with the information you need in
the writeLED () function. The FILE pointer £p points to a description of the
file that identifies the stream, the read/write position, and its state. The file is
opened using the fopen () function that is defined in stdio.h, which returns a
FILE pointer. In this case it is being opened for write/update (w+). The alterna-
tives would be as follows: read (r), write (w), append (a), read/update (r+), and
append/update (a+). If you are working with binary files, you append a b to the
state; for example, “w+b” opens a new binary file for update (write and read).
Also, “t” can be used to explicitly state that the file is in text format.

For a full reference of C functions available in the standard libraries, see www

.cplusplus.com/reference/.

The C of C++

As discussed previously, the C++ language was built on the C language, add-
ing support for OOP classes. However, a few other differences are immediately
apparent when you start working with general C++ programming. Initially, the
biggest change that you will notice is the use of input/output streams and
the general use of strings.

First Example and Strings in C++
Listing 5-15 is the string example, rewritten to use the C++ string library.

Listing 5-15: chp05/overview/cppstrings.cpp

#include<iostream>
#include<sstreams> // to tokenize the string
//#include<cstring> // how to include the C++ equivalent of a C header

using namespace std;

int main()
string a = "hello ";
char temp[] = {'w','o','xr','1','d","1','\0'}; //the \0 is important!

string b (temp) ;

alo]l="H';

string ¢ = a + b;

cout << "The string c is: " << ¢ << endl;

cout << "The length of ¢ is: " << c.length() << endl;
int loc = c.find first of ('w');

c.replace(loc,1,1,'W'");

cout << "The string c is now: " << ¢ << endl;

if (string("cat")< string("dog")) {
cout << "cat comes before dog (lexiographically)\n";

http://www.cplusplus.com/reference/
http://www.cplusplus.com/reference/

Chapter 5 » Programming on the Raspberry Pi

197

}

c.insert (5," to the");

cout << "The c string is now: " << ¢ << endl;

// tokenize string using spaces - could use Boost.Tokenizer
// or C++11 to improve syntax. Using stringstream this time.
stringstream ss;

ss << ¢; // put the ¢ string on the stringstream

string token;

while (getline(ss, token, ' ')){
cout << "Token: " << token << endl;
return O;

Build this code by typing g++ cppstrings.cpp -o cppstrings. When executed,
this code gives the same output as the cstrings.c example. Some aspects are
more straightforward in C++ but there are some points worth mentioning,.

The code uses the iostream and sstream header files, which are C++ headers.
There is a concept called namespaces in C++ that enables a programmer to limit a
function or class to a particular scope. In C++, all the standard library functions
and classes are limited to the standard namespace (std). You can explicitly identify
that you want to use a class from the std namespace by using std: :string.
However, that is quite verbose. The alternative is to use the statement using
namespace std;, which brings the entire namespace into your code. Do not do
this in one of your C++ header files, because it will pollute the namespace for
anyone who uses your header file.

The code uses cout, which is the standard output stream, and the output
stream operator (<<) to display strings. There is an equivalent standard input
stream (cin) and the input stream operator (>>). The output stream operator “looks
to” its right and identifies the type of the data. It will display the data depending
on its type, so there is no need for s, %4, %p, and so on, because you would use in
the printf () function. The endl stream manipulation function inserts a newline
character and flushes the stream.

The string objects are manipulated in this example using + to append two
strings, and < or == to compare two strings. These operators are essentially func-
tions like append () and strcmp (). In C++, you can define what these operators
do for your own data types (operator overloading).

Passing by Value, Pointer, and Reference

As you have seen with the code samples, functions enable us to write a section
of code that can be called several times, from different locations in our code.
There are three key ways of passing a value to a function:

m Pass by value: This will create a new variable (val in the following code
example) and will store a copy of the value of the source variable (a) in this
new variable. Any changes to the variable val will not have any impact

198

Part | = Raspberry Pi Basics

on the source variable a. Pass by value can be used if you want to prevent
the original data from being modified. However, a copy of the data has to
be made, and if you are passing a large array of data, such as an image,
copying will have a memory and computational cost. An alternative to
pass by value is to pass by constant reference. In the following example, a
is also passed as the second argument to the function by constant reference
and is received as the value cr. The value cr can be read in the function,
but it cannot be modified.

m Pass by pointer: You can pass a pointer to the source data. Any modifica-
tions to the value at the pointer (ptr) will affect the source data. The call
to the function must pass an address (sb—the address of b).

m Pass by reference: In C++ you can pass a value by reference. The func-
tion determines whether an argument is to be passed by value or passed
by reference, through the use of the ampersand symbol. In the following
example, sref indicates that the value c is to be passed by reference. Any
modifications to ref in the function will affect the value of c.

Here is a function with all four examples (passing.cpp):

int afunction(int val, const int &cr, int *ptr, int &ref)
val+=cr;

// cr+=val; // not allowed because it is constant
*ptr+=10;
ref+=10;
return val;

}

int main()
int a=100, b=200, c¢=300;
int ret;
ret = afunction(a, a, &b, c);

cout << "The value of a = " << a << endl;

cout << "The value of b = " << b << endl;

cout << "The value of ¢ = " << ¢ << endl;

cout << "The return value is = " << ret << endl;
return 0;

}
When executed, this code results in the following output:

pi@erpi ~/exploringrpi/chp05/overview $./passing
The value of a = 100
The value of b = 210
The value of c = 310

The return value is = 200

If you want to pass a value to a function that is to be modified by that func-
tion in C++, you can pass it by pointer or by reference. However, unless you are
passing a value that could be NULL, or you need to reassign the pointer in the
function (e.g., iterate over an array), always use pass by reference. Now you are
ready to write the LED code in C++!

Chapter 5 » Programming on the Raspberry Pi

199

Flashing the LEDs Using C++ (non-00)

The C++ LED flashing code is available in makeLED. cpp in the /chp05/makeLED/
directory. As most of the code is very similar to the C example, it is not repeated
here. However, it is worth displaying the following segment, which is used to
open the file using the £stream file stream class. The output stream operator
(<<) in this case sends the string to £stream, where the c¢_str () method returns
a C++ stringasa C string:
void writeLED (string filename, string value) {

fstream fs;

string path (LED3_PATH) ;

fs.open((path + filename).c str(), fstream::out);

fs << value;
fs.close();

Overview of Object-Oriented Programming

The following discussion highlights a few core concepts that you have to under-
stand before you can write object-oriented code. The discussion uses pseudo
code as the concepts are relevant to all languages that support the OOP para-
digm—including C++, Python, Lua tables, C#, Java, JavaScript, Perl, Ruby, the
OOHaskell library, etc.

Classes and Objects

Think about the concept of a television: You do not have to remove the case to
use it, because there are controls on the front and on the remote; you can still
understand the television, even if it is connected to a games console; it is com-
plete when you purchase it, with well-defined external requirements, such as
power supply and signal inputs; and your television should not crash! In many
ways that description captures the properties that should be present in a class.

A class is a description. It should describe a well-defined interface to your code;
represent a clear concept; be complete and well documented; and be robust, with
built-in error checking. Class descriptions are built using two building blocks:

m States (or data): The state values of the class.
m Methods (or behavior): How the class interacts with its data. Method
names usually include an action verb (e.g., setx ()).
For example, here is pseudo-code (i.e., not real C++ code but with similar syntax)
for an illustrative Television class:
class Television({

int channelNumber;
bool on;

200

Part | = Raspberry Pi Basics

powerOn() { on = true; }
powerOff () { on = false;}
changeChannel (int x) { channelNumber = x; }

}i

Therefore, the example Television class has two states and three methods.
The benefit of this structure is that you have tightly bound the states and meth-
ods together within a class structure. The poweron () method means nothing
outside this class. In fact, you can write a poweron () method in many different
classes without worrying about naming collisions.

An object is the realization of the class description—an instance of a class. To
continue the analogy, the Television class is the blueprint that describes how
you would build a television, and a Television object is the physical realiza-
tion of those plans into a physical television. In pseudo-code this realization
might look like this:

void main() {
Television dereksTV() ;
Television johnsTV () ;
dereksTV.powerOn () ;
dereksTV.changeChannel (52) ;
johnsTV.powerOn () ;
johnsTV.changeChannel (1) ;

}

Therefore, dereksTv and johnsTV are instances of the Television class. Each
has its own independent state, so changing the channel on dereksTv has no
impact on johnsTv. To call a method, it must be prefixed by the object name on
which it is to be called (e.g., johnsTV.powerOn ()). Calling the changeChannel ()
method on johnsTV objects does not have any impact on the dereksTv object.

In this book, a class name generally begins with a capital letter, e.g., Television,
and an object generally begins with a lowercase letter, e.g., dereksTv. This is
consistent with the notation used in many languages, such as Java. Unfortunately,
the C++ standard library classes (e.g., string, sstream) do not follow this nam-
ing convention.

Encapsulation

Encapsulation is used to hide the mechanics of an object. In the physical tele-
vision analogy, encapsulation is provided by the box that protects the inner
electronic systems. However, you still have the remote control that will have a
direct impact on the way the inner workings function.

In OOP, you can decide what workings are to be hidden (e.g., TV electron-
ics) using an access specifier keyword called private, and what is to be part of
the interface (TV remote control) using the access specifier keyword public. It is
good practice to always set the states of your class to be private, so that you can
control how they are modified by public interface methods of your own design.
For example, the pseudo-code might become the following:

Chapter 5 » Programming on the Raspberry Pi

201

class Television{
private:
int channelNumber;
bool on;
remodulate tuner();
public:
powerOn() { on = true; }
powerOff () { on = false;}
changeChannel (int x) {
channelNumber = x;
remodulate tuner () ;

}

}i

Now the Television class has private state data (on, channelNumber) that
is affected only by the public interface methods (poweron (), poweroff (),
changeChannel ()) and a private implementation method remodulate_tuner ()
that cannot be called from outside the class.

There are a number of advantages of this approach: First, users of this class
(another programmer) need not understand the inner workings of the Television
class; they just need to understand the public interface. Second, the author of
the Television class can modify and/or perfect the inner workings of the class
without affecting other programmers’ code.

Inheritance

Inheritance is a feature of OOP that enables building class descriptions from
other class descriptions. Humans do this all the time; for example, if you were
asked, “What is a duck?” you might respond with, “It’s a bird that swims,
and it has a bill instead of a beak.” This description is reasonably accurate,
but it assumes that the concept of a bird is also understood. Importantly, the
description states that the duck has the additional behavior of swimming, but
also that it has the replacement behavior of having a bill instead of a beak. You
could loosely code this with pseudo-code as follows:
class Bird{
public:

void fly();
void describe() { cout << "Has a beak and can fly"; }

}i

class Duck: public Bird{ // Duck IS-A Bird
Bill bill;
public:
void swim() ;
void describe() { cout << "Has a bill and can fly and swim"; }

}i
In this case, you can create an object of the Duck class:

int main() {
Duck d; // creates the Duck instance object d

202

Part | = Raspberry Pi Basics

d.swim() ; // specific to the Duck class
d.fly () ; // inherited from the parent Bird class
d.describe(); // describe() is inheritated and over-ridden in Duck

// so, "Has a bill and can fly and swim" would appear

}

The example here illustrates why inheritance is so important. You can build
code by inheriting from, and adding to, a class description (e.g,, swim()), or inher-
iting from a parent class and replacing a behavior (e.g., describe ()) to provide
a more specific implementation; this is called overriding a method, which is a
type of polymorphism (multiple forms). Another form of polymorphism is called
overloading, which means multiple methods can have the same name, in the
same class, disambiguated by the compiler by having different parameter types.

You can check that you have an inheritance relationship by the is-a test; for
example, a “duck is a bird” is valid, but a “bird is a duck” would be invalid
because not all birds are ducks. This contrasts to the is-a-part-of relationship;
for example, a “bill is a part of a duck.” An is-a-part-of relationship indicates
that the bill is a member/state of the class. Using this simple check can be very
useful when the class relationships become complex.

You can also use pointers with objects of a class; for example, to dynamically
allocate memory for two Duck objects in C++, you can use the following:

int main () {
Duck *a = new Duck() ;

Bird *b = new Duck(); // ptr of parent can point to a child object
b->describe () ; // will actually describe a duck (if virtual)
//b->swim() ; // not allowed! Bird does not 'know' swim()

}

Interestingly, the Bird pointer b is permitted to point at a buck object. As the
Duck class is a child of a Bird class, all the methods that the Bird pointer can
call are “known” by the puck object. Therefore the describe () method can be
called. The arrow notation (b->describe ()) is simply a neater way of writing
(*b) .describe () in C++ In this case, the Bird pointer b has the static type Bird
and the dynamic type Duck.

One last point is that an additional access specifier called protected can be
used through inheritance in C++. If you want to create a method or state in the
parent class that you want to be available to the child class but you do not want
to make public, use the protected access specifier.

I have notes publicly available at ee402 . eeng.dcu. ie on these topics. In
particular, Chapters 3 and 4 describe this topic in much greater detail, including mate-
rial on abstract classes, destructors, multiple inheritance, friend functions, the stan-
dard template library (STL).

Chapter 5 » Programming on the Raspberry Pi

203

Object-Oriented LED Control in C++

These OOP concepts can now be applied to a real C++ application on the RPi by
restructuring the functionally-oriented C++ code into a class called LED, which
consists of states and methods. This code is slightly more verbose. However,
the main difference is that the code presented in Listing 5-16 can simultane-
ously control many GPIOs using multiple objects of the one LED class. To that
end, the example assumes that the circuit in Figure 5-1 for GP1O4 (Pin 7) is also
replicated for GPIO17 (Pin 11).

Listing 5-16: chp05/makeLEDOOP/makeLEDs.cpp

#include<iostream>

#include<fstream>

#include<string>

#include<unistd.h> // for the microsecond sleep function
using namespace std;

#define GPIO "/sys/class/gpio/"

#define FLASH DELAY 50000 // 50 milliseconds

class LED{

private: // the following is part of the implementation
string gpioPath; // private states
int gpioNumber;

void writeSysfs(string path, string filename, string value);
public: // part of the public interface

LED (int gpioNumber); // the constructor -- create the object

virtual void turnOn() ;

virtual void turnOff () ;

virtual void displayState() ;

virtual ~LED() ; // the destructor -- called automatically

}i

LED: :LED (int gpioNumber){ // constructor implementation
this->gpioNumber = gpioNumber;

gpioPath = string(GPIO "gpio") + to_ string(gpioNumber) + string("/");

writeSysfs (string (GPIO), "export", to_ string(gpioNumber)) ;
usleep (100000) ; // ensure GPIO is exported
writeSysfs (gpioPath, "direction", "out");

// This implementation function is "hidden" from outside the class
void LED::writeSysfs(string path, string filename, string value) {
ofstream fs;
fs.open((path+filename) .c_str());

fs << value;

204 Partl = Raspberry PiBasics

fs.close() ;

void LED::turnOn () {
writeSysfs (gpioPath, "value", "1");

void LED::turnOff () {
writeSysfs (gpioPath, "value", "O0");

void LED::displayState () {
ifstream fs;
fs.open((gpioPath + "value").c_str());
string line;
cout << "The current LED state is ";
while (getline(fs,line)) cout << line << endl;
fs.close();

LED::~LED(){ // The destructor unexports the sysfs GPIO entries
cout << "Destroying the LED with GPIO number " << gpioNumber << endl;
writeSysfs (string (GPIO), "unexport", to string(gpioNumber)) ;

int main(int argc, char* argv[]){ // the main function start point

cout << "Starting the makeLEDs program" << endl;

LED ledl(4), led2(17); // create two LED objects

cout << "Flashing the LEDs for 5 seconds" << endl;

for (int i=0; i<50; i++){ // LEDs will alternate
ledl.turnoOn() ; // turn GPIO4 on
led2.turnOff () ; // turn GPIO17 off
usleep (FLASH_DELAY) ; // sleep for 50ms
ledl.turnOff () ; // turn GPIO4 off
led2.turnOn() ; // turn GPIO17 on
usleep (FLASH_DELAY) ; // sleep for 50ms

1

ledl.displayState() ; // display final GPIO4 state

led2.displayState() ; // display final GPIO1l7 state

cout << "Finished the makeLEDs program" << endl;

return 0;

This code uses the to_string () function that was introduced in C++11, and
therefore the program can be built using the -std=c++11 flag and executed by

typing the following;:
pi@erpi .../makeLEDOOP $ g++ makeLEDs.cpp -o makeLEDs -std=c++11l
pi@erpi .../makeLEDOOP ¢ ./makeLEDs

Starting the makeLEDs program
Flashing the LEDs for 5 seconds

Chapter 5 » Programming on the Raspberry Pi

205

The current LED state is 0

The current LED state is 1

Finished the makeLEDs program
Destroying the LED with GPIO number 17
Destroying the LED with GPIO number 4

This code results in the LEDs attached to GPIO4 and GPIO17 flashing with
alternate state for 5 seconds.

This code is structured as a single LED class with private states for the GPIO
path and number, and a private implementation method writesysfs (). The
states and helper method are not accessible outside the class. The public interface
methods are turnon (), turnoff (), and displayState (). There are two more
public methods:

m The first is a constructor, which enables you to initialize the state of the
object. It is called by LED led(4) to create the object 1ed of the LED class
with GPIO number 4. This is similar to the way that you assign initial
values to an int, e.g., int x=5;. A constructor must have the exact same
name as the class name (LED in this case) and it cannot return anything,
not even void.

m The last is a destructor (~LED ()). Like a constructor, it must have the exact
same name as the class name and is prefixed by the tilde (~) character. This
method is called automatically when the object is being destroyed. You can
see this happening in the code output as an output message is provided.

You can think of the keyword virtual as “allowing overriding to take place
when an object is dynamically bound.” It should always be there (except for
the constructor), unless you know that there will definitely be no child class.
Removing the virtual keyword will result in a slight improvement in the
performance of your code.

The syntax void LED: : turnon () {. ..} is simply used to state that the turnon ()
method is the one associated with the LED class. It is possible to have many
classes in the one . cpp file, and it would be possible for two classes to have a
turnon () method; therefore, the explicit association allows you to inform the
compiler of the correct relationship. I have written this code in a single file,
because it is the first example. However, you will see in later examples that it is
correct practice to break your code into header files (.h or . hpp) and implementa-
tion files (. cpp), because it allows for separate compilation, which greatly reduces
the recompilation times for large-scale C++ projects.

Hopefully the layout of the C++ version of the LED control code is clear at
this point. The advantage of this OOP version is that you now have a structure
that can be built upon when you want to provide additional functionality. In
Chapter 8, you see how you can build similar structures to wrap electronic
modules such as accelerometers and temperature sensors, and how to use the
encapsulation property of OOP to hide some of the more complex calculations
from programmers that interface to the code.

206

Part | » Raspberry Pi Basics

Interfacing to the Linux OS

In Chapter 3, the Linux directory structure is discussed, and one of the directories
discussed is the /proc directory—the process information virtual file system.
It provides you with information about the runtime state of the kernel and it
enables you to send control information to the kernel. In effect, it provides you
with a file-based interface from user space to kernel space. There is a Linux ker-
nel guide to the /proc file system at tiny.cc/erpiso4. For example, if you type

pieerpi /proc $ cat cpuinfo

processor : 0

model name : ARMv7 Processor rev 5 (v71)

BogoMIPS : 64.00

Features : half thumb fastmult vfp edsp neon vfpv3 tls vfpv4
idiva idivt vfpd32 lpae evtstrm ...

Hardware : BCM2709

Revision : a0l041

Serial : 00000000ec729act

it provides you with information on the CPU. Try some of the following: cat
uptime, cat interrupts, cat version in the same directory. The example,
chp05/proc/readUptime.cpp, provides an example program to read the system
uptime and calculate the percentage of system idle time.

Many /proc entries can be read by programs that execute with regular user
accounts, however many entries can only be written to by a program with
superuser privileges. For example, entries in /proc/sys/kernel enable you to
configure the parameters of a Linux kernel as it is executing,.

You have to be careful with the consistency of the files in /proc. The Linux
kernel provides for atomic operations—instructions that execute without inter-
ruption. Certain “files” within /proc (such as /proc/uptime) are totally atomic
and cannot be interrupted while they are being read. However, other files such
as /proc/net/tcp are only atomic within each row of the file, meaning that the
file will change as it is being read, and therefore simply reading the file may
not provide a consistent snapshot.

Glibc and Syscall

The Linux GNU C library, glibc, provides an extensive set of wrapper functions
for system calls. It includes functionality for handling files, signals, mathematics,
processes, users, and much more. See tiny.cc/erpisos for a full description
of the GNU C library.

It is much more straightforward to call a glibc function than it is to
parse the equivalent /proc entries. Listing 5-17 provides a C++ example that
uses the glibc passwd structure to find out information about the current user.

Chapter 5 » Programming on the Raspberry Pi

207

It also uses the syscall () function directly to determine the user’s ID and to
change the access permissions of a file—see the comments in the listing.

Listing 5-17: /exploringrpi/chp05/syscall/glibcTest.cpp

#include<gnu/libc-version.h>
#include<sys/syscall.h>
#include<sys/types.h>
#include<pwd.h>
#include<cstdlibs>
#include<sys/stat.h>
#include<iostream>
#include<signal.h>
#include<unistd.h>

using namespace std;

int main(){
// Use helper functions to get system information:
cout << "The GNU libc version is: " << gnu_get_libc_version() << endl;

// Use glibc passwd struct to get user information - no error check!:
struct passwd *pass = getpwuid(getuid()) ;

cout << "The current user's login is: " << pass->pw name << endl;
cout << "-> their full name is: " << pass->pw_gecos << endl;
cout << "-> their user ID is: " << pass->pw_uid << endl;

// You can use the getenv () function to get environment variables

cout << "The user's shell is: " << getenv ("SHELL") << endl;

cout << "The user's path is: " << getenv("PATH") << endl;

// An example syscall to call a get the user ID -- see sys/syscall.h
int uid = syscall (0xc7) ;

cout << "Syscall gives their user ID as: " << uid << endl;

// Call chmod directly -- type "man 2 chmod" for more information

int ret = chmod("test.txt", 0666);

// Can use syscall to do the same thing

ret = syscall(SYS chmod, "test.txt", 0666) ;
return 0;

}

This code can tested as follows, where you can see that the file permissions
are altered by the program and the current user’s information is displayed:

pieerpi .../chp05/syscall $ 1s -1 test.txt

-rw-r--r-- 1 pi pi 0 Jun 16 01:56 test.txt

pi@erpi .../chp05/syscall $ sudo usermod -c "Exploring RPi" pi
pi@erpi .../chp05/syscall $ g++ glibcTest.cpp -o glibcTest
pi@erpi .../chp05/syscall $./glibcTest

The GNU libc version is: 2.19

The current user's login is: pi

208

Part | = Raspberry Pi Basics

-> their full name is: Exploring RPi

-> their user ID is: 1000

The user's shell is: /bin/bash

The user's path is: /usr/local/sbin:/usr/local/bin:/usr/sbin...
Syscall gives their user ID as: 1000

pi@erpi .../chp05/syscall $ 1ls -1 test.txt
-rw-rw-rw- 1 pi pi 0 Jun 16 01:56 test.txt
pi@erpi .../chp05/syscall $ chmod 644 test.txt

There are many glibc functions, but the syscall () function requires special
attention. It performs a generalized system call using the arguments that you
pass to the function. The first argument is a system call number, as defined in
sys/syscall.h’ You will have to follow through the header includes files to find
the definitions. Alternatively, you can use syscalls.kernelgrok.com to search
for definitions (e.g., search for sys_getuid and you will see that the register eax
= 0xc7, as used in Listing 5-17). Clearly it is better if you use sys_getuid instead.

Improving the Performance of Python

Despite the popularity of Python on the RPi platform, it is clear from Table 5-1
that if you are to use it for certain embedded applications you may need enhanced
performance. This section describes two alternative approaches for addressing
the performance issue by investigating Cython, and an alternative approach of
extending Python with C/C++ code.

Regardless of the approach taken, the first step is to set up your RPi so that
you build a C/C++ module. You do this by installing the Python development
package for the exact version of Python that you are using. Adapt the instruc-
tions in this section to use the library versions that you identify using the fol-
lowing steps:

pieerpi ~ $ sudo apt install python-dev

pi@erpi ~ $ python --version

Python 2.7.9

pi@erpi ~ $ sudo apt install python3-dev

pi@erpi ~ $ python3 --version

Python 3.4.2

pi@erpi ~ $ 1ls /usr/lib/arm-linux-gnueabihf/libpython*.so

/usr/lib/arm-linux-gnueabihf/libpython2.7.so

/usr/lib/arm-linux-gnueabihf/libpython3.4m.so

Cython

Cython is an optimizing compiler for Python and a language that extends Python
with C-style functionality. Typically, the Cython compiler uses your Python code

9 This location is typically found underneath the path /usr/include/arm-1linux-gnue-
abihf/ and links to other header files such as asm/unistd.hand bits/syscall.h.

Chapter 5 » Programming on the Raspberry Pi

209

to generate efficient C shared libraries, which you can then import into other
Python programs. However, to get the maximum benefit from Cython you must
adapt your Python code to use Cython-specific syntax. The top-performing
Cython entry in Table 5.1 (i.e., at 2.74x) is available in chpo5/performance/
cython_opt/nbody . pyx). If you inspect the code you will see the use of cdef
C variable declarations and various variable types (e.g., double, int), which
indicates the removal of dynamic typing from the base Python version (chpos/
performance/n-body.py).

A concise example is developed here to describe the first steps involved in
adapting Python code to create Cython code. The code proves the relationship

Ioﬂ sin(x)dx = 2 by applying a simple numeric integration approach, as provided
in Listing 5-18.

Listing 5-18: /chp05/cython/test.py

from math import sin
def integrate_sin(a,b,N):
dx = (b-a)/N
sum = 0
for i in range(0,N) :
sum += sin(a+i*dx)
return sum*dx

The code in Listing 5-18 can be executed directly within the Python interpreter
as follows (use exec (open ("test.py") .read()) under Python3):

pieerpi ~/exploringrpi/chp05/cython $ python
>>> from math import pi

>>> execfile('test.py')

>>> integrate sin(0,pi,1000)
1.9999983550656624

>>> integrate sin(0,pi,1000000)
1.9999999999984077

And a timer can be introduced to evaluate its performance:

>>> import timeit

>>> print(timeit.timeit("integrate sin(0,3.14159,1000000)",setup="£fr -
om main import integrate sin", number=10))

30.0536530018

>>> quit ()

The timeit module allows you to determine the execution duration of a func-
tion call. In this example, the RPi 2 takes 30.0 seconds to evaluate the function
10 times, with N equal to 1,000,000.

It is possible to get a report on computationally costly dynamic Python behav-
ior within your source code using;:

pieerpi ~/exploringrpi/chp05/cython $ sudo apt install cython

pie@erpi ~/exploringrpi/chp05/cython $ cython -a test.py

pieerpi ~/exploringrpi/chp05/cython $ 1ls -1 *.html

-rw-r--r-- 1 pi pi 31421 Jun 30 02:49 test.html

210 Partl = Raspberry Pi Basics

You can transfer this file to your desktop machine for viewing. The darker the
shade of yellow on a line in the HTML report, the greater the level of dynamic
behavior that is taking place on that line.

If you have both Python2 and Python3 installed you may need to install
Cython for Python3 as follows (this appears to hang, but leave it run as it can take lon-
ger than 20 minutes to install):

pi@erpi ~ $ sudo apt install python3-pip
pieerpi ~ $ sudo pip3 install cython

Cython supports static type definitions, which greatly improves the perfor-
mance of the code. The code can be adapted to test.pyx in Listing 5-19 where
the types of the variables and return types are explicitly defined.

Listing 5-19: /chp05/cython/test.pyx

cdef extern from "math.h":

double sin(double x)

cpdef double integrate_sin(double a, double b, int N):
cdef double dx, s
cdef int 1
dx = (b-a)/N
sum = 0
for i in range(0,N):
sum += sin(a+i*dx)
return sum*dx

An additional configuration file setup.py is required, as provided in
Listing 5-20, so that Cython can compile the module correctly.

Listing 5-20: /chp05/cython/setup.py

from distutils.core import setup
from distutils.extension import Extension
from Cython.Distutils import build ext

ext_modules = [Extension("test", ["test.pyx"])]
setup (
name = 'random number sum application',
cmdclass = {'build ext' : build ext },

ext_modules = ext_modules
)

Python can use the setup.py configuration file to directly build the test.pyx
file into C code (test.c), which is then compiled and linked to create a shared
library (cest.so). The library code can be executed directly within Python as
follows, where the execution duration is 6.42 seconds—a fivefold improvement
in performance:

pieerpi .../chp05/cython $ python setup.py build ext --inplace
running build ext... cythoning test.pyx to test.c

Chapter 5 » Programming on the Raspberry Pi

211

pieerpi ~/exploringrpi/chp05/cython $ 1ls

build setup.py test.c test.html test.py test.pyx test.so

pie@erpi ~/exploringrpi/chp05/cython $ python

Python 2.7.9 (default, Mar 8 2015, 00:52:26)

>>> import timeit

>>> print(timeit.timeit("test.integrate_sin(0,3.14159,1000000)", setup="imp
ort test",number=10))

6.41986918449

It is also worth mentioning that Cython can be used to build a Python program
into a standalone executable. Once an execution starting point is added to the
Cython file (the equivalent of main ()) then the following steps can be used to
compile the Cython code into a native binary executable:

pieerpi .../chp05/cython exe $ tail -n 3 test.pyx
if _ name_ == '_main_ ':
integral = integrate_sin(0, 3.14159, 1000000)
print ("The integral of sin(x) in the range 0..PI is: ", integral)
pieerpi .../chp05/cython exe $ cython --embed test.pyx
pieerpi .../chp05/cython exe $ gcc test.c -I/usr/include/python3.4/

-lpython3.4m -o test -lutil -1dl -lpthread -1lm
pi@erpi ~/exploringrpi/chp05/cython exe $./test
('The integral of sin(x) in the range 0..PI is: ', 1.9999999999906055)

Cython goes a long way to addressing performance concerns that you may
have in using Python. However, there is a significant learning curve in adapt-
ing Python code for efficiency, which has only been touched upon here. An
alternative approach is to write custom C/C++ code modules that add to the
capability of Python, rather than using Cython at all.

Extending Python with C/C++

It is possible to call compiled C/C++ code directly from within Python programs.
This capability enables you to enhance the performance of Python programs
using C/C++ code modules that can be called just like regular Python functions.

The Python/C API

This workflow for the Python/C APl is reasonably straightforward and is best
explained with worked examples. There are examples available for Python2 and
Python3 in the /chpo5/python2_c/ and /chpo5/python3_c/ directories, because
there were significant changes on module development in the move to Python3.

The difficult step is to develop a C/C++ module that is structured so that it is
compatible with Python. Listing 5-21 provides a template example for Python3
that you can use to develop your own modules. It consists of two simple functions
hello() and integrate (). The hello () function expects a string argument, for
example Derek, which it displays in the form Hello Derek!. The integrate ()
function has the same form as the integrate_sin() function in Listing 5-19.
The Python2 example has identical functionality but slightly different syntax.

212 Partl = Raspberry Pi Basics

Listing 5-21: chp05/python3_C/ERPiModule.cpp

#include <Python.hs>
#include <math.h>

/** A hello() function that can be called from Python3:
* @param self A pointer to the calling PyObject
* @param args the arguments passed from the Python code
* @return All objects types extend PyObject -- return a ptr */
static PyObject* hello (PyObject* self, PyObject* args) {
const char* name;
if (!PyArg ParseTuple(args, "s", &name)) {
printf ("Failed to parse the string name!\n");
Py RETURN_NONE;
}
printf ("Hello %s!\n", name) ;
Py RETURN NONE;

/** integrate() function to integrate sin(x) over a range a..b*/
static PyObject* integrate (PyObject* self, PyObject* args) {
double a, b, dx, sum=0;
int N;
// expecting two doubles and an int from Python
if (!PyArg_ParseTuple(args, "ddi", &a, &b, &N)) {
printf ("Failed to parse the arguments!\n");
Py RETURN_NONE;
}
dx = (b-a)/N;
for (int i=0; i<N; i++)
sum += sin((a+i) *dx) ;
}

return Py Buildvalue("d", sum*dx); // send PyObject back to Python

/** An array of structures, where each structure has four fields:
* ml _name (char ¥*) the name of the function

* ml_meth PyCFunction) a pointer to the C function above

(
* ml_flags (int) flag bits - state how call is constructed
* ml_doc (char *) describes the function
* hello() and integrate() functions exposed in this example. */
static PyMethodDef ERPiMethods[] = {

{"hello", hello, METH_VARARGS, "Displays Hello Derek!"},
{"integrate", integrate, METH_VARARGS, "Integrates the sin(x) fn."},
{NULL, NULL, 0, NULL} // must end with a null structure

}i

/** A structure that defines the module structure */
static struct PyModuleDef moduledef = {

PyModuleDef HEAD_INIT, // m_base -- always the same
"ERPiModule", // m_name -- module name

"Module for Exploring RPi", // m_doc -- Docstring for the module
-1, // m_size -- has global state

ERPiMethods, // m_methods -- module-level functions

Chapter 5 » Programming on the Raspberry Pi 213

NULL, // m_reload -- currently unused

NULL, // m_traverse -- function to call GC traversal
NULL, // m_clear -- function to call during GC clearing
NULL, // m_free -- function to call during deallocation

}i

/** Initialization function for the module */
PyMODINIT FUNC PyInit ERPiModule (void) {
return PyModule Create (&moduledef) ;

}

The C/C++ code in Listing 5-21 can be built to a shared object file using the
following call (the build command is on one line):

pi@erpi ~/exploringrpi/chp05/python3 C $ g++ -03 ERPiModule.cpp -shared
-I/usr/include/python3.4/ -lpython3.4m -o ERPiModule.so

pieerpi ~/exploringrpi/chp05/python3 C $ 1s -1 *.so

-rwxr-xr-x 1 pi pi 7168 Jun 29 00:00 ERPiModule.so

Once the shared module is in place it can be imported by a Python pro-
gram and the two functions hello () and integrate () can be invoked
directly. Listing 5-22 provides an example Python3 program that calls the two
functions and displays the result of the integrate () call.

Listing 5-22: chp05/python3_C/test.py

#!/usr/bin/python3

import ERPiModule

print ("*** Start of the Python program")

print ("--> Calling the C hello() function passing Derek")
ERPiModule.hello ("Derek")

print ("--> Calling the C integrate() function")

val = ERPiModule.integrate (0, 3.14159, 1000000)

print ("*** The result is: ", wval)

print ("*** End of the Python program")

The Python script in Listing 5-22 can be executed as follows:

pi@erpi ~/exploringrpi/chp05/python3 C $./test.py
*** Start of the Python program

--> Calling the C hello() function passing Derek
Hello Derek!

--> Calling the C integrate() function

**%* The result is: 1.9999999999906055

*** End of the Python program

Finally, the performance of the code is impressive, taking 3.23 seconds for
the C/C++ integration test under both Python2 and Python3:

pieerpi ~/exploringrpi/chp05/python3 C $ python3

>>> import timeit

>>> print(timeit.timeit ("ERPiModule.integrate(0,3.14159,1000000)", setup="imp
ort ERPiModule",number=10))

3.2270326350117102

214 Part | = Raspberry Pi Basics

Boost.Python

An alternative approach to extending Python with C/C++ is to use a wrapper
that binds C/C++ and Python called Boost.Python, which essentially wraps the
Python/C APL In addition, it simplifies the syntax and provides support for calls
to C++ objects. You can search for the latest release and install Boost.Python on
your RPi using the following steps (~270 MB):

pi@eerpi ~ $ apt-cache search libboost-python

libboost-pythonl.54-dev - Boost.Python Library development files
pi@erpi ~ $ sudo apt install libboost-pythonl.54-dev

A C++ program can be developed, as in Listing 5-23, that uses the Boost.
Python library and its special BOOST_PYTHON_MODULE (name) macro that declares
the Python module initialization functions—essentially replacing the verbose
syntax that is present in Listing 5-21.

Listing 5-23: /chp05/boostPython/erpi.cpp

#include<string>

#include<boost/python.hpp> // .hpp convention for c++ headers

using namespace std; // just like cpp for source files

namespace exploringrpi{ // keep the global namespace clean
string hello(string name) { // e.g., returns "Hello Derek!"

return ("Hello " + name + "!");

double integrate(double a, double b, int n) { // same as before
double sum=0, dx = (b-a)/n;
for (int i=0; i<n; i++){ sum += sin((a+i)*dx); }

return sum*dx;

}
BOOST PYTHON MODULE (erpi) { // the module is called erpi
using namespace boost::python; // require the boost.python namespace
using namespace exploringrpi; // bring in custom namespace
def ("hello", hello); // make hello() visible to Python
def ("integrate", integrate); // make integrate() also visible

}

The code can be built into a shared library as before. Make sure to include
the boost_python library in the build options:

pi@erpi ~/exploringrpi/chp05/boostPython $ g++ -03 erpi.cpp -shared -I/usr/ -»
include/python2.7/ -lpython2.7 -lboost python -o erpi.so

pieerpi ~/exploringrpi/chp05/boostPython $ 1ls -1 *.so

-rwxr-xr-x 1 pi pi 27400 Jul 18 18:38 erpi.so

Chapter 5 » Programming on the Raspberry Pi 215

The library can then be used by a Python script, such as that in Listing 5-24.

Listing 5-24: /chp05/boostPython/test.py

#!/usr/bin/python
A Python program that calls C program code
import erpi

print "Start of the Python program"
print erpi.hello("Derek")

val = erpi.integrate(0, 3.14159, 1000000)
print "The integral result is: ", val
print "End of the Python program"

The script in Listing 5-24 can be executed, resulting in the following output:

pie@erpi ~/exploringrpi/chp05/boostPython $./test.py
Start of the Python program

Hello Derek!

The integral result is: 1.99999999999

End of the Python program

In addition, the timeit test results in ~3.225 s, which is consistent with
the Python/C API performance. Despite its large footprint, Boost.Python
is the recommended approach for integrating C/C++ and Python code due to its
performance, simplified syntax, and support for C++ classes. Therefore, Boost.
Python is used again in later chapters. See tiny.cc/erpi5soe for further details.

Summary

After completing this chapter, you should be able to do the following:

m Describe the multitude of issues that would impact on your choice of
programming languages to use in building physical-computing applica-
tions for the RPi.

m Write basic scripting language program code on the RPi that interfaces
to an LED, which is attached to an RPi GPIO.

m Compare and contrast scripting, hybrid, and compiled programming
languages, and their application to the RPi.

m Write C code examples that interface to the RPi’s GPIOs.

m Describe the principles of OOP programming, and write C++ classes that
provide program structure for physical-computing applications.

m Write C/C++ code that can interface directly to the Linux OS.
m Write C/C++ modules that can be called directly from Python.

216

Part | = Raspberry Pi Basics

Further Reading

Most of the sections in this chapter contain links to the relevant websites for
further reading and reference materials. Here is a list of some books on pro-
gramming that are relevant to the materials in this chapter:

m Bjarne Stroustrup, The C++ Programming Language, 4th ed., Addison-Wesley
Professional, 2013, 978-0-321-56384-2.

m Scott Meyers, Effective Modern C++, O'Reilly Media, 2014, 978-1-4919-0399-5.

m Bill Lubanovic, Introducing Python: Modern Computing in Simple Packages,
O'Reilly Media, 2014, 978-1-4493-5936-2.

m Michael Kerrisk, The Linux Programming Interface, No Starch Press, 2010,
978-1-59327-220-3.

m Derek Molloy, “EE402: Object-Oriented Programming Module Notes,”

ee402.eeng.dcu.ie.

Bibliography

m debian.org (2013, December 1). The Computer Language Benchmarks
Game. Retrieved March 7, 2014, from Debian.org: benchmarksgame.
alioth.debian.org

= Hundt, R. (2011). Loop Recognition in C++/Java/Go/Scala. Proceedings
of Scala Days 2011. Mountain View, CA.: www.scala-lang.org.

m QOracle (2014, March 10). Java SE Embedded FAQ. Retrieved March 10,
2014, from Oracle.Com: www.oracle.com/technetwork/java/embedded/

resources/se-embeddocs/
m Stroustrup, B. (1998, October 14). International standard for the C++

programming language published. Retrieved March 18, 2014, from
stroustrup.com: www.stroustrup.com/iso_pressrelease2.html

http://www.scala-lang.org
http://www.oracle.com/technetwork/java/embedded
http://www.stroustrup.com/iso_pressrelease2.htm
http://www.oracle.com/technetwork/java/embedded/resources/se-embeddocs/

Interfacing, Controlling,

| C ot

In This Part

Chapter 6: Interfacing to the Raspberry Pi Inputs/Outputs

Chapter 7: Cross-Compilation and the Eclipse IDE

Chapter 8: Interfacing to the Raspberry Pi Buses

Chapter 9: Enhancing the Input/Output Interfaces on the Raspberry Pi
Chapter 10: Interacting with the Physical Environment

Chapter 11: Real-Time Interfacing Using the Arduino

Interfacing to the Raspberry Pi
Input/Outputs

This chapter integrates the Linux, programming, and electronics groundwork
from earlier chapters to show you how to build circuits and write programs that
interface to the Raspberry Pi’s single-wire inputs and outputs. In this chapter,
you will see practical examples that explain how to use general-purpose input/
outputs (GPIOs) to interface to different types of electronic circuits. GPIO inter-
facing is first performed using sysfs to ensure that you have skills that are trans-
ferrable to other embedded Linux devices. Next, memory-mapped approaches
are investigated that have impressive performance, but are largely specific
to the RPi platform. Finally, the wiringPi library of C functions is discussed
in detail. It uses sysfs and memory-mapped approaches to provide a custom
GPIO interfacing library for the RPi platform that is very accessible. Examples
are provided of how it can be used to communicate with one-wire sensors, to
generate pulse-width modulated (PWM) signals, and to generate high-frequency
timing signals. Finally, there is a brief discussion on the impact of udev rules
and Linux permissions on GPIO interfacing.

219

220

Part Il = Interfacing, Controlling, and Communicating

Equipment Required for This Chapter:

m Raspberry Pi (ideally an RPi2/3 for the multicore examples)
m Components from Chapter 4 (e.g., button, LED, optocoupler)
= An Aosong AM230x humidity and temperature sensor

m A generic servo motor (e.g., Hitec HS-422)

Further details on this chapter are available at www. exploringrpi.com/chapters/.

Introduction

At this point in the book, you have seen how to administer a Linux system,
write high-level programming code, and build basic, but realistic, electronic
interfacing circuits. It is now time to bring those different concepts together so
that you can build software applications that run on Linux to control, or take
input from, electronics circuits of your own design.

It is possible to interface electronic circuits and modules to the RPi in several
different ways. For example:

m Using the GPIOs on the RPi’s GPIO header: This provides you with
versatility in terms of the type of circuits that you can connect and is the
subject of this chapter.

m Using the buses (e.g., I°C, SPI) or UART on the GPIO header: Bus con-
nections enable communications to complex modules such as sensors and
displays. This topic is the subject of Chapter 8.

m Connecting USB modules (e.g., keyboards, Wi-Fi): If Linux drivers are
available, many different electronic device types can be connected to the
RPi. Examples are provided in later chapters.

m Communicating through Ethernet/Wi-Fi/Bluetooth to electronics
modules: It is possible to build network-attached sensors that commu-
nicate to the RPi using network connections. Chapter 12 first introduces,
and Chapter 13 then focuses on, this topic.

The next step in working with the RPi is to connect it to circuits using the
GPIO expansion header. The background material of earlier chapters is very
important, because this is a surprisingly complex topic that will take some time
to get used to, particularly the memory-mapped I/O discussion. However, code
and example circuits are provided throughout this chapter that you can use to
help you build your own interfacing circuits.

Figure 6-1 provides you with a first view of the functionality of the inputs
and outputs on the GPIO header. Many of these pins are multiplexed, meaning

http://www.exploringrpi.com/chapter6

Chapter 6 = Interfacing to the Raspberry Pi Input/Outputs

221

they have more functions (or ALT modes) than what is displayed in the figure.
This figure illustrates the most commonly used functionality.

s

Figure 6-1: The RPi GPIO header (RPi2/3)

pull-down
pull-down
pull-down

pull-down

| pwmo
|

pull-down

pull-down

3
5 6
T 8 pull-down TXDO
9 10 pull-down RXDO
1 12 pull-down PWMO
13 14
15 16 pull-down
17 18 pull-down
19 20
21 22 pull-doewn
3 24 pull-up
25 26 pull-up
27 28 pull-up
29 30
31 32 pull-dewn
33 34
35 36
37 38
40
1

General-Purpose Input/Outputs

This chapter describes how you can interface to the RPi’s GPIO header pins in
the following ways:

m Digital output: How you can use a GPIO to turn an electrical circuit on

or off. The example uses an LED, but the principles hold true for any
circuit type; for example, you could even use a relay to turn on/off high-
powered devices. Circuits are provided to ensure that you do not draw
too much current from a GPIO. Code examples are developed to make
software interfacing straightforward and efficient.

Digital input: How you can read in a digital output from an electrical
circuit into a software application running under Linux. Circuits are
provided to ensure that this is performed safely.

Analog output: How you can use PWM to output a proportional signal
that can be used as an analog voltage level or as a control signal for certain
types of devices, such as servo motors.

Analog input: The RPi does not have a dedicated analog-to-digital con-
verter (ADC). However, this capability can be added using low-cost bus
devices, as described in Chapter 9.

222

Part Il = Interfacing, Controlling, and Communicating

This chapter assumes that you have read Chapter 4—in particular, switching
circuits using FETs/BJTs and the use of pull-up/down resistors.

m Be especially careful when working with the GPIO header, because
incorrect connections can, and will, destroy your board. Test all new circuits to ensure
that their voltage and current levels are within range before connecting them to the
GPIO header. Also, follow the advice on interfacing circuits using FETs and optocou-
plers, as described in this chapter. Chapter 8 provides additional advice on interfacing
to circuits that use different logic voltage levels.

GPIO Digital Output

The example output configuration illustrated in Figure 6-2(a) uses a GPIO con-
nected to a FET to switch a circuit. As described in Chapter 4, when a voltage is
applied to the gate input of a FET, it will close the virtual drain-source “switch,”
enabling current to flow from the 5V supply through the 220 current limit-
ing resistor, to GND through a lighting LED. This circuit is different from that
in Figure 5-1(a), because a 5V source is used in place of a 3.3V source so as to
illustrate the switching capability of this circuit configuration. Figure 6-2(b)
illustrates an equivalent BJT circuit. Note that both circuits use a larger current
limiting resistor (220 () versus 120 () to protect the LED.

The advantage of these types of circuit is that they can be applied to many
on/off digital output applications, because the BS270 FET datasheet indicates
that it can drive a constant current of up to 400 mA (and a pulsed current of up
to 2 A) across the drain-source at up to 60 V. However, at a gate voltage of 3.3V,
the BS270 can only switch a maximum drain current of approximately 130 mA.
The high input impedance of the gate means that you can use two (or indeed
more) BS270s in parallel to double the maximum current to approximately
260mA at the same gate voltage. Similarly, the BC547 can drive a collector
current (I-) up to 100mA at a collector-emitter voltage (V) of less than 45V
(the total power dissipated, P ~ V- X I-, must also be less than 500mW—i.e., if
Vep =10V then I < 50mA).

The maximum current is also limited if you are sourcing the supply current
from the RPi GPIO header. The 3.3V header pins (1 and 17) can together supply
a maximum of ~50mA. The 5V header pins (2 and 4) can together safely sup-
ply approximately 200mA-300mA. For greater currents, you need an external
supply, but you have to be especially careful that your circuit does not apply
power to the GPIO pins while the RPi is powered down.

RPi GPIOs are 3.3V tolerant and you should only source and sink approxi-
mately 2mA-3mA from or to each pin. Each pin is capable of sourcing/sinking
slightly larger currents if GPIO utilization is sparse, but it is best to avoid such
a dependency. In Figure 6-2, it is safe to use the 5V supply to drive the LED,
because the drain-source circuit of the FET is never connected to the gate input.
You will also notice that, unlike the example in Chapter 4, there is no resistor

Chapter 6 = Interfacing to the Raspberry Pi Input/Outputs

223

on the gate of the FET. It is not necessary in this particular case, because an
internal pull-down resistor is enabled within the RPi by default on this pin. This
is discussed shortly.

"— - (1¥l YBs270

@ LED BS270 b) LED BC547
2 a5
. H' TR e
7y G
i GND

| o
LI

Figure 6-2: A5V LED circuit (a) using a FET, and (b) using a BJT

Once the circuit is built and attached to the RPi, you can boot the board and
control the LED using a Linux terminal and sysfs as described in Chapter 5.
Figure 6-3 displays the actual voltages and currents that are exhibited by the
two circuits. You can see that there is a negligible level of current sourced from
GPIO17 by the FET circuit in Figure 6-3(a), and the gate voltage is dropped
across the gate-source pins of the FET. In Figure 6-3(b) the 2.2 k() resistor drives
a small current into the base of the transistor, I, = (3.3V - 0.77V) / 2.2k(), that
switches on the transistor, thus lighting the LED. The 1.15mA current is well
within tolerance for an RPi GPIO.

(@ (b)

+ 278V - +206V- +004v- BS270 + 285V - +198V- +005V- BC547
<171 [1¥] & 1z26amA | M1~ N AT 1aimA |
1264mA° | BSon] J 330V 1295mA" 77V
5 + 253V

488V 330v| =0pA [GND assv| 330v] - ——Ji.15mal GND

Figure 6-3: The voltage and current characteristics of the circuits in Figure 6-2 (a) using a FET,
and (b) using a BJT

224

Part Il = Interfacing, Controlling, and Communicating

To test the performance of this approach, a short bash shell script to toggle
the LED as quickly as possible is provided in Listing 6-1. This does not result in
a visible “blink,” because the LED is flashing faster than a human can observe;
however, toggling can be visualized using an oscilloscope.

Listing 6-1: /chp06/flash_script/flash.sh

#!/bin/bash
Short script to toggle a GPIO pin at the highest frequency possible
echo 17 > /sys/class/gpio/export

sleep 0.5

echo "out" > /sys/class/gpio/gpiol7/direction
COUNTER=0

while [$COUNTER -1t 100000]; do

echo 1 > /sys/class/gpio/gpiol7/value
let COUNTER=COUNTER+1
echo 0 > /sys/class/gpio/gpiol7/value
done
echo 17 > /sys/class/gpio/unexport

You can see from the oscilloscope trace in Figure 6-4 that the output is cycling
every 0.36 ms approximately, equating to a frequency of approximately 2.78 kHz,
which is not very high for an embedded controller. The period is reasonably
constant, which is largely due to the fact that this Linux kernel utilizes kernel
preemption options—as discussed later in this chapter. In addition, the top com-
mand (executed in another Linux terminal window) indicates that the CPU load
for this script is consuming 100% of a single core (on the RPi2/3 execute top and
press 1 to see the individual core utilization). You can also see that the current
driving the LED is 12mA-13mA, which is large enough to damage the RPi if
this current were simultaneously sourced from, or sinked to, several GPIOs.

A C++ class is presented in the next section that can be used to control a
GPIO using sysfs and it achieves higher switching frequencies, but with similar
CPU loads. If you require a high-frequency periodic switching signal, PWM or
general-purpose clocks, which are discussed later in this chapter, can be used.
PWM can achieve frequencies of 1 MHz or higher, without a significant CPU
load. However, many applications require the activation of a switched circuit
at low frequencies (e.g., controlling motors, smart home control), and in such
cases this configuration is perfectly valid.

W x

Window | ¢ ZoomTime [y{AddXY [uHistogram [~]EFT [E]Data [b, Measure g Cursor

Zoom & R || Measurements RS
DIV: M:260us C1:1V &Y |fdkadd & F &
i —— 1) S S " S Ch Name Value
3v
C1 |Frequency Min 276785 kHz
C1 | Frequency Max 27941 kHz
2v C1 |Period Avg 359.43us
C1|Pos Duy Avg 4817%
Neg Duty Avg 5183%

C1 |Overshoot 174%

C1 |High 329V
C1|Low 2my

C1 Rise Time Avg, 875ns (8 slope)

ov

s
5
s
s
3
s |c1
5
s
s
3
s

[X[.7ms 15ms 1.26ms -Tms -0.75ms -05ms -0.2%5ms Oms 025ms 05ms 0.75ms 1ms 1.25ms C1 | Fall Time Avg 880ns (9slope)

Figure 6-4: Scope display of the GPIO output caused by the flash.sh script

Chapter 6 = Interfacing to the Raspberry Pi Input/Outputs

225

GPIO Digital Input

The next application is to use a GPIO as a digital input, which enables software
written on the RPi to read the state of a pushbutton or any other logic high/
low input. This task is first performed using a Linux terminal, and then it is
performed using C/C++ code. The LED circuit should be left connected when
building this input circuit because both circuits are reused throughout this
chapter.

The circuit shown in Figure 6-5(a) consists of a normally open pushbutton
(SPST) that is connected to the RPi Pin 13 (GPIO27). You will notice that, having
discussed the need for pull-up or pull-down resistors on pushbutton switches
in Chapter 4, none are present in this circuit. This is not accidental, because
Pin 13 on the GPIO header is connected by default to GND using an internal
pull-down resistor. This is discussed shortly. Use the following steps to read
the state of the button (i.e,, either 0 or 1) using a Linux terminal:

pieerpi /sys/class/gpio $ echo 27 > export

pieerpi /sys/class/gpio $ cd gpio27

pieerpi /sys/class/gpio/gpio27 $ 1s

active_low device direction edge subsystem uevent value

pieerpi /sys/class/gpio/gpio27 $ echo in > direction

pieerpi /sys/class/gpio/gpio27 $ cat direction

in

pieerpi /sys/class/gpio/gpio27 $ cat value

0

pieerpi /sys/class/gpio/gpio27 $ cat value
1

Therefore, the value is 1 when the button is pressed and o when it is released.
GPIO27 sinks approximately 64 nA when the button is pressed. Each time you
type cat value, you are polling the input to check the value. The downside of
this approach is that you will not identify a change in the value of the input
unless you constantly poll the value state.

(@) |1 2 (b)
1 -j

normally open (NO)
push button switch

]

internal pull-down I‘. internal pull-up
resistoronpin 13 resistor on pin 7
GPI027 low by default GPIO4 high by default

Figure 6-5: Connecting a pushbutton to the RPi (a) internal pull-down resistor, and (b) internal
pull-up resistor

226

Part Il = Interfacing, Controlling, and Communicating

Interestingly, if you connect nothing to GPIO4, which is Pin 7, and enter the
same sequence of commands, you get a different output:

pieerpi /sys/class/gpio $ echo 4 > export

pieerpi /sys/class/gpio $ cd gpio4/

pieerpi /sys/class/gpio/gpio4 $ cat direction

out

pieerpi /sys/class/gpio/gpio4 $ echo in > direction

pieerpi /sys/class/gpio/gpio4 $ cat value

1

pieerpi /sys/class/gpio/gpio4 $ cat value

0

With nothing connected to this input, it registers a value of 1. That is because
this input is connected via an internal pull-up resistor to the 3.3V line. Figure 6-5(b)
illustrates the correct button wiring configuration for such a GPIO. Note that
this GPIO input has the opposite polarity to the circuit in Figure 6-5(a); GPIO4
is low when the button is pressed, whereas GPIO27 is high when the button is
pressed. It should be clear at this stage that you need to understand the GPIO
configuration, including these internal resistors, to use the GPIO pins properly.

Internal Pull-Up and Pull-Down Resistors

The importance of pull-up and pull-down resistors is discussed in some detail
in Chapter 4. They ensure that open switches do not allow a GPIO input to float.
Such external resistors are typically “strong” pull-up/down resistors in that they
“strongly” tie the input to a high/low value using relatively low resistance val-
ues (e.g., 5k0-10kQ). The RPi has “weak” internal pull-up and internal pull-down
resistors that can be configured using memory-based GPIO control techniques
that are described later in this chapter.

You can physically check whether an internal pull-up or pull-down resistor
is enabled on a pin by connecting a 100k() resistor between the pin and GND
(as shown in Figure 6-6(a), where the shaded area represents functionality that
is internal to the RPi’s SoC), and then between the pin and the 3.3V supply (as
shown in Figure 6-6(b)). If you connect a 100k(} (the one I used had an actual
value of 98.5k()) to Pin 16 and measure the voltage across it, you will see that
the voltage drop is 0V when the resistor is connected to GND, and I measured
2.226V (not 3.3 V) when it was connected to the 3.3V rail. This indicates that
there is an internal pull-down resistor enabled, and the combination of these
resistors is behaving like a voltage divider circuit. You can estimate the value
of the internal pull-down resistor as in Figure 6-6(b).

Clearly, Pin 16, which is GPIO23, has an internal pull-down resistor enabled, but
if you perform the same test on Pin 7, which is GPIO4, you will get a completely
different response. When you connect the resistor as shown in Figure 6-6(a)
you will get a voltage drop of ~2.213V across the 100k() resistor, and almost 0V

Chapter 6 = Interfacing to the Raspberry Pi Input/Outputs 227

when you connect it as in Figure 6-6(b). That is because Pin 7 has an internal
pull-up resistor enabled. Performing the same calculations gives an internal pull-
up resistor value of approximately 48.6 k().

(@) pull-down enabled (b) pull-down enabled

voltage divider:

98.5k0
98.5Kk€2 + Reaown

Raown = 47.75k02

2226V = 3.305V =

pin6

Figure 6-6: Internal pull-down resistor value determination, using a 100 kQ resistor connected
(a) from the GPIO pin to GND, and (b) from the GPIO pin to the 3.3V supply

You need to factor these resistor values into the behavior of your input/out-
put circuits, and you need to be able to alter the internal resistor configuration
in certain circumstances. For example, you may even want to turn them off
for certain circuits. Also, note that Pin 3 (GPIO2) and Pin 5 (GPIO3) have two
permanent onboard 1.8k() “strong” pull-up resistors attached on the PCB (R23
and R24). This is discussed in Chapter 8.

As well as configuring pins to have either a pull-up or a pull-down resistor
configuration, there are also different modes for each pin. This is called the
ALT mode for the pin. Later in this chapter, Figure 6-11 provides a full list of
alternative modes for each of the GPIO header pins.

Interfacing to Powered DC Circuits

The RPi itself provides the power required for the output and input circuits that
are illustrated in Figures 6-2 and 6-5 respectively. The current that can be sourced
or sinked by these circuits is limited by the RPi specifications. Therefore, it is
often necessary to interface to circuits that are powered by an external supply.

You must be very careful when interfacing the RPi to circuits that have their
own power supply (e.g., high-powered LEDs, car alarms, garage openers). For
example, you should design the circuit so that it does not attempt to source
current from, or sink current to the RPi GPIOs while the board is powered off.
In addition, it would be ideal if you could avoid sharing a GND connection
between the circuit and the RPi in case something goes wrong with the circuit
or its power supply.

A good solution is to utilize low-cost optocouplers, such as those described in
Chapter 4 to design circuits in which there is no electrical connection whatsoever

228

Part Il = Interfacing, Controlling, and Communicating

between the RPi and the externally powered circuit. Figure 6-7 illustrates an
output circuit with an NPN transistor that is placed in a Darlington pair arrange-
ment with the optocoupler to switch on or off the externally powered circuit load.
A 5V external power supply is used in this example, but a greater DC supply
voltage can be used. In addition, the maximum switching current is limited by
the transistor characteristics (e.g., of a BC547), not by the optocoupler’s output
current I, level.

No electrical connection
b the RPi and
the load circuit

@
@

+5V \pair
!

GEED

=1mA

Optocoupler

(_GND [20)) v : s

617A (or 4N25)

BC547

Figure 6-7: The optocoupler output circuit

The 617A optocoupler’s current transfer ratio (CTR) of ~0.5 when I; = 1mA
(i.e., when GPIO17 is high) results in an output current of I, = 0.5mA, which
enters the base of the BC547 transistor. This small current switches on the BC547
transistor, which in turn supplies a current of I, =40mA to the resistive load in
this example. One downside of this configuration is that the voltage supply to
the load is reduced by the V. of the Darlington pair (<1 V). An alternative to this
arrangement is to use a Sziklai pair as illustrated in Figure 6-7, in which a PNP
transistor is connected to the optocoupler output. Both arrangements limit the
switching frequency capability of your output circuit (typically to the tens of
kilohertz range). Unlike the 617A, the 4N25 exposes the base of the optocoupler
receiver. This allows for the placement of additional base emitter resistors to
improve the circuit’s frequency response.

An optocoupler can also be connected to a GPIO to receive an input from an
externally powered DC circuit, as illustrated in Figure 6-8. Importantly, this
circuit can be adapted for any DC supply voltage and it will not sink any cur-
rent to the GPIO input when the RPi is powered off. You must choose a resistor
value for the input side of the optocoupler to limit the forward current of the
diode (I, < 60mA for the 617A/4N25").

GPIO27 is configured with an internal pull-down resistor by default, so it
has a low state when the button is not pressed. The RPi GPIO input circuit in
Figure 6-5(a) sinks 64 pA to GPIO27 when the button is pressed. Similarly, this is

1 See tiny.cc/erpi603 and tiny.cc/erpi604.

Chapter 6 = Interfacing to the Raspberry Pi Input/Outputs

229

the maximum current that will be sinked by this circuit (wWhen I; and V;exceed
minimal levels for the optocoupler). This circuit can be adapted to handle a vary-
ing DC input voltage (within a range) by using a voltage regulator to maintain
a value of Iy that is less than Iy, for the chosen optocoupler.

No electrical connection 64 pA (max)
between the RFi and the GPIO27 s
input circuit voltage supply

internal pull-down |
resistor on pin 13

Optocoupler

1 4
I a\\ :

617A (or 4N25)

Figure 6-8: The optocoupler input circuit

C++ Control of GPIOs Using sysfs

A C++ class has been written that wraps the sysfs GPIO functionality on the RPi
to make it easier to use. The importance of this approach is that it is transfer-
rable to any embedded Linux device. Later in this chapter, memory-mapped
approaches are investigated, but they are specific to the RPi.

Listing 6-2 provides the class definition, which lists the available class I/O
functionality. The implementation of this functionality is similar to the code
in Chapter 5 for the control of an external LED. The full listing is in /chpoé/
GPIO/GPIO.h and GPIO.cpp.

The C++ code is separated into header (.h) and implementation (. cpp) files,
and the process of building applications in this form is called separate compilation.
Separate compilation makes building large projects much more efficient, but it
can be difficult to manage all of the individual files. The next chapter introduces
the Eclipse integrated development environment (IDE) for cross-compilation,
to make this process seamless.

Listing 6-2: /chp06/GPIO/GPIO.h

#define GPIO PATH "/sys/class/gpio/"

namespace exploringRPi { // all code is within a custom namespace
enum GPIO_DIRECTION{ INPUT, OUTPUT }; // enumerations limit options
enum GPIO VALUE{ LOW=0, HIGH=1 };

230 Partll = Interfacing, Controlling, and Communicating

enum GPIO_EDGE{ NONE, RISING, FALLING, BOTH },'

class GPIO {
private:
int number, debounceTime;

string name, path;

public:
GPIO (int number) ; // the constructor exports pin
virtual int getNumber () { return number; }

// General Input and Output Settings

virtual int setDirection(GPIO_DIRECTION) ;

virtual GPIO DIRECTION getDirection() ;

virtual int setValue(GPIO_VALUE) ;

virtual int toggleOutput () ;

virtual GPIO VALUE getValue() ;

virtual int setActiveLow(bool isLow=true); // low=1, high=0
virtual int setActiveHigh() ; // default state
virtual void setDebounceTime (int time) { this->debounceTime = time; }

// Advanced output: faster by keeping the stream open (~20x)

virtual int streamOpen/() ;

virtual int streamWrite (GPIO VALUE) ;

virtual int streamClose();

virtual int toggleOutput (int time); // thread invert output every X ms
virtual int toggleOutput (int numberOfTimes, int time) ;

virtual void changeToggleTime (int time) { this->togglePeriod = time; }

virtual void toggleCancel() { this-s>threadRunning = false; }

// Advanced input: presented later in this chapter

virtual int setEdgeType (GPIO_ EDGE) ;

virtual GPIO_EDGE getEdgeType () ;

virtual int waitForEdge () ; // waits until button is pressed
virtual int waitForEdge (CallbackType callback); // threaded callback

virtual void waitForEdgeCancel() { this->threadRunning = false; }
virtual ~GPIO(); // destructor unexports the pin
private:

int write(string path, string filename, string value) ;
int write(string path, string filename, int wvalue);
string read(string path, string filename) ;

int exportGPIO() ;

int unexportGPIO() ;

ofstream stream;

pthread_t thread;

CallbackType callbackFunction;

bool threadRunning;

int togglePeriod; // default 100ms

int toggleNumber; // default -1 (infinite)

friend void* threadedPoll (void *value) ;

Chapter 6 = Interfacing to the Raspberry Pi Input/Outputs

231

friend void* threadedToggle (void *value) ;

Vi

void* threadedPoll (void *value) ; // callback functions for threads
void* threadedToggle (void *value) ; // callback functions for threads
} /* namespace exploringRPi */

You can extend this C++ class through inheritance to add the functionality
that you require, and you can integrate it into your projects without restric-
tions on its use. Use of this class is demonstrated in Listing 6-3, an example
that simultaneously interacts with the LED circuit in Figure 6-2 and the button
circuit in Figure 6-5(a).

Listing 6-3: /chp06/GPI10/simple.cpp

#include<iostreams>

#include<unistd.h> // for the usleep() function
#include"GPIO.h"

using namespace exploringRPi;

using namespace std;

int main() {

GPIO outGPIO(17), inGPIO(27) ; // Pin 11 and Pin 13

outGPIO.setDirection (OUTPUT) ; // basic output example

for (int i=0; i<10; i++){ // flash the LED 10 times
outGPIO.setValue (HIGH) ; // turn the LED on
usleep (500000) ; // sleep for 0.5 seconds
outGPIO.setValue (LOW) ; // turn the LED off
usleep(500000) ; // sleep for 0.5 seconds

1

inGPIO.setDirection (INPUT) ; // basic input example

cout << "The input state is: "<< inGPIO.getValue() << endl;

OutGPIO.streamOpen () ; // fast write example

for (int i=0; 1i<1000000; i++) // write 1 million cycles
outGPIO.streamWrite (HIGH) ; // high
outGPIO.streamWrite (LOW) ; // immediately low, repeat

}

OutGPIO.streamClose () ; // close the stream

return 0;

To build and execute Listing 6-3, use the following:

pieerpi .../chp06/GPIO $ g++ simple.cpp GPIO.cpp -o simple -pthread
pi@erpi .../chp06/GPIO $./simple
The input state is: 1

You must pass both . cpp files to the compiler as the code uses separate com-
pilation. The -pthread flag is required for class functionality that is described

232

Part Il = Interfacing, Controlling, and Communicating

later in this chapter. This code example flashes the LED 10 times, reads the state
of the button, and then flashes the LED one million times as fast as possible
(takes about 8 seconds).

BOOST.PYTHON AND THE GPIO CLASS

As stated toward the end of Chapter 5, it is possible to call C++ class code from

within Python by using Boost.Python. There is an example project in the /chp06/
GPIOpython/ directory that provides all of the necessary files. For example, the
Python code segment below uses the C++ GPIO class in Listing 6-2 to flash an LED at
5Hz until a button is pressed. The GPIO. h file contains a BOOST PYTHON MODULE ()
sample that is used to wrap the C++ class.

pieerpi ~/exploringrpi/chp06/GPIOpython $ more simple.py
#!/usr/bin/python
A Python program that uses the GPIO C++ class
import gpio
from time import sleep
print "Start of the Python Simple GPIO program"
led = gpio.GPIO(17)
button = gpio.GPIO(27)
led.setDirection (1)
button.setDirection (0)
while button.getValue() == 0:
led.setValue (1)
sleep(0.1)
led.setValue (0)
sleep(0.1)
print "End of the GPIO program"

To test the performance of this code, Figure 6-9 captures the signal output
of the LED flashing when the streamrite () method is used. It is flashing at
about 129kHz. Unfortunately, the C++ application had to run at 100% of CPU
usage on a single core to generate these outputs.

Window | ¢ ZoomTime [y{AddXY [uHistogram [~]EFT [E]Data [b, Measure g Cursor
Zoom 5 % ¢ Measurements RS
IDIV: M:10us C1:1V gv dhadd ¥ 4 &

— - p— p— y— I A

Ch MName Value
EEET—r—
s o1 Freauncy i 127.4kHz
s o Frequency Max, 129.492kHz
Bs 0 [Peiosavg TR
B

v

2v
C1|Pos DuyAvg 8%
Bs [0 negDuyavg 502%
B

c1 |ovesnoot 8273
s o High 3238V
Bs o oo s6mv
s ot RseTmev 26:2ns (3slope)
Bs [0 FaiTmeav 267 s (Bslope)

[x] -30us -20us ~10us Ous 10us 20us 30us

Figure 6-9: The GPIO C++ class flashing the LED

Chapter 6 = Interfacing to the Raspberry Pi Input/Outputs

233

\[ol}3 Theload on a Linux device can be determined by identifying the number of
processors and by examining the load averages:

pie@erpi ~ $ nproc

4

pieerpi ~ $ uptime

18:53:57 up 7:00, 2 users, load average: 1.43, 0.73, 0.33

The three figures represent the load average for the past 1, 5, and 15 minutes. A
figure of 4.00 is the maximum load on a quad-core processor before tasks must be
queued. A good rule of thumb is to avoid exceeding an average load of ~70% of this
amount (i.e., 2.8 on the RPi 2/3) to provide the processor with the headroom for han-
dling processes efficiently. Available memory is also an important performance con-
sideration: use cat /proc/meminfo.

PWM and clocks are described later in this chapter, illustrating how to switch
a GPIO using a regular periodic signal, at a fixed frequency, with negligible
CPU load. For fast GPIO switching using a nonperiodic signal, one technique
that can be used is to switch GPIO states using direct access to system memory.
However, such a technique effectively bypasses the operating system and any
safeguards that it may have implemented.

THE PREEMPTIBLE LINUX KERNEL

The period and duty cycle of the output in Figure 6-9 is quite regular for an embed-
ded Linux device. This is largely due to the fact that the Raspbian distribution utilizes
a preemptive kernel option during kernel build. This option reduces latency delays by
making most kernel code preemptible; essentially, the kernel can be interrupted while
executing a system call to attend to a higher-priority task. As a result, the code in
Listing 6-3 runs with low latency delays, and therefore low signal jitter (period irregu-
larity), despite the fact that the processor is under considerable load.

You can type uname -a to determine whether your kernel has the preemption
capabilities, but for a more precise description you can check the build options for
your kernel by examining the config. gz file that is available in the /proc direc-
tory. For example, you can determine if the kernel was built to support preemption by
searching for the PREEMPT string within the build options file:

pi@erpi /proc $ gunzip -c config.gz | grep PREEMPT
CONFIG TREE PREEMPT RCU=y

CONFIG PREEMPT RCU=y

CONFIG PREEMPT NONE is not set

CONFIG_PREEMPT VOLUNTARY is not set
CONFIG_PREEMPT=y

CONFIG_PREEMPT COUNT=y

CONFIG_DEBUG_PREEMPT is not set

CONFIG_PREEMPT TRACER 1is not set

Continues

234 Partll = Interfacing, Controlling, and Communicating

THE PREEMPTIBLE LINUX KERNEL (continued)

You can test the latency of the RPi to a stimulus using the cyclictest pro-
gram, which has a test loop that attempts to sleep for a very precise time period.
Immediately after this period, the thread wakes with a high priority. The actual time is
determined, the difference in expected versus actual time is calculated, and statistics
are collected (e.g., difference, max difference). The loop repeats for a user-defined
number of cycles:

pieerpi ~ $ git clone git://git.kernel.org/pub/scm/linux/kernel/git/clrkw -
llms/rt-tests.git

pi@erpi ~ $ cd rt-tests/

pieerpi ~/rt-tests $ make all

pieerpi ~/rt-tests $./cyclictest --help

cyclictest V 0.92

Building cyclictest requires the numactl and 1ibnuma-dev packages, which
are installed by default under Raspbian. The test can be performed on the RPi 2 using
the following call, where a high run priority is set (e.g., 80):

pieerpi ~/rt-tests $ sudo cpufreq-set -g performance

pieerpi ~/rt-tests $ sudo ./cyclictest -t 1 -p 80 -n -i 1000 -1 10000 --smp
/dev/cpu_dma_ latency set to Ous

policy: fifo: loadavg: 0.00 0.01 0.15 1/157 8971

T: O (8966) P:80 I:1000 C: 10000 Min: 9 Act: 9 Avg: 12 Max: 98
T: 1 (8967) P:80 I:1500 C 6671 Min: 8 Act: 12 Avg: 11 Max: 52
T: 2 (8968) P:80 I:2000 C: 5003 Min: 9 Act: 12 Avg: 11 Max: 47
T: 3 (8969) P:80 I:2500 C 4002 Min: 9 Act: 12 Avg: 13 Max: 68

The results display latency statistics in microseconds for each core on the RPi 2. The
same test performed on a multicore Linux desktop machine, which does not have the
PREEMPT patch applied gives the following results:

molloyd@debian:~/$ sudo ./cyclictest -t 1 -p 80 -n -i 1000 -1 10000 --smp
/dev/cpu_dma latency set to Ous

policy: fifo: loadavg: 0.30 0.09 0.06 1/329 3049

T: 0 (3047) P:80 I:1000 C: 10000 Min: 17 Act: 1441 Avg: 452 Max: 2581
T: 1 (3048) P:80 I:1500 C: 7637 Min: 16 Act: 194 Avg: 412 Max: 2868
T: 2 (3049) P:80 I:2000 C: 5774 Min: 19 Act: 102 Avg: 463 Max: 2626

To achieve a better understanding of the data, a histogram can be plotted as in
Figure 6-10 using steps such as (-h and -p allow you to specify the histogram latency
sample bins (us) and the task priority respectively):

pieerpi ~/rt-tests $ sudo ./cyclictest -h 100 -p 80 -t 1 -g -n -i 1000 -
-1 100000 --smp > histogram.dat

pi@erpi ~/rt-tests $ sudo apt install gnuplot

pi@erpi ~/rt-tests $ echo 'set term png; set output "plot.png"; plot -

"histogram.dat" with linespoints lc rgb "blue";' | gnuplot

git://git.kernel.org/pub/scm/linux/kernel/git/clrkw

Chapter 6 = Interfacing to the Raspberry Pi Input/Outputs

235

5000 - T
Latency on RPi 2 —+—
4500 |
4000 - h
3500 | E
5. 3000 | g
=3
c
5
g 2s00 | 1
o
[
2000 | 1
1500 | 1
1000 | E
so0 f E
i} & A h P el & &
0 5 10 15 20 25 30 E a0
latency (ps)
(b)
180 T T
Latency on the PC
180 E
140 E
120 E
&
c 100 E
@
=
o
o
[rag- vl = J
&0 g
40 g
20 g
0

0 100 200 300 400 500 600 700 800 500 1000
latency (us)

Figure 6-10: The cyclictest results histogram for 10,000 samples (a) on the RPi2, and
(b) on a Linux desktop VM that is under load with no preemption support

The histogram for the RPi 2 has a normal distribution centered on 12us-13 ps,
whereas the test case on the desktop VM with no preemption support has a bimodal
distribution with the peaks at approximately 100 us and 200 ps—it also has long tails,
which will lead to considerable jitter problems. Pay particular attention to the differ-
ence in the ranges on the x-axis of both plots. The low latency results on the RPi 2 with
preemption support helps explain the low signal jitter in Figure 6-9. This topic is revis-
ited in Chapter 7.

To view the plot outputs, you can use FTP (see Chapter 3) to transfer the images to
your desktop computer, or you can view them remotely on the RPi by using virtual
network computing (VNC), which is described at the beginning of Chapter 14.

236 Partll = Interfacing, Controlling, and Communicating

The RPi GPIO header ™"

Pi A/B Rev 2 (P1), B+ (18], Pi 2/3(13)

50mA maximum on 3.3V supply EEIEY
(note 2) reserved 5A3 12C1SDA | B up GPIO2 3
(note 2) reserved A2 | l€ISCL] 9 wp | GPIO3 5 6 GND
| arn ol reserved SAL | |) 7w | Grioa 7 8 GPIOIA |down 15| TXDO 506 oL | S
P GND_9 | 10 GPIOIS |down 16| RXDO 507 Wi | &
| _ws1 DSPMNGENI R1SO reserved SD9 reserved 0 down| GPIOI7 11 | 12 GPIO8 down 1 PCM CIK D10 pwvo_| &
= ARM TMS 5D1 DAT3 reserved reserved reserved 2 down| GPIO27 13 | 14 GND =
< ARM_TRST _SD1 CLK reserved D14 reserved 3 down| GPIOZZ 15 | 16 GPIO23 |down 4 reserved D15 reserved SD1CMD _ ARM_RTCK <
g 50mA maximurm on 3.3V supply 33V_17 | 18 GPIO24 |down 5 reserved D16 reserved SD1_DATO __ ARM_TDO B
reserved 502 12 down| GPIO10 19 20 GND
reserved SDI 13 down| GPIOS 21 | 22 GPIO25 |down 6 reserved 5017 reserved SDLDATI _ ARML_TCK
reserved 503 14 down| GPIOIL 23 | 24 GPIOB_ | up 10 500 reserved
GND 25 | 26 GPIO7 | wp 11 SWE_N /SRW_N_reserved
Donotuse (GPIOQ) - seenote 3 __reserved SAS SO0 30 wp | IDSD 27 | 28 isc | up 31 sclo A1 reserved Do not use (GPIOL) - see note 3 =
§ ARM_TDO reserved SAD 21 up | GPIOS 29 | 30 GND 8
2 [ARM_RTCK reserved SOE N/SE 2 up | GPIOG 31 | 32 GPIO12 |down 26 | PWMOD 504 reserved ARM TMS | 2
& [Arm e reserved 5D PWML 23 down| GPIOI3 33 | 34 GND :
= reserved 5Dl PV FS 24 down| GPIOI9 35 | 36 GPIO16 |down 27 reserved 508 reserved CTs0 crs1 |
2 ARM_TDI _SD1 DAT2 reserved reserved reserved 25 down| GPIO26 37 | 38 GPIO20 |down 28 PCM_DIN 5012 reserved BSCSL/ MISO 3
g GND 33 | 40 GPIO21 |down 25 PCM_DOUT D13 reserved BSCSL/CE N g

Note1: The data in this table was created from the www.elinux.org web pages, system information, and datasheets where
available.

sysfs [general purpose input/output

spi [serial peripheral interface Note2: On early models of the RPi, Pin 3is GPIOD and Pin 5 is GPIO1. Also, these pins have permanent an-board 18K pull-up
2c0fi2e1 |1°CBus resistors attached {for the I°C bus).
uarto Note 3 |D 5D and I0_SC pins are reserved for the D EEPROM (for different HATs). This is an I°Cinterface that is probed at boot time

pwm in order to detect attached boards. This allows Linux to load the correct drivers for a HAT. See Chapter 8
gpclk [General purpose clock (GPCLKL s reserved)
pem [PcMaudio

smi
arm _jtag

Figure 6-11: The RPi GPIO header

Secondary Memory Interface
JARM JTAG debugger

Chapter 6 = Interfacing to the Raspberry Pi Input/Outputs

237

More C++ Programming

To understand some features of the GPIO class, it is necessary to examine some
additional programming concepts in C/C++ that are used. These techniques
can be applied generally to enhance your programs on the RPi. Callback func-
tions, POSIX threads, and the use of Linux system polling can be used to create
an efficient sysfs-based GPIO poll that has negligible CPU overhead and fast
response times (i.e., less than 0.15ms). The GPIO class for this chapter supports
this functionality so an overview of these programming techniques is all that
you require.

This discussion on C++ programming and the subsequent description of
memory-based GPIO control provide important background and context for some
advanced concepts on GPIO interfacing. However, at any point you can jump ahead to
the practical guide on wiringPi and return here at a later stage.

Callback Functions

In Chapter 5, callback functions are described as they relate to Node.js programs
and asynchronous function calls. Essentially, a callback function (or listener func-
tion) is a function that is executed when some type of event occurs. This is vital
for asynchronous function calls like those in JavaScript, but it is also useful in
C++ applications. For example, in the enhanced Gp10 class, this structure is used
so that a function can be executed only when a physical pushbutton is pressed.
Callback functions are typically implemented in C/C++ using function pointers.

Just like variables, program functions are stored in memory. Therefore, they
have a memory address, and this memory address can be passed to another
function. Function pointers are pointers that store the address of a function. It
is possible to pass such a pointer to other functions, which can dereference the
function pointer and invoke its associated function. This is best demonstrated
with a code example, such as that in Listing 6-4 where the domath () functionis
passed a value and a pointer to a function that should be applied to the value.

Listing 6-4: /chp06/callback/callback.cpp

#include<iostreams>
using namespace std;
typedef int (*CallbackType) (int); // used to tidy up the syntax

int squareCallback (int x) { // callback function that squares
return x*x;

}

int cubeCallback (int x) { // callback function that cubes

238

Part Il = Interfacing, Controlling, and Communicating

return x*x*x;

}

int doMath(int num, CallbackType callback) {

return callback (num) ; // call the function that is passed
}
int main() {

cout << "Math program -- the value of 5: " << endl;

cout << "->squared is: " << doMath(5, &squareCallback) ;

cout << "->cubed is: " << doMath(5, &cubeCallback) << endl;

return 0;

}

Creating a type using typedef simply makes it easier to change the type at
a later stage and cleans up the syntax somewhat. The address of the square-
Callback () or cubeCallback () function is passed as a pointer to the doMath ()
function. When executed, the output of this code is:

pieerpi ~/exploringrpi/chp06/callback $./callback

Math program -- the value of 5:
->squared is: 25 ->cubed is: 125

This programming structure is quite common in (and underneath) user-
interface programming, where functions can be called when a user interacts
with display user-interface components such as buttons and menus. It makes
sense to apply the same structure to physical pushbuttons and switches.

Please edit and build the code examples throughout this book. If something
goes wrong, you can use Git to revert to the original file. For example, if you make
changesto callback.cpp and can no longer getitto work, you can simply delete
it and check it out again to get the last version that was added to the staging area (i.e.,
bygit add callback.cpp):

pieerpi ~/exploringrpi/chp06/callback $ rm callback.cpp

pieerpi ~/exploringrpi/chp06/callback $ git checkout callback.cpp
pieerpi ~/exploringrpi/chp06/callback $ 1ls

callback callback.cpp

POSIX Threads

POSIX threads (Pthreads) is a set of C functions, types, and constants that provides
everything you need to implement threading within your C/C++ applications on
the RPi. Adding threading to your code can allow parts of your code to execute
apparently concurrently (most RPi models have a single-core processor), with
each thread receiving a “slice” of processing time. However, the RPi2/3 has
a quad-core processor that enables threads to truly run concurrently, greatly
improving the performance of threaded applications.

Chapter 6 = Interfacing to the Raspberry Pi Input/Outputs

239

To use Pthreads in your application you need to include the pthread.hheader
file and use the -pthread flag when compiling and linking the code using gcc/
g++%. All the Pthread functions are prefixed with pthread_. Listing 6-5 is an
example of using Pthreads on the RPi to create two parallel counters (the com-
ments describe the structure of the code).

Listing 6-5: /chp06/pthreads/pthreads.cpp

#include <iostream>
#include <pthread.h>
#include <unistd.h>

using namespace std;

// This is the thread function that executes when the thread is created
// it passes and receives data by void pointers

void *threadFunction(void *value) {

int *x = (int *)value; // cast the data passed to an int pointer
while (*x<5) { // while the value of x is less than 5
usleep(10) ; // sleep for 10us - encourage main thread
(*x) ++; // increment the value of x by 1
1
return x; // return the pointer x (as a void¥)
}
int main() {

int x=0, y=0;
pthread t thread; // this is our handle to the pthread
// create the thread, pass the reference, address of the function and data
// pthread create() returns 0 on the successful creation of a thread
if (pthread_create (&thread, NULL, &threadFunction, &x) 1=0)
cout << "Failed to create the thread" << endl;
return 1;

}

// at this point the thread was created successfully

while (y<5) { // loop and increment y, displaying values
cout << "The value of x=" << x << " and y=" << y++ << endl;
usleep(10) ; // encourage the pthread to run

}

void* result; // OPTIONAL: receive data back from pthread

pthread join(thread, &result); // allow the pthread to complete

int *z = (int *) result; // cast from void* to int* to get =z

cout << "Final: x=" << X << ", y=" << y << " and z=" << *z << endl;

return O;

Building and executing as follows results in the following output:

2 The Eclipse IDE is used in the next chapter. To use Pthreads in Eclipse, select Project Properties
> C/C++ Build Settings = GCC C++ Linker = Miscellaneous = Linker Flags, and add
-pthread.

240 Partll = Interfacing, Controlling, and Communicating

pieerpi .../chp06/pthreads $ g++ pthreads.cpp -o threads -pthread
pi@erpi .../chp06/pthreads $./threads

The value of x=0 and y=0

The value of x=3 and y=1

The value of x=4 and y=2

The value of x=5 and y=3

The value of x=5 and y=4

Final: x=5, y=5 and z=5

However, run it again, and you may get a different output!

pieerpi .../chp06/pthreads $./threads
The value of x=1 and y=0

The value of x=3 and y=1

The value of x=5 and y=2

The value of x=5 and y=3

The value of x=5 and y=4

Final: x=5, y=5 and z=5

The usleep () calls have been introduced to encourage the thread manager to
switch to the main thread at that point. The order of the output may change, but
the final results will always be consistent due to the pthread_join() function
call, which blocks execution at this point until the thread has run to completion,
regardless if one or more cores are utilized.

Listing 6-6 displays a code outline for a simple performance test on the RPi2/3
to evaluate the capability of its multicore processor, and to demonstrate how you
can use threads to utilize the four cores. Each thread is tasked with generating
five million pseudo-random numbers and an evaluation is performed when
multicore threading is enabled and effectively disabled.

Listing 6-6: /chp06/multicore/perftest.cpp (Segment)

void* thread function(voidx) { // generate 5M random numbers
unsigned rand seed = 0;
for(int i=0; i<5000000; i++){ rand r(&rand seed); }
return 0O;

void random generate no threads (int numCalls)
for(int i=0; i<numCalls; i++){ thread function (NULL); }

void random generate with threads(int numCalls) ({

pthread_t* threads[numCalls]; // array of thread pointers

for (int i=0; i<numCalls; i++){ threads[i] = new pthread t; }

for (int 1i=0; i<numCalls; i++) { // create on thread for each call
pthread create (threads[i], NULL, thread function, NULL);

} // wait for them all to complete

for (int i=0; i<numCalls; i++){ pthread join(*threads([i], NULL); }
for (int i=0; i<numCalls; i++){ delete threads[i]; }

int main(int argc, char* argv[]) { // determine number of cores

Chapter 6 = Interfacing to the Raspberry Pi Input/Outputs

241

unsigned int numThreads = std::thread::hardware_concurrency () ;

As the number of calls is increased, you can see the impact of threading on
the RPi2/3 in Figure 6-12. The time measured is real time, which is also known
as wall-clock time—that is, time as we perceive it. This is different from user time,
which is the amount of CPU time taken by user space code, or system time, which
is the amount of CPU time taken in kernel space.

The real time required for the multicore RPi2/3 to calculate 5M or 20M
pseudo-random numbers is almost the same, because each thread runs in parallel
on its own core. When five or more threads are required, the four cores share
the additional load; therefore, the slope of the load line is one quarter of that
for the single-core implementation. Accurate timing is provided by the C++11
Chrono and the Boost Chrono libraries. See the /chpoé6/multicore/ directory,
where the test can be performed (e.g., for 20 M numbers on the RPi3) as follows:

pi@erpi:~/exploringrpi/chp06/multicore $./perftest 4

This hardware supports 4 concurrent threads.

Performing test using 4 thread enabled function calls

Real Time: No threads 646677 us
Real Time: With threads 150989 us

All performance tests at the beginning of Chapter 5 are performed using a
single core on the RPi2/3. It is therefore possible to achieve much-improved
results on the multicore RPi2/3 versus other RPi models if the code examples
were adapted to parallelize the numeric calculations.

Single-Core versus Multi-Core Perft n the RPi 2 { and RPi 3 (@1200MHz)

— om0

i‘f Number of threads (each thread 5,000,000 pseuwd ndom b

2 2w s

:)

£ e

2 e €O :

vy tsouooe P2 (sind)

c

E 2 soale c_urE)

2 ppi3 sind 50 million psewdo-random
BT numbers generatedh
£ —)
¥ time taken is fat until all RPi2 {mul(icore] X _ |
g sonw four cores are utilized i - ~J
3 % RPi3 (multicore)

2 1 E: 3 [5 [7] 8 w
ani B | 10567 615826 | 521076 [T S N VET L) 1R |] BT | mmar

m

iy

205851 06587 06500 TG anGdas aTaEa 718 30841 B | 24845
10 wts s satar? Taogar T imoa 1mnn wman 10z

A 3 mlticere tanre frei] s i 215164 fReT i [T Hbod e

Figure 6-12: Single-core versus multicore threading performance test on the RPi2 and RPi 3
(measuring real time)

Linux poll (sys/poll.h)

At the beginning of this chapter, code is presented that can be used to detect the
state of a button by checking the state of the value file. This is a very processor-
intensive operation and not really practical. If you listed the contents of the

242

Part Il = Interfacing, Controlling, and Communicating

/sys/class/gpio directory, you may have also noticed a file entry called edge
that up to now has had no relevance:

pieerpi /sys/class/gpio $ echo 4 > export

pieerpi /sys/class/gpio $ cd gpio4

pieerpi /sys/class/gpio/gpio4 $ 1ls

active low device direction edge subsystem uevent value

pieerpi /sys/class/gpio/gpio4 $ cat edge

none

You can use a system function called poll() from the sys/poll.h header
file, which has the syntax

int poll (struct pollfd *ufds, unsigned int nfds, int timeout) ;

where the first argument specifies a pointer to an array of pol1£d structures,
each of which identifies a file entry to be monitored and the type of event to
be monitored (e.g., EPOLLIN to read operations, EPOLLET edge triggered, and
EpPOLLPRI for urgent data). The next argument, nfds, identifies how many ele-
ments are in the first argument array. The final argument identifies a timeout
in milliseconds. If this value is -1, then the kernel will wait forever for the
activity identified in the array. This code has been added to the Gp1o class in
the waitForEdge () methods.

An Enhanced GPIO Class

The programming concepts just discussed are complex and may be difficult to
understand if it is your first time seeing them; however, these techniques have
been used to enhance the GPIO class so that it is faster and more efficient; the
code in Listing 6-2 already integrates these changes.

The tests to evaluate the performance of the class are provided as examples
of how to use this class. The test circuit is the combination of the LED circuit in
Figure 6-2 and the button circuit in Figure 6-5(a). Therefore, the LED is attached
to Pin 11 (GPIO17) and the button is attached to Pin 13 (GPIO27). In these tests,
the LED lights when the button is pressed.

Listing 6-7 tests the performance of a synchronous poll that forces the program
to wait for the button to be pressed before proceeding.

Listing 6-7: /chp06/GPIO/tests/test_syspoll.cpp

#include<iostream>
#include"GPIO.h"

using namespace exploringRPi;
using namespace std;

int main()
GPIO outGPIO(17), inGPIO(27);
inGPIO.setDirection (INPUT) ; //button is an input

Chapter 6 = Interfacing to the Raspberry Pi Input/Outputs

243

outGPIO.setDirection (OUTPUT); //LED is an output
inGPIO.setEdgeType (RISING) ; //wait for rising edge
outGPIO.streamOpen () ; //fast write, ready file
OutGPIO.streamWrite (LOW) ; //turn the LED off

cout << "Press the button:" << endl;

inGPIO.waitForEdge () ; //will wait forever
outGPIO.streamWrite (HIGH) ; //button pressed, light LED
outGPIO.streamClose () ; //close the output stream
return 0;

}

The response time of this code is captured in Figure 6-13(a). This code runs
with a ~0% CPU load, because the polling is handled efficiently by the Linux
kernel. Using an oscilloscope, the electrical response time is measured between
the first rising edge of the button press and the LED turning on. This program
responds in ~123 us, which is well within physical debounce filter times. Using
the class’s debounce filter will not affect this performance, only the delay between
repeated button presses. The downside of this code is that the program cannot
perform other operations while awaiting the button press.

The second example, in Listing 6-8, tests the performance of the asynchronous
waitForEdge() method, which accepts a function pointer and uses Pthreads to
allow the program to continue with other operations. In this example, the main
thread counts, but it could be performing other tasks.

Listing 6-8: /chp06/GPI10O/tests/test_callback.cpp

#include<iostream>
#include<unistd.h>
#include"GPIO.h"

using namespace exploringRPi;
using namespace std;

GPIO *outGPIO, *inGPIO; // global pointers

int activateLED(int var) { // the callback function
OutGPIO->streamWrite (HIGH) ; // turn on the LED
cout << "Button Pressed" << endl;
return 0;

}

int main() {
inGPIO = new GPIO(27); // the button GPIO
outGPIO = new GPIO(17); // the LED GPIO
inGPIO->setDirection (INPUT) ; // the button is an input
outGPIO->setDirection (OUTPUT); // the LED is an output
outGPIO->streamOpen () ; // use fast write to LED
OutGPIO->streamWrite (LOW) ; // turn the LED off
inGPIO->setEdgeType (RISING) ; // wait for rising edge

cout << "You have 10 seconds to press the button:" << endl;
inGPIO->waitForEdge (&activateLED) ; // pass the callback function
cout << "Listening, but also doing something else..." << endl;

244

Part Il = Interfacing, Controlling, and Communicating

for (int i=0; i<10; i++){

usleep (1000000) ; // sleep for 1 second
cout << "[sec]" << flush; // indicates 1 second has elapsed
1
outGPIO->streamWrite (LOW) ; // turn off the LED after 10 seconds
outGPIO->streamClose () ; // shutdown the stream
return 0;

}

The significant change in this code is that when the setEdgeType () method
is called, a new thread is created within the method and it immediately returns
control so that the main thread can continue to perform operations. The main
thread simply counts for ten seconds before turning off the LED. If the button
is pressed, the activateLED () function is called. Whether the pushbutton is
pressed or not, the LED will be turned off, and the program will exit after 10
seconds of counting:

pi@erpi ~/exploringrpi/chp06/GPIO/tests $./test callback

You have 10 seconds to press the button:

Listening, but also doing something else...

[sec] [sec] [sec] [sec] [sec]Button Pressed
[sec] [sec] [sec]Button Pressed

[sec] [sec]

(b)

Mindow ke Timw [ASdXY [alltisogm IFT [0t fo Mewwre L Wndow B Zoom Time (S AddEY [all otograrm [IFFT Cl0ate o Meswre o
Zom. T A e
i &[] /O M:S0us 11V C2:1% . -\ 7]

i button press voltage (GPIG27) i] button press voltage (GPIO27)
i 6 LED gate voltage iGPI'a'lu}']) LED gateémlrage [GPIé'I 7
2y ol v 1 23 v J i i
«
w i " i -
v = T av mmmmmmmmmmmeemmemeeee e
X Jbw Ghw Ous Glws 10w 10w 20w 250us Xjp 00w Hw Ouws SO W 10w 0w 250

Figure 6-13: Time delay in lighting an LED in response to a button press at ~0% CPU usage
(a) using sys/poll.h, and (b) integrating callback functions and Pthreads

The response time of this code is captured in Figure 6-13(b), and it is only
marginally slower than the previous code (by ~11us), which is the cost of the
callback function and the Pthreads code. Again, this code has no noticeable load
on the CPU. The full implementation code is available in the GPIO.cpp file, and
you can edit it to suit your needs. A more advanced version would use functors
(function objects) and the C++ Standard Template Library (STL) to remove the
requirement for the callback code to be a global function.

Chapter 6 = Interfacing to the Raspberry Pi Input/Outputs

245

Memory-Based GPIO Control

The full datasheet for the Broadcom BCM2835 Peripherals is available from
the Raspberry Pi Foundation at tiny.cc/erpi601. Itis an important document
that describes the low-level detail of the SoC, which is used to custom build
the Linux kernel for the RPi. However, it is also possible to use such low-level
I/O detail to bypass the Linux kernel, using direct memory manipulation to
take control of the SoC’s inputs and outputs. While this approach can achieve
much better I/O performance, you should avoid using it if possible, because your
programs will not be portable to other embedded Linux platforms. In addition,
since the Linux kernel is unaware of such direct memory manipulations, you
could potentially generate resource conflicts.

This section describes how high-performance GPIO control is achieved
on the RPi using memory-mapped techniques, which are specific to the RPi’s SoC.
This provides context for the impressive performance of the wiringPi library that is
described in the next section. Should this material prove difficult, jump to the section
on wiringPi and return here at a later stage.

Linux uses a virtual memory system, which means that there is a difference
between the physical address used by the hardware and the virtual address
that is used to access the hardware. In 32-bit Linux the virtual memory system
utilizes the full 32-bit addressing to allocate a virtual space that is much larger
than the available physical memory; 32-bit addressing supports 2% addresses
(i.e., 4 GB), whereas there is 1 GB of RAM available on the RPi2/3. The extended
address range allows for memory paging and for the mapping of physical devices
(e.g., peripherals) into a unified address space. For example, on the RPi2, you
can see that 943 MB? of memory is allocated to system RAM:

pi@erpi ~/exploringrpi/chp06 $ cat /proc/iomem

00000000-3afffFfEf : System RAM

00008000-0075a023 : Kernel code
007bc000-008de493 : Kernel data
3f000000-3f000fff : bcm2708_ vcio
3f006000-3f006f£ff : bcm2708_usb

3f006000-3f006fff : dwc_otg
3£200000-3£2000b3 : /soc/gpio

3 Note 0x3affffff = 966,655 KB = 943 MB. By default, 64 MB is allocated to the GPU, and vc_mem.
mem_size=0x3f000000 (i.e., 1,008 MB) on the current Raspbian image; see the console output of
the kernel booting in Chapter 3. Formally speaking, these values should be represented as MiB
(mebibytes) and KiB (kibibytes), as 1 MiB = 1,024 KiB is used in these calculations. Linux tends
to overlook the IEC notation.

246

Part Il = Interfacing, Controlling, and Communicating

pi@erpi ~/exploringrpi/chp06 $ cat /proc/meminfo
MemTotal: 949380 kB
MemFree: 730976 kB

At the bottom of the first list, you can see that the GPIO peripheral base
address on the RPi2/3 of 0x3£200000. This is 0x2000 0000 on all other cur-
rent models of the RPi. You may also notice that the total memory (MemTotal)
available in the second list is 16 MB short (i.e., 943 MB — 927 MB) of the available
System RAM. This is because the kernel allocates a small portion of memory
to reserved memory, which is mainly used to store the kernel image itself; it has
to be stored somewhere!

GPIO Control Using devmem?2

You can query the value at a memory address using C code that accesses
/dev/mem directly. However, to become familiar with the steps, it is best that you
build and install Jan-Derk Bakker’s devmem2 program, which is a very useful
command-line tool for reading from and writing to memory locations:

pi@erpi ~ $ wget http://www.lartmaker.nl/lartware/port/devmem2.c

devmem2 . c 100% [=====================3] 3.47K --.-KB/s in Os

2015-07-05 01:13:43 (72.0 MB/s) - 'devmem2.c' saved [3551/3551]

pi@eerpi ~ $ gcc devmem2.c -o devmem2
pieerpi ~ $./devmem2

Usage: ./devmem2 { address } [type [data]]
address : memory address to act upon
type : access operation type : [blyte, [h]lalfword, [w]ord
data : data to be written

The registers that are important for GPIO control are described in Figure 6-14.
The full list is in Table 6-1 of the BCM2835 ARM Peripherals manual.

If the circuit is connected as in Figure 6-2, it is possible to use the devmem2
program to control the LED circuit. Assuming that the devmem2 program is cur-
rently present in the pi user home directory, you can use it to read the value of
the GPLVLO register on the RPi2/3 (replace ox3F20 with 0x2000 for other RPi
models):

pieerpi /sys/class/gpio $ echo 17 > export

pieerpi /sys/class/gpio $ cd gpiol7

pieerpi /sys/class/gpio/gpiol7 $ echo out > direction
pieerpi /sys/class/gpio/gpiol7 $ cat value

0

pieerpi /sys/class/gpio/gpiol7 $ sudo ~/devmem2 0x3F200034
/dev/mem opened. Memory mapped at address 0x76£0e000.
Value at address 0x3F200034 (0x76£0e034): 0xBOOOC1FF
pieerpi /sys/class/gpio/gpiol7 $ echo 1 > value

pieerpi /sys/class/gpio/gpiol7 $ sudo ~/devmem2 0x3F200034
/dev/mem opened. Memory mapped at address 0x76ee3000.
Value at address 0x3F200034 (0x76ee3034): 0xBOO2CIFF

Chapter 6 = Interfacing to the Raspberry Pi Input/Outputs

247

000 on all other RPi models.

Offset is from the virtual address 0x3F00 0000 on the RPi 2/3, and 0x2 00

GPFSELD 0000 FSELS FSELE FSEL7 FSELG FSELS FSEL4 FSEL3 FSEL2 FSEL1 FSELD

X
GPFSELL 0004 X FSEL19 FSEL18 | FSEL17 = FSEL16 FSEL1S FSEL14 FSEL13 FSEL12Z FSEL11 FSEL1O
GPFSEL2 0008 X FSEL29 FSEL28 FSEL27 FSEL26 FSEL25 FSEL24 FSEL23 FSEL22 FSEL21 FSEL20
GPFSEL3 0oac X FSEL39 FSEL38 FSEL37 FSEL36 FSEL35 FSEL34 FSEL33 FSEL32 FSEL31 FSEL3D
GPFSEL4 0010 X FSEL49 FSEL48 FSELAT7 FSEL46 FSEL4AS FSEL54 FSEL43 FSEL42 FSEL41 FSEL40
GPFSELS 0014 [32-12] X FSEL53 FSELS2 FSELS51 FSELSO
GPSETO 001C [31-0] mapped to GPIO31 to GPIO0 (1 = set GPI0){0 = no effect)
GPSETL 0020 [31-22] % [21-0] d to GPIOS3 to GPIO32 (1 = set GPIO)(0 = no effect)
GPCLRO ‘ 0028 ‘ [31-0] mapped to GPIO31 to GPIOO (1 = dear GPIO}{0 = no effect)
GPCLR1 002C [31-22] X [21-0] mapped to GPIO53 to GPI032 (1 = clear GPI0)(0 = no effect)
GPLVLD 0034 ‘ [31-0] mapped to GPIO31 to GPIOO (1= level is high){0 = level is low)
GPLVL1 0038 [31-22] X [21-0] mapped to GPIOS3 to GPIO32 (1 = level is high){0 = level is low)
GepuD | ooss | [31:2] X [1-0]
GPPUDCLKD 0098 [31-0] mapped to GP1031 to GPIOO (1 = assert clock)(0=no effect)
GPPUDCLK1 008C [31-22] X [21-0] mapped to GPI053 to GPI0O32 (1 =assert clock){0=no effect)

000 input | Example: Set GPIO17 to be an output and setithigh. | o

W) autpit ! Solution: Write hits 001 to FSEL17, which is bits 21, 22, and 23 : £ el B

100 ALTO , of the GPFSEL1 register to set the pin up as an output. 1 o1 pull-down

| Then write a 1 to bit 17 of the GPSETO register to set the output high. | 10 pull-up

101 ALT1 l—————————————---(/—\—. __________________ %

At Ghe GPFSELL FSELLT ’
[—‘ g

e 29 (3 [G Lol 1| e o i wafec

010 ALTS | x|x| a. |? | 0| Ol 1[? | L] | ?UothchPlecleclmodes!

Don't care

Figure 6-14: Examples of the registers available for memory-mapped GPIO manipulation

Notice that the difference is 0x20000, which is 100000000000000000 in binary
(ie., 1 followed by 17 zeros, or 1<<17). GPIO17 is in the first bank of addresses.
For GPIO32 to GPIO53, you have to read the GPLVLI register. The output above
indicates that the output is low the first time that the GPLVLO register is dis-
played, and high the second time.

You can use the same devmem2 program to set the LED to be off by setting
bit 17 on the GPCLRO (0028) register, and the LED to be on by setting bit 17 on
the GPSETO (0oo01c) register:

pieerpi /sys/class/gpio/gpiol7 $ cat value

1

pieerpi /sys/class/gpio/gpiol7 $ sudo ~/devmem2 0x3F200028 w 0x20000
/dev/mem opened. Memory mapped at address 0x76£77000.

Value at address 0x3F200028 (0x76£77028): 0x6770696F

Written 0x20000; readback 0x6770696F

pieerpi /sys/class/gpio/gpiol7 $ cat value

0

pieerpi /sys/class/gpio/gpiol7 $ sudo ~/devmem2 0x3F20001C w 0x20000
/dev/mem opened. Memory mapped at address 0x76£7a000.

Value at address 0x3F20001C (0x76f7a0lc): 0x6770696F

248

Part Il = Interfacing, Controlling, and Communicating

Written 0x20000; readback 0x6770696F
pieerpi /sys/class/gpio/gpiol7 $ cat value

1

Here you can see that setting these bits has a direct impact on the sysfs value

entry for the gpio17 entry.

Note that there are some other registers available for setting and detecting
interrupt events (e.g., falling/rising edge detection). Please see Table 6-1 in the

BCM2835 ARM Peripherals document.

GPIO Control Using C and /dev/mem

Figure 6-14 also provides details and an example of how to configure the mode
of a pin. All of the GPIOs can be set to read or write mode, or they can be set
to an ALT mode, which are listed in Figure 6-11. The mode is set using a 3-bit
value as listed in the table on the bottom left of Figure 6-14. For example, by

setting the 3-bit value to be 000 then the pin will act as an input.

BIT MANIPULATION IN C/C++

This section uses many bitwise operations to efficiently manipulate memory. It is
worth examining a short segment of code to ensure that you are comfortable with
these operations. The full example is available at /chp06 /bits/bitsTest . cpp.
Theuint8 t (unsigned 8-bit integer) type and the display () function below are
used to create a concise example:

string display(uint8_t a)
stringstream ss;
ss << setw(3)

return ss.str();

int main() {

uint8 t a

cout
cout
cout
cout
cout
cout
cout

cout

<<

<<

<<

<<

<<

<<

<<

<<

"A
"A
"A
"

"A
T/
"B
E

return 0;

25,
g O
& B
| B
~A
*B
<< 1
>> 1

<< 8

<<

{

// setw()

"(" << bitset<8>(a) << ")";

(int)a <<

o = 5p

<< display(a)

(AND)
(OR)

is
is
is
is
is
is

is

"

<<

<<

<<

<<

<<

<<

<<

sets width and bitset formats as binary

// 8 bits unsigned is in the range 0 to 255

<< " and B is " << display(b) << endl;

display(a & b) << endl;
display(a | b) << endl;

display(~a) << endl;
display(a * b) << endl;
a << 1) << endl;

(
(
display (
display(b >> 1) << endl;
(

display(l << 8) << endl;

// warning!

Chapter 6 = Interfacing to the Raspberry Pi Input/Outputs

249

When this code is compiled and executed it results in the following output:

pieerpi ~/exploringrpi/chp06/bits $./bits
A is 25(00011001) and B is 5(00000101)
A & B (AND) is 1(00000001)

A | B (OR) is 29(00011101)

~A (NOT) is 230(11100110)
A * B (XOR) is 28(00011100)
A << 1 (LSL) is 50(00110010)
B >> 1 (LSR) is 2(00000010)
1 << 8 (LSL) is 0(00000000)

Note that 1 shifted left 8 times (1<<8) resulted in a value of 0 (and a compiler warn-
ing), because overflow has occurred and the 1 has been lost. You can use the limited
size of a data type to simplify calculations; this principle is used to simplify a check-
sum calculation later in this chapter (in Listing 6-14).

The location to which you should write the 3-bit mode is described at the
top of Figure 6-14. For example, to set GPIO17 to be an output, you can write
001 to the FSEL17 value, which is bits 21, 22, and 23 in the GPFSELL1 register.
Importantly, you need to ensure that you only manipulate those specific 3 bits
when you change FSEL17, because to change any other bits will impact on
GPIO10-GPIO19, likely changing their pin modes.

Listing 6-9 provides a C code example that sets up GPIO17 as an output and
flashes an LED very quickly (at ~1.18 MHz). It also sets up GPIO27 as an input,
so that the LED will continue to flash until a pushbutton is pressed. The com-
ments in the code listing describe the bit manipulations that are used.

Listing 6-9: /chp06/memoryGPIO/LEDflash.c

#include <stdio.h>

#include <stdlib.h>

#include <fentl.hs>

#include <errno.h>

#include <sys/mman.h>

#include <stdint.h> // for uint32 t - 32-bit unsigned integer

// GPIO_BASE is 0x20000000 on RPi models other than the RPi2/3

#define GPIO_BASE 0x3F200000 // on the RPi2/3

#define GPSETO 0xlc // from Figure 6-14

#define GPCLRO 0x28

#define GPLVLO 0x34

static volatile uint32_t *gpio; // pointer to the gpio (*int)

int main()

250 Partll = Interfacing, Controlling, and Communicating

int fd, x;
printf ("Start of GPIO memory-manipulation test program.\n");
if (getuid() !=0) {
printf ("You must run this program as root. Exiting.\n");
return -EPERM;
}
if ((f4 = open("/dev/mem", O RDWR | O SYNC)) < 0) {
printf ("Unable to open /dev/mem: %s\n", strerror (errno)) ;
return -EBUSY;
}
// get a pointer that points to the peripheral base for the GPIOs
gpio = (uint32_ t *) mmap (0, getpagesize(), PROT_READ|PROT WRITE,
MAP_SHARED, fd, GPIO_BASE) ;
if ((int32_t) gpio < 0) {
printf ("Memory mapping failed: %$s\n", strerror(errno));
return -EBUSY;
}
// Here the gpio pointer points to the GPIO peripheral base address.
// Set up the LED GPIO FSEL17 mode = 001 at addr GPFSEL1 (0004).
// Remember that adding one 32-bit value moves the addr by 4 bytes.
// Writing NOT 7 (i.e., ~111) clears bits 21, 22 and 23.
(gpio + 1) = ((gpio + 1) & ~(7 << 21) | (1 << 21));
// Set up the button GPIO FSEL27 mode = 000 at addr GPFSEL2 (0008).
// Both FSEL17 and FSEL27 are 21 bits in, but on different registers.

* (gpio + 2) = (*(gpio + 2) & ~(7 << 21) | (0 << 21));

// Writing the 000 is not necessary but is there for clarity.

do {
// Turn the LED on using bit 17 on the GPSETO0 register
* (gpio + (GPSET0/4)) = 1 << 17;

// usleep (10) ; // don't use as non-blocking - adds latency!

for (x=0;x<50;x++) {} // blocking delay hack using a simple loop
* (gpio + (GPCLRO/4)) = 1 << 17; // turn the LED off
for (x=0;x<49;x++) {} // delay hack -- balanced for while()

1

while ((* (gpio+ (GPLVL0/4)) &(1<<27))==0); // only true if bit 27 high

printf ("Button was pressed - end of example program.\n") ;

close (£4d) ;

return 0;

}

The program can be built and then executed using the sudo tool as follows,
where the output appears as in Figure 6-15, which will continue to be displayed
until the button is pressed.

pie@erpi ~/exploringrpi/chp06/memoryGPIO $ gcc LEDflash.c -o ledflash

pie@erpi ~/exploringrpi/chp06/memoryGPIO $ sudo ./ledflash

Start of GPIO memory-manipulation test program.
Button was pressed - end of example program.

Changing the Internal Resistor Configuration

Figure 6-5(b) illustrates the correct way to connect a pushbutton to GPIO4 as it
has a pull-up resistor configuration by default. It is remarked earlier that when

Chapter 6 = Interfacing to the Raspberry Pi Input/Outputs

251

this circuit is disconnected the GPIO state is high, because the pull-up resistor
“pulls up” the disconnected input to the 3.3V line. This can be observed using
sysfs (again, with no circuit connected to GP1O4):

pieerpi /sys/class/gpio $ echo 4 > export

pieerpi /sys/class/gpio $ cd gpio4

pieerpi /sys/class/gpio/gpio4 $ echo in > direction
pieerpi /sys/class/gpio/gpio4 $ cat value

1

Window | [¢f ZoomTime [Xy|AddXY [ulHistogram [£]FFT [E]Data [a, Measure [Cursor
Zoom # & § Measurements R
/DIV: M:500ns C1:1V g. dhadd 3 O

av Ch Name Vaue
s . 11841 MHz
3v W: 3 C1|Frequency Min 1.1821 MHz
c1 11872 MHz

1 low 2mv
C1 |Rise Time Avg. 9.95ns (3 sope)
C1 el Tme Ava 11,651 {4 slope)

s
s
s Frequency Max.
2v S |01 |Perod Avg 8445ns
§ (C1 |PosDuty Ava. 4997%
v S |C1 |Neg DutyAvg 5003 %
s [C1 |ovemhoot 5374 %
s [c1 [Hgh 323V
s
s
s

Figure 6-15: The output of the memory-mapped example in Listing 6-9

This GPIO can be adjusted to have a pull-down resistor enabled instead of the
pull-up resistor by changing the GPPUD (0094) register in Figure 6-14, where
0x00 = off (i.e,, disable), 0x01 = enable pull-down, and 0x02 = enable pull-up.
This value is then clocked to the correct output using the GPPUDCLKO (0098)
register—i.e., by setting and removing the clock bit for the specific GPIO. GPIO4
is bit 4, which is 10000 in binary (0x10,,). So, to set the GPIO to have a pull-down
resistor enabled, first set the GPPUD (0094) register to pull-down mode on the
RPi2/3 (use 0x2000 0094 for other RPi models):

pieerpi /sys/class/gpio/gpio4 $ sudo ~/devmem2 0x3F200094 w 0xO01

/dev/mem opened. Memory mapped at address 0x76ed3000.

Value at address 0x3F200094 (0x76ed3094): 0x2
Written 0x10; readback 0x0

Set bit 4 on the GPPUDCLKO register, clear the GPPUD register, and then
remove the clock control signal from GPPUDCLKO as follows:

pieerpi /sys/class/gpio/gpio4 $ sudo ~/devmem2 0x3F200098 w 0x10

pieerpi /sys/class/gpio/gpio4 $ sudo ~/devmem2 0x3F200094 w 0x00

pieerpi /sys/class/gpio/gpio4 $ sudo ~/devmem2 0x3F200098 w 0x00

This process applies the GPPUD register mode solely to GPIO4 because it is
the only GPIO identified in the GPPUDCLKO register.

252 Partll = Interfacing, Controlling, and Communicating

When the GPIO value is subsequently read (still with no circuit attached), it
returns a value of o, which indicates that a pull-down resistor is now enabled
on GPIO4, rather than the previous pull-up resistor:

pieerpi /sys/class/gpio/gpio4 $ cat value
0

To set this GPIO back to a pull-up configuration, use the following:

sudo ~/devmem2 0x3F200094 0x02

pieerpi /sys/class/gpio/gpio4d w
sudo ~/devmem2 0x3F200098 w 0x10
w
w

$
pieerpi /sys/class/gpio/gpiod $
pieerpi /sys/class/gpio/gpio4 $ sudo ~/devmem2 0x3F200094 0x00
pieerpi /sys/class/gpio/gpio4 $ sudo ~/devmem2 0x3F200098 0x00
pieerpi /sys/class/gpio/gpio4 $ cat value

1

WiringPi

WiringPi (www.wiringpi.com) is an extensive GPIO control library for the RPi
platform that is written and maintained by Gordon Henderson (@drogon). The
library function syntax is similar to that in the Arduino Wiring library, and it
is a popular choice among RPi users. The wiringPi library also has third-party
bindings for Python, Ruby, and Perl.

WiringPi utilizes the sysfs and memory-mapped techniques described thus
far in this chapter to create a highly efficient library and command set that
have been custom developed for the RPi platform. It is recommended that you
use this library for controlling the GPIOs on the RPi when fast GPIO switching
is required; however, be aware that this approach is largely specific to the RPi
platform and not to embedded Linux devices in general.

Installing wiringPi

To ensure that you install the latest version of wiringPi, clone its Git repository
and build the libraries directly on your RPj, as follows:

pi@erpi ~ $ git clone git://git.drogon.net/wiringPi

pieerpi ~ $ cd wiringPi/

pieerpi ~/wiringPi $ 1ls

build debian examples INSTALL pins VERSION
COPYING.LESSER devLib gpio People README.TXT wiringPi
pieerpi ~/wiringPi $./build

wiringPi Build script ...

pieerpi ~/wiringPi $ 1ls /usr/local/lib/

libwiringPiDev.so libwiringPi.so python2.7 python3.4
libwiringPiDev.so0.2.25 libwiringPi.so.2.25 python3.2 site ruby

The built libraries are automatically copied to the /usr/local/lib/ direc-
tory, and the C header files to /usr/local/include/, which are included by
gcc/g++ in the default library and include paths. If you are having difficulties

http://www.wiringpi.com
git://git.drogon.net/wiringPi

Chapter 6 = Interfacing to the Raspberry Pi Input/Outputs

253

in building wiringPi programs, add -1/usr/local/include/ -L/usr/local/
1ib/ as arguments to the gcc/g++ call.

The gpio Command

Installed as part of the wiringPi build, the gpio program is a very useful
command-line tool for accessing and controlling the GPIOs on the RPi. Figure 6-16
provides a summary of some of the commands that are available, along with
some example usage.

For historical reasons wiringPi tends use a different numbering scheme than
the physical pin number or GPIO number. These numbers are displayed in the
WPi column in Figure 6-11. However, many gpio commands can also accept
regular GPIO numbering by using a -g option. You can use the gpio command
to write Linux scripts to control the GPIOs. For example:

pieerpi ~ $ gpio -v

gpio version: 2.32

Copyright (c) 2012-2015 Gordon Henderson

Raspberry Pi Details:

Type: Pi 3, Revision: 02, Memory: 1024MB, Maker: Sony ...
pieerpi ~ $ gpio readall

+----- +----- Fommmm - +------ +---4--Pi 3--4---4------ - +----- +----- +
| BcM | wPi | Name | Mode | V |Physical| V | Mode | Name | wPi | BCM |
+----- +----- - +------ et e O +------ +----- +----- +
| | [3.3v] [T rllrz | | sv | | \
| 2] 8 | spbAa.1 | ALTO | 1 | 3 || 4 | | | sv | | |
| 3 | 9 | scnL.1 | ALTO | 1 | 5 || 6 | | | ov | | |
| 4 | 7 | GgpI0.7 | our | 0 | 7 || 8 | 1 | ALTS | TxD | 15 | 14 |..
Command Example Description
gpio read <pin= gpio read 2 Read a binary value from a WPi numbered pin. Use —g to use GPIO
numbers. Example reads button state.
gpio write <pin><value> gpioc write 0 1 Set a binary value on a WPi numbered pin. Example sets the LED on.
<value=iseither 1 or 0.
gpio mode <pin><mode> gpioc mode 1 pwm Example sets the h/w PWM outputs on (WPi pin 1, GPIO 18). <mode> is one
of in, cut, pwm, up, down, or tri.
gpio pwm <pin><value> gpie pwm 1 256 Seta PWM value on the PWM output pin.
gpio clock <pin> <freq> gpic mode 7 clock Sets up a clock signal (i.e., 50% duty cycie) on a pin with general purpose
gpic clock 7 2400000 nck capabilities. The signal is derived by dividing the 19.2 MHz clock, so
integer divisors of this frequency are optimum.
gpio readall gpic readall Reads all of the pins and prints a chart of their numbers, modes, and values.
gpio unexportall gpic unexportall Unexport all GPIO sysfs entries.
gpio export <gpio><mode> gpic export 4 input Exports a pin using the GPIO numbering. <mode=>is either in/input or
cut/output.
Epio exports gpic exports Lists all sysfs exported pins.
Epio unexport <gpio= gpic unexport 4 Unexport a pin using the GPIO numbering.
gpio edge <pin><mode> gpic edge 4 rising Enables the GPIO pin for edge interrupt triggering. <mode> is one of
rising, falling, both, ornone,
gpio wii <pin><mode> gpio wfi 2 both Wait on a state change, <mode>isone of rising, falling, orboth.
gpio pwm-bal gpic pwm-bal Set the PWM mode to be balanced.
gpio pwm-ms gpic pwm-ms Set the PWM mode to be mark-space.
Epio pwmr <range> gpic pwmr 512 Set the PWM range. <range= is not limited - typically less than 4,095.
gpio pwmc <divider> gpio pwme 10 Set the PWM clock divider. PWM frequency = 19.2MHz / (range = divider).

Figure 6-16: Some gpio command options

254 Partll = Interfacing, Controlling, and Communicating

To read the pushbutton input value on Pin 13 (GPIO27) from Figure 6-5(a)
using the gpio command, the WPi number is 2, therefore using either WPi
numbering or GPIO numbering gives consistent results:

pi@eerpi ~ $ gpio mode 2 in
pieerpi ~ $ gpio read 2

0
pi@erpi
0
pieerpi ~ $ gpio read 2

1

pieerpi ~ $ gpio -g read 27
1

i

S gpio -g read 27

Not all gpio commands and library calls support the -g mode, so the follow-
ing description retains WPi numbering. To light the LED in Figure 6-2 (GPIO17,
Pin 11, WPi number 0) using the gpio command:

pi@erpi ~ $ gpio mode 0 out

pi@erpi ~ $ gpio write 0 1
pieerpi ~ $ gpio write 0 0

You can also wait for a rising or falling edge on the button press. The first
gpio wfi command below will not return control until the button is pressed,
and the second command awaits the button to be released:

pi@erpi ~ $ gpio wfi 2 rising
pieerpi ~ $ gpio wfi 2 falling

The PWM functionality listed in Figure 6-16 is described shortly.

Programming with wiringPi

WiringPi contains a comprehensive library of C functions for controlling RPi
GPIOs, regardless of the board model. Listing 6-10 provides a first wiringPi
program that displays information about the board that you are using. Again,
it is assumed for these examples that the board is connected to the LED and
Button circuits as illustrated in Figure 6-2 and Figure 6-5(a).

Listing 6-10: /chp06/wiringPi/info.cpp

#include <iostreams>
#include <wiringPi.h>
using namespace std;

#define LED GPIO 17 // this is GPIO17, Pin 11

#define BUTTON_GPIO 27 // this is GPIO27, Pin 13

int main() { // must be run as root
wiringPiSetupGpio() ; // use the GPIO numbering form
pinMode (LED_GPIO, OUTPUT) ; // the LED set up as an output

pinMode (BUTTON GPIO, INPUT) ; // the Button set up as an input

Chapter 6 = Interfacing to the Raspberry Pi Input/Outputs

255

int model, rev, mem, maker, overVolted;
piBoardId (&model, &rev, &mem, &maker, &overVolted) ;

cout << "This is an RPi: " << piModelNames [model] << endl;

cout << " with revision number: " << piRevisionNames [rev] << endl;
cout << " manufactured by: " << piMakerNames [maker] << endl;

cout << " it has: " << mem << " RAM and o/v: " << overVolted << endl;
cout << "Button GPIO has ALT mode: " << getAlt (BUTTON_GPIO) ;

cout << " and value: " << digitalRead(BUTTON_GPIO) << endl;

cout << "LED GPIO has ALT mode: " << getAlt (LED GPIO) ;

cout << " and value: " << digitalRead(LED_GPIO) << endl;

return 0;

}

This code can be built using g++ by linking to the wiringPi library (-1wiringPi
explicitly links to 1ibwiringPi.so, which is in the /usr/local/1ib/ directory).
The program must be executed using the sudo tool, because memory-mapping
operations require superuser access:

pieerpi ~/exploringrpi/chp06/wiringPi $ g++ info.cpp -o info -lwiringPi

pi@erpi ~/exploringrpi/chp06/wiringPi $ sudo ./info

This is an RPi: Model 2

with revision number: 1.1

manufactured by: Sony

it has: 1024 RAM and o/v: 68956
Button GPIO has ALT mode: 0 and value: 0
LED GPIO has ALT mode: 1 and value: 1

Figure 6-17 provides a summary of the C functions that are available in
the wiringPi library. The examples that follow describe how you can utilize
these wiringPi functions effectively in your own input/output applications.

Toggling an LED Using wiringPi

Listing 6-11 provides a code example for toggling a GPIO at a frequency of
~1.1MHz on the RPi2. This is much faster than what is possible using the sysfs
approach, and clearly the LED toggle is not visible to humans! However, it is a
useful wiringPi performance test. Results are displayed in Figure 6-18(a).

Listing 6-11: /chp06/wiringPi/fasttoggle.cpp

// Do not optimize this code using -03 as it will remove the delay hack
#include <wiringPi.h>
#include <iostream>

using namespace std;

#define LED_GPIO 17 // this is GPIO17, Pin 11
int main() {
wiringPiSetupGpio () ; // use GPIO, not WPi, labels

cout << "Starting fast GPIO toggle on GPIO" << LED_GPIO << endl;
cout << "Press CTRL+C to quit..." << endl;
pinMode (LED_GPIO, OUTPUT) ; // GPIOl7 is an output pin

256

Part Il = Interfacing, Controlling, and Communicating

while (1) { // loop forever - await “C press
digitalWrite (LED_GPIO, HIGH); // LED on
for (int i=0; i<50; i++) { } // blocking delay hack
digitalWrite (LED_GPIO, LOW) ; // LED off
for (int i=0; i<49; i++) { } // shorter delay to balance
} // the duty cycle somewhat
return 0; // program will never reach here!
}
Return Function Call Description
Setup
int wiringPiSetup (void) Initializes wiringPi, Must be used with root privileges, Returns 0if successful,
int wiringPiSetupGpio (void) ﬂ Same as above. Uses GPIO rather than WPi numbers. Must use root privileges.
int wiringPiSetupsSys (void) LEE One Uses sysfs. Root not required if udev rules in place (see end of chapter). You must
manually export pins. Slower, as memory-mapping does not work.
int wiringPiSetupPhys (void) Uses the physical pin numbering on the RPI.
int piBoardRev (void) Returns the board version (0=n/a, 1=A, 2=B, 3=B+, 4=compute, 5= A+, 6=RPi 2)
GPIO Control
void pinMede (int pin, int mode) Sets the pin to be one of INFUT, OUTPUT, or PWM_OUTPUT {on the hardware
PWM pins only). Not available if wiringPiSetupsys () is used.
int getAlt(int pin) Get the ALT mode for a pin.
vaid pinMedeAlt (int pin, int mode) Set the ALT mode for a pin.
void digitalWrite(int pin, int value) Sets the pin to be one of HIGH (1) or LoW (0). The pin mode must be OUTPUT.
void digitalWriteByte (int valua) Fast parallel write of 8 bits to the first eight GPIO pins.
int digitalRead(int pin) Returns the input on a pin and retumns either HIGH (1) or LoW (0).
void pullUpDnContrel (int pin, int pud) Sets the pull-up or pull-down resistor type to be one of PUD_OFF (none), EUD_UE
{pull up), or PUD_DOWN (pull down). Not available in sysfs mode.
RN ah T . : Ladiah : . :
void pwoWrite (int pin, int value) Sets the PWM output for a h/w PWM pin. Not available in sysfs mode.
void pwmSetMode (int mode) RPi PWM has two modes P _MODE BAL (balanced) or EWM_MODE_MS (mark-
space ratio). MS mode is most commonly used, BAL affects PWM frequency.
void pwnSetRange (unsigned int range) Sets the PWM range register. Valid values 2-4,095. Range and divisor affect
frequency.
vold pwmSetClock (int divisor) Sets the PWM clock divisor. PWM frequency = 19.2MHz / (divisor = range)
void pwmToneWrite (int pin, int freq) Set the frequency using the hardware PWM pin.
void gpioClockSet(int pin, int freq) Sets the frequency on a GPIO clock pin,
oterniges
int waitForInterrupt (int pin,int timeout) Waits foraninterrupt. Timeout is setin mswhere -1is none. You must initialize the
pin from outside the program, or using system () and the gpic command.
int wiringPiISR(int pin, int edgeType, Set a callback function (I5R) to be called on an interrupt event, which is one of
void (*function) (void)): INT EDGE FALLING, INT_EDGE_RISING, INT EDGE_BOTH, or
INT_EDGE_SETUE.
int PAHAPri (int prierity) Sets the priority of the program (0 to 99) allowing for a reduction in latency. Must
be run as root. Returns Ofor success and -1 otherwise.
int wpiPinToGpio (int wPiPin) Converts WPi numbers into GPIO numbers,
int physPinToGpio (int physPin) Co physical pin bers to GPIC L
uint32 t millis(void) Returns the number of milliseconds since a setup function was called.
uint32 t micros(void) Returns the number of microseconds since a setup function was called.
void delay (unsigned int t ms) Delays for t_ms milliseconds, Delay is non-blocking and will exhibit latency.
void delayMicroseconds (unsigned int t us) Delays for a number of microseconds.
Table information gleaned from wiringPi.hand wiringPi. c, which are distributed in the /wiringPi/ directory of the wiringPi repository.

Figure 6-17: Summary of the wiringPi API

On the RPi2/3, this program utilizes 100% of one core and significant portions
of other cores for kernel tasks (such as kworker and ksoftirgd). The for loop
is used in place of a sleep call, because it is a simple hack to retain processor
control; the usual usleep () alternative is nonblocking and will result in a much
larger delay than you might anticipate. This is because the kernel may allocate
the core to other tasks, which also results in signal jitter.

Chapter 6 = Interfacing to the Raspberry Pi Input/Outputs 257

(@) (b)

Windaw B Zoom Time [(RgAdd Y (3] et IR K Windew B ZoomTime Sy AddXY [Metogam EHEFT [CiDats i Messre [
S h Harm Vi o s — -
DV M:lus C2 1V $ |G |Froquency .| 10K NH: DN M-250s C1AV C21V
: [——TTTTY button press voltage (GPIO27}
av B 5 Penod fug TR g i i
Pos Duty Awp | 5052%
ey Duty Awg. | £34E%

Figure 6-18: Performance of the wiringPi C code (a) the fastToggle example, and (b) the
buttonLED example

Button Press—LED Response

Listing 6-12 registers an interrupt service routine (ISR) callback function to light
the LED once and to count the number of times that the button is pressed. The
wiringPiIsR () function is used to register the callback function with the inter-
rupt, which is triggered on the rising edge of the button circuit input signal.
The 1ightLED () function is called whenever the button is pressed (rising edge),
but not when it is released (falling edge).

Listing 6-12: /chp06/wiringPi/buttonLED.cpp

#include <iostream>
#include <wiringPi.h>
#include <unistd.h>
using namespace std;

#define LED GPIO 17 // this is GPIO17, Pin 11
#define BUTTON_GPIO 27 // this is GPIO27, Pin 13

// the Interrupt Service Routine (ISR) to light the LED
void 1lightLED (void) ({

static int x = 1; // store number of times pressed. Use static
// to retain the state on multiple calls
digitalWrite (LED_GPIO, HIGH) ; // turn the LED on

cout << "Button pressed " << xX++ << " times! LED on" << endl;

int main() { // must be run as root
wiringPiSetupGpio () ; // use the GPIO numbering
pinMode (LED_GPIO, OUTPUT) ; // the LED
pinMode (BUTTON_GPIO, INPUT) ; // the Button
digitalWrite (LED_GPIO, LOW) ; // LED is off

cout << "Press the button on GPIO " << BUTTON _GPIO << endl;
// call the 1lightLED() ISR on the rising edge (i.e., button press)
wiringPiISR(BUTTON_GPIO, INT_EDGE_RISING, &1ightLED) ;

258

Part Il = Interfacing, Controlling, and Communicating

for (int i=10; i>0; i--) { // countdown to program end
cout << "You have " << i1 << " seconds remaining..." << endl;
sleep (1) ; // sleep for 1 second

return 0; // program ends after 10s

}

An example output from this code is displayed below. You can see that the
button was pressed soon after the counter started, but that the counter contin-
ues to count in parallel. Repeated presses of the button increment the counter
and result in multiple messages appearing; however, the LED simply remains
lit until the program is restarted. The program ends after 10 seconds; the ISR is
no longer active at that point:

pieerpi ~/exploringrpi/chp06/wiringPi $ sudo ./buttonLED

Press the button on GPIO 27

You have 10 seconds remaining...

You have 9 seconds remaining...

Button pressed 1 times! LED on

Button pressed 2 times! LED on
You have 8 seconds remaining...

The response time of this circuit is displayed in Figure 6-18(b) and it is impres-
sive for a Linux userspace program. The LED lights ~87 us after the button is
pressed, which is faster than the previous sys/po11.h code.

One difficulty with this example is that it is prone to switch bounce. Chapter 4
describes several hardware solutions to overcoming switch bounce using RC
circuits and Schmitt triggers, but we can also use software techniques. The
1ightLED () ISR can be modified to include timing code as in Listing 6-13, which
ensures that the duration between button presses exceeds a time period (e.g.,
200 ms) before registering subsequent presses as valid.

Listing 6-13: /chp06/wiringPi/buttonLEDdebounced.cpp (segment)
#define DEBOUNCE_TIME 200 // debounce time in ms

// the interrupt service routine (ISR) to light the LED - debounced
void 1ightLED (void) {
static unsigned long lastISRTime = 0, x = 1;
unsigned long currentISRTime = millis();
if (currentISRTime - lastISRTime > DEBOUNCE_TIME) {
digitalWrite (LED _GPIO, HIGH); // turn the LED on
cout << "Button pressed " << X++ << " times! LED on" << endl;

}

lastISRTime = currentISRTime;

Chapter 6 = Interfacing to the Raspberry Pi Input/Outputs

259

PYTHON AND WIRINGPI

A binding has been developed by Phil Howard (@Gadgetoid) for wiringPi so that
you can use it within Python scripts. The package can be installed in Python2 and
Python3, respectively, as follows:

pi@erpi ~ $ sudo apt install python-dev python-pip
pi@erpi ~ $ sudo pip install wiringpi2
Downloading/unpacking wiringpi2

pieerpi ~ $ sudo apt install python3-dev python3-pip
pi@erpi ~ $ sudo pip3 install wiringpi2

Downloading/unpacking wiringpi2

You can then execute Python with superuser privileges to test that wiringPi is work-
ing correctly. The following test controls an LED on GPIO17 (as wired in Figure 6-2) and
a pushbutton on GPIO27 (as wired in Figure 6-5(a)):

pieerpi ~ $ sudo python3

Python 3.4.2 (default, Oct 19 2014, 13:31:11)
>>> import wiringpi2

>>> wiringpi2.piBoardRev ()

2

>>> wiringpi2.wiringPiSetupGpio ()

>>> wiringpi2.pinMode (17,1)

>>> wiringpi2.digitalWrite(17,1)
>>> wiringpi2.digitalWrite(17,0)
>>> wiringpi2.pinMode (27,0)

>>> wiringpi2.digitalRead (27)

>>> wiringpi2.digitalRead (27)
1

A Python3 program can be developed using these steps that flashes the LED at 5 Hz
until the button is pressed (see /python/ledflash.py):

pieerpi ~/exploringrpi/chp06/python $ more ledflash.py
#!/usr/bin/python3

import wiringpi2 as wpi

from time import sleep

print ("Starting the Python wiringPi example")
wpi.wiringPiSetupGpio ()

wpi.pinMode (17,1)

wpi.pinMode (27, 0)

while wpi.digitalRead(27)==0:

Continues

260

Part Il = Interfacing, Controlling, and Communicating

PYTHON AND WIRINGPI (continued)

wpi.digitalWrite (17,1)
sleep(0.1)
wpi.digitalWrite (17,0)
sleep(0.1)
print ("Button pressed: end of example")

pieerpi ~/exploringrpi/chp06/python $ chmod ugo+x ledflash.py
pieerpi ~/exploringrpi/chp06/python $ sudo ./ledflash.py
Starting the Python wiringPi example

Button pressed: end of example

Once in a while, you might experience unexplainable problems in the behav-
ior of a program that utilizes the RPi GPIOs. If your initial tests do not resolve the prob-
lem, reboot the board before further testing. The GPIO registers retain state between
GPIO application executions, and it is possible that a previous application GPIO state is
interfering with your program.

Communicating to One-Wire Sensors

The Aosong family of temperature and humidity sensors* (AM2301, AM2302,
and DHT11) can digitally communicate with the RPi using a single GPIO. The
GPIO can be set high and low with respect to time to send data bits to the sensor
to initiate communication. The same GPIO can then be sampled over time to
read the sensor’s response. The consistency of the sample time is vital for this
application, because the data response is 40 bits long and takes less than 4.3 ms
to transfer. Therefore, memory-mapped wiringPi code is used.

Figure 6-19 illustrates how you can connect one of these sensors to the RPi
using an arbitrary GPIO pin (e.g., GPIO22). The datasheet for the AM230x sen-
sors recommend that the DATA line is connected to V- using a strong pull-up
resistor, and that a 100nF decoupling capacitor is used between V- and GND.
Using this configuration, the RPi or the sensor can safely pull the voltage level
to GND to communicate bi-directionally.

Communication takes place when the RPi pulls the GPIO low for 18 ms and
then releases the line high for a further 20-40us. The GPIO switches to read
mode and ignores the 80 us low level and the 80 us high pulse that follows. The
sensor then returns 5 bytes of data (i.e., 40-bits) in most-significant bit (MSB)
first form, where the first 2 bytes represent the humidity value, the following 2
bytes represent the temperature, and the final byte is a parity-sum, which can be

4 Datasheets: DHT11 tiny.cc/erpi605 and DHT22(AM2301/2) tiny.cc/erpi606

Chapter 6 = Interfacing to the Raspberry Pi Input/Outputs

261

used to verify that the received data is valid (it is the 8-bit bounded sum of the
preceding 4 bytes). The bits are sent by varying the duration of high pulses. A
high for 26 us—28 pis signifies a binary 0, and a high for 70 us signifies a binary 1.

The top of Figure 6-19 illustrates an actual oscilloscope data capture and
worked calculations to explain the process for the AM2301/AM2302 sensors.
The DHT11 only sends an MSB for the humidity and the temperature values
and therefore does not have fractional precision.

0x0100 = 464, /10, = 46.4% RH Ox00F7 = 247, /10, = 24.7°C

Humidity (MSB) Humidity (L58) | Temperature (MSB)

Temperature {LSB) Checksume="""]
Window | | Zeom] F7 . OxCE
ol |
IO MO C101V

O55m Ofms 106w 1 ims 1'55-Lu- 205w 23me 266 28me 106m dme AG5ms Afma D6 n.!

5 Checksum calculation: ’

Need to ignare . iftemperature MSB=1" Asong AM201
I i : i 0x01
these first two pulses © then value is negative mI’;F;;:IT‘::;:';?SDC | :ggg ggg; :n:nu;

 lgnore

lemy 0000 0000 (000}

+ 1111 0111 (0x57)

& 1100 1000 (DxCd)
=0xC8

DHT22/AM2302
Typical accuracy:

AH 2% Temp +0.5°C
L DHTI

Typical accuracy:
RH £4% Temp £1°C

4
Vellow = DATA (sensors to scale) |1

Figure 6-19: Using a one-wire sensor with the RPi and wiringPi (waveform for the AM2301/2302)

Listing 6-14 is a C++ program that can be used to communicate to the AM230x/
DHT family of sensors using the wiringPi library. Note that the count variable
represents ~2 us increments and the LH_THRESHOLD value can be used to adjust
the pulse width timing distinction between a 0 and 1.

Listing 6-14: /chp06/dht/dht.cpp

#include<iostreams
#include<unistd.h>
#include<wiringPi.h>
#include<iomanip>
using namespace std;

#define USING DHT11 true // The DHT11l uses only 8 bits
#define DHT GPIO 22 // Using GPIO 22 for this example

262 Partll = Interfacing, Controlling, and Communicating

#define LH_ THRESHOLD 26 // Low=~14, High=~38 - pick avg.

int main()
int humid = 0, temp = 0;
cout << "Starting the one-wire sensor program" << endl;

wiringPiSetupGpio() ;

piHiPri (99) ; // Use a high priority to help timing code
TRYAGAIN: // If checksum fails (come back here)

unsigned char data([5] = {0,0,0,0,0};

pinMode (DHT_GPIO, OUTPUT) ; // gpio starts as output

digitalWrite (DHT GPIO, LOW) ; // pull the line low

usleep(18000) ; // wait for 18ms

digitalWrite (DHT GPIO, HIGH); // set the line high

pinMode (DHT _GPIO, INPUT) ; // now gpio is an input

// need to ignore the first and second high after going low

do { delayMicroseconds(1l); } while(digitalRead (DHT_ GPIO)==HIGH) ;
do { delayMicroseconds(1l); } while(digitalRead (DHT_ GPIO)==LOW) ;
do { delayMicroseconds(1l); } while(digitalRead (DHT GPIO)==HIGH) ;

// Remember the highs, ignore the lows -- a good philosophy!
for (int d=0; d<5; d++) { // for each data byte
// read 8 bits
for (int i=0; i<8; i++) { // for each bit of data
do { delayMicroseconds(1l); } while(digitalRead (DHT GPIO)==LOW) ;
int width = 0; // measure width of each high
do {
width++;
delayMicroseconds (1) ;
if (width>1000) break; // missed a pulse -- data invalid!
} while(digitalRead (DHT GPIO)==HIGH) ; // time it!
// shift in the data, msb first if width > the threshold
data[d] = datald] | ((width > LH_THRESHOLD) << (7-1i));
}
1
if (USING DHT11) {
humid = datal[0] * 10; // one byte - no fractional part
temp = datal[2] * 10; // multiplying to keep code concise
1
else { // for DHT22 (AM2302/AM2301)
humid = (datal[0]<<8 | datall]); // shift MSBs 8 bits left and OR LSBs
temp = (datal[2]<<8 \ datal[3]) ; // same again for temperature
1
unsigned char chk = 0; // the checksum will overflow automatically

for (int i=0; i<4; i++){ chk+= datalil; }

if (chk==data[4]) {
cout << "The checksum is good" << endl;
cout << "The temperature is " << (float)temp/10 << "°C" << endl;
cout << "The humidity is " << (float)humid/10 << "%" << endl;

}

else {

Chapter 6 = Interfacing to the Raspberry Pi Input/Outputs

263

cout << "Checksum bad - data error - trying again!" << endl;

usleep (2000000) ; // have to delay for 1-2 seconds between readings
goto TRYAGAIN; // a GOTO!!! call yourself a C/C++ programmer!

}

return 0;

}

Set USING_DHT11 to be false if you are using a DHT22 (AM2301/AM2302)
sensor and execute it as follows:

pieerpi ~/exploringrpi/chp06/dht $ g++ dht.cpp -o dht -lwiringPi

pieerpi ~/exploringrpi/chp06/dht $ sudo ./dht

Starting the one-wire sensor program

Checksum is good

The temperature is 24.1°C

The humidity is 47.7%

You will not see a fractional output if you are using the DHT11. The Celsius
value can be converted to Fahrenheit by multiplying it by 1.8 and then adding
32 (i.e., 24.1°C = 75°F).

The importance of this example is that you can use the same sampling-over-
time approach for other one-wire sensors.

PWM and General-Purpose Clocks

The RPi has useful ALT modes for many of its GPIO header pins, as illustrated
in Figure 6-11. Several of these ALT modes are described in Chapter 8, but this
discussion focuses on the PWM and GPCLK entries.

Pulse-Width Modulation (PWM)

The RPi has pulse-width modulation (PWM) capabilities that can provide digital-
to-analog conversion (DAC), or generate control signals for motors and certain
types of servos. The number of PWM outputs is very limited on the RPi boards.
All RPi models have one PWM (PWMO) output at Pin 12 (GPIO18). On the RPi2/3
and RPiB+/A+ there is a second PWM (PWM]1) output on Pin 33 (GPIO13).

It is possible to use software PWM on the other GPIO pins by toggling the
GPIO, but this approach has a high CPU cost and is only suitable for low-
frequency PWM signals. Chapter 9 describes circuitry that can be used to add
16-992 hardware PWMs to each I°C bus!

The PWM device on the RPi is clocked at a fixed base-clock frequency of
19.2MHz, and therefore integer divisor and range values are used to tailor the
PWM frequency for your application according to the following expression:

PWM frequency = 19.2MHz / (divisor X range),

264

Part Il = Interfacing, Controlling, and Communicating

where the range is subsequently used to adjust the duty cycle of the PWM signal;
be careful, though, because a low range value results in poor duty-cycle resolu-
tion. RPi PWMs share the same frequency but have independent duty cycles.

The default PWM mode of operation on the RPi is to use balanced PWM (see
the MSEN mode in Section 9.4 in the BCM2835 ARM Peripherals manual). Balanced
PWM means that the frequency will change as the duty cycle is adjusted, there-
fore to control the frequency you need to use the call pwmSetMode (PWM_MODE_MS)
to change the mode to mark-space.®

Listing 6-15 provides a first PWM example. It uses both PWMs on the RPi2/3
to generate two signals with different duty cycles. If you want to use this code
on older RPi models, remove all references to PWMI.

Listing 6-15: /chp06/wiringPi/pwm.cpp

#include <iostream>
#include <wiringPi.hs>

using namespace std;

#define PWMO 12 // this is physical Pin 12

#define PWM1 33 // only on the RPi B+/A+/2/3

int main() { // must be run as root
wiringPiSetupPhys () ; // use the physical pin numbers
pinMode (PWM0O, PWM_OUTPUT) ; // use the RPi PWM output
pinMode (PWM1, PWM_OUTPUT) ; // only on recent RPis

// Setting PWM frequency to be 10kHz with a full range of 128 steps
// PWM frequency = 19.2 MHz / (divisor * range)
// 10000 = 19200000 / (divisor * 128) => divisor = 15.0 = 15

pwmSetMode (PWM_MODE MS) ; // use a fixed frequency
pwmSetRange (128) ; // range is 0-128

pwmSetClock (15) ; // gives a precise 10kHz signal
cout << "The PWM Output is enabled" << endl;

pwmWrite (PWMO, 32); // duty cycle of 25% (32/128)
pwmWrite (PWM1, 64); // duty cycle of 50% (64/128)
return 0; // PWM output stays on after exit

}

Figure 6-20(a) shows the output results. The base frequency of 19.2 MHz is
divided by 15 and a range value of 128, giving a PWM frequency of 10kHz. At
a PWM value of 32 (i.e,, 32/128) the signal has a duty cycle of 25% and at 64 it
has a duty cycle of 50%. These values are verified in the measurement table that
is displayed in Figure 6-20(a).

5 The mark represents the time duration that the PWM waveform is high and the space repre-
sents the time duration that the waveform is low. A duty cycle of 50% has a mark-space ratio of
1/1=1. A duty cycle of 20% has a mark-space ratio of 1/4 = 0.25.

Chapter 6 = Interfacing to the Raspberry Pi Input/Outputs

265

(a)

Window B ZoomTime Fadd¥v [EHistognm = O b &

Zzom g
D M:100us C1-1V C2-1V okl

5 €1 Freasny bep | 10D002KHE

o Hame Vakie
5 |01 | Frecusncy Mn | 10Kk

PWM Application—Fading an LED

Figure 6-20(b) illustrates a circuit that uses a PWM output to control the brightness
of an LED. LEDs are current-controlled devices, so PWM is typically employed
to provide brightness-level control. This is achieved by flashing the LED faster
than can be perceived by a human, where the amount of time that the LED
remains on, versus off (i.e., the duty cycle) affects the human-perceived bright-
ness level. Listing 6-16 provides a code example for slowly fading an LED on
and off using PWM until a pushbutton is pressed. This example employs an
ISR on the button press to ensure that the program ends gracefully, having
completed a full fade cycle.

N[O ll3 Instead of fading an LED in and out, you could use PWM to visibly flash an
LED with minimal CPU overhead. For example, to flash an LED with a precise 10 Hz fre-
quency and a 50% duty cycle (clock divisor = 1920, range = 1000):

pi@erpi ~ $ gpio mode 1 pwm
pi@erpi ~ $ gpio pwm-ms
pi@erpi ~ $ gpio pwmc 1920
pieerpi ~ $ gpio pwmr 1000
pieerpi ~ $ gpio pwm 1 500

Listing 6-16: /chp06/wiringPi/fadeLED.cpp

#include <iostream>
#include <wiringPi.h>
#include <unistd.h>

266 Partll = Interfacing, Controlling, and Communicating

using namespace std;

#define PWM_LED 18 // this is PWMO, Pin 12

#define BUTTON_GPIO 27 // this is GPIO27, Pin 13

bool running = true; // fade in/out until button pressed

void buttonPress (void) { // ISR on button press - not debounced
cout << "Button was pressed -- start graceful end." << endl;
running = false; // the while() loop should end soon

1

int main() { // must be run as root
wiringPiSetupGpio () ; // use the GPIO numbering
pinMOde(PWM_LED, PWM_OUTPUT); // the PWM LED - PWMO
pinMode (BUTTON GPIO, INPUT); // the button input

wiringPiISR (BUTTON_GPIO, INT_ EDGE_RISING, &buttonPress);

cout << "Fading the LED in/out until the button is pressed" << endl;
while (running) {
for (int i=1; i<=1023; i++) // Fade fully on
pwmWrite (PWM_LED, 1i);
usleep (1000) ;

}

for (int i=1022; i>=0; i--) { // Fade fully off
pwmWrite (PWM_LED, 1i);
usleep (1000) ;

}

cout << "LED Off: Program has finished gracefully!" << endl;
return 0;

PWM Application—Controlling a Servo Motor

Servo motors consist of a DC motor that is attached to a potentiometer and a
control circuit. The position of the motor shaft can be controlled by sending
a PWM signal to the controller.

The Hitec HS5-422 is a low-cost (less than $10), good quality, and widely avail-
able servo motor that can be supplied using the RPi 5V supply. It is rated to rotate
+45° from the center. It can rotate in the range +90°, but the potentiometer does
not behave in a perfectly linear way outside of the +45° range. According to its
datasheet, the HS-422 expects a pulse every 20m:s (i.e., 50 Hz) that has duration
from 1100 us (to set the position to —45° from the center position) to 1900 us (to
set the position to +45° from the center position). The center position can be set
by passing a pulse of 1500 ps in duration.

Figure 6-21 illustrates the connections and timings for the servo motor that
enables it to rotate from —90° using a pulse of 570 us to +90° using a pulse of
2350 ps. These values and the center point of 1460 us were manually calibrated,
and will vary for each individual servo motor.

Chapter 6 = Interfacing to the Raspberry Pi Input/Outputs 267
1460us:0°
Hmdem 8 ZoomTime Braddiy (@ =1 03 B % Riincdow B ZoomTeme [addyy G 2 O B &
SIDSHHZIQ-- crav .1516':"2“1:“- craw
s 805 g
" o L‘_ v —
570ps I2350u5

{«) x

b,

PWMO) 11.75% duty cycle = 118/1000

Figure 6-21: Controlling a servo motor using PWM, positioning from -90° to +90° using different

pulse widths

The servo motor has three leads: black, red, and yellow. The black lead is
connected to the RPi GND (Pin 20); the red lead is connected to the RPi 5V
(Pin 2) supply; and the yellow lead is connected via a 1k() resistor to the RPi
PWMO output (Pin 12). The 1k resistor limits the current sourced from Pin
12 to about 0.01 mA. C++ code to sweep the servo motor back and forth until a
button is pressed is available in Listing 6-17.

CONTROLLING THE SERVO MOTOR USING THE GPIO COMMAND

You can also use the gpio command to control the PWM pins. For example, to set up a
50Hz signal on PWMO Pin 12 (WPi Pin 1):

pi@erpi ~ $ gpio mode 1 pwm

pieerpi ~ $ gpio pwm-ms

pieerpi ~ $ gpio pwmc 384

pieerpi ~ $ gpio pwmr 1000

And to control the servo motor in Figure 6-21 using the calculations therein to
rotate the servo arm to —90° (29) and then to +90° (118), do the following:

pieerpi ~ $ gpio pwm 1 29

pieerpi ~ $ gpio pwm 1 118

Listing 6-17: /chp06/wiringPi/servo.cpp

#include <iostream>
#include <wiringPi.h>
#include <unistd.h>
using namespace std;

#define PWM_SERVO 18
#define BUTTON_GPIO 27
#define LEFT 29
#define RIGHT 118

/!
//
//
//

this is PWMO, Pin 12

this is GPIO27, Pin 13
manually calibrated values
for the left, right and

268 Partll = Interfacing, Controlling, and Communicating

#define CENTER 73 // center servo positions

bool sweeping = true; // sweep servo until button pressed

void buttonPress (void) { // ISR on button press - not debounced
cout << "Button was pressed -- finishing sweep." << endl;
sweeping = false; // the while() loop should end soon

}

int main() { // must be run as root
wiringPiSetupGpio() ; // use the GPIO numbering
pinMode (PWM_SERVO, PWM_OUTPUT) ; // the PWM servo
pinMode (BUTTON_GPIO, INPUT) ; // the button input
wiringPiISR(BUTTON_GPIO, INT_EDGE_RISING, &buttonPress) ;
pwmSetMode (PWM_MODE_MS) ; // use a fixed frequency
pwmSetRange (1000) ; // 1000 steps
pwmSetClock (384) ; // gives 50Hz precisely

cout << "Sweeping the servo until the button is pressed" << endl;
while (sweeping) {
for (int i1=LEFT; i1<RIGHT; i++) { // rotate to right
pwmWrite (PWM_SERVO, 1);
usleep(10000) ;

}

for (int i=RIGHT; 1i>=LEFT; i--) { // rotate to left
pwmWrite (PWM_SERVO, 1);
usleep(10000) ;

}

pwmWrite (PWM_SERVO, CENTER) ; // rotate to center
cout << "Program has finished gracefully - servo centred" << endl;
return 0;

General-Purpose Clock Signals

WiringPi provides support for the generation of clock signals on the general
purpose clock outputs. GPCLKO (Pin 7 and Pin 38) is available on all RPi mod-
els, but GPCLK1 (Pin 29 and Pin 40) and GPCLK2 (Pin 31) are available as in
Figure 6-11. GPCLK1 should not be used because it is reserved for internal®
use. Listing 6-18 provides a short code example that generates a 4.8 MHz clock
signal. Figure 6-22 displays an oscilloscope capture of the RPi2 generating two
clock signals simultaneously (a negative DC bias is introduced on the scope for
clarity). This capture is at the limit of the capability of the Analog Discovery
oscilloscope, which helps explain the “ringing” effects.

Listing 6-18: /chp06/wiringPi/clock.cpp

#include <iostreams>
#include <wiringPi.h>

® This use appears to involve Ethernet, because GPCLK1 works, but using it instantly termi-
nates your SSH session!

Chapter 6

Interfacing to the Raspberry Pi Input/Outputs

269

using namespace std;

#define GPCLKO 4 //
#define GPCLK1 5 //
#define GPCLK2 6 //
int main() //
wiringPiSetupGpio () ; //
pinMode (GPCLKO, GPIO CLOCK) ; //

gpioClockSet (GPCLKO, 4800000) ; //
cout << "The clock output is enabled
return 0; //

this is Pin 7 GPIO4

Pin 29, GPIO5 -- do not use
Pin 31, GPIO6 -- RPi A+,B+,2/3
must be run as root

use the GPIO numbers

set up the clock from 19.2MHz base
output a clean 4.8MHz clock on GPCLKO
on GPIO" << GPCLKO << endl;

clock persists after exit

Window

Zoom

/DI M-500ms C1:2V C2:2V
gy B

Ti

2V GPCLKO {1.2MHz)

Aresiin i

nhh
v [GPCLK2 (4.8MHz)
oy \J_ L

(%] Tua

05m Dus 05us ™

| B ZoomTime [SpAddxY [u|Histogram [<FFT [[Data [h Measure [Cursor =

FEE GPCLKO (1.2MHz)
op- 150

Window Show Cwner
135V
12v
106V
0sv
075V
oev
045V
o3V
016V

ov

OMHz 40MHz 50MHa

10 MHz 20 MHz 30 MHz

Figure 6-22: The RPi2 generating 1.2 MHz and 4.8 MHz clock signals simultaneously (FFT also

displayed)

HIGH-FREQUENCY CLOCK SIGNALS (ADVANCED)

The pigpio Clibrary (abyz.co.uk/rpi/pigpio/) minimal clock access code can

be used to set Pin 7 to output a clock frequency of between 4.687 kHz and 500 MHz!
The clock can be set to choose different internal clock sources. For example, to output
a clock frequency of 10 MHz on GPCLKO (Pin 7) using the PLLD (see Section 6.3 of the

BCM2835 ARM Peripherals manual):

pieerpi ~ $ wget abyz.co.uk/rpi/pigpio/pigpio.zip

~/exploringrpi/chp06/minimal clk $ gcc minimal clk.c -o minimal clk

pi@erpi ~ $ unzip pigpio.zip

pieerpi ~ $ cd PIGPIO/

pieerpi ~/PIGPIO $ make

pieerpi ~/PIGPIO $ sudo make install
pieerpi

pieerpi ~/exploringrpi/chp06/minimal clk $ sudo ./minimal clk 10.0m
PLLD: 50 0 10.00 MHz

OSC: 1 3768 ILLEGAL

HDMI : 21 2457 10.29 MHz

PLLC: 100 0 10.00 MHz

Using PLLD (I=50 F=0 MASH=0)

Press return to exit and disable clock...

270

Part Il = Interfacing, Controlling, and Communicating

GPIOs and Permissions

Throughout this chapter, all programs that interface to the GPIOs are executed
without using sudo. This is not the default behavior under Linux, rather GPIOs
are usually only accessible to the superuser. Raspbian has been carefully config-
ured so that GPIO sysfs entries belong to the gpio user group. You can see that
this is the case, and that the pi user is a member of the gpio group as follows:

pieerpi /sys/class/gpio $ 1ls -1

total 0

-rwxrwx--- 1 root gpio 4096 Jul 7 01:17 export
lrwxrwxrwx 1 root gpio 0 Jul 7 01:17 gpiochip0 -> ...
-rwXrwx--- 1 root gpio 4096 Jul 7 01:17 unexport

pieerpi /sys/class/gpio $ groups
pi adm dialout ... gpio i2c spi input

This is a very useful feature of Raspbian, because it prevents you from having
to run applications as the superuser, where a coding mistake could damage your
file system. This capability is actually an advanced feature of mainline Linux
called udev rules that enables you to customize the behavior of the udevd service.

Writing udev Rules

Udev rules provide you with some userspace control over devices on the RPj,
such as renaming devices, changing permissions and executing a script when
a device is attached. The first step in understanding this capability is to find
out information about the /sys/class/gpio directory:

pi@erpi ~ $ udevadm info --path=/sys/class/gpio --attribute-walk

looking at device '/class/gpio':
KERNEL=="gpio"
SUBSYSTEM=="subsystem"
DRIVER==""

The udev rules are contained in files that are stored in the /etc/udev/rules.d
and /lib/udev/rules.d/ directories. The former is for custom rules and the
latter is typically used for general system rules. A rule file is a regular text
file that is given a name which is prefixed by a priority number; the lower the
number, the greater the priority of the rules file. The Raspbian configuration
uses the 99-com. rules file, which is provided in Listing 6-19. It has the lowest
available priority so that it does not interfere with other rules files in the /1ib/
udev/rules.d/ directory.

Listing 6-19: /etc/udev/rules.d/99-com.rules

SUBSYSTEM=="gpio*", PROGRAM="/bin/sh -c¢ 'chown -R root:gpio /sys/class/gpio
&& chmod -R 770 /sys/class/gpio; chown -R root:gpio /sys/devices/virtual/gpio

Chapter 6 = Interfacing to the Raspberry Pi Input/Outputs

271

&& chmod -R 770 /sys/devices/virtual/gpio'"

SUBSYSTEM=="input", GROUP="input", MODE="0660"
SUBSYSTEM=="1i2c-dev", GROUP="i2c", MODE="0660"
SUBSYSTEM=="spidev", GROUP="spi", MODE="0660"

Essentially, this rules file executes a single line script that uses the chown com-
mand to change the group of a GPIO device (and all symbolic entries) to be gpio
when an entry is added. It also contains rules to change the access permissions
for input, I°C, and SPI devices (discussed in Chapter 8).

You can edit this file to suit custom user and group requirements. For example,
it is possible to replace the user root : gpio entry with the user molloyd:gpioin
Listing 6-19 and test that the rule works as follows:

pieerpi /etc/udev/rules.d $ sudo nano 99-com.rules

pieerpi /etc/udev/rules.d $ sudo udevadm test --action=add /class/gpio
calling: test version 215

read rules file: /lib/udev/rules.d/10-local-rpi.rules

read rules file: /etc/udev/rules.d/99-com.rules

read rules file: /lib/udev/rules.d/99-systemd.rules

ACTION=add

DEVPATH=/class/gpio

SUBSYSTEM=subsystem

USEC_INITIALIZED=3950621318

You can restart the udev service (or reboot) to ensure that your changes to
the rules file have been applied. If you then export an entry in the /sys/class/
gpio directory, the owner of all entries will change and, in this case, the user
molloyd now owns all GPIO sysfs entries:

pieerpi /sys/class/gpio $ sudo systemctl restart systemd-udevd
pieerpi /sys/class/gpio $ 1ls -1

total 0

-rwxrwx--- 1 root gpio 4096 Jul 7 22:03 export
lrwxrwxrwx 1 root gpio 0 Jul 7 01:17 gpiochip0O ->
-rwxrwx--- 1 root gpio 4096 Jul 7 01:17 unexport

pieerpi /sys/class/gpio $ echo 27 > export
pieerpi /sys/class/gpio $ 1ls -1

total 0

-rwxrwx--- 1 molloyd gpio 4096 Jul 7 22:05 export
lrwxrwxrwx 1 molloyd gpio 0 Jul 7 22:05 gpio27 ->
lrwxrwxrwx 1 molloyd gpio 0 Jul 7 01:17 gpiochip0 -> ...
-rwxrwx--- 1 molloyd gpio 4096 Jul 7 01:17 unexport

This is a useful learning exercise, but remember to change the ownership
back to root before continuing on!

Udev rules are a powerful capability for controlling what happens when
devices are attached to the RPi. For example you could create symbolic links
when a certain USB webcam or USB flash device is plugged in. For a compre-
hensive guide on writing udev rules, see tiny.cc/erpi602

272

Part Il = Interfacing, Controlling, and Communicating

Permissions and wiringPi

The wiringPi applications that you wrote often use memory-mapped I/O and
require the use of the sudo tool. So, why does the gpio command not require
superuser permission, especially given that it is written using the same library?
The answer is that it does, and if you examine the executable program you will
see how it achieves this permission:

pie@erpi /usr/local/bin $ 1ls -1 gpio
-rwsr-xr-x 1 root root 30456 Jul 10 03:38 gpio

The gpio executable file is owned by root and the setuid bit, which is described
in Chapter 3, is set. This gives the gpio command superuser access, regardless
of which user account invokes it. You can use the same permission setting for
any of your custom-developed wiringPi programs. For example:

pieerpi ~/exploringrpi/chp06/wiringPi $ 1ls -1 info
-rwxr-xr-x 1 pi pi 9692 Jul 11 14:31 info

pi@erpi ~/exploringrpi/chp06/wiringPi $./info
wiringPiSetup: Must be root. (Did you forget sudo?)

pieerpi ~/exploringrpi/chp06/wiringPi $ sudo chown root info
pieerpi ~/exploringrpi/chp06/wiringPi $ 1ls -1 info
-rwXr-xr-x 1 root pi 9692 Jul 11 14:31 info

pi@erpi ~/exploringrpi/chp06/wiringPi $./info
wiringPiSetup: Must be root. (Did you forget sudo?)

Changing the owner to root is insufficient because the program is still executed
by the pi user. However, when the setuid bit is set and the file is owned by root
then the program is executed as if by root, regardless of the actual user account
that executes it:

pi@erpi ~/exploringrpi/chp06/wiringPi $ sudo chmod u+s info

pieerpi ~/exploringrpi/chp06/wiringPi $ 1ls -1 info

-rwsr-xr-x 1 root pi 9692 Jul 11 14:31 info

pi@erpi ~/exploringrpi/chp06/wiringPi $./info

This is an RPi: Model 3

If you rebuild the executable again then the setuid bit is unset (even if you
use sudo on the call to g++). This is for security reasons, because otherwise a
user could insert malicious source code into the binary executable:

pie@erpi ~/exploringrpi/chp06/wiringPi $ g++ info.cpp -o info -lwiringPi

pieerpi ~/exploringrpi/chp06/wiringPi $ 1ls -1 info
-rwxr-xr-x 1 pi pi 9692 Jul 11 18:51 info

Chapter 6 = Interfacing to the Raspberry Pi Input/Outputs 273

Summary

After completing this chapter, you should be able to do the following;:

m Use an RPi GPIO to output a binary signal to a digital circuit, or read in
a binary input from a digital circuit.

m Write shell scripts and efficient C/C++ sysfs code to control GPIOs on
the RPi.

m Describe the impact of the PREEMPT kernel patch and multiple CPU
cores on the performance of GPIO applications.

m Utilize internal pull-up and pull-down resistors for interfacing.

m Manipulate GPIO state using memory-mapped registers on the RPi’s SoC
using the shell prompt and C/C++ program code.

m Use the wiringPi library of C functions to control the RPi’s GPIOs in an
efficient and accessible manner.

m Communicate bi-directionally with a sensor using a single GPIO.
m Use PWM on the RPi to fade an LED and drive a servo motor.
m Use general-purpose clocks to output high-frequency clock signals.

m Use Linux udev rules and the setuid bit to improve user-level control of
GPIO applications.

Cross-Compilation and
the Eclipse IDE

To this point in the book, all the code is built and executed directly on the
RPi. However, for larger projects this can be impractical, because you may
need to manage many source files within a single project. In addition, compi-
lation times can be slow on the RPi for building large projects. This chapter
first describes how you can use your desktop computer to develop applica-
tions that can be deployed directly to the RPi. The Eclipse integrated devel-
opment environment (IDE) is then introduced, which allows for advanced
development capabilities, such as remote debugging. The chapter finishes
by outlining how you can build and deploy a custom Linux kernel for the
RPi platform.

Equipment Required for This Chapter:

m A Linux (ideally Debian 8+) standalone or virtual machine (VM) desktop
instance (see Chapter 3)

m Any RPi board for deployment and debugging

Further details on this chapter are available at

www.exploringrpi.com/chapter7/.

275

http://www.exploringrpi.com/chapter7
http://www.exploringrpi.com/chapter7

276

Part Il = Interfacing, Controlling, and Communicating

Setting Up a Cross-Compilation Toolchain

This section describes how you can establish a full-featured cross-compilation
environment for building code for the RPi using your desktop computer. A
typical C/C++ compiler that is executed on a desktop computer (e.g., Intel
x86) will build executable machine code for that platform only. Therefore, a
cross-compiler is required, because it is capable of creating executable code for
the RPi ARM platform directly from your desktop computer, even though it
has a different hardware architecture. Linux is generally used on the desktop
computer for this task, because cross-compiling code that is written under
Windows/Mac OS X to run on an ARM Linux device is a challenging pro-
cess, particularly when integrating third-party libraries. Therefore, if you are
using Windows/Mac OS X you can use the VirtualBox configuration that is
described in Chapter 3. In fact, a VirtualBox Debian 64-bit VM is used for all
the desktop work in this book.

The environment and configuration for cross-platform development is an
ever-evolving process. All the steps in this chapter work at the time of this
writing, but it is likely that some steps in this chapter will change as updates
are performed on the Linux kernel, to the toolchain, and to the Eclipse develop-
ment environment. Visit the web page associated with this chapter to check for
updates: www.exploringrpi.com/chapter7/. The primary aim of this chapter
is to ensure that you grasp the concepts behind cross-compilation and that you
see practical examples of the tools in use.

The first step in cross-compiling Linux applications is the installation of a
Linux toolchain. A cross-compilation toolchain is suitably named as a set of software
development tools and libraries (e.g.; gcc, gdb, glibc) that are chained together
to enable you to build executable code for an operating system on one type of
machine (e.g.; a 64-bit Linux OS on an Intel x86-64 machine), but to execute that
code on a different operating system and/or a different architecture, such as a
32-bit Linux or 64-bit Linux OS on an ARM device.

V(AN This chapter assumes that the sudo tool is available on your desktop
machine. You can enable it as follows:

molloydedesktop:~$ su -

root@desktop:~# apt install sudo

root@desktop:~# visudo

root@desktop: ~# more /etc/sudoers | grep molloyd

molloyd ALL=(ALL:ALL) ALL
root@desktop: ~# exit

To begin, you can discover detailed information about your Linux version by
typing the following commands individually or together using s&&. This informa-
tion is valuable when deciding which particular toolchain to use:

http://www.exploringrpi.com/chapter7
http://www.exploringrpi.com/chapter7

Chapter 7 = Cross-Compilation and the Eclipse IDE

277

pi@erpi ~ $ uname -a && cat /etc/os-release && cat /proc/version

Linux erpi 4.1.18-v7+ #846 SMP Thu Feb 25 14:22:53 GMT 2016 armv71l GNU/Linux
GNU/Linux PRETTY NAME="Raspbian GNU/Linux 8 (jessie)" ...

Linux version 4.1.18-v7+ (dc4@dc4-XPS13-9333) (gcc version 4.9.3 ...)

#846 SMP Thu Feb 25 14:22:53 GMT 2016

The Linaro Toolchain for Raspbian

Installing a toolchain can be a surprisingly complex task because many
different configurations are available. One straightforward approach is to
use a prebuilt toolchain from a repository that the RPi Foundation makes
available at github.com/raspberrypi/tools/. You can clone this repository
(~325MB) and used the Linaro! toolchain binaries directly as follows on
your desktop machine:

molloydedesktop:~$ sudo apt install build-essential git
molloyd@desktop:~$ git clone https://github.com/raspberrypi/tools.git
Receiving objects: 100% (17851/17851), 325.16 MiB | 7.88 MiB/s, done.

When the repository is cloned, you can see that the cross-compilation tools
are installed on your desktop machine. For example, the g++ compiler is avail-
able in the following directory:

molloyd@desktop:~$ cd tools/arm-bcm2708/gcc-linaro-arm-linux-gnueabihf-r -
aspbian-x64/bin/
molloyd@desktop:~/tools/arm-bcm2708/gcc-linaro-arm-1linux-gnueabihf-raspb
ian-x64/bin$ 1ls -1 *g++

-rwxr-xr-x 1 molloyd molloyd 739112 Aug 1 12:01 arm-linux-gnueabihf-g++

The compiler name is preceded by a triple X-Y-Z, where X identifies the
architecture as arm, Y identifies the vendor (typically absent for Linux), and Z
identifies the application binary interface (ABI) as 1inux-gnueabihf. The embed-
ded ABI (EABI) defines a standardized machine-code-level interface between
compiled programs, compiled libraries, and the OS, which aims to ensure
that binary code created with one toolchain can be linked with a project that
uses a different toolchain or compiler. Therefore, 1inux-gnueabihf can be
read as the GNU EABI for Linux that supports hardware accelerated floating-
point operations (i.e., hard floats). Hard float operations are much faster than
soft float operations as they take advantage of the microprocessor’s on-chip
floating-point unit (FPU), rather than having to perform the calculations using
software (i.e., soft floats).

! Linaro (www.linaro.org) is an organization that aims to support embedded Linux devel-

opment on the ARM platform by working with industry and the open source community to min-
imize development fragmentation. It was founded in 2010 by ARM, IBM, Freescale, Samsung,
ST-Ericsson, and Texas Instruments.

http://www.linaro.org

278 Partll = Interfacing, Controlling, and Communicating

To test that the toolchain is working correctly you can write a short C++ pro-
gram that can be built in to binary code using the cross-compiler:

molloyde@edesktop:~$ nano testrpi.cpp

molloyd@edesktop:~$ more testrpi.cpp

#include<iostreams>

using namespace std;

int main () {
cout << "Testing cross compilation for the RPi" << endl;
return 0;

Testing the Toolchain

After the toolchain is installed, the program can be compiled by invoking the
prebuilt cross-compiler as follows (all on a single line):

molloyd@desktop:~$ ~/tools/arm-bcm2708/gcc-linaro-arm-linux-gnueabihf-r -
aspbian-x64/bin/arm-linux-gnueabihf-g++ testrpi.cpp -o testrpi
molloydedesktop:~$ 1ls -1 testrpi*

-rwxr-xr-x 1 molloyd molloyd 7740 Aug 1 12:03 testrpi

-rw-r--r-- 1 molloyd molloyd 127 Aug 1 12:02 testrpi.cpp

Unsurprisingly, when the binary is invoked on the Intel x86 desktop machine,
it will not execute, because it contains ARM binary code instructions:

molloyd@desktop:~S$./testrpi
bash: ./testrpi: cannot execute binary file: Exec format error

The program can be transferred to RPi using sftp as follows:

molloydedesktop:~$ sftp pi@erpi.local
pi@erpi.local's password: raspberry
Connected to erpi.local.

sftp> put testrpi

Uploading testrpi to /home/pi/testrpi
sftp> bye

Finally, SSH to the RPi to confirm that the program works correctly:

molloyd@desktop:~$ ssh pi@erpi.local
pi@erpi.local's password: raspberry

pie@erpi ~ $ 1ls -1 testrpi

-rwxr-xr-x 1 pi pi 7008 Aug 1 18:34 testrpi
pieerpi ~ $./testrpi

Testing cross compilation for the RPi

Success! If you see this output, then you are able to build a binary on the
desktop machine that can be executed directly on the RPi. Finally, you can use
the 144 tool to display the shared library dependencies of the program, which
can be useful in debugging dependency problems:

pi@eerpi ~ $ 1dd testrpi
/usr/lib/arm-linux-gnueabihf/libcofi rpi.so (0x76£56000)

mailto:pi@erpi.local
mailto:pi@erpi.local's
mailto:pi@erpi.local
mailto:pi@erpi.local's

Chapter 7 = Cross-Compilation and the Eclipse IDE

279

libstdc++.80.6 => /usr/lib/arm-linux-gnueabihf/libstdc++.80.6 (0x76€41000)
libm.so.6 => /lib/arm-linux-gnueabihf/libm.so.6 (0x76dc6000)

libgcc _s.so.l => /lib/arm-linux-gnueabihf/libgcc_s.so.1l (0x76d99000)
libc.so0.6 => /lib/arm-linux-gnueabihf/libc.so.6 (0x76c5c000)
/lib/1ld-linux-armhf.so.3 (0x76£34000)

Updating the PATH Environment Variable

The PATH environment variable can be adjusted so that the call to the compiler
is less verbose. This is best performed by editing the .bashrc file in the user’s
home directory so that the bash shell can set the variable on startup:
molloydedesktop:~$ nano .bashrc
molloydedesktop:~$ tail -1 .bashrc

export PATH=$PATH:~/tools/arm-bcm2708/gcc-linaro-arm-1linux-gnueabihf-r
aspbian-x64/bin

Rather than reboot on this occasion, you can use the source command to
apply this change, whereupon the PATH becomes the following:

molloydedesktop:~$ source ~/.bashrc

molloyd@desktop:~$ echo $PATH

/usr/local/bin: /usr/bin:/bin: /usr/local/games: /usr/games: /home/molloyd/
tools/arm-bcm2708/gcc-linaro-arm-linux-gnueabihf-raspbian-x64/bin

The compiler can now be executed without requiring its full path:

molloydedesktop:~$ arm-linux-gnueabihf-g++ testrpi.cpp -o testrpi

Debian Cross-Toolchains

Recent Debian releases provide support for cross-compilation and a very useful
feature called multipackage installations, which greatly reduces the complexity
of cross-platform compilation when third-party libraries are required. If you
are using a Debian (8+) desktop installation, you can set up a cross-compilation
environment using the following steps:

1. Update the sources lists to include the cross-toolchain sources list, which
makes a list of cross-compilation packages available:?

molloydedesktop:~$ cd /etc/apt/sources.list.d/
molloyd@desktop:/etc/apt/sources.list.d$ sudo nano crosstools.list
molloyd@desktop:/etc/apt/sources.list.d$ more crosstools.list

deb http://emdebian.org/tools/debian jessie main

2 The Embedded Debian (Emdebian) Project ceased in July 2014, and it is recommended that you
use cross-toolchains. For Debian Jessie the armhf cross-toolchain is maintained on the Emdebian
repository, but it should be integrated into newer versions of Debian, removing the need for
Steps 1 and 2.

280 Partll = Interfacing, Controlling, and Communicating

2. Use curl to download the archive public key and apt -key to install it.
This allows for the validation of downloaded cross-toolchain packages:

molloyd@desktop:/etc/apt/sources.list.d$ sudo apt install curl
molloyd@desktop:/etc/apt/sources.list.d$ curl http://emdebian.org/tools/ -
debian/emdebian-toolchain-archive.key | sudo apt-key add -
molloydedesktop:/etc/apt/sources.list.d$ ed ~/

3. Add armhf as a foreign architecture and update the list of available pack-
ages. This step is particularly useful for installing cross-development
libraries. You must perform an update at this point:

molloydedesktop:~$ sudo dpkg --add-architecture armhf
molloyd@desktop:~$ dpkg --print-architecture

amde4

molloydedesktop:~$ dpkg --print-foreign-architectures
armhf

molloyd@desktop:~$ sudo apt update

4. You can then install the cross-build toolchain as follows:

molloydedesktop:~$ sudo apt install crossbuild-essential-armhf
Setting up libyaml-libyaml-perl (0.41-6)
Processing triggers for libc-bin (2.19-18)
molloydedesktop:~$ ed /usr/bin
molloyd@desktop:/usr/bin$ 1ls -1 *g++
lrwxrwxrwx 1 root root 27 Jan 16 2015 arm-linux-gnueabihf-g++
-> arm-linux-gnueabihf-g++-4.9
lrwxrwxrwx 1 root root 7 Feb 25 07:13 g++ -> g++-4.9
lrwxrwxrwx 1 root root 7 Feb 25 07:13 x86_64-linux-gnu-g++ -> g++-4.9

You can see that the /usr/bin directory now contains a g++ entry for

natively compiling x86 code, and an arm-1inux-gnueabihi-g++ entry for
cross compiling armhf code.

5. The compiler can be tested and its version checked from any location
(as /usr/binis in the default PATH), by using the following;:
molloydedesktop:~$ arm-linux-gnueabihf-g++ -v
gcc version 4.9.2 (4.9.2-10)

6. You can use the code example that is used to test the Linaro toolchain to
test this toolchain, and you should obtain the same results. You can install
both toolchains on the desktop machine. The cross-toolchains will take
precedence as the /usr/bin entry appears first in the PATH environment
variable.

V[Ml You can use apt -cache to search for alternative compiler versions. The RPi
with its Raspbian distribution supports hard floats (hf), so use tools with the hf suffix
when they are available:

molloyd@desktop:~$ apt-cache search gnueabihf | grep g++

g++-4.9-arm-linux-gnueabihf - GNU C++ compiler
g++-arm-linux-gnueabihf - GNU C++ cross-compiler for architecture armhf

Chapter 7 = Cross-Compilation and the Eclipse IDE

281

At this point, the binary executable will not execute on your desktop machine
because it contains ARM instructions. However, the next section describes how
the ARM processor can be emulated on the desktop machine.

Emulating the armhf Architecture

A package called QEMU can be installed on the desktop machine so that it can
emulate the RPi’s armhf architecture. This is called user-mode emulation. QEMU
can also perform full computer-mode emulation, just like VirtualBox. You can
install the QEMU user-mode emulation as follows:

molloydedesktop:~$ sudo apt install gemu-user-static
molloydedesktop:~$ dpkg --print-foreign-architectures
armhf

Now, the armhf instructions can be emulated on the x86 machine (with a
performance cost), and the test program can execute on the desktop machine:

molloyd@desktop:~$./testrpi
Testing the RPi pre-built toolchain

Cross-Compilation with Third-Party Libraries (Multiarch)

This section is not necessary to cross-compile C/C++ applications; however, it
is likely that you will need to add third-party libraries in the future for tasks
such as image and numeric processing. Traditionally, this has been a very dif-
ficult topic, but thanks to recent releases in Debian and Ubuntu, this problem
has become much more manageable.

At this point, you have a cross-compiler in place, and you should currently
be able to cross-compile applications that use the standard C/C++ libraries.
However, what if you want to build a C/C++ application that uses a third-party
library that contains compiled code? If you install the library on your x86 desktop
machine, that library code will contain native x86 instructions. If you want to
use the third-party library and deploy it to your RPi, you need to use a library
that contains ARM machine code instructions.

Traditionally, developers have used tools like xapt, which converts
Debian packages to a cross-platform version on-the-fly (e.g., xapt -a armhf -m
libopencv-dev). However, recent releases of Debian (8+) now have strong
support for multiarch—multi-architecture package installs.

A multiarch-capable package installer can be used to install an RPi armhf
library on your desktop machine. The version of dpkg has to be greater than
1.16.2 for multiarch support. Also, if you have not already done so, you should
add the armhf target architecture:

molloydedesktop:~$ dpkg --version

Debian “dpkg' package management program version 1.17.26 (amdé64) .
molloydedesktop:~$ sudo dpkg --add-architecture armhf

282

Part Il = Interfacing, Controlling, and Communicating

Then install a sample third-party library package after performing an update
(note the armhf after the package name):

molloyde@desktop:~$ sudo apt update

molloyd@desktop:~$ sudo apt install libicu-dev:armhf

Reading package lists... Done ...
Setting up libicu-dev:armhf (52.1-8+deb8u2) ...

The 1ibicu-dev libraries for utilizing Unicode are installed in the /usr/1ib/
arm-linux-gnueabihf directory. This keeps them separate from the x86 librar-
ies that are stored in the /usr/1ib directory, because otherwise they would
overwrite your current x86 libraries, which would be problematic:

molloyd@desktop: /usr/lib/arm-linux-gnueabihf$ 1ls libicu*
libicudata.a libicuil8n.so.52 libicule.a

And you are done! If necessary, you can configure your C++ build environ-
ment to include the /usr/1ib/arm-1inux-gnueabihf directory. This procedure
works well and it is reasonably straightforward; however, it is relatively new to
Linux, and interdependency problems currently arise. See wiki.debian.org/
Multiarch/HOWTO for more information.

Cross-Compilation Using Eclipse

Eclipse is an integrated development environment (IDE) that enables you
to manage your code and integrate cross-compilation tools, debuggers, and
other plug-ins to create a sophisticated development platform. It can even be
extended to provide full remote debugging support for applications that are
physically running on your RPi. This is a powerful feature that enables you
to debug software applications that are interfacing with the real hardware
in your projects, but view the debug values within your desktop Eclipse
environment.

Eclipse is written in Java and was initially focused on Java software develop-
ment. However, Eclipse has excellent support for C/C++ development using the
C/C++ Development Tooling (CDT) extension.

Installing Eclipse on Desktop Linux

Using a web browser on your Linux desktop or Linux desktop VM running
under Windows (see Chapter 3), download Eclipse from www.eclipse.org.
There is a version that has CDT (C/C++ Development Tooling) integration
(e.g., Eclipse IDE for C/C++ Developers), which you should install. The ver-
sion of Eclipse that is used in this guide is Mars.2, which was released in
February 2016.

http://www.eclipse.org

Chapter 7 = Cross-Compilation and the Eclipse IDE

283

After you have downloaded Eclipse, decide whether you want to install
it for all users or only for the current user, by extracting the archive in a
suitable location. The Iceweasel or Chromium browser will download
the file to the user’s ~/Downloads directory. Therefore, use the following
steps to install Eclipse in a user’s account, and execute it (as a background
process using &):

molloyd@desktop:~/Downloads$ ls eclipse*

eclipse-cpp-mars-R-linux-gtk-x86 64.tar.gz

molloydedesktop:~/Downloads$ tar -xvf eclipse* -C ..

molloyd@desktop:~/Downloads$ cd ~/eclipse/
molloyd@desktop:~/eclipses ./eclipse &

At this point, you can use Eclipse to create C++ applications on the desktop
machine that are deployed to the desktop machine. However, because the target
platform is the RPi, Eclipse must be configured for cross-compilation.

\[o 3 Instead of executing eclipse using a terminal window, you can execute
it directly from your Debian/Ubuntu Linux desktop environment by creating an
eclipse.desktop file as follows:
molloyd@desktop:~/.local/share/applications$ more eclipse.desktop
[Desktop Entry]
Type=Application
Exec=/home/molloyd/eclipse/eclipse
Name=Eclipse
GenericName=An IDE for C/C++ development
Icon=/home/molloyd/eclipse/icon.xpm
Terminal=false
Categories=Development ; IDE; C++
MimeType=text/x-c++src;text/x-c++hdr;text/x-xsrc;application/x-designer;
An Eclipse icon entry is now available in the Activities window that when double
clicked will execute eclipse.

Configuring Eclipse for Cross-Compilation

When Eclipse starts up, you can choose the default Workspace directory,
and then you will see a brief guide that describes C/C++ development. You
can begin configuration by creating a new project using File &> New > C++
project. As illustrated in Figure 7-1(a), set the project name to RPiTest, pick
the project type Hello World C++ Project, and the Toolchain to be Cross GCC.
Repeatedly click Next until you see the Cross GCC Command dialog win-
dow, as illustrated in Figure 7-1(b). Enter arm-1linux-gnueabihf- for the
cross-compiler prefix and set its path to /usr/bin or to the Linaro toolchain
directory. Finally, click Finish.

284 Partll = Interfacing, Controlling, and Communicating

(@) (b)

C4+ Project x
C## Project — Crass GCC Command —
Create Co+ project of selected type Canfigure the Cross GCC path and prefis
Project mame: | RPiTest Cross compiler prefix: | arm-linuoc-grueakshé -
+ Use default location Creas compilar path: | fuss/bin
Project type Toolchains:
* & Executable Linue GCC Use /home/molloyd/tools/arm-bem2708 /gc-:\

® Empty Project
¥ = Shared Library

¥ @ Static Library

c-linarc-arm-linux-gnueabihf-raspbian
-x64/bin/ forthe Linaro toolchain

o Shesw pregect types and toslchaing only If they are supported on the platfom

) | Next > Cancal b 7

Figure 7-1: Creating a new C++ project in Eclipse: (a) the project settings, and (b) the cross-
compiler prefix

The Eclipse IDE is now configured for cross-compilation using the cross-
compilation toolchain that was set up at the beginning of this chapter. You can
choose Project = Build All and then run on the desktop machine by pressing the
green arrow or (Run = Run). In Figure 7-2, this results in the message ! ! 1Hello
World!!! appearing in the Console window. This only appears on the desktop
computer if you have installed QEMU, because the executable contains ARM
machine code, which is clear from the binary name RPiTest - [arm/le] that is
highlighted at the top left of Figure 7-2.

CICH - RPTest/ure/RPITast.cpp - Eclipss ®

fle Edit Source Refactor Navigste Segch Project Hun Window Help

M- BErfr@ @rdrdr@ -0~k ~Qr w5 §F - - -
: R cic+
Project Explorer & sy o RPiTestcpp 12 - n Eom po TRl -
i - *// Nam PRI THS T cp = M oW W e ¥
- sinclude <instream
= & Bruries

int main() {

£ s =11 Hall Fidiiy 5 T L LA jostream
* GRPITest - [amis] 3 f:l:ﬂm o Hello world endl ; pri d i
= il Includes =}
— * manl): int
s
i The binary executable j

@

b e ldefarm- - grissbillc s 44,9

b B usrincludalc+-+A.8

b B fusrfincludelc +-+18 Hbackward —

b L5 jusrfiibigoefamm-linux-grusabih /4. S/incuds © Conacla & x % & B Sis = 8-m~> = 0

de—foxy| <tErminateds RPTe:
11 iHelle world!

CIC4-+ Application] fhame/malioy diwarkspsc e/RPiTestDebugRPiTest (871115, 846 PM]

- D

v [ARPiTest cpp (The Console output window)

¥ = Debug

T RPiTest

Figure 7-2: The creation and cross-compilation of a C++ project in Eclipse

Chapter 7 = Cross-Compilation and the Eclipse IDE

285

The preceding steps provide a quick way of configuring the cross-compilation
settings within Eclipse Mars or Luna. Older versions of Eclipse (e.g., Kepler)
require you to configure the cross-compiler using the project settings. That option
is still available within Eclipse Mars; select the project that was just created,
and then go to Project = Properties. (If the option is grayed out, it likely means
that the project is not selected.) Go to C/C++ Build = Settings and under the
Tool Settings tab. You should see the Cross Settings as illustrated in Figure 7-3.
Effectively, these settings mean that the arm-1inux-gnueabihf-g++ command
is used to compile the project code.

Properties for RPiTest x
‘ | - Settings . S
» Resource ="
Sitdars Configuration: | Debug [Active] ~ || Manage Configurations... |

¥ C/C++ Build

Build Variables =

¥ Tool Settings. #Build Steps Build Artifact Gl Binary Parsers @ Error Parsers
Environment et e
Logging #Cross Settings Prefix | arm-linux-gnueabinf-

Tool Chain Editor EDilect v Browse..

» CIC++ General s

Figure 7-3: Eclipse Mars settings for cross-compilation

It should not be necessary to set the C/C++ includes and library settings
explicitly because they are included by default by gcc/g++ However, it might
be necessary at a later stage, particularly when using third-party libraries. To
do this, go to Project => Properties = C/C++ General => Paths and Symbols, and
set the following (the Linaro directories must be set here®):

m Includes = GNU C (Include directories) = Add = File System = File
System = /usr/include/arm-1linux-gnueabihf/ and press OK.

m Includes &> GNU C++ (Include directories) = Add = File System > File
System = /usr/include/arm-linux-gnueabihf/c++/4.9/ and press OK.
m Library Paths (not Libraries) = Add = File System > File System = /usr/

lib/arm-linux-gnueabihf/.

m Press OK to apply the configuration.

Now you should be able to deploy the binary application directly to the RP;j,
because it contains ARM machine code instructions. You can transfer the binary
application to the RPi using sftp, but it would be better in the longer term if
you had a direct link to the RPi from within Eclipse; for this, you can use the
Remote System Explorer plug-in.

3 For example, the C++ include directory is currently: ~/tools/arm-bcm2708/gcc-linaro-arm-
linux-gnueabihf-raspbian-x64/arm-linux-gnueabihf/include/c++/4.8.3/

286

Part Il = Interfacing, Controlling, and Communicating

Remote System Explorer

The Remote System Explorer (RSE) plug-in enables you to establish a direct
connection between your Eclipse environment and the RPi, over a network
connection, by using the SSH server on your RPi. You can install the RSE within
Eclipse using Help = Install New Software. Under the “Work with” drop-down
menu choose “Mars...” and then select General Purpose Tools => Remote System
Explorer User Actions. Press Next, follow the steps, and then restart Eclipse.

You should now have RSE functionality within Eclipse. Go to Window => Show
View = Other &> Remote Systemst> Remote Systems. In the Remote Systems
frame that appears, click the icon for Define a Connection to a Remote System,
and in the New Connection dialog, select the following:

m Choose Linux Type = Next.

m Host Name: Enter your RPi’s IP address—e.g., erpi.local.

m Connection Name: Change it to “Raspberry Pi” ©> Next.

m [Files] Configuration = ssh.files => Next.

m [Processes] Configuration = processes.shell.linux = Next.

m [Shells] Configuration = ssh.shells = Next.

m Eclipse Luna allows you to install a terminal at this point, but a separate

installation is required with Eclipse Mars.

To install the terminal in Eclipse Mars use Help => Install New Software.
Under the “Work with” drop-down menu choose “Mars...” and then search
for “terminal.” Install TM Terminal and the TM Terminal View RSE add-in.

You can then right-click the Raspberry Pi entry in the Remote Systems tab
and choose Connect. You should see the dialog illustrated in Figure 7-4. In this
example, the pi user account is used on the RPi as the account into which the
executable code is deployed. Usefully, Eclipse uses a master password system
to manage passwords for all of your individual connections.

File Edit Source Refactor Navigate Search Project Run Window Help

e W B Ny @ity Uy ® 5 v
® |Bc
Enter Password x
A Remote Systems 12 [Project Explorer = O [4 RPiTest.cpp 2 = 8 ZEoxg @M HT = &
2 a . System type: Linux
e 26 // Name : RPiTest.cppl]| SY: yp - i
g § BE & =« B S °
e = &+ % H e ERPI.LOCAL B & "W *
9 # <iostream>
EfLocal 10 ut ce std; o nname: Raspberry Pi -
11
*aLocal Files 126 in i~
! 13 cout =< iostream
TaLocal Shells 14 retu 0 * std
~ & Raspberry Pi 151
16 main() : int
% Sftp Files
EoShell Processes
Bssh Shells
Cancel oK
& Console 52 L = = g

Figure 7-4: Connecting to the RPi for the first time using RSE

Chapter 7 = Cross-Compilation and the Eclipse IDE

287

Once you are connected to the RPi, you can go to the Project Explorer win-
dow, right-click the executable that you just built (RPiTest [arm/le]), and choose
Copy. Then go to a directory on the Remote Explorer, such as testCross (see
Figure 7-5). Right-click it and choose Paste. The file is now on the RPi and can
be executed from the Terminal window. Right-click the Raspberry Pi entry
in the Remote Systems tab and choose Open Terminal. The output of the test
program is illustrated in Figure 7-5. It is necessary to set the RPiTest file to be
executable on the first occasion.

v [Raspberry Pi L * main(): int
~ % Sftp Files

~ %My Home [20 Problems & Tasks & Console [Properties ifif Call Graph | # Terminal 2 (=50 S = ol B = = B

L Bl SSH pi@ERPILOCAL (8/1/15 9:37 PM) 32
¥ SiewETolaet lpermitted by applicable law.
» (3 python_games Last lfgln: Sugmiu? 2 01:37:12 2015 from desktop.local
: pl 2.18.14-v7+ #7984 SMP PREEMPT Sun Jun 7 12:50:51 BST 2015 armv71l GNU/Linux
P $ mkdir testCross

~ $ cd testCross/
testCross $ 1s -1

» (I rt-tests

» Ctemp

b Citest

. . - - 1pipi 66172 Aug 2 01:14 RPiTest
> testCross b /testCross $ chnod ugotx RPiTest

/testCross § ./RPiTest

B RPiTest |1 1Hello World!! !

» O3 tmp /testCross $

Connected - Encoding: Default (ISO-8859-1)

Figure 7-5: The Terminal window, connected to the RPi and executing the cross-compiled
RPiTest C++ application

One way to automate the process of copying the files from the desktop com-
puter to the RPi is by using the secure copy command scp. You can set up your
desktop computer so that it does not need to use a password to ssh to the RPi
by using the following steps on the desktop computer (when prompted you
should leave the passphrase blank):

molloydedesktop:~$ ssh-keygen

molloydedesktop:~$ ssh-copy-id pi@erpi.local

molloydedesktop:~$ ssh-add
molloyd@desktop:~$ ssh pi@erpi.local

You should now be able to ssh to the RPi without requiring a password. You
can then configure Eclipse under Project &> Properties & C/C++ Build => Settings
> Build Steps (tab) = Post-build steps, set the Command to be scp RPiTest pie
erpi.local:/home/pi/testCross/

SECURE COPY (SCP) AND RSYNC

The secure copy program, scp, provides a mechanism for transferring files between
two hosts using the Secure Shell (SSH) protocol. For example, to transfer a file
testl.txt from a Linux desktop machine to the RPi, you can use the following (all
commands are executed on the desktop machine):

molloyd@edesktop:~/test$ echo "Testing SCP" >> testl.txt
molloyd@edesktop:~/test$ scp testl.txt pi@erpi.local:/tmp
testl.txt 100% 12 0.0KB/s 00:00

Continues

mailto:pi@erpi.local
mailto:pi@erpi.local
mailto:pi@erpi.local:/tmp

288 Partll = Interfacing, Controlling, and Communicating

SECURE COPY (SCP) AND RSYNC (continued)

To copy a file from the RPi back to the Linux desktop machine, you can use the
following:

molloydedesktop:~/test$ scp pi@erpi.local:/tmp/testl.txt test2.txt
testl.txt 100% 12 0.0KB/s 00:00
molloydedesktop:~/test$ more test2.txt

Testing SCP

Use -v to see full, verbose output of the transfer. Using -C will automatically
compress and decompress the files to speed up the data transfer. Using - r allows for
the recursive copy of a directory, including all of its files and subdirectories. Using
-p will preserve the modification times, access times, and modes of the original files.
Therefore, to copy the entire desktop test directory to the RPi /tmp directory, you
could use the following:

molloydedesktop:~$ scp -Cvrp test pi@erpi.local:/tmp
Transferred: sent 3664, received 2180 bytes, in 0.1 seconds

Just like scp, the rsync utility can copy files; however, it can also be used to syn-
chronize files and directories across multiple locations, where only the differences are
transferred (delta encoding). For example, to perform the same operation using rsync,
you can use the following:

molloydedesktop:~$ rsync -avze ssh test pi@erpi.local:/tmp/test
sending incremental file list

test/

test/testl.txt

test/test2.txt

sent 231 bytes received 58 bytes 578.00 bytes/sec

total size is 24 speedup is 0.08

Using - a requests archive mode (like -p for scp), - v requests verbose output, -z
requests the compression of data (like - C for scp), and -e ssh requests rsync to use
the SSH protocol. To test rsync, create an additional file in the test directory and per-
form the same command again using the following:

molloyd@desktop:~$ rsync -avze ssh test pi@erpi.local:/tmp/test
sending incremental file list

test/

test/test3.txt

sent 180 bytes received 39 bytes 438.00 bytes/sec

total size is 24 speedup is 0.11

Importantly, you can see that only one file has been transferred in this case. The
rsync utility can delete files after transfer (using -delete), which you should only use
after performing a dry run (using -dry-run).

mailto:pi@erpi.local:/tmp/test1.txt
mailto:pi@erpi.local:/tmp
mailto:pi@erpi.local:/tmp/test
mailto:pi@erpi.local:/tmp/test

Chapter 7 = Cross-Compilation and the Eclipse IDE

289

Integrating GitHub into Eclipse

A very useful plug-in can be installed into Eclipse that allows for full GitHub
integration, enabling you to link to your own GitHub repositories or to get easy
access to the example code and resources for this book. To install it, open Help
> Install New Software, and choose Mars... in the Work with section. Then,
under the tree item Collaboration, choose Eclipse GitHub integration with task
focused interface.

Once this plug-in is installed, you can open Window => Show View => Other =
Git, and there are several options, such as Git Interactive Rebase, Git Reflog, Git
Repositories, Git Staging, and Git Tree Compare. If you choose Git Repositories,
select the options Clone a Git repository = GitHub, and you can search for “Derek
Molloy.” You should find the repository derekmolloy/exploringRPi.

If not, you can go back to the Clone URI option and add the repository directly
using git://github.com/DerekMolloy/ExploringRPi.git. You will then have
full access to the source code in this book directly from within the Eclipse IDE,
as captured in Figure 7-6. Because there are so many projects in this repository,
the easiest way to use this code repository is to copy the files that you need into
a new project.

t [EIGitRepo 8 = O RPiTestcpp T makelED.cpp 88 = o kom@Mm EHT = O
B & ® ¢ e %

o jostream

/class/gpio/gpiod/" ® fstream
" P # string
= makelED

[€ makeLED.c

B makeLED.cpp

=/makel EDC

string filename, string value){ unistd h

¥ std
GPIO_NUMBER
GPIO4_PATH

| Problems | Tasks & Console [Properties ifif Call Graph $? Terminal & (= S =R | B =# = 0O

] SSH pi@ERPILOCAL (8/2/15 7:32 AM) 2

permitted by applicable Law.
Last login: Sun Aug 2 01:48:13 2015 from desktop.local

Figure 7-6: Eclipse GitHub integration, displaying the exploringRPi repository

Remote Debugging

Remote debugging is the next step in developing a full-featured, cross-
development platform configuration. Because you are likely planning to
interact with hardware modules that are physically connected to the RPj, it
would be ideal if you could debug your code live on the RPi. Remote debug-
ging with Eclipse enables you to control the execution steps, and even view
debug messages and memory values directly from within Eclipse on your
desktop machine.

A short program in Listing 7-1 is used to test that remote debugging is work-
ing correctly. This program can be used directly within the /chpo7/ repository

git://github.com/DerekMolloy/ExploringRPi.git

290

Part Il = Interfacing, Controlling, and Communicating

directory to check that you have local command-line debugging and remote
debugging working correctly.

Listing 7-1: /chp07/test.cpp

#include<iostream>
using namespace std;

int main()
int x = 5;
X++;
cout << "The value of x is " << x << endl;
return 0O;

}

COMMAND-LINE DEBUGGING

Itis possible to use the GNU debugger, gdb directly at the command line. For example, if
you want to debug the code in Listing 7-1 directly on the RPi, you could perform the follow-
ing steps (-g ensures that symbolic debugging information is included in the executable):

pieerpi ~/exploringrpi/chp07 $ g++ -g test.cpp -o test
pieerpi ~/exploringrpi/chp07 $ gdb test

This GDB was configured as "arm-linux-gnueabihf"
Reading symbols from test...done.

(gdb) break main

Breakpoint 1 at 0x1075c: file test.cpp, line 5.

(gdb) info break

Num Type Disp Enb Address What

1 breakpoint keep vy 0x0001075c in main() at test.cpp:5
(gdb) run

Starting program: /home/pi/exploringrpi/chp07/test
Breakpoint 1, main () at test.cpp:5

5 int x = 5;

(gdb) display x

1: x =0

(gdb) step

6 X++;

l: x = 5

(gdb) step

7 cout << "The value of X is " << X << endl;
1l: x = 6

(gdb) continue

Continuing.

The value of x is 6
[Inferior 1 (process 15870) exited normally]

(gdb) quit
The Eclipse IDE executes tools such as gdb from your chosen toolchain and inter-
prets their outputs, providing a fully integrated interactive display.

You need the debug server gdbserver to run on the RPi for the Eclipse desktop
installation to connect to the debugger. This tool is installed by default on the
Raspbian image, but you can install or update it using the following command:

pieerpi ~ $ sudo apt install gdbserver

Chapter 7 = Cross-Compilation and the Eclipse IDE

291

The gdb server executes on the RPi and is controlled by the Eclipse IDE on the
desktop machine. The built executable is still transferred to the RPi using the RSE
configuration described earlier.

The Linux desktop machine requires an ARM-compatible debugger that can
connect to the gdb server on RPi. There are two ways to do this: You can install the
GNU multi-architecture debugger, or you can use arm-1inux-gnueabihf-gdb from
the Linaro toolchain that is described at the beginning of this chapter. The GNU
multi-architecture debugger can be installed on the desktop machine as follows:

molloyd@desktop:~$ sudo apt install gdb-multiarch

To complete this configuration, you may need to create a file called .gdbinit
in the project folder that defines the remote architecture as arm:

molloydedesktop: ~/workspace/RPiTest$ echo "set architecture arm" >> .gdbinit
molloydedesktop:~/workspace/RPiTest$ more .gdbinit
set architecture arm

Check that your version of gdb-multiarch is not 77.x, because there is a known
problem in using it to remotely debug ARM code. If you have difficulties, use
the Linaro arm-1inux-gnueabihf-gdb.

COMMAND-LINE REMOTE DEBUGGING

If you are experiencing difficulties with the Eclipse setup, you can use command-line
remote debugging to familiarize yourself with the underlying tools and to test your
configuration. The code in Listing 7-1 is once again used for this example. The first
step is to execute the gdb server on the RPi and request that it listens to TCP port (e.g.,
12345), as follows:

pie@erpi ~/exploringrpi/chp07 $ gdbserver --multi localhost:12345

Listening on port 12345

The use of - -multi means that the server has not yet started to debug a target
program, and therefore a target must be identified by the desktop machine.

The Linaro debugger can then be used to connect to the gdb server from the desk-
top machine as follows (where -g test requests a quiet mode and for the symbols to
be read from the test binary in the current directory):

molloyd@desktop:~/exploringrpi/chp07$ arm-linux-gnueabihf-gdb -q test
Reading symbols from /home/molloyd/exploringrpi/chp07/test...done.
(gdb) target extended erpi.local:12345
Remote debugging using erpi.local:12345
(gdb) set remote exec-file test
(gdb) break main
Breakpoint 1 at 0x1075c: file test.cpp, line 5.
(gdb) run
Starting program: /home/molloyd/exploringrpi/chp07/test
Breakpoint 1, main () at test.cpp:5
5 int x = 5;
(gdb) display x
l: x =0
(gdb) step
Continues

292

Part Il = Interfacing, Controlling, and Communicating

COMMAND-LINE REMOTE DEBUGGING (continued)

6 X++;

l: x =5

(gdb) continue

Continuing.

[Inferior 1 (process 18125) exited normally]

The final output of the gdb server on the RPi is as follows:

pieerpi ~/exploringrpi/chp07 $ gdbserver --multi localhost:12345
Listening on port 12345

Remote debugging from host 192.168.1.107

Process test created; pid = 18125

The value of x is 6

Child exited with status 0

Just to reiterate, the test program is executed on the RPi, but the debugger is con-
trolled on the desktop machine by passing commands over the network.

Eclipse must be configured so that it can connect to the RPi’s gdb server. Go
to Run &> Debug Configurations => Debugger, and delete any current debug
configurations. Select C/C++ Remote Applications on the left side and right-
click it to create a new configuration. In this example, the configuration is called
RPiTest, as illustrated in Figure 7-7. The Connection entry can be set to the
Raspberry Pi connection (as described in the Remote System Explorer section),
and you should be able to browse to the remote path (i.e., on the RPj) for the C/
C++ application, as illustrated in the same figure.

Debug Configurations
Create, manage, and run configurations E\

E X | B ¥~ Name: | RPiTest
type filter text [El Main " ®: Arguments | %5 Debugger | % Source|] Common
[EIC/C++ Application
[EIC/C++ Attach to Application Enable auto build Disable auto build
[EIC/C++ Postmortem Debugger *) Use workspace settings Configure Workspace Settings
[E]C/C++ Remote Application
B RPiTest Connection: | Raspberry Pi -

& Launch Group Remote Absolute File Path for C/C++ Application:
Jhome/piftestCross/RPiTest Bro

Commands to execute before application

Figure 7-7: Setting the debug configuration

Change the GDB debugger from gdb to gdb-multiarch Or arm-1linux-gnue-
abihf-gdb, as illustrated in Figure 7-8. You should also identify the .gdbinit
file that was just created. Press the Browse button to the right of “GDB com-
mand file:” and locate your workspace directory. You may have to right-click
the File Explorer window and choose Show Hidden Files to find the hidden file
.gdbinit. That configuration file can be used to set many more configuration
options. For example, it can be used to further configure the remote server and
to identify different default breakpoints.

Chapter 7 = Cross-Compilation and the Eclipse IDE

293

Debug Configurations x

Create, manage, and run configurations ﬁ‘

B - Name: ‘ RPiTest ‘

type filter text

B Mam:ﬂkArgumerﬂS

%5 Debugger %~ SDurcE;E Common

[E]C/C++ Application -
2R M Stop on startup at: ‘ main
[E]C/C++ Attach to Application

[E]C/C++ Postmortem Debugger Debugger Option:
~ [E]C/C++ Remote Application ‘ Main Shared Libraries Gdbserver Settings ‘
G RPiTest
® Launch Group DB debugger: | arm-linux-gnueabinf-gdb H Browse.. |
GDB command file: ‘ Jhome/molloyd/workspace/RPiTest/.gdbinit ‘ ‘ Browse. ‘

(Warning: Some commands in this file may interfere with the startup operation of the debugger, for example "run".)

[=/ Non-stop mode (Note: Requires non-stop GDB)

I Enahle Paversa Dabiqaing at startip (Nate: Renuiras Pevarse GPAY

Figure 7-8: Setting up the remote debugger

Any program arguments can be added to the Arguments tab in Figure 7-8.
Finally, under the Gdbserver Settings tab (see Figure 7-9), set the executable
path and an arbitrary port number for the gdbserver command. This allows
the desktop computer to remotely invoke the gdbserver command on the RPi
and to connect to it over TCP/IP using its port number.

EIL/C++ Postmortem Debugger

= [EC/C++ Remete Application

Shared Libraries Gellrba rvmr Settangs
o RPITast
Dirmctocias
¥ Launch Group
fliafarm-Urux-grueshint Add

EIC/C++ Postmortem Debugger Debugger Optivns
= [£C/C++ Remote Applcation M Shared Lilsraries Gdbserver Settings

¥ Laurch Group Gdbsarvar path; | gdbserver

Port numbar: 2345

Figure 7-9: Setting the RPi gdb server port

You can enable this debug configuration to be added to the debugger “bug”
menu on the main window (see Figure 7-11) by using the Common tab. Finally,
you can start debugging by clicking the Debug button on the bottom right of
Figure 7-10.

A Name: | RPiTest |
= T g
(I || es:Acguments [# Debuggec 7 Source | commen ‘
| | |
EIC/C++ Application Display in favorites menu Encoding
[E]C/C++ Attach to Application 74 Debug %) Default - inherited (UTF-8)
[E]C/C++ Postmortem Debugger ZORin o MeoiagEaL | = ‘
 [E]C/C++ Remote Application
B RPiTest
Launch Group et
Using GDB (DSF) Automatic Remote Debugging Launcher - Select other. [Revert ‘ Apply |
Filter matched 6 of 6 items SR Dzr)) ==t | {2
®@ ‘ Close ‘ | Debug ‘

Figure 7-10: Adding to the “bug” menu

294

Part Il = Interfacing, Controlling, and Communicating

When prompted, you should accept the change to a Debug Perspective view,
which appears as in Figure 7-11. You can see that the program is currently
halted at a breakpoint on line 15 of the program code. The output is displayed
in the Console window at the bottom, and the Variables window displays that
the current value of x is 6 at this point in the program.

This type of debug view can be invaluable when developing complex applica-
tions, especially when the RPi is connected to electronic circuits and modules.
You can use the Step Over button to step through each line of your code, watch-
ing the variable values, while seeing how the program interacts with physically
connected circuits.

f)ebug configuration sets a break point atmain () B
[
\The program code was then stepped through to line 15,

it wnwun: €— Current value of x is displayed at this pofm-'/‘

Figure 7-11: The Debug Perspective view

Automatic Documentation (Doxygen)

As your RPi projects grow in capability and complexity, it will become especially
important that your code is self-documenting. If you follow good programming
practice when naming variables and methods, as discussed in Chapter 5, you
will not have to document every single line of code. Rather, you should write
inline documentation comments, using automatic documentation tools like
Doxygen or Javadoc, for every class, method, and state. This will enable other
programmers to have an immediate understanding of what your code does
and how it is structured.

Javadoc is an automatic documentation generator that generates HTML code
directly from Java source code. Likewise, Doxygen is a tool that can be used

Chapter 7 = Cross-Compilation and the Eclipse IDE

295

for generating documentation from annotated C/C++ source files in HTML,
LaTeX, and other formats. Doxygen can also generate documentation for the
other programming languages that are discussed in Chapter 5, but the follow-
ing discussion focuses on how it can be used for C++ documentation and how
it can be integrated with the Eclipse IDE. An output example, which documents
the C++ GPIO class from Chapter 6, is displayed in Figure 7-12.

My Project: exploringRPi::GPIO Class Reference - Iceweasel x
My Project: exploringRPi... % | €

€ Diile; yd/temp/htmU/cl ploringRPi_1_1GPIO.html v ¢| |8~ Google QwveE ¥ A

Glass List ‘ Glass Index ‘ Glass Members ‘

exploringRPi) GPIO)

Public Member Functions | Friends | List of all members

exploringRPi::GPIO Class Reference
Public Member Functions

GPIO (int number)
virtual int getNumber ()
virtual int setDirection (GPIO_DIRECTION)
virtual GPIO_DIRECTION - getDirection ()

Figure 7-12: Example Doxygen HTML output

First, you need to install Doxygen on the Linux desktop machine using the
following command:

molloydedesktop:~$ sudo apt install doxygen

Once installed, you can immediately begin generating documentation for
your project. For example, copy the Gp10.h and Gp10. cpp files from the chpoe/
Gp1o/ directory into a temporary directory such as ~/temp and then build the
documentation as follows:

molloyd@desktop:~/temp$ ls

GPIO.cpp GPIO.h

molloydedesktop:~/temp$ doxygen -g

Configuration file “Doxyfile' created ...

molloyd@desktop:~/temp$ ls

Doxyfile GPIO.cpp GPIO.h

molloyde@edesktop:~/temp$ doxygen -w html header.html footer.html stylesheet.css
molloyd@desktop:~/temp$ ls

Doxyfile footer.html GPIO.cpp GPIO.h header.html stylesheet.css

This automatically generates HTML files that you can customize for your
project, adding headers, footers, and style sheets to suit your needs. Next, call
the doxygen command on the Doxyfile configuration:

molloyd@desktop:~/temp$ doxygen Doxyfile

molloydedesktop:~/temp$ 1ls

Doxyfile doxygen_sglite3.db footer.html GPIO.cpp GPIO.h
header.html html latex stylesheet.css

296

Part Il = Interfacing, Controlling, and Communicating

You can see that there are html and latex folders containing the auto-
matically generated documentation. You can view the output by browsing
(e.g., in Chromium/Iceweasel, type file:// and press Enter in the
address bar) to the ~/temp/html/ directory and opening the index.html
file. There is a comprehensive manual on the features of Doxygen at www
.doxygen.org.

Adding Doxygen Support in Eclipse

The documentation that results from the previous steps is reasonably limited.
It is hyperlinked and captures the methods and states of the class, but there is
no deeper description. By integrating Doxygen into Eclipse, you can configure
and execute the Doxygen tools directly, and you can also provide inline com-
mentary that is integrated into your generated documentation output. The first
step is to enable Doxygen in the editor. In Eclipse, go to Window > Preferences
o C/C++ = Editor. In the window at the bottom, under Workspace default
select Doxygen. Apply the settings, and then in the editor type /** followed by
the Return key above any method, and the IDE will automatically generate a
comment as follows:

/ * %

* @param number

GP;O: :GPIO (int number) {

You can then add a description of what the method does, as shown in the
following example:

/ * %

* Constructor for the General Purpose Input/Output (GPIO) class. It
* will export the GPIO automatically.
* @param number The GPIO number for the RPi pin

GP;O: :GPIO (int number) {

To complete the installation, you can install the Eclox plug-in for Eclipse by
going to Help = Install New Software, and add a new site http://download
.gna.org/eclox/update/ to install the Eclox plug-in.

After Eclipse restarts, you will see a blue @ symbol in the top bar of Eclipse.
Press this button to add a Doxyfile to your project. You can then open the Doxyfile
to set the Doxygen configuration for your project, as illustrated in Figure 7-13.
You can then press on the blue @ symbol again to generate the documentation
for your project, whereupon html and latex directories will appear in your
project. You can browse to these directories and open the documentation files
directly within Eclipse.

http://download
http://download.gna.org/eclox/update/ to install the Eclox plug-in
http://www.doxygen.org
http://www.doxygen.org

Chapter 7 = Cross-Compilation and the Eclipse IDE

297

CACH — RPITesk/RPIT w50 oyl

*Rem Bow s . 2 graeien

Figure 7-13: Doxygen Eclox plug-in running within Eclipse Mars

At this point, you have everything you need to cross-compile applications
for your RPi. The next part of this chapter outlines how you can cross-compile
Linux itself and deploy it to an RPi board.

Building Linux

The Linux kernel is essentially a large C program that forms the central
core of the Linux OS. Together with loadable kernel modules (LKMs), it
is responsible for managing almost everything that occurs on a Linux-
based RPi. The kernel is custom built for each architecture type, which
means that there is a different kernel required for the ARMv7 RPi2/3 than
other ARMv6 RPi models. The custom-built kernel for ARM devices
utilizes device tree binary (DTB) files, which provide a standardized descrip-
tion of the device to reduce the amount of custom code required for each
device model.

The Raspbian image contains a full Linux distribution that includes
a kernel; however, advanced users may want to replace the kernel with a
very recent or user-configured kernel. Typically, this involves building
the kernel from source code, which can be performed directly on the RPi,
but it can take quite some time. Alternatively, the cross-compilation tools
that are described in this chapter can be used, which can greatly reduce
compilation time by leveraging the resources of a capable Linux desktop
machine.

The following description is written with the assumption that you have
installed a cross-compilation toolchain, as described at the beginning of this
chapter. The steps involved in this process are constantly undergoing change,
so updates are maintained on the chapter web page at www.exploringrpi

.com/chapter7.

http://www.exploringrpi
http://www.exploringrpi.com/chapter7

298

Part Il = Interfacing, Controlling, and Communicating

Downloading the Kernel Source

The Raspberry Pi Foundation maintains the code that is required to build the
kernel for the RPi on a GitHub repository. This reduces the complexity of the build
process in comparison to cloning the “vanilla” repository from www.kernel
.org, because the GitHub repository contains helpful configuration files. You can
clone the entire GitHub repository, but you should typically use a shallow clone,
which greatly reduces the download time because the development history is
truncated (~143MB versus the full repository size of ~1.25GB):

molloyd@desktop:~$ git clone --depth=1 git://github.com/raspberrypi/linux.git
Cloning into 'linux'...

molloyd@desktop:~$ cd linux/

molloyd@desktop:~/linux$ ls

arch CREDITS drivers include Kbuild 1ib mm
REPORTING-BUGS security usr block crypto firmware init
Kconfig MAINTAINERS net samples sound virt COPYING
fs ipc kernel Makefile README scripts tools

If you would like to build a different kernel version than the current master
version, you can clone the full repository and check out a particular develop-
ment branch:

molloydedesktop:~/linux$ git branch -a
* rpi-4.1.y
remotes/origin/HEAD -> origin/rpi-4.1.y
remotes/origin/linux stable
remotes/origin/master
remotes/origin/rpi-3.10.y
remotes/origin/rpi-3.18.y
molloydedesktop:~/linux$ git checkout rpi-3.18.y
Branch rpi-3.18.y set up to track remote branch rpi-3.18.y from origin.
Switched to a new branch 'rpi-3.18.y'
molloyd@desktop:~/linux$ git branch -a
* rpi-3.18.y
rpi-4.1.y

If you need to verify the exact version of Linux that you are about to build
(including the sublevel):

molloydedesktop:~/linux$ git checkout linux stable

molloyde@desktop:~/linux$ head -3 Makefile

VERSION = 3

PATCHLEVEL = 18
SUBLEVEL = 14

Typically, if you need to check out a different sublevel version, you can use
git tag -1 and then perform a checkout of that branch (e.g., git checkout
-b v3.18.12), but the tags in the GitHub repository are not aligned with the
“vanilla” kernel, and you might not be able to check out a desired release.

http://www.kernel
http://www.kernel.org

Chapter 7 = Cross-Compilation and the Eclipse IDE

299

As an alternative to cloning the full repository, you can obtain a full list of
the remote references, and then clone a specific branch as follows:

molloydedesktop:~$ git ls-remote --heads git://github.com/raspberrypi/linux -
.git
51af817611£2c0987030d024f24fc7ea95dd33e6 refs/heads/linux_stable
645£fd9b0c0b3cl1f79£71£92dac79bd2£87010444 refs/heads/master
1b49b450222df26e4abf7abb6d9302f72b2ed386 refs/heads/rpi-3.10.y
8f768c5f2a3314e4eacce8d667c787f£8dadfda74 refs/heads/rpi-3.11.y
6db93ee810fe7c58b02f71e76c8efef49e701084 refs/heads/rpi-4.5.y ...
molloydedesktop:~ $ git clone -b rpi-3.11l.y --depth=1 --single-branch -
git://github.com/raspberrypi/linux.git
molloyd@desktop:~ $ cd linux/
molloyd@desktop:~/linux$ git branch -a
* rpi-3.11.y

remotes/origin/rpi-3.11.y

Building the Linux Kernel

The core tools and configuration files that are required to build the kernel should
already be installed on your desktop machine* Therefore, to build the kernel,
you begin by choosing your target RPi model:

m For the RPi2/3 (ARMV7?), type the following (from 3.18.y on):

molloyd@desktop:~/linux$ export CC=arm-linux-gnueabihf-
molloydedesktop:~/linux$ make ARCH=arm CROSS COMPILE=${CC} -
bcm2709_defconfig

m QOr, for other RPi models (ARMv®6):

molloyd@desktop:~/linux$ export CC=arm-linux-gnueabihf-
molloyd@desktop:~/linux$ make ARCH=arm CROSS COMPILE=${CC} -
bcemrpi defconfig

This step identifies that you are building for the ARM architecture, and it
identifies a prefix for the cross-compilation tools. It results in the creation of a
configuration file (. config) in the current directory.

You can further customize the kernel configuration by installing the ncurses-
dev package and calling make menuconfig, as follows:

molloyd@desktop:~/linux$ sudo apt install ncurses-dev
molloydedesktop:~/linux$ make ARCH=arm CROSS COMPILE=${CC} menuconfig

This step displays the Kernel Configuration tool, as illustrated in Figure 7-14.
Effectively, this tool enables you to modify the . config file in a structured man-
ner, where available options are presented in menu form.

* You may need to install build-essential, git, ncurses-dev, and crossbuild-essential-armhf.

git://github.com/raspberrypi/linux
git://github.com/raspberrypi/linux.git

300

Part Il = Interfacing, Controlling, and Communicating

molloyd@desktop: =/linux x

File Edit View Search Terminal Help

.config -

Linux/arm 4,0,9 Kernel Configuratior
Configuration

Linux/arm
Arrow keys navigate the menu. <Enter> selacts submenus ---> (or empty submenus ----). Highlighted letters are hotkeys. Pressing <Y
includes, <N> excludes, <M> modularizes features. Press <Esc><Esc> to exit, <?> for Help, </> for Search. Legend: [*] built-in [
excluded <M> module < > module capable

Il | Patch physical to virtual translations at runtime]
(6x8) Physical address of main memory
General setup --->
[*] Enable loadable module support --->
[*] Enable the block layer --->
System Type --->
Bus support --->
Kernel Features ---»
Boot options --->
CPU Power Management --->
Floating point emulation --->
Userspace binary formats --->
Power management options --->
Networking support --->
Device Drivers --->
File systems --->
Kernel hacking --->
Security options --->
- Cryptographic API --->
Library routines =--->
Virtualization ----

<Exit > <Help> <Save> < Load >

Figure 7-14: The Kernel Configuration tool for Linux 4.0.9

You should browse the configuration menu to see some entries that may be
of interest in relation to the RPi platform:

m Under System Type, you can see that there are options for the BCM2709

platform. For example under Broadcom BCM2709 Implementations, you
can see that device tree support and GPIO support are enabled by default.

In the Kernel Features menu, you can see that the number of CPUs is
set at 4 for the RPi2/3. You can alter the Preemption Model in the same
menu (see Figure 7-15(a)).

In the Boot options menu, you can see the Default kernel command string,
which begins “console=tty AMAO, 115200 ...” (see the boot log in Chapter 3).

Under CPU Power Management, you can use the CPU Frequency scal-
ing menu to enable/disable the various governors. You can also change
the default governor from “powersave” to one of the other governors if
you so want.

In the Floating point emulation menu, you can see that the configuration
includes Advanced SIMD (NEON) Extension support for the RPi2/3
platform.

The Device Drivers menu provides options for configuring I°C, SPI, USB
devices, and much more.

The configuration is saved in the .config file when you exit this tool. You

are then ready to build the kernel, its associated LKMs, and DTBs. You can do
so by calling this command:

~/1linux$ make -j 6 ARCH=arm CROSS COMPILE=${CC} zImage modules dtbs

Chapter 7 = Cross-Compilation and the Eclipse IDE

301

The argument -5 6 enables parallel execution, allowing the make command
to execute several jobs simultaneously. My VM has six CPU threads in this case.
This option dramatically improves compilation time; in fact, it took approxi-
mately 8 minutes to build the kernel on my VM. Note that you might have to
perform a make clean between subsequent kernel builds.

THE FULLY PREEMPTIBLE KERNEL (RT) PATCH

You can also apply patches to the kernel that you are building. For example, you
can download the PREEMPT_RT patch from www . kernel . org/pub/1linux/
kernel/projects/rt/ asa .gz file for the exact kernel version that you are
building. Unfortunately, the patch is not available for all kernel versions, so
some research is required to ensure that you choose a kernel for which a patch
has been released. You can open the URL above in a web browser to identify
available options. You can apply the patch to your kernel source as follows:

molloyd@desktop:~/linux$ git checkout rpi-3.18.y
molloyd@desktop:~/linux$ wget https://www.kernel.org/pub/linux/ker -
nel/projects/rt/3.18/older/patch-3.18.16-rtl3.patch.gz
molloyd@desktop:~/linux$ gunzip patch-3.18.16-rtl3.patch.gz
molloydedesktop:~/linux$ cat patch-3.18.16-rtl3.patch | patch -pl

If the patch does not apply correctly, you can reverse it by using the following:
molloydedesktop:~/linux$ cat patch-3.18.16-rtl3.patch | patch -R -pl

In Figure 7-15(a), the RT patch has been applied, which results in a new option for a
fully preemptible kernel in the menuconfig tool.

(@) (b)

molloyd@de sktop: =/linux x

Fully Preemptible Kernel
PREEMPT_RT

File Edit Wiew Search Terminal Help

config - Linux/arm
» Kernel 23000
fon Mode
Usae the arrow keys to navigate this window or prass the
hotkey of the item you wish to select followad by the <SPACE
BAR>. Press <7> for additlonal infarmation about this

Frequency

} Ho Forced Preemption (Sarver)

} Voluntary Kermel Preemption (Desktop)

} Preemptible Kernel (Low-Latency Desktop)
‘reemptible Kernel (Basic RT)

Mo Forced Preemption

1§
\
f
{)
[

< Help =

Iatency(;]
Figure 7-15: (a) The PREEMPT_RT menuconfig option (b) The results histogram of the
cyclictest under load

The patched kernel can be deployed using the steps that follow in this section. On
reboot, uname -a should display a message that includes RT. Figure 7-15(b) illustrates
the cyclictest results histogram of the fully preemptible kernel in comparison to a ker-
nel with no forced preemption. These kernels were tested under load by using the

Continues

http://www.kernel.org/pub/linux
http://www.kernel.org/pub/linux/kernel/projects/rt/

302 Partll = Interfacing, Controlling, and Communicating

THE FULLY PREEMPTIBLE KERNEL (RT) PATCH (continued)

performance tests from Chapter 5 to create the load. The RT results on the RPi2 are
as follows:

pi@erpi ~ $ uname -a

Linux erpi 3.18.16-rtl13-v7+ #1 SMP PREEMPT RT Aug 6 12:41:42 EDT

2015 armv71 GNU/Linux

pi@erpi ~/rt-tests $ sudo ./cyclictest -t 1 -p 70 -n -i 1000 -1 100000 --smp
policy: fifo: loadavg: 0.87 0.34 0.15 2/175 1150

T: 0 (1238) P:70 I:1000 C: 100000 Min: 8 Act: 13 Avg: 11 Max: 87
T: 1 (1239) P:70 I:1500 C: 66669 Min: 8 Act: 23 Avg: 12 Max: 64
T: 2 (1240) P:70 I:2000 C: 50001 Min: 8 Act: 17 Avg: 12 Max: 48
T: 3 (1241) P:70 I:2500 C: 40001 Min: 8 Act: 15 Avg: 12 Max: 54

The same kernel built with the No Forced Preemption model does not perform as
well when tested under load. The maximum latency is higher, and the average latency
is somewhat higher:

pieerpi ~/rt-tests $ uname -a

Linux erpi 3.18.16-rt13-v7+ #2 SMP Aug 6 19:14:58 EDT 2015 armv7l GNU/Linux
pi@erpi ~/rt-tests $ sudo ./cyclictest -t 1 -p 70 -n -i 1000 -1 100000 --smp
policy: fifo: loadavg: 0.90 0.40 0.19 4/153 932

T: 0 (874) P:70 I:1000 C: 100000 Min: 7 Act: 11 Avg: 17 Max: 466
T: 1 (875) P:70 I:1500 C 66668 Min: 8 Act: 12 Avg: 15 Max: 206
T: 2 (876) P:70 I:2000 C: 50001 Min: 7 Act: 13 Avg: 14 Max: 488
T: 3 (877) P:70 I:2500 C 40000 Min: 7 Act: 11 Avg: 15 Max: 188

The new Linux kernel image appears in the /arch/arm/boot/ directory in
uncompressed form (Image), and in a self-extracting compressed form (zImage).
The latter should be used, as it reduces boot times:®

molloyde@desktop:~/linux/arch/arm/boot$ 1ls -1 *Image

-rwxr-xr-x 1 molloyd molloyd 8743476 Aug 3 09:06 Image
-rwxr-xr-x 1 molloyd molloyd 4000616 Aug 3 09:06 zImage

The new DTB files are stored in the dts/ and dts/overlays/ directories, as
follows:

molloydedesktop:~/linux/arch/arm/boot/dtss 1ls -1 *.dtb

-rw-r--r-- 1 molloyd molloyd 9900 Aug 2 17:02 bcm2709-rpi-2-b.dtb

molloyd@desktop:~/linux/arch/arm/boot/dts/overlayss 1ls *.dtb

ads7846-overlay.dtb igaudio-dac-overlay.dtb
rpi-proto-overlay.dtb

The final build step is to package the LKMs so that they can be deployed to
the RPi. A temporary directory temp_modules/ is used for this task, and you
can view the resulting structure using the tree command:

molloydedesktop:~/linux$ make ARCH=arm CROSS COMPILE=arm-linux-gnueabihf- -
INSTALL MOD PATH=temp modules/ modules install

5 A zImage or bzImage (big zImage) file contains executable decompression code and the
Linux kernel, which is compressed in gzip format by default (see the kernel compression mode
in the kernel configuration tool as illustrated in Figure 7-14).

Chapter 7 = Cross-Compilation and the Eclipse IDE

303

molloydedesktop:~/linux/temp_modules$ sudo apt install tree

molloydedesktop:~/linux/temp modules$ tree . | more
L— 1ib

f— firmware

| b— cpia2

| | L— stv0672_vp4.bin

L— modules
L— 24.0.9-v7+
}— build -> /home/molloyd/linux
}— kernel

|

[

[— crypto
[

| — aes-arm-bs.ko

Deploying the Linux Kernel

You can test the new kernel using an existing Raspbian image to which you
can copy the kernel image, DTBs, and the LKMs for the new kernel. You can
do this by mounting the SD card from your offline RPi onto your Linux
desktop machine. More information on this approach is available at tiny
.cc/erpi701l.

An online approach is used here, where the files are copied to a live Raspberry
Pi over the network. Regardless of the approach that you take, you should back
up the live RPi’s existing kernel configuration (e.g., in /boot /backup/) using
the following steps:

pieerpi /boot sudo mkdir backup

pieerpi /boot sudo cp kernel*.img backup/

$
$
pieerpi /boot $ sudo cp -r overlays backup/
pieerpi /boot $ sudo cp -a /lib/firmware/ /boot/backup/

Also, if you are replacing a kernel with the exact same version number, you
should also back up its /1ib/modules/X.X.X-X directory.

ENABLING SSH ROOT LOGIN WITH RASPBIAN

To transfer files to certain directories on the RPi using scp or rsync, you may need to
enable SSH root login. The first step is to enable root login (as described in Chapter 5)
using the following:

pi@erpi ~ $ sudo passwd root
Enter new UNIX password: secretpassword

Continues

304

Part Il = Interfacing, Controlling, and Communicating

ENABLING SSH ROOT LOGIN WITH RASPBIAN (continued)

Then edit the sshd configuration file (sshd_config) to permit root login by
changing the PermitRootLogin value to yes. Then restart the service:

pie@erpi /etc/ssh $ sudo nano sshd config

pi@erpi /etc/ssh $ more sshd config | grep RootLogin
PermitRootLogin yes

pi@erpi /etc/ssh $ sudo systemctl restart sshd

To reverse this configuration, set the PermitRootLogin value backtowith-
out -password and disable root login using sudo passwd -1 root.

You may need to enable SSH root login on your RPi to copy the files to the
board. Then use scp or rsync to transfer the files as follows:

molloyde@desktop:~/linux/arch/arm/boot$ scp zImage root@erpi.local:/boot/ker -

nel7 erpi.img

root@erpi.local's password:

zImage 100% 3907KB 3.8MB/s 00:00

molloyd@desktop:~/linux/arch/arm/boot$ scp dts/*.dtb root@erpi.local:/boot/

molloyde@desktop:~/linux/arch/arm/boot$ scp dts/overlays/*.dtb root@erpi.loc -

al:/boot/overlays/

molloydedesktop:~/linux/arch/arm/boot$ cd ~/linux/temp modules/

Unfortunately, the 1ib/modules/ directory contains symbolic links that can-
not be easily ignored by scp. You can delete them and use scp, or you can use
the rsync command for the last file copy step:

molloydedesktop:~/linux/temp modules$ rsync -avhe ssh lib/ root@erpi.local:/

The files are now in place on the RPi. You should then edit the /boot /config
.txt file to select your new kernel (kernel7_erpi.img) rather than overwriting
the current kernel . img or kernel?.img files:

pie@erpi /boot $ sudo nano config.txt

pi@erpi /boot $ more config.txt | grep kermel
kernel=kernel7_erpi.img

Finally, you can reboot the RPi and verify the new kernel version:

pi@erpi /boot $ sudo reboot

pi@erpi ~ $ uname -a
Linux erpi 4.0.9-v7+ #1 SMP PREEMPT Aug 2 17:06:27 EDT 2015 armv71l GNU/Linux

The RPi firmware is also available on a separate GitHub repository: github
.com/raspberrypi/firmware.git. However, itis a very large repository (4GB+).
In the repository, you will find the latest prebuilt kernels, versions of the boot files (e.g.,
bootcode.bin, start.elf), and the latest VideoCorelV userspace libraries. The
firmware files are updated relatively infrequently, and an apt update followed by an
apt upgrade is the easiest way to keep your RPiimage and firmware up to date.

mailto:root@erpi.local:/boot/ker
mailto:root@erpi.local's
mailto:root@erpi.local:/boot
mailto:root@erpi.loc
mailto:root@erpi.local:

Chapter 7 = Cross-Compilation and the Eclipse IDE

305

Building a Linux Distribution (Advanced)

In the previous section, a new Linux kernel was deployed to an existing Raspbian
image distribution. It is also possible to build a custom Linux distribution for the
RPi using open source projects such as OpenWRT (www . openwrt . org), Buildroot
(buildroot.uclibc.org), and the Yocto Project (www.yoctoproject.org). These
projects aim to create tools, templates and processes to support you in building
custom embedded Linux distributions.

Poky (www . pokylinux.org) is an open source build tool from the Yocto Project
that can be used to build customized Linux images for more complex embed-
ded systems, such as the RPi. The Poky platform builder, which is derived from
OpenEmbedded, can be used to build ready-to-install Linux file system images,
by automatically downloading and building all the Linux applications (e.g., SSH
servers, gcc, X11 applications), and configuring and installing them within a
root file system. The alternative approach to using a build system such as Poky
is that you would have to configure each Linux application by hand, matching
dependency versions—a difficult task that would have to be repeated for each
system type.

Poky uses the BitBake build tool to perform tasks such as downloading, com-
piling and installing software packages and file system images. The instructions
as to which tasks BitBake should perform are contained in metadata recipe (. bb)
files. There is a full “Poky Handbook” that is co-authored by Richard Purdie of
the Linux Foundation at tiny.cc/erpi702.

Here is a short guide that works through the steps that are currently required
to build a minimal Linux distribution for the RPi. This is intended as a learning
exercise that aims to give you a flavor of what to expect; there are full books
written on this topic! Depending on the specification of your PC, these steps
can take several hours to complete:

1. Clone the Poky repository (~113MB), and within the repository download
the RPi recipes (~350KB), which are placed in the poky/meta-raspberrypi
directory:

molloydedesktop:~$ git clone git://git.yoctoproject.org/poky.git
Cloning into 'poky'...

molloydedesktop:~$ cd poky/

molloydedesktop:~/poky$ git clone git://git.yoctoproject.org/meta-raspberrypi
Cloning into 'meta-raspberrypi'...

2. Configure the build environment and create the build directory and the
configuration files that you can use to configure the build:

molloydedesktop: ~/poky$ source oe-init-build-env erpi
Shell environment set up for builds.

You can now run 'bitbake <targets>'

Common targets are: core-image-minimal ...
molloyde@desktop: ~/poky/erpi$ cd conf

http://www.openwrt.org
http://www.yoctoproject.org
http://www.pokylinux.org
git://git.yoctoproject.org/poky.git
git://git.yoctoproject.org/meta-raspberrypi
http://www.openwrt.org
http://buildroot.uclibc.org

306 Partll=Interfacing, Controlling, and Communicating

molloyd@desktop: ~/poky/erpi/cont$ 1ls
bblayers.conf local.conf templateconf.cfg

3. Add the meta-raspberrypi recipes directory to the BBLAYERS entry in the
bblayers.conf file:

molloydedesktop:~/poky/erpi/conf$ more bblayers.conf

BBLAYERS 2= " \
/home/molloyd/poky/meta \
/home /molloyd/poky/meta-yocto \
/home/molloyd/poky/meta-yocto-bsp \
/home/molloyd/poky/meta-raspberrypi \

4. You can configure the build by adding entries to the configuration files.
Note that the README file in the poky/meta-raspberrypi directory contains
a guide to the available RPi options. Edit the 1ocal.conf file to replace
gemux86 With raspberrypi (or raspberrypi2), enable the camera, and set
the GPU memory size. So, for example:

molloydedesktop: ~/poky/erpi/conf$ more local.conf

MACHINE ??= "raspberrypi2"
GPU_MEM = "lé6"
VIDEO CAMERA = "1"

5. Set the cross-compiler variables and you are ready to build an RPi image
(use either rpi-hwup-image or rpi-basic-image). The basic image includes
SSH support and so is used here:
molloydedesktop:~/poky/erpi$ CC=arm-linux-gnueabihf-gcc
molloyd@desktop:~/poky/erpi$ LD=arm-linux-gnueabihf-1d
molloyd@desktop:~/poky/erpi$ bitbake rpi-basic-image
Parsing recipes: 100% |###H#H#HHHHHH A4S Time: 00:00:38

Parsing of 904 .bb files complete (0 cached, 904 parsed). 1318 targets, 61
skipped, 0 masked, 0 errors ...

You may have to run this step several times until you have resolved miss-
ing dependencies. For example, I had to install the following:
molloydedesktop:~/poky/erpi$ sudo apt install diffstat chrpath -
libsdl-dev

At this point the build should begin; it takes approximately 45 minutes
on a VM that has an allocation of six i7 threads.

6. You can then write the final image to an SD card using the steps described
in Chapter 2. The SD image file is located at

molloydedesktop:~/poky/erpi/tmp/deploy/images/raspberrypi2$ 1ls -1 -
* . rpi-sdimg

-rw-r--r-- 1 molloyd molloyd 130023424 Aug 8 17:44 rpi-basic-image-
raspberrypi2-20150810205912.rootfs.rpi-sdimg

Chapter 7 = Cross-Compilation and the Eclipse IDE

307

After the RPi has been booted with the new distribution, you can connect
to it using its IP address (see Chapter 2), and you can log in as root with no
password required:

molloyd@desktop:~$ ssh root@192.168.1.116

root@raspberrypi2:~# uname -a

Linux raspberrypi2 3.18.11 #2 SMP PREEMPT Aug 8 8:38:21 EDT 2015 armv7l ...
root@raspberrypi2:~# df -h

Filesystem Size Used Available Use% Mounted on
/dev/root 73 .5M 58.3M 11.1M 84% /

devtmpfs 427.6M 0 427.6M 0% /dev

tmpfs 431.8M 156 .0K 431.6M 0% /run

tmpfs 431.8M 52.0K 431.7M 0% /var/volatile

The ext4 partition on this minimal image is ~58 MB in size, so you do not have
access to anything like the same range of tools as within the Raspbian image.
Typically, packages are added to the distribution at the build stage, but it is
possible to add a package manager such as deb/apt.® However, adding typical
package management capabilities to your custom build involves pointing /etc/
apt/sources.list on the RPiat your own web server, which contains packages
that are custom built for your distribution (e.g., from /poky/erpi/tmp/deploy/).

At this stage, you can adjust the configuration files, and BitBake will only
rebuild packages that are affected by your changes. For example, it is possible
to configure kernel settings using the menuconfig tool (as in Figure 7-14) at this
stage and rebuild the SD image within a matter of minutes:

molloyd@edesktop:~/poky/erpi$ bitbake virtual/kernel -c menuconfig

molloyd@desktop: ~/poky/erpi$ bitbake virtual/kernel -c compile -£

molloyd@desktop:~/poky/erpi$ bitbake virtual/kernel
molloydedesktop:~/poky/erpi$ bitbake rpi-basic-image

One key strength of the Poky build tool is that there is strong community
support; see pokylinux.org/support/.

Summary

After completing this chapter, you should be able to do the following:

m Install a cross-compilation toolchain on desktop Linux that can be used
to build applications for the RPi using your desktop PC.

m Use a package manager to install multi-architecture third-party libraries
that may be required for cross-compilation.

m Emulate the ARM architecture on the desktop PC using QEMU.

¢ Add three line entries for IMAGE FEATURES += "package-management", +PACKAGE
CLASSES ?= "package deb", and CORE IMAGE EXTRA INSTALL += "apt" to the
local.conf file.

mailto:root@192.168.1.116

308 Partll = Interfacing, Controlling, and Communicating

m Install and configure the Eclipse integrated development environment
(IDE) for cross-compilation to build RPi applications.

m Configure Eclipse for remote deployment of applications, remote debug-
ging, GitHub integration, and automated documentation.

m Build a custom Linux kernel and deploy it to the RPi.

Further Reading

The steps in this chapter are prone to changes of the Linux distribution, the
Eclipse version, and the kernel configuration. If you are experiencing difficul-
ties with this configuration or want to contribute information that will make
it easier for others to do the same tasks that are presented in this chapter, visit

www.exploringrpi.com/chapter7/.

http://www.exploringrpi.com/chapter7

Interfacing to the
Raspberry Pi Buses

This chapter describes bus communication in detail, explaining and comparing
the different bus types that are available on the Raspberry Pi. It describes how
you can configure them for use, and how you can communicate with and con-
trol I’C, SPI, and UART devices, using both Linux tools and custom-developed
C/C++ code. Practical examples are provided using different low-cost bus
devices, such as a real-time clock, an accelerometer, a serial shift register with
a seven-segment display, a USB-to-TTL 3.3V cable, and a GPS receiver. After
reading this chapter, you should have the skills necessary to begin interfacing
almost any type of bus device to the Raspberry Pi.

Equipment Required for This Chapter:
m Raspberry Pi (ideally an RPi 2/3)
m A real-time clock on a breakout board (e.g., the DS3231)
m ADXL345 accelerometer on an I’C /SPI breakout board
m 74HC595 shift register, seven-segment display, and resistors
m A USB-to-TTL 3.3V cable (see Chapter 1 and Chapter 2)
m A Jow-cost UART GPS receiver (e.g., the GY-GPS6MV2)

Further details on this equipment and chapter are available at

www .exploringrpi.com/chapters.

309

http://www.exploringrpi.com/chapter8

310

Part Il = Interfacing, Controlling, and Communicating

Introduction to Bus Communication

In Chapter 6, the use of general-purpose input/outputs (GPIOs) is discussed in
detail, which makes it clear how you can connect the RPi to standalone compo-
nents, including one-wire sensors that have custom communications protocols.
This chapter examines more complex communications that can be performed
using the bus interfaces that are available on the RPi. Bus communication is a
mechanism that enables data to be transferred between the high-level compo-
nents of an embedded platform, using standardized communications protocols.
The two most commonly used embedded system buses are available on the RPi,
and they are the subject of this chapter: Inter-Integrated Circuit (I*C) and Serial
Peripheral Interface (SPI). In addition, Universal Asynchronous Receiver/Transmitter
(UART) devices are discussed. These are computer hardware devices that can
be configured and used to send and receive serial data. When combined with
appropriate driver interfaces, UARTs can implement standard serial commu-
nication protocols, such as RS-232, RS-422, or RS-485.

Understanding the behavior and use of bus communication protocols and
devices enables the possibility of building advanced RPi electronic systems.
There are a huge number of complex sensors, actuators, input devices, I/O
expanders, and other microcontrollers that conform to these communication
protocols, and the RPi is capable of communicating with them all. Several such
devices are used in Chapter 9 to enhance the interfacing capabilities of the
RPi, and in Chapter 10 to interface the RPi to the physical environment using
sensors and actuators. In addition, Chapter 11 describes how you can use the
popular Arduino microcontroller to build your own advanced bus devices,
which can be interfaced directly to the RPi using these buses.

The topics discussed in this chapter are all demonstrated using practical
examples with devices that were largely chosen based on their wide avail-
ability and low cost. However, the focus of this chapter is on imparting an
understanding of the techniques employed in using the RPi’s buses, rather than
just describing the specific bus devices used. To this end, the chapter provides
generic communications code that you can use in order to apply the principles
described to any device of your choosing.

12C

Inter-Integrated Circuit (IIC or I°C) is a two-wire bus that was designed by Philips
in the 1980s to interface microprocessors or microcontrollers to low-speed
peripheral devices. A master device, such as the RPi, controls the bus, and many
addressable slave devices can be attached to the same two wires. It has remained

Chapter 8 = Interfacing to the Raspberry Pi Buses

311

popular over the years, mainly due to its relative simplicity and breadth of
adoption. It is currently used in smartphones, most microcontrollers, and even
environmental management applications in large-scale server farms. Here are
some general features of the I°C bus:

m Only two signal lines are required for communication, the Serial Data
(SDA) line for the bidirectional transmission of data, and the Serial Clock
(SCL) line, which is used to synchronize the data transfer. Because the
bus uses this synchronizing clock signal, the data transfer is said to be
synchronous. The transmission is said to be bidirectional because the same
SDA wire can be used for sending and receiving data.

m Fach device on the bus can act as a master or a slave. The master device is
the one that initiates communication and the slave device is the one that
responds. Designated slave devices cannot initiate communication with
the master device.

m Each slave device attached to the bus is pre-assigned a unique address,
which is in either 7-bit or 10-bit form. In the following examples, 7-bit
addressing is used, i.e., 0x00 to Ox7F (27 = 128,,= 0x80).

m [t has true multi-master bus facilities, including collision detection and
arbitration if two or more master devices activate at once.

m On-chip noise filtering is built in as standard.

I>’C Hardware

Figure 8-1(a) illustrates the interconnection of multiple slave devices to the
I>C bus. All output connections to the SDA and SCL lines are in open-drain
configuration (discussed in Chapter 4), whereby all devices share a common
ground connection. This means that devices with different logic families can
be intermixed on the bus, and that a large number of devices can be added to
a single bus. In theory, up to 128 devices could be attached to a single bus, but
doing so would greatly increase the capacitance of the interconnecting lines.
The bus is designed to work over short distances, as long bus lines are prone
to electrical interference and capacitance effects (e.g., a pair of 22 AWG shielded
wires has a capacitance of about 15 pF/ft).

Transmission line capacitance has a huge impact on data transmission rates. In
Chapter 4 (see Figure 4-11), when a 10 pF capacitor is connected in parallel with
a resistive load and an AC voltage supply is applied, the capacitor had a very
clear smoothing effect on the voltage across the load. This smoothing effect is
unwelcome in the transmission of digital data; for example, if a random binary
signal (0 V-3.3V) switches at a high frequency, then severe smoothing could

312

Part Il = Interfacing, Controlling, and Communicating

result in a constant 1.65V signal, which carries no binary information at all.
Typically, the longer the bus length and the more I’C devices that are attached
to it, the slower the speed of data transmission. There are I*C repeaters available
that act as current amplifiers to help solve the problems associated with long
lines. Further documentation on the I°C bus is available from NXP directly at
tiny.cc/erpi80l.

(a)

Veo

Termination resistors [o A
(pull-up C termination) L™ Optional serial resistars s

i 5L

EE:
%- n

Raspberry Pi (master) ADXL345 slave (0x53)

Figure 8-1: (a) The I2C bus configuration, and (b) the built-in pull-up resistors on the 12C1 bus

PC on the RPi

I’C on the RPi is implemented using the Broadcom Serial Controller (BSC),
which supports 7-bit/10-bit addressing and bus frequencies of up to 400 kHz
(see Chapter 3 of the BCM2835 ARM Peripherals document). NXP (formerly
Philips) has newer I>C Fast-mode Plus (Fm+) devices that can communicate at
up to 1MHZ!, but this capability is not available on the RPi.

The I°C bus requires pull-up resistors (Rp) on both the SDA and SCL lines, as
illustrated in Figure 8-1(a). These are called termination resistors and they usu-
ally have a value of between 1k() and 10k(). Their role is to pull the SDA and
SCL lines up to V- when no I’C device is pulling them down to GND. This
pull-up configuration enables multiple master devices to take control of the bus,
and for the slave device to “stretch” the clock signal (i.e., hold SCL low). Clock
stretching can be used by the slave device to slow down data transfer until it
has finished processing and is ready to transmit. These termination resistors
(R23 and R24) are physically attached to the RPi’s 12C1 bus (Pins 3 and 5), as
illustrated in Figure 8-1(b). Termination resistors are often also present on the

T In 2012 NXP released Ultra Fast-mode (UFm) I°C, which offers a 5MHz mode. However, it
is quite different from other I’C modes as it is unidirectional and there is only a single master.
It is currently not widely adopted.

Chapter 8 = Interfacing to the Raspberry Pi Buses

313

breakout board that is associated with an I?C device. This can be a useful feature,
but their equivalent parallel resistance should be factored into your design if
you are using several boards on the same bus.

The optional serial resistors (Rg) shown in Figure 8-1(a) usually have low val-
ues (e.g., 250 (), and can help protect against overcurrent conditions. The I°C
devices are typically attached to the SDA and SCL lines using built-in Schmitt
trigger inputs (see Chapter 4) to reduce the impact of signal noise by building
in a degree of switching hysteresis.

m The I>)C bus on the RPi is 3.3V tolerant; consequently, you may need
logic-level translation circuitry if you want to connect 5V powered I1>C devices to it.

That topic is discussed at the end of this chapter.

Enabling the I’C bus on the RPi

The primary I*C bus is not enabled by default on the RPi. You can enable it
using the raspi-config tool (see Chapter 2) using the “Advanced Options”
menu. However, the change does not always apply correctly and it is useful to
understand the system changes that the tool makes. Essentially, the tool adds an
entry to the /boot/config.txt and the /etc/modules files. You can make these
changes manually by adding an i2c_armentry line to the boot configuration file:

pieerpi /boot $ more config.txt | grep i2c_arm
dtparam=i2c_arm=on

Save the configuration file and reboot; at this point, the bus is not yet available.
The I’C bus implementation on the RPi uses loadable kernel modules (LKMs).
Therefore, at this point you can manually load the LKMs using the modprobe
command, as follows:

pieerpi /dev $ sudo modprobe i2c-bcm2708

pieerpi /dev $ sudo modprobe i2c-dev
pieerpi /dev $ lsmod | grep i2c

Module Size Used by
i2c_dev 6027 0
i2c_bcm2708 4990 O

These modules are loaded from the modules directory for your kernel version.
For example:

pi@erpi:/lib/modules/4.1.19-v7+/kernel/drivers/i2c $ 1ls -1 i2c-dev.ko
-rw-r--r-- 1 root root 15576 Mar 14 15:39 i2c-dev.ko

A new i2c-1 device is then available in the /dev directory:

pieerpi /dev $ 1ls -1 i2c*
crw-rw---T 1 root i2c 89, 1 Mar 26 16:33 i2c-1

mailto:pi@erpi:/lib/modules/4.1.19-v7+/kernel/drivers/i2c

314

Part Il = Interfacing, Controlling, and Communicating

Instead of loading the modules manually, you can edit the /etc/modules file
and add the module names to the file. The I2C LKMs are then automatically
loaded on boot.

pi@erpi /etc $ cat modules

snd-bcm2835

i2c-bcm2708
i2c-dev

If you are having difficulties with these steps, check that any required mod-
ules are not listed in a blacklist file within /et c/modprobe.d/, and ensure that you
are using the latest firmware by using sudo rpi-update. You should also check the
chapter web page for updates.

Enabling a Second PC Bus

There is a second I2C bus (see Table 8-1) on recent RPi models that is reserved
for the automatic configuration of HATs that are attached to the board. If you
are not using HATs, then you can use this bus for your own applications. To
do this, you must edit the kernel command line arguments in /boot/cmdline
.txt to include the text, “becm2708.vc_i2¢c_override=1" (the entire command
must be on a single line):

pi@erpi /boot $ sudo nano cmdline.txt

pie@erpi /boot $ more cmdline.txt

dwc_otg.lpm enable=0 console=ttyAMAO,115200 console=ttyl root=/dev/mmcbl -
kOp2 rootfstype=ext4 elevator=deadline rootwait bcm2708.vc_i2c_override=1

You must also add an entry to /boot/config. txt as follows:

pieerpi /boot $ tail -1 config.txt
dtparam=i2c_vc=on

After reboot, you should now have two I?C devices.

pieerpi ~ $ 1ls /dev/i2c*
/dev/i2c-0 /dev/i2c-1

m The second 1C bus does not have onboard pull-up resistors. You will
have to add them to your circuit or it will not work correctly. Standard resistor values
of 1.8 kQ, 2.2 kQ, and 4.7 kQ should work well in most applications. Use a larger value
if possible, as each time you add a device with on-board pull-up resistors to the bus,
the combined parallel resistance is further reduced and a larger current will flow.

Chapter 8 = Interfacing to the Raspberry Pi Buses

315

Table 8-1: I°C Buses on the RPi?

A SDA SCL

BUS S/W DEVICE PIN PIN DESCRIPTION

12C1 /dev/i2c-1 Pin3 Pin5 General I?C bus. This is disabled by
default.

12C0 /dev/i2c-0 Pin 27 Pin 28 Reserved I>C bus for HAT manage-

ment. This is not available on the
older RPi A/B boards.

CHANGING THE 12C BAUD RATE

The current I?C clock frequency can be determined from the sysfs LKM parameters:
pieerpi ~ $ sudo cat /sys/module/i2c_bcm2708/parameters/baudrate
100000

On some Linux image releases, it is possible to adjust the baud rate for the I°C buses
on reboot using device tree parameters. You can edit the /boot /config. txt file
and add a line that contains dtparam=i2c_baudrate=400000 to change the fre-
quency to 400 kHz. The updated baud rate is set on reboot.

pi@erpi ~ $ sudo cat /sys/module/i2c bcm2708/parameters/baudrate
400000

On other Linux image releases and configurations, it is possible to reload the LKM
with a custom argument at run time, for example:

pi@erpi:~ $ sudo modprobe -r i2c_bcm2708

pi@erpi:~ $ sudo modprobe i2c bcm2708 baudrate=400000

pi@erpi:~ $ sudo cat /sys/module/i2c_bcm2708/parameters/baudrate
400000

This change can be made to persist on reboot by creating a file named i2c_
bcm2708 . conf inthe /etc/modprobe . d/ directory that contains the following:

pieerpi:/etc/modprobe.d $ more bcm 2708.conf
options i2c _bcm2708 baudrate=400000

An I°C Test Circuit

There are many I°C devices available that can be connected to the RPi, and
two different types are described in this section—a real-time clock and an

2There is a third 5V I>C bus available via the HDMI connector. It is possible to use it from Linux
user space but you must use kernel patches. Also, the primary I?C bus on early RPi versions is
i2c-0,not i2c-1 as on later versions.

mailto:pi@erpi:/etc/modprobe.d

316

Part Il = Interfacing, Controlling, and Communicating

accelerometer. These particular devices have been chosen because they have
a low cost, are widely available, are useful, and have high-quality datasheets.

A Real-Time Clock

Unlike a desktop computer, the RPi does not have an onboard battery-backed
clock. This means that the clock time is lost on each occasion that the board
reboots; however, a network-attached RPi can retrieve the current time from the
network using the Network Time Protocol (NTP). If you are using an RPi that
cannot remain connected to a stable network, then a battery-backed real-time
clock (RTC) can be a valuable addition.

Devices synchronize time with an RTC only occasionally, so RTCs are typi-
cally attached to an I?’C bus. If you are purchasing a module, then you should
ensure that it is supported by an LKM for your kernel. This allows for full OS
integration of the RTC, which is discussed shortly.

pi@erpi /lib/modules/4.1.5-v7+/kernel/drivers/rtc $ ls

rtc-bg32k.ko rtc-ds3234.ko rtc-m41t93.ko rtc-pcf8563.ko rtc-rx8025.ko

rtc-dsl305.ko rtc-em3027.ko rtc-m41t94.ko rtc-pcf8583.ko rtc-rx8581.ko

rtc-dsl307.ko rtc-fm3130.ko rtc-max6900.ko rtc-r9701.ko rtc-s35390a.ko
rtc-dsl374.ko rtc-1isl112022.ko rtc-max6902.ko rtc-rs5c348.ko rtc-x1205.ko
rtc-dsl1390.ko rtc-1is112057.ko rtc-pcf2123.ko rtc-rs5c372.ko

rtc-dsle72.ko rtc-isll208.ko rtc-pcf2127.ko rtc-rv3029c2.ko
rtc-ds3232.ko rtc-m41t80.ko rtc-pcf8523.ko rtc-rx4581.ko

The DS3231 has been chosen for this chapter, as it is a high-accuracy RTC that
keeps time to +63 seconds per year (i.e., £2ppm? at 0°C-50°C), and it is widely
available in module form at very low cost (even less than $1). The DS3231 is
compatible with the DS1307 LKM (rtc-ds1307.ko).

The ADXL345 Accelerometer

The Analog Devices ADXL345 is a small, low-cost accelerometer that can measure
angular position with respect to the direction of Earth’s gravitational force. For
example, a single-axis accelerometer at rest on the surface of the Earth, with
the sensitive axis parallel to Earth’s gravity, will measure an acceleration of 1g
(9.81 m/s?) straight upward. While accelerometers provide absolute orientation
measurement, they suffer from high-frequency noise, so they are often paired
with gyroscopes for accurate measurement of change in orientation (e.g., in
game controllers)—a process known as sensor fusion. However, accelerometers
have excellent characteristics for applications in which low-frequency absolute
rotation is to be measured. For simplicity, an accelerometer is used on its own
in the following discussions, because the main aim is to impart an understand-
ing of the I°C bus.

3 Two parts per million evaluates to (31,536,000 seconds per year x +2)/1,000,000 = +63.072
seconds.

Chapter 8 = Interfacing to the Raspberry Pi Buses

317

The ADXL345 can be set to measure values with a fixed 10-bit resolution, or
using a 13-bit resolution at up to +16g. The ADXL335 analog accelerometer is
utilized in Chapter 10—it provides voltages on its outputs that are proportional
to its orientation. Digital accelerometers such as the ADXL345 include analog-
to-digital conversion circuitry along with real-time filtering capabilities—they
are more complex devices with many configurable options, but it is actually
easier to attach them to the RPi than their analog equivalents. The ADXL345
can be interfaced to the RPi using an I*C or SPI bus, which makes it an ideal
sensor to use in this chapter as an example for both bus types. The chapter web
page identifies suppliers from whom you can purchase this particular sensor.

The I°C slave address is determined by the slave device itself. For example,
the ADXL345 breakout board has the address 0x53, which is determined at
manufacture. Many devices, including the ADXL345, have selection inputs that
allow you to alter this value within a defined range*. If the device does not have
address selection inputs, then you cannot connect two of them to the same bus,
as their addresses will conflict. However, there are I>C multiplexers available
that would enable you to overcome this problem.

The data sheet for the ADXL345 is an important document that should be
read along with this chapter. It is available at www.analog.com/ADXL345 or tiny
.cc/erpis8o2.

Wiring the Test Circuit

Figure 8-2 illustrates a test circuit that can be used to evaluate the function
of I?C devices that are attached to the RPi. In this circuit an ADXL345 and a
DS3231 breakout board are connected to the same 12C1 bus. The ADXL345 has
the address 0x53 and the DS3231 has the address 0x68, so there will not be a
conflict. The CS input of the ADXL345 breakout board is set high to place the
module in I’C mode.

Even if you do not have these particular sensors, the following discussion
is fully representative of the steps required to connect any type of I°C sensor
to the RPi.

ADXL345 breakout board
Al 5

DS3231 breakout board
Y CR2016 battery on the reverse side
.PI:“I‘IIIEIR| vy .
23K
5QW.
o * IREEERR] co
: L b
- G 25+

1.8k strong pull-up [] (| 1ad
resistors on pins 3and 5 Bridge with solder to change EEPROM address

12C1_5DA | 3 38

Figure 8-2: Two I°C devices connected to the I2C1 bus

*The ADXL345's alternative address pin ALT is tied to GND on this particular breakout board,
fixing the device at I?C address 0x53, despite the capability of the device itself to be configured
for an alternative address.

http://www.analog.com/ADXL345

318

Part Il = Interfacing, Controlling, and Communicating

Using Linux 12C-Tools

Linux provides a set of tools, called i2¢c-tools, for interfacing to I’C bus devices;
it includes a bus probing tool, a chip dumper, and register-level access helpers.
You can install these tools using the following command:

pi@erpi ~ $ sudo apt install i2c-tools

i2cdetect

The first step is to detect that the devices are present on the bus. When both I*C
buses are enabled, the i2cdetect command displays:
pi@erpi ~ $ i2cdetect -1

i2¢c-0 i2c 3f205000.1i2¢c I2C adapter
i2c-1 i2c 3f804000.1i2¢c I2C adapter

If the circuit is wired as in Figure 8-2 with an ADXL345 and a DS3231 break-
out board attached to the /dev/i2c-1 bus, then it can be probed for connected
devices, which will result in the following output:

pi@eerpi ~ $ i2cdetect -y -r 1

01 2 3 4 5 6 7 8 9 a b c d e f£

00: e o m o Dl ol Mmool Mol am oo oo

10: == == == == == -= -= -= -- —- - -- - -- -- --

e

30: -- - - —= —- mm —m mm mm mm o o oo —— oo oo
AQ: —= —= —- mm Ml Ml Mmool Ml ol ol oo -
50: -- -- -=- 53 -- -= -- 57 -= -= -= -- -- - -- --
60: -- -- -= -= -= -= -= -= 68 -- -- -- -- -- -- --
70: == == == -= -= -= -- --

Hexadecimal addresses 0x03 to 0x77 are displayed by default. Using -a will
display the full range 0x00 to 0x7F. When - - is displayed, the address was
probed but no device responded. If uu is displayed, then probing was skipped,
as the address is already in use by a driver.

The ADXL345 breakout board occupies address 0x53 and the DS3231 ZS-042
breakout board occupies addresses 0x68 and 0x57°. Each of the attached break-
out boards defines its own addresses, which means that problems will arise if
two slave devices with the same address are connected to a single bus. Many
I>C devices provide an address selection option that often involves setting an
additional input high/low, which is typically implemented on breakout boards
by jumper connections or contact points that can be bridged with solder.

5There is a 32Kb AT24C32 Serial EEPROM on the DS3231 ZS-042 breakout board. The AQ, A1,
and A2 pins on the breakout board can be used to adjust its address. Also, the SQW pin on the
board can be used for an interrupt alarm signal or a square-wave output (1Hz, 1KHz, 4KHz, or
8KHz). The 32K pin provides a 32KHz clock signal.

Chapter 8 = Interfacing to the Raspberry Pi Buses

319

i2cdump

The i2cdump command can be used to read in the values of the registers of the
device attached to an I?C bus and display them in a hexadecimal block form.
You should not use this command without consulting the datasheet for the slave
device, as in certain modes the i2cdump command will write to the device. The
argument -y ignores a related warning. The devices in Figure 8-2 can be safely
used, and when the address o0x68 is probed on the i2c-1 bus in byte mode (b),
it results in the following output:

pieerpi ~ $ i2cdump -y 1 0x68 b

0O 1 2 3 4 5 6 7 8 9 a b ¢ d e f£f 0123456789%abcdef
00: 37 45 02 03 03 01 00 00 00 0O 01 OO 00 00 1c 88 TE????....?2...27
10: 00 17 00 XX XX XX XX XX XX XX XX XX XX XX XX XX L ? L XXXXXXKXKXXXXKXX

If the device is probed again in quick succession, then a similar output results,
but in this example the register value for address 0x00 changes from 37 to 43.
This value actually represents the number of clock seconds (in decimal form)
on the RTC module. Therefore, six seconds had elapsed between these two calls
to the i2cdump command:

pieerpi ~ $ i2cdump -y 1 0x68 b

0 1 2 3 4 5 6 7 8 9 a b c¢c d e f£ 0123456789%abcdef
00: 43 45 02 03 03 01 00 00 00 0O 01 0O 00 0O 1c 88 CE????....?2...2%
10: 00 17 00 XX XX XX XX XX XX XX XX XX XX XX XX XX .2 XXXXXXXXXXXKXX

To understand the meaning of such registers, you need to read the datasheet
for the device. The datasheet for the DS3231 is available at tiny.cc/erpig03
and the most important registers are illustrated in Figure 8-3. In this figure, the
hwclock function (see the feature on Utilizing Linux Hardware RTC Devices that
follows) is used to display the time value from the RTC module. The i2cdump
command is called (a few seconds later) to display the registers, allowing their
meaning to be verified. Note that the Irish Standard Time (IST) time zone results
in a shift of plus one hour from UTC/GMT.

piferpi ~ § sudo hweclock -r

Sat 15 Aug 2015 14:02:08 IST -0.512586 seconds

piferpi ~ 5 sudo sh -c "echo 0x6B > /sys/class/i2c-adapter/i2c-1/delete_device"
timezone offset Sun=1

Time |secs (0-59)| mins (0-59) [hours (12/24 hr)| day(1-7) |date(1-31)| month(1-12)|year(0-99) |
piferpi ~ § i2cdump -y 1 0x68 b
0O 1 2 3 4 5 6 7 8 9 ab c de f _
00:| 14| 02 13| 07| 15[08| 15[00| 00| 00| 01 00| 00| 00| 1c 08| G o trio
10: 30_.95 CUE KX KX XX XX XX XX XX XX XX XX XX XX XX

23.75°C whole frac
TemperaturelMSBl LSB | Alarm 1| secslminslhours]day& date] Alarm 2| minslhours]day&date

Figure 8-3: The DS3231 registers summary

320 Partll = Interfacing, Controlling, and Communicating

UTILIZING LINUX HARDWARE RTC DEVICES

Linux supports the use of RTCs directly within the OS using LKMs. If a compatible
LKM is available for your chosen RTC, then the RTC can be used to maintain the cur-
rent time on the RPi without requiring you to write software. The first step is to
associate the I°C device with a compatible LKM. The DS3231 is compatible with the
rtc-ds1307.koLKM (see tiny.cc/erpi8l2), and can be associated with the bus
device at address 0x68 using the following:

pieerpi ~ $ 1ls /lib/modules/4.1.5-v7+/kernel/drivers/rtc/*1307*
/lib/modules/4.1.5-v7+/kernel/drivers/rtc/rtc-dsl307.ko

pi@erpi ~ $ sudo modprobe rtc-dsl307

pi@erpi ~ $ lsmod|grep rtc

rtc_dsl1307 9690 0

pieerpi ~ $ sudo sh -c "echo ds1307 0x68 > /sys/class/i2c-adapt -
er/i2c-1/new device"

pi@erpi ~ $ dmesg|tail -1

[23895.440259] i2c i2c-1: new device: Instantiated device ds1307 at 0x68
pieerpi ~ $ 1ls -1 /dev/rtc*

cCrw------- 1 root root 254, 0 Aug 15 01:08 /dev/rtcO

A new RTC device is now presentin /dev. Note that a call to i2cdetect now dis-
plays UU instead of 68 for the RTC device, which indicates that probing is skipped for
the address as it is in use by a driver.

pi@erpi ~ $ i2cdetect -y -r 1
0O 1 2 3 4 5 6 7 8 9 a b c¢c d e f£
60: -- == == —= —= - —= —= UU -- -- -- -= -= -- --

The RTC device also contains a sysfs entry that you can use to display the time, as
follows:

pieerpi ~ $ cd /sys/class/rtc/rtc0/

pieerpi /sys/class/rtc/rtcO $ 1s

date dev device hctosys max user freq name since_epoch
subsystem time uevent

pieerpi /sys/class/rtc/rtc0 $ cat time

01:12:01

If necessary, you can delete the device using sysfs:

pieerpi /sys/class/i2c-adapter/i2c-1 $ sudo sh -c "echo 0x68 > -

delete device"

pieerpi /sys/class/i2c-adapter/i2c-1 $ 1s

delete_device device 12c-dev name new_device of node subsystem uevent
pieerpi /sys/class/i2c-adapter/i2c-1 $ 1ls /dev/rtc*

ls: cannot access /dev/rtc*: No such file or directory

Chapter 8 = Interfacing to the Raspberry Pi Buses 321

The hwclock utility can be used to read (- r) time from or write (- w) time to the
RTC device. It can also use the RTC to set (- s) the system clock. For example:

pieerpi ~ $ date

Sat 15 Aug 01:10:50 GMT 2015

pi@erpi ~ $ sudo hweclock -r

Mon 03 Jan 2000 09:11:53 UTC -0.845753 seconds
pi@erpi ~ $ sudo hweclock -w

pi@erpi ~ $ sudo hwclock -r

Sat 15 Aug 2015 01:11:24 UTC -0.113358 seconds
pieerpi ~ $ sudo hwclock --set --date="2000-01-01 00:00:00"
pi@erpi ~ $ sudo hweclock -r

Sat 01 Jan 2000 00:00:04 UTC -0.238222 seconds
pi@erpi ~ $ sudo hwclock -s

pieerpi ~ $ date

Sat 1 Jan 00:02:38 GMT 2000

You can automate the process of using the RTC to set the system time on boot, by
writing a systemd service and adding the LKM to the /etc/modules file. An example
systemd service file is listed in the following code and in the directory chp08/i2c/
systemd/.

pieerpi ~ $ tail -1 /etc/modules
rtc-dsl1307

pieerpi ~ $ more /lib/systemd/system/erpi hwclock.service
[Unit]

Description=ERPI RTC Service

Before=getty.target

[Service]

Type=oneshot

ExecStartPre=/bin/sh -c¢ "/bin/echo dsl1307 0x68 > /sys/class/i2c-ada -
pter/i2c-1/new_device"

ExecStart=/sbin/hwclock -s

RemainAfterExit=yes

[Install]
WantedBy=multi-user.target

Next, this custom service must be enabled and the current network time protocol
(NTP) service disabled from starting on boot:

pi@erpi /lib/systemd/system $ sudo systemctl enable erpi hwclock
pieerpi /lib/systemd/system $ sudo systemctl disable ntp
pieerpi /lib/systemd/system $ sudo reboot

Continues

322

Part Il = Interfacing, Controlling, and Communicating

UTILIZING LINUX HARDWARE RTC DEVICES (continued)

On reboot you can check the service status, and you should see that the date and
time are set according to the RTC module.

pi@erpi ~ $ sudo systemctl status erpi hwclock.service

e erpi_hwclock.service - ERPI RTC Service
Loaded: loaded (/lib/systemd/system/erpi hwclock.service; enabled)
Active: active (exited) since Sat 2000-01-01 00:09:30 GMT; 1lmin 3s ago
Process: 661 ExecStart=/sbin/hwclock -s (code=exited, status=0/SUCCESS)

pieerpi ~ $ date
Sat 1 Jan 00:10:45 GMT 2000

To return the system to the way it was before this feature discussion, simply disable
the custom RTC service, enable the NTP service, and reboot.

pi@erpi ~ $ sudo systemctl disable erpi hwclock
pi@erpi ~ $ sudo systemctl enable ntp

pieerpi ~ $ sudo reboot

i2cget

The i2cget command can be used to read the value of a register in order to
test the device, or as an input for Linux shell scripts. For example, to read the
number of seconds on the clock, you can use the following:

pieerpi ~ $ i2cget -y 1 0x68 0x00
0x30

The Analog Discovery digital Logic Analyzer functionality can be used to
analyze the physical I°C bus in order to view the interaction of the SDA and
SCL signals as data is written to and read from the I°C bus. The Logic Analyzer
functionality has interpreters for I?C buses, SPI buses, and UART communica-
tion, which can display the numerical equivalent values of the serial data carried
on the bus. Figure 8-4 captures the signal transitions of the i2cget command
used in the preceding example. Here, you can see that the clock is running at
I’C standard data transfer mode (i.e., 100 kHz).

piferpi ~ $ i2cget -y 1 0x68 0x00 0x68 responds with: 0x30

Figure 8-4: Using i2cget to read the number of seconds on the RTC from register 0x00

Chapter 8 = Interfacing to the Raspberry Pi Buses

323

m A Logic Analyzer is used throughout this chapter to gain a deeper
understanding of communication over I?C, SPI, and serial connections. Remember that

you should use a common ground connection for the Logic Analyzer and the RPi in all
cases. It is easy to forget to do this but it can result in inconsistent readings, which may
cause hours of frustration and confusion!

The ADXL345 accelerometer can be accessed in the same way as the RTC
module. Figure 8-5 illustrates the important registers that are utilized in this
chapter. To test that the ADXL345 is correctly connected to the bus, read the
DEVID of the attached device, which should be returned as OxE5:

pieerpi ~ $ i2cget -y 1 0x53 0x00
0xe5

You can see that the first value at address 0x00 is 0xE5, and this value corresponds
to the DEVID entry in Figure 8-5—successful communication has been verified.

DEVID: read-only register that should be E5 . Most | |POWER_CTL: read/write register that specifies the sleep mode,
devices have a fixed 1D at the address 0x00, which measurement mode, etc. (see page 25 of the datasheet). Using
is a useful check on a successful connection. 08,, places the device in measurement mode.

piferpi ~ 5 i2cdump -y 1 0x53 b

0 1 2 3 4 5 6 7 8 9 a b c d e f
00:|e5|00 00 00 0O 00 0O OO OO 0O 0O 0O QO OO OO0 4a
10: 82 00 30 00 00 02 fb 39 00 00 00 b7 00 00 00 0O

20: 00 00O 00 OO0 OO OO OO0 0O 0O OO 0O 0O Oa!OBEOO 00

30: 83[00|/pa 00|lec ££|/e7 00| 00 00 00 00 00 00 00 00

DATAXO0/%1:LSB/MSB | |DATAYO/Y1:LSB/MSB | | DATAZO/Z1: LSB/MSB
x-axis acceleration data -axis acceleration data | | z-axis acceleration data
DATA FORMAT: read/write register that uses seven bits that set the self-test, SP| mode, interrupt inversion, zero bit,

resolution, justify bit, and g range settings (two bits); e.g., 000001002 would set the range to +2g in 10-bit mode,
with left-justified (MSB) mode (see page 26 of the datasheet, register 0x31).

Figure 8-5: Important ADXL345 registers

i2cset

As previously stated, the datasheet for the ADXL345 from Analog Devices is
available at www.analog.com/ADxL345. It is a comprehensive and well-written
datasheet that details every feature of the device. In fact, the real challenge in
working with new bus devices is in decoding the datasheet and the intricacies
of the device’s behavior. The ADXL345 has 30 public registers and Figure 8-5
illustrates those that are accessed in this chapter. Other registers enable you to
set power save inactivity periods, orientation offsets, and interrupt settings for
free-fall, tap, and double-tap detection.

http://www.analog.com/ADXL345

324

Part Il = Interfacing, Controlling, and Communicating

The x-, y-, and z-axis acceleration values are stored using a 10-bit or 13-bit
resolution; therefore, two bytes are required for each reading. Also, the data is in
16-bit two’s complement form (see Chapter 4). To sample at 13 bits, the ADXL345
must be set to the 16 ¢ range. Figure 8-6 (based on the ADXL345 datasheet)
describes the signal sequences required to read and write to the device. For
example, to write a single byte to a device register, the master/slave access pat-
tern in the first row is used as follows:

1. The master sends a start bit (i.e., it pulls SDA low, while SCL is high).

2. While the clock toggles, the 7-bit slave address is transmitted one bit at a
time.

3. A read bit (1) or write bit (0) is sent, depending on whether the master
wants to read or write to/from a slave register.

4. The slave responds with an acknowledge bit (ACK = 0).

5. In write mode, the master sends a byte of data one bit at a time, after
which the slave sends back an ACK bit. To write to a register, the register
address is sent, followed by the data value to be written.

6. Finally, to conclude communication, the master sends a stop bit (i.e., it
allows SDA to float high, while SCL is high).

The i2cset command can be used to set a register. This is required, for
example, to take the ADXL345 out of power-saving mode, by writing 0x08 to the
POWER_CTL register, which is at 0x2D. The value is written and then confirmed
as follows:

pi@erpi ~ $ i2cset -y 1 0x53 0x2D 0x08

pieerpi ~ $ i2cget -y 1 0x53 0x2D
0x08

The call to i2cset and i2cget invokes the handshaking sequences that are
described in the ADXL345 datasheet and illustrated in Figure 8-6, which also
identifies these numbered steps.

5 i2cset -y 1 0x53 0x2D 0x08

piferpi ~ See Figure 41 in the ADXL345 datasheet

ysingle-byte

RIT = 0 (write) @
=:':;:] : : . .2;(— I }-:g - Jacx | e —
ma r:.n.ﬁ:ﬁ:r"t_J-Lm‘LrLl‘Lﬂ rmnruu‘lnnrm.ﬂ

J Master: lstart" slave address + write | | registeraddress | | data |
{ Slave: ack [ack] | ack

5 i2eget -y 1 0x53 0x2D

- Harm D0 Trgger

J%ln [T1o ol7 71
[i W W

pi@erpi ~

o 2dd - ¥ Remove - [- -
Harse 00 Tigos

s|eco | kY

S04 T
SCL ® X |
[Master:
Slave:

|srart Hslave address + write | | register address [stap start] [slave address + read]

| ack] ack| Jack]] data

Figure 8-6: Capture and timings required for communication with the ADXL345 device

Chapter 8 = Interfacing to the Raspberry Pi Buses

325

When the i2cdump command is subsequently used, the registers 0x32 through
0x37 (as identified in Figure 8-5) display the acceleration values, which change as
the sensor is physically rotated and the i2cdump command is repeatedly called.
The next step is to write program code that can interpret the values contained
in the DS3231 and the ADXL345 registers.

I2C Communication in C

The first C program example, in Listing 8-1, reads in all of the DS3231 RTC reg-
isters and displays the current time and temperature. The time is contained in
binary coded decimal (BCD) form in registers 0x00 (seconds), 0x01 (minutes),
and 0x02 (hours). The temperature is in hexadecimal form in registers 0x11
(whole number temperature) and in the two most-significant bits of 0x12 (the
fractional part—i.e., 00,=0, 01,=%, 10,=%, and 11,=%).

This is a useful first example because it is self-contained, will work on all
generic embedded Linux platforms, and can be adapted for other I°C devices.

Listing 8-1: exploringrpi/chp08/i2c/test/testDS3231.c

#include<stdio.h>

#include<fentl. h>

#include<sys/ioctl.h>
#include<linux/i2c.h>
#include<linux/i2c-dev.h>

#define BUFFER_SIZE 19 //0x00 to 0x13

// the time is in the registers in encoded decimal form
int bcdToDec (char b) { return (b/16)*10 + (b%1l6); }

int main() {

int file;

printf ("Starting the DS3231 test application\n");

if ((file=open("/dev/i2c-1", O RDWR)) < 0) {
perror ("failed to open the bus\n");
return 1;

}

if (ioctl(file, I2C_SLAVE, 0x68) < 0){
perror ("Failed to connect to the sensor\n");
return 1;

}

char writeBuffer[1] = {0x00};

if (write(file, writeBuffer, 1)!=1){
perror ("Failed to reset the read address\n") ;
return 1;

}

char buf [BUFFER _SIZE];

if (read(file, buf, BUFFER_SIZE)!=BUFFER_SIZE){
perror ("Failed to read in the buffer\n");
return 1;

}

printf ("The RTC time is %02d:%02d:%02d\n", becdToDec (buf [2]),

Part Il = Interfacing, Controlling, and Communicating

bcdToDec (buf [1]), bcdToDec (buf [0])) ;
// note that 0x1l = 17 decimal and 0x12 = 18 decimal
float temperature = buf[0x11] + ((buf[0x12]>>6)*0.25);
printf ("The temperature is %f°C\n", temperature) ;
close(file) ;
return 0;

}
The code can be built and executed as follows:

pi@erpi ~/exploringrpi/chp08/i2c/test $ gecec testDS3231l.c -o testDS3231
pieerpi ~/exploringrpi/chp08/i2c/test $./testDS3231

Starting the DS3231 test application

The RTC time is 11:55:59

The temperature is 25.25°C

The temperature functionality is used to improve this RTC’s accuracy by
modeling the impact of environmental temperature on time keeping—it is
updated every 64 seconds and it is only accurate to +3°C.

The ADXL345 digital accelerometer measures acceleration in three axes using
analog sensors, which are internally sampled and filtered according to the set-
tings that are placed in its registers. The acceleration values are then available
for you to read from these registers. Therefore, the sensor performs timing-
critical signal processing that would otherwise have to be performed by the
RPi. However, further numerical processing is still required in converting
the 16-bit two’s complement values stored in its registers into values that describe
angular pitch and roll. As such, C/C++ is a good choice for this type of numeri-
cal processing.

To display all the registers and to process the accelerometer values, a new
program (chp08/i2c/test/ADXL345.cpp) is written that breaks the calls into
functions, such as the readregisters () function:

int readRegisters(int file) { // read all 64 (0x40) registers to a buffer

writeRegister (file, 0x00, 0x00); // set address to 0x00 for block read
if (read(file, dataBuffer, BUFFER_SIZE)!=BUFFER_SIZE){

cout << "Failed to read in the full buffer." << endl;

return 1;

}

if (dataBuffer [DEVID] ! =0xE5) {
cout << "Problem detected! Device ID is wrong" << endl;
return 1;

}

return 0;

}

This code writes the address 0x00 to the device, causing it to send back the
full 64 (0x40) registers (BUFFER_sSIZE). In order to process the two raw 8-bit
acceleration registers, code to combine two bytes into a single 16-bit value is
written as follows:

short combineValues (unsigned char upper, unsigned char lower) {

//shift the MSB left by 8 bits and OR with the LSB
return ((short)upper<<8) | (short)lower;

Chapter 8 = Interfacing to the Raspberry Pi Buses

327

The types of the data are vital in this function, as the register data is returned
in two’s complement form. If an int type (of size 32 bits, int32_t) were used
instead of short 16-bit integral data (int16_t), then the sign bit would be located
in the incorrect bit position (i.e., not at the MSB, bit 31). This function shifts the
upper byte left (multiply) by eight places (equivalent to a multiplication by 2% =
256) and ORs the result with the lower byte, which replaces the lower byte with
eight zeroes that are introduced by the shift. This results in a 16-bit signed value
(int1e_t) that has been created from two separate 8-bit values (uints_t). When
executed, the ADx1.345 . cpp application will give the following output, with the
program updating the acceleration data on the same terminal shell line:

pi@erpi ~/exploringrpi/chp08/i2c/test $./ADXL345

Starting the ADXL345 sensor application

The Device ID is: e5

The POWER CTL mode is: 08

The DATA FORMAT is: 00
X=11 Y=2 Z=233 sample=22

Additional code is required to convert these values into pitch and roll form.
This is added to the C++ class in the next section. For your information, the Logic
Analyzer indicates that it takes 4.19 ms to read in the full set of 64 registers at
a bus speed of 100kHz.

12C AND WIRINGPi

The wiringPi library that is installed in Chapter 6 has a library of C functions for inter-
acting with I12C bus devices. This short code example reads the first three registers
from the DS3231 RTC and displays the current time:

pieerpi ~/exploringrpi/chp08/i2c/wiringPi $ more DS3231.c
#include<wiringPiI2C.h>
#include<stdio.h>

int main()

int fd = wiringPiI2CSetup (0x68) ;
int secs = wiringPiI2CReadReg8 (fd, 0x00) ;
int mins = wiringPiI2CReadReg8 (fd, 0x01) ;

int hours = wiringPiI2CReadReg8 (fd, 0x02) ;
printf ("The RTC time is %2d:%02d:%02d\n", hours, mins, secs);
return 0;
1
pieerpi ~/exploringrpi/chp08/i2c/wiringPi $ gecec DS3231.c -o rtc -lwiringPi
pieerpi ~/exploringrpi/chp08/i2c/wiringPi $./rtc
The RTC time is 10:08:83

There is more information on this library at tiny . cc/erpi804. Be aware that this
library is written specifically for the RPi platform; it will not work on other embedded
Linux devices that do not contain the same SoC.

328

Part Il = Interfacing, Controlling, and Communicating

Wrapping I°C Devices with C++ Classes

Object-oriented programming is described in Chapter 5 as a suitable framework
for developing code for embedded systems. A specific C++ class can be written
to wrap the functionality of the ADXL345 accelerometer; because it is likely that
you will need to write code to control several different types of I?C devices, it
would be useful if the general I°C code could be extracted and placed in a parent
class. To this end, a class has been written for this chapter called 12cpevice that
captures the general functionality you would associate with an I?C bus device.
You can extend this code to control any type of I>C device. It can be found in
the 12cDevice.cpp and 12cDevice.hfilesin the chpos/i2c/cpp/ directory. The
class has the structure described in Listing 8-2.

Listing 8-2: /exploringrpi/chp08/i2c/cpp/I2CDevice.h

class I2CDevice {
private:
unsigned int bus, device;
int file;
public:
I2CDevice (unsigned int bus, unsigned int device) ;
virtual int open() ;
virtual int write (unsigned char value) ;
virtual unsigned char readRegister (unsigned int registerAddress) ;
virtual unsigned char* readRegisters(unsigned int number,
unsigned int fromAddress=0) ;
virtual int writeRegister (unsigned int registerAddress, unsigned char value) ;
virtual void debugDumpRegisters (unsigned int number) ;
virtual void close() ;

virtual ~I2CDevice() ;

}i

The implementation code is available in the chpos/i2c/cpp/ directory. This
class can be extended to control any type of I°C device, and in this case it is
used as the parent of a specific device implementation class called Apxr345.
Therefore, you can say that Abx1.345 is an 12cDevice. This inheritance relation-
ship means that any methods available in the 12cDevice class are now available
in the ADx1.345 class in Listing 8-3 (e.g., readregister ()).

Listing 8-3: /exploringrpi/chp08/i2c/cpp/ADXL345.h

class ADXL345:protected I2CDevice({
// protected inheritance means that the public I2C methods are no
// longer publicly accessible by an object of the ADXL345 class
public:

Chapter 8 = Interfacing to the Raspberry Pi Buses 329

enum RANGE { // enumerations are used to limit the options
PLUSMINUS 2 G = 0,
PLUSMINUS 4 G = 1,
PLUSMINUS 8 G = 2,
PLUSMINUS 16 G = 3

}i

enum RESOLUTION { NORMAL = 0, HIGH = 1 };

private:
unsigned int I2CBus, I2CAddress;
unsigned char *registers;
ADXL345: :RANGE range;
ADXL345: :RESOLUTION resolution;
short accelerationX, accelerationY, accelerationZ;
float pitch, roll; // in degrees
short combineRegisters (unsigned char msb, unsigned char 1sb) ;
void calculatePitchAndRoll () ;
virtual int updateRegisters() ;

public:
ADXL345 (unsigned int I2CBus, unsigned int I2CAddress=0x53) ;
virtual int readSensorState() ;
virtual void setRange (ADXL345::RANGE range) ;
virtual ADXL345::RANGE getRange() { return this-srange; }
virtual void setResolution (ADXL345::RESOLUTION resolution) ;
virtual ADXL345::RESOLUTION getResolution() {return this->resolution;}

virtual short getAccelerationX() { return accelerationX; }
virtual short getAccelerationY() { return accelerationY; }
virtual short getAccelerationZ() { return accelerationZ; }

virtual float getPitch() { return pitch; }

virtual float getRoll() { return roll; }

virtual void displayPitchAndRoll (int iterations = 600) ;
virtual ~ADXL345();

i

The enumerations are used to constrain the range and resolution selections
to contain only valid options. A short example (application.cpp) can be used to
test this structure, as follows:

int main(){

ADXL345 sensor (1,0x53) ; // sensor is on bus 1 at the address 0x53
sensor.setResolution (ADXL345: : NORMAL) ; //using 10-bit resolution
sensor.setRange (ADXL345: : PLUSMINUS 4 G) ; //range is +/-4g

sensor.displayPitchAndRoll () ; // put the sensor in display mode

return 0;

330

Part Il = Interfacing, Controlling, and Communicating

This code can be built and executed as follows, where the pitch and roll are
angular values that each vary between +90°:

/chp08/i2c/cpp $ g++ application.cpp I2CDevice.cpp ADXL345.cpp -o ADXL345
/chp08/i2c/cpp $./ADXL345
Pitch:2.48021 Roll:-4.96507

You can use this approach to build wrapper classes for any type of I?C sensor
on any type of embedded Linux device.

SPI

The Serial Peripheral Interface (SPI) bus is a fast, full-duplex synchronous serial data
link that enables devices such as the RPi to communicate with other devices over
short distances. Therefore, like I?C the SPI bus is synchronous, but unlike the I’C
bus the SPI bus is full duplex. This means that it can transmit and receive data at
the same time, by using separate lines for both sending data and receiving data.

In this section, the SPI bus is introduced, and two separate applications are
developed. The first uses the SPI bus to drive a seven-segment LED display using
the ubiquitous 74HC595 8-bit shift register. The second application interfaces
to the ADXL345 accelerometer again, this time using its SPI bus instead of the
I’C bus used previously.

SPI Hardware

SPI communication takes place between a single master device and one or more
slave devices. Figure 8-7(a) illustrates a single slave example, where four signal
lines are connected between the master and slave devices. To communicate with
the slave device, the following steps take place:

1. The SPI master defines the clock frequency at which to synchronize the
data communication channels.

2. The SPI master pulls the chip select (CS) line low, which activates the client
device—it is therefore said to be active low. This line is also known as slave
select (SS).

3. After a short delay, the SPI master issues clock cycles, sending data out
on the master out - slave in (MOSI) line and receiving data on the master in
- slave out (MISO) line. The SPI slave device reads data from the MOSI line
and transmits data on the MISO line. One bit is sent and one bit is received
on each clock cycle. The data is usually sent in 1-byte (8-bit) chunks.

4. When complete, the SPI master stops sending a clock signal and then pulls
the CS line high, deactivating the SPI slave device.

Unlike I°C, the SPI bus does not require pull-up resistors on the communica-
tion lines, so connections are very straightforward. A summary comparison of
I’C versus SPI is provided in Table 8-2.

Chapter 8 = Interfacing to the Raspberry Pi Buses

331

Table 8-2: Comparison of I2C versus SPI on the RPi

12C SPI

Connectivity Two wires, to which up to 128 Typically four wires, and requires
addressable devices can be additional logic for more than one
attached. slave device.

Data rate I2C fast mode is 400 kHz. It uses Faster performance (~32 MHz) on the
half-duplex communication. RPi. It uses full duplex

(except the three-wire variant).

Hardware Pull-up resistors required. No pull-up resistors required.

RPi support Fully supported with two exter- Fully supported with one bus.® There
nal buses (plus one HDMI). are two slave selection pins on all

boards.

Features Can have multiple masters. Simple and fast, but only one master
Slaves have addresses, acknowl- device, no addressing, and no slave
edge transfer, and can control control of data flow.
the flow of data.

Application Intermittently accessed devices, For devices that provide data
e.g., RTCs, EEPROMs. streams, e.g., ADCs.

() (b)
SPI Master

SPI Slave
(ADXL345)

Master Out—+ Slave In

. » @
L]
5P|O_MOS| e Master Ins— Slave Out

SPI_CEO_N

~
215|Z
= o
b])
1| e v
Sla | _
o |Vila
v 2]

- . Chip/Slave Seleclion

@A
[}
=
=1
@
W

Figure 8-7: (a) Using SPI to connect to one slave device; and (b) testing SPI using a loopback
configuration

The SPI bus operates using one of four different modes, which are chosen
according to the specification defined in the SPI device’s datasheet. Data is syn-
chronized using the clock signal, and one of the SPI communication modes listed
in Table 8-3 is set to describe how the synchronization is performed. The clock
polarity defines whether the clock is low or high when it is idle (i.e., when CS is

¢ There is an auxiliary SPI bus on the RPi (B+, A+, 2, and 3), but it does not currently have Linux
kernel support.

332

Part Il = Interfacing, Controlling, and Communicating

high). The clock phase defines whether the data on the MOSI and MISO lines is
captured on the rising edge or falling edge of the clock signal. When a clock’s
polarity is 1, the clock signal is equivalent to an inverted version of the same
signal with a polarity of 0. Therefore, a rising edge on one form of clock signal
polarity is the equivalent of a falling edge on the other. You need to examine the
datasheet for the slave device in order to determine the correct SPI mode to use.

Table 8-3: SPI Communication Modes

CLOCKPOLARITY

MODE (CPOL) CLOCK PHASE (CPHA)

0 0 (low at idle) 0 (data captured on the rising edge of the clock signal)
1 0 (low atidle) 1 (data captured on the falling edge of the clock signal)
2 1 (high atiidle) 0 (data captured on the falling edge of the clock signal)
3 1 (high atiidle) 1 (data captured on the rising edge of the clock signal)

The SPI protocol itself does not define a maximum data rate, flow control, or
communication acknowledgment. Therefore, implementations vary from device
to device, so it is very important to study the datasheet of each type of SPI slave
device. There are some three-wire SPI variants that use a single bidirectional
MISO/MOSI line instead of two individual lines. For example, the ADXL345
sensor supports I*)C, and both four-wire and three-wire SPI communication.

m Do not connect a 5 V-powered SPI slave device to the MISO input on
the RPi. Logic-level translation is discussed at the end of this chapter.

According to Section 10.5 of the BCM2835 ARM Peripherals document, the
SPI CLK register permits the serial clock rate to be set according to SCLK = Core
Clock / CDIV, where the core clock is nominally 250 MHz and the divisor must
be a multiple” of two. Therefore, a CDIV of 8 results in an SPI clock frequency
of 31.25MHz.

SPI on the RPi

The GPIO header layout in Figure 6-11 of Chapter 6 identifies that the SPI bus is
accessible from this header. Figure 8-7(a) illustrates the pins that are used for SPI
on the RPi. The bus is disabled by default on the Raspbian image. To enable the
bus, you must perform similar steps to those described earlier in this chapter

7 The datasheet states that it must be a “power of 2”; however, that appears to be a typographic
error as other rates work correctly, and the datasheet also states that “odd numbers are rounded
down.”

Chapter 8 = Interfacing to the Raspberry Pi Buses

333

for enabling the I°C bus. Add an entry to the /boot/config.txt and to the
/etc/modules files as follows:

pieerpi /boot $ cat config.txt | grep spi

dtparam=spi=on

pieerpi /etc $ cat modules | grep spi

spi-bcm2708

pieerpi /etc $ sudo reboot

pieerpi /dev $ ls spi*
spidev0.0 spidev0.1l

Despite the fact that there are two entries in /dev, there exists only one SPI
device, spidevo, which has two different enable modes (0 and 1).

Testing the SPI Bus

To test the SPI bus, you can use a program called spidev_test.c thatis avail-
able from www.kernel.org. However, the latest version at the time of writing
has added support for dual and quad data-wire SPI transfers, which are not
supported on the RPi. An older version of this code has been placed in /chpos/
spi/spidev_test/ and can be built using the following:

~/exploringrpi/chp08/spi/spidev_test$ gcc spidev test.c -o spidev_test

Because the pins have been enabled in pull-down mode, the output displayed
by the spidev_test program should be 0x00 when nothing is connected to the
bus and the test program is executed:

pi@erpi ~/exploringrpi/chp08/spi/spidev_test $./spidev_test
spi mode: 0

bits per word: 8

max speed: 500000 Hz (500 KHz)
00 00 00 00 00 00

00 00 00 00 00 0O

00 00 00 00 00 0O

00 00 00 00 00 0O

00 00 00 00 00 00

00 00 00 00 00 0O

00 00

Connect the SPI0_MOSI (Pin 19) and SPI0_MISO (Pin 21) pins together, as
shown in Figure 8-7(b). When the test program is executed again, the output
should be as follows:

pieerpi ~/exploringrpi/chp08/spi/spidev_test $./spidev_test
spi mode: 0

bits per word: 8

max speed: 500000 Hz (500 KHz)

FF FF FF FF FF FF

40 00 00 00 00 95

http://www.kernel.org

334

Part Il = Interfacing, Controlling, and Communicating

FF FF FF FF FF FF
FF FF FF FF FF FF
FF FF FF FF FF FF
DE AD BE EF BA AD
FO 0D

This is the exact block of data that is defined in the tx[] array inside the
spidev_test.c code. Therefore, in this case, the block of data has been success-
fully transmitted from SPI0_MOSI (Pin 19) and received by SPI0_MISO (Pin
21). You can see the same stream of data captured using the Logic Analyzer
in Figure 8-8. The clock frequency of SCLK is 500kHz. Interestingly, you can
determine a maximum SCLK by increasing the frequency within the spidev_
test.c code until you get an inconsistent block of data. I was able to increase
the frequency to 62 MHz on the RPi 2 (at 1GHz) with no errors, but it is widely
reported that the maximum practical frequency is ~32 MHz and therefore you
should not exceed that level.

i Add + 3 Remove ~ [F] - =~ Posilion 638 1= Name: &
- e oo e N¥T ST TN T T RN R
=|spimost | # —InFF hFF IinFF lnFF nFF]hFF lha0]:I.nu hoo noo [M)u 5 Ii:FF nFF lhFF
SCLK X AL U P AR ML R A \ﬂﬂijwmﬂﬂ['llulﬂrmﬂﬂﬂﬂ,.ﬂﬂ’lﬂwm 1
=00 A OO OO [0 | K A 11
| 15us T5us 105us 1350s 165us 135us 226us 25Bus
—

Figure 8-8: The SPI loopback test

A First SPI Application (74HC595)

The first circuit application to test the SPI bus is illustrated in Figure 8-9. It
uses a 74HC595, which is an 8-bit shift register with latched outputs that can
be supplied at 3.3V logic levels. The 74HC595 can typically be used at frequen-
cies of 20 MHz or greater, depending on the supply voltage V. The circuit in
Figure 8-9 uses a seven-segment display and resistors to create a circuit that
can display seven-segment symbols.

Seven-segment displays typically consist of eight LEDs that can be used to
display decimal or hexadecimal numerals with a “decimal” point. They are
available in a range of sizes and colors and are described as being either com-
mon cathode or common anode displays. This means that the cathodes or anodes
of the array of LEDs that make up the display are connected together as on the
top right of Figure 8-9. You should not limit the current passing through
the display by placing a single resistor on the common anode or the common
cathode connection, as the limited current will be shared among the segments
that are lighting. This results in an uneven light level, the intensity of which

Chapter 8 = Interfacing to the Raspberry Pi Buses 335

depends on the number of segments that are lit. Therefore, eight current-limiting
resistors (or a resistor network) are required for each seven-segment display.

It is possible to drive these displays using eight GPIO pins per seven-segment
module, but using serial shift registers and the SPI interface has the advantage
of requiring only three SPI pins, regardless of the number of segments that are
daisy chained together.

A (B [C [D [E |F |& |or:

1RR--7-8 et e

AL
%i
}_n..

[I3 tBenzsensnnnanssnnmnnnnonansianse ped
%I% '{_)" é Wi 7 & 4 2 1+ 8 mw 68
e i !
95 i HERYAYArAvAVAV VAV
& & & {0 lale e o e |r e or!
Warning! do not connect §) S o :
this circuit o the R o 74HC595
SPI0_MISC input (pin 21) | g
* 5 el ~ 6fl Vee
Qc]2 15[] Qa
SPI0_MOSI Qp [3 14]] SER
B eells wffoE
SPI0_CLK arlls 12[| RCLK
SPICEO_N Qs E 6 11[] SROLK |
e Qg l]7 10{] SRCLR |
GND H '
B BT GND [J8 oflay
0 3,8 3,8]an0
- common cathode cDrI!ILﬂIIInn = .- -

Figure 8-9: The 74HC595 seven-segment display SPI example (supports multiple display
modules)

\[eANq Foravideo on serial-to-parallel conversion that explains the concept of out-
put latching by comparing the 74HC164 to the 74HC595, see the chapter web page

www . exploringrpi.com/chapters.

Wiring the 74HC595 Circuit

The 74HC595 is connected to the RPi using three of the four SPI lines, as a MISO
response from the 74HC595 is not required. In addition to the 5V and GND
inputs, the SPI connections are as follows:

m SPI0_CLK is connected to the Serial Clock input (Pin 11) of the 74HC595.
This line is used to synchronize the transfer of SPI data on the MOSI line.

m SPI0_MOSI is the MOSI line and is used to transfer the data from the RPi
to the 74HC595 Serial Input (Pin 14). This will send one byte at a time,
which is the full capacity of the 74HC595.

m SPI_CEO_N is connected to the Serial Register Clock input, which is used
to latch the 74HC595 state to the output pins, thus lighting the LEDs.

http://www.exploringrpi.com/chapter8

336

Part Il = Interfacing, Controlling, and Communicating

As previously discussed, the 3.3V supply rail on the RPi is capable of delivering
~50mA. Depending on the specification of the seven-segment display modules,
50 mA is likely insufficient to power several modules—remember to allow for
the fact that all LED segments could be on! To avoid the need for an external
power supply, this circuit is powered using the RPi’s 5V supply. However, this
means that the circuit is now using 5V logic levels and it would damage your RPi
if you were to connect any of the 74HC595 outputs (e.g., Q) back to the RPi.

You can safely connect the RPi’s MOSI line directly to the circuit, asa 3.3 V
output can be safely connected to a 5V input. However, strictly speaking,
3.3V is slightly below the threshold of 3.5V (i.e., 30% below 5V) required for
an input to a 5V logic-level CMOS IC (see Figure 4-24 in Chapter 4). In practice,
the circuit works fine; however, a 74LS595 (at V.- =5V) or a 74LVC595 (at V- =
3.3V) would be more appropriate, despite their high cost and lack of availability.

The LEDs on the seven-segment display will light according to the byte that
is transferred. For example, sending OxAA should light every second LED seg-
ment (including the dot) if the setup is working correctly, as 0xAA = 10101010,.
This circuit is useful for controlling eight outputs using a single serial data line
and it can be extended to further seven-segment displays by daisy chaining
74HC595 ICs together, as indicated in Figure 8-9.

Once the SPI device is enabled on the RPi, you can write directly to the device
as follows to light most of the LEDs (-n suppresses the newline character, -e
enables escape character interpretation, and \x escapes the subsequent value
as hexadecimal):

pieerpi /dev $ echo -ne "\xFF" > /dev/spidev0.0

The following will turn most of the LEDs off:

pieerpi /dev $ echo -ne "\x00" > /dev/spidev0.0

This may not work exactly as expected, as the current SPI communication
mode does not align by default with the operation of the 74AHC595, as wired
in Figure 8-9. However, it is a useful test to confirm that there is some level of
response from the circuit. The transfer mode issue is resolved within the code
example in the next section.

SPI Communication Using C

A C program can be written to control the seven-segment display. Basic open ()
and close () operations on the /dev/spidevx.y devices work, but if you need to
alter the low-level SPI transfer parameters, then a more sophisticated interface
is required.

The following program uses the Linux user space SPI API, which supports
reading and writing to SPI slave devices. It is accessed using Linux ioctl ()
requests, which support SPI through the sys/ioctl.hand linux/spi/spidev.h

Chapter 8 = Interfacing to the Raspberry Pi Buses

337

header files. A full guide on the use of this APl is available at www.kernel.org/
doc/Documentation/spi/.

The program in Listing 8-4 counts in hexadecimal (i.e., 0 to) on a single
seven-segment display using the encoded value for each digit. For example, 0 is
obtained by lighting only the segments A, B, C, D, E, and F in Figure 8-10—this
value is encoded as 0boo111111 in Listing 8-4, where A is the LSB (on the right)
and H (the dot) is the MSB (on the left) of the encoded value. The transfer ()
function is the most important part of the code example, as it transfers each
encoded value to the 74HC595 IC.

Listing 8-4: /exploringrpi/chp08/spi/spi595Example/spi595.c

#include<stdio.h>
#include<fentl.h>
#include<unistd.h>
#include<sys/ioctl.h>
#include<stdint.h>
#include<linux/spi/spidev.h>
#define SPI_PATH "/dev/spidev0.0"

// The binary data that describes the LED state for each symbol

// A(top) B(top right) C(bottom right) D (bottom)
// E(bottom left) F(top left) G(middle) H(dot)
const unsigned char symbols[16] = { // (msb) HGFEDCBA (1lsb)
0b00111111, 0b00000110, 0b01011011, 0b01001111, // 0123
0001100110, 0b01101101, 0b01111101, 0b00000111, // 4567
0b01111111, 0b01100111, 0b01110111, 0bO1111100, // 89Ab
0b00111001, 0b01011110, 0b01111001, 0b01110001 // CAEF
}i
int transfer (int fd, unsigned char send[], unsigned char rec[], int len) {
struct spi_ioc_transfer transfer; // transfer structure
transfer.tx buf = (unsigned long) send; // buffer for sending data
transfer.rx buf = (unsigned long) rec; // buffer for receiving data
transfer.len = len; // length of buffer
transfer.speed hz = 1000000; // speed in Hz
transfer.bits_per word = 8; // bits per word
transfer.delay usecs = 0; // delay in us
// transfer.cs_change = 0; // affects chip select after transfer®

// transfer.tx nbits = 0; // no. bits for writing (default 0)
; // no. bits for reading (default 0)
// transfer.pad = 0; // interbyte delay - check version
// send the SPI message (all of the above fields, inc. buffers)

int status = ioctl(fd, SPI_IOC_MESSAGE(1l), &transfer);

if (status < 0) {

0
// transfer.rx _nbits = 0

8 There is an unusual quirk with the RPi SPI software implementation in that you often have to
explicitly set values for many of the kernel-version-specific fields of the spi_ioc_ transfer
struct fields, even if you want to use default values. If you see the error, “Transfer SPI_IOC_MES-
SAGE Failed: Invalid argument,” check the spidev . h for the kernel version that you are using
at 1xr.free-electrons.com and explicitly set the default values for each of the fields in
your program code.

http://www.kernel.org
http://www.kernel.org/doc/Documentation/spi/

338 Partll = Interfacing, Controlling, and Communicating

perror ("SPI: SPI_IOC_MESSAGE Failed");
return -1;

}

return status;

int main()

unsigned int fd, i; // file handle and loop counter
unsigned char null=0x00; // sending only a single char
uint8_t mode = 3; // SPI mode 3

// The following calls set up the SPI bus properties
if ((£d = open(SPI_PATH, O RDWR))<0) {

perror ("SPI Error: Can't open device.");

return -1;

if (ioctl(fd, SPI_IOC WR_MODE, &mode)==-1) {
perror ("SPI: Can't set SPI mode.");
return -1;

if (ioctl(fd, SPI_IOC_RD MODE, &mode)==-1) {
perror ("SPI: Can't get SPI mode.");
return -1;
1
printf ("SPI Mode is: %d\n", mode) ;
printf ("Counting in hexadecimal from 0 to F now:\n");
for (i=0; i<=15; i++) {
// This function can send and receive data, just sending now
if (transfer(fd, (unsigned char*) &symbols[i], &null, 1)==-1)({
perror ("Failed to update the display");
return -1;

}

printf ("%$4d\r", 1i); // print the number in the terminal window
fflush (stdout) ; // need to flush the output, no \n
usleep (500000) ; // sleep for 500ms each loop

1

close (fd) ; // close the file

return 0;

}

The main () function sets the SPI control parameters. These are ioctl ()
requests that allow you to override the device’s current settings for parameters
such as the following, where xx is both rD (read) and rw (write):

m 5pI T10C xx MODE: The SPI transfer mode (0-3)

m SPT TOC xx BITS PER WORD: The number of bits in each word
m SPTI TOC xx LSB FIRST: 0 is MSB first, 1 is LSB first
-

SPI_IOC xx MAX SPEED Hz: The maximum transfer rate in Hz

Chapter 8 = Interfacing to the Raspberry Pi Buses

339

The current Linux implementation provides for synchronous transfers only.
When executed, this code results in the following output, where the count value
continually increases (0 to F) on the one line of the terminal window:

pieerpi ~/exploringrpi/chp08/spi/spi595Example $./spi595

SPI Mode is: 3

Counting in hexadecimal from 0 to F now:
4

At the same time, this code is sending signals to the 74HC595 as captured
using the SPlinterpreter of the Logic Analyzer in Figure 8-10, in which the sym-
bol o0 is being displayed by the seven-segment display (i.e., 0b00111111). During
this time period, the CS (SPI_CE(Q_N) line is pulled low, while the SCLK clock
(SPIO_CLK) that is “high at idle” is toggled by the SPI master after a short delay.
The data is then sent on the SDIO (MOSI) line, MSB first, to the 74HC595, and it
is transferred on the rising edge of the clock signal. This confirms that the SPI
transfer is taking place in mode 3, as described in Table 8-3.

The total transfer takes less than 18 us (the data transfer takes ~9 us). If the
channel were held open, it would be capable of transferring a maximum of
~111 kB/s (~0.9 Mb/s) at a clock rate of 1 MHz.

Sending 0x3F = 0b00111111 to the 74HC595 (at 1 MHz) SPI_CEO_N going high latches the 74HC595

i (Sent from RPi

. DI O N 109 8 7 6

o Add - 3 Remove - - - Position 1235w Name ﬂ| LA iR
Value A

- ‘ i A s

P o~ 1] 4

; ,Eﬂﬂfuwmr ‘ el 5 fc

= k] 2us 45us Tus 9.5us 12us 14.5u 17us b H

SPI_CEO_N pulls CS low Data sent on the clock rising edge T T T T ¥

12345

Figure 8-10: The 74HC595 SPI signal and output

Bidirectional SPI Communication in C/C++

The 74HC595 example only sends data from the RPi to the 74HC595, and as
such is a unidirectional communication example. In this section a bidirectional
communication example is developed that involves using the registers on the
ADXL345 sensor. As discussed previously, the ADXL345 has both an I>C and
an SPI communications interface. This makes it a useful device with which to
examine bidirectional SPI communication, as the register structure is already
described in detail earlier in this chapter.

340 Partll=Interfacing, Controlling, and Communicating

\[e XN Forreference, the main guide for writing user space code for bidirec-
tional SPI communication under Linux is available at www . kernel .org/doc/

Documentation/spi/spidev.

The ADXL345 SPI Interface

SPI is not a formal standard with a standards body controlling its implementa-
tion, and therefore it is vital that you study the datasheet for the device that you
want to attach to the RPi. In particular, the SPI communication timing diagram
should be studied in detail. This is presented for the ADXL345 in Figure 8-11.

(CS goes low, enables the sensor)

ADXL345SPI_) ___ __ __
@)

fscux (max 5MHz), fscix (min200ns),
toerar (min 5ns), fwowo (Min 5ns),
tesmis (150ns - time to next communication)

* AV r— W)
mﬁ T G) GEED GMID SIS G G G 8

w——(T X X X X = X X e —

Underlying image courtesy of Analog Devices, Inc.

- R

Figure 8-11: The ADXL345 SPI communication timing chart (from the ADXL345 datasheet)

Note the following very important points, which can be observed directly
from the datasheet figure, as summarized in Figure 8-11:

m To write to an address, the first bit on the SDI line must be low. To read
from an address, the first bit on the SDI line must be high.

m The second bit is called MB. From further analysis of the datasheet, this bit
enables multiple byte reading /writing of the registers (i.e., send the first
address and data will be continuously read from that register forward).

http://www.kernel.org/doc
http://www.kernel.org/doc/Documentation/spi/spidev

Chapter 8 = Interfacing to the Raspberry Pi Buses

341

This leaves six bits in the first byte for the address (2° = 64,, = 40,4), which
is sufficient to cover the available registers.

m Asshown in the figure, the SCLK line is high at rest and data is transferred
on the rising edge of the clock signal. Therefore, the ADXL345 device must
be used in communications mode 3 (refer to Table 8-3).

m When writing (top figure), the address (with a leading 0) is written to SDI,
followed by the byte value to be written to the address.

m When reading (bottom figure), the address (with a leading 1) is written to
SDI. A second byte is written to SDI and will be ignored. While the second
(ignored) byte is being written to SDI, the response will be returned on
SDO detailing the value stored at the register address.

Connecting the ADXL345 to the RPi

The ADXL345 breakout board can be connected to the SPI bus as illustrated in
Figure 8-12(a), where MOSI on the RPi is connected to SDA and MISO is con-
nected to SDO. The clock lines and the slave select lines are also interconnected.

ADXL345

=

Figure 8-12: (a) SPI connection to the ADXL345; and (b) a capture of the communications
required to read register 0x00

You may notice that the value that was sent was 0x80 and not 0x00. This is
because (as detailed in Figure 8-12) the leading bit must be a 1 to read and a 0
to write from/to an address. Sending 0x00 is a write request to address 0x00
(which is not possible), and sending 0x80 (i.e., 10000000 + 00000000) is a request
to read the value at address 0x00. The second bit is 0 in both cases, thus disabling
multiple-byte read functionality for this example.

The code in Listing 8-4 is adapted in /spi/spiADXL345/spiADXL345.c SO
that it reads the first register (0x00) of the ADXL345, which should return the
DEVID, as illustrated in Figure 8-5. This value should be E5,;, which is 229,,.

342 Partll = Interfacing, Controlling, and Communicating

The maximum recommended SPI clock speed for the ADXL345 is 5MHz, so
this value is used in the program code.
pieerpi ~/exploringrpi/chp08/spi/spiADXL345 $ gcc spiADXL345.c -o spiADXL345
pie@erpi ~/exploringrpi/chp08/spi/spiADXL345 $./spiADXL345
SPI mode: 3
Bits per word: 8

Speed: 5000000 Hz
Return value: 229

The Logic Analyzer can be used to capture the bus communication that takes
place when this program is executed, resulting in an output as illustrated in
Figure 8-12(b).

Wrapping SPI Devices with C++ Classes

A C++ class is available in Listing 8-5 that wraps the software interface to the
SPI bus, using the OOP techniques that are described in Chapter 5. This class
is quite similar to the 12cpevice class that is described in Listing 8-2.

Listing 8-5: /chp08/spi/spiADXL345_cpp/SPIDevice.h

class SPIDevice

public:
enum SPIMODE //!< The SPI Mode
MODEO = 0, //'< Low at idle, capture on rising clock edge
MODE1l = 1, //'< Low at idle, capture on falling clock edge
MODE2 = 2, //'< High at idle, capture on falling clock edge
MODE3 = 3 //'< High at idle, capture on rising clock edge
}i
public:

SPIDevice (unsigned int bus, unsigned int device) ;
virtual int open() ;
virtual unsigned char readRegister (unsigned int registerAddress) ;
virtual unsigned char* readRegisters(unsigned int number,
unsigned int fromAddress=0) ;
virtual int writeRegister (unsigned int registerAddress, unsigned char value) ;
virtual void debugDumpRegisters (unsigned int number = Oxff);
virtual int write (unsigned char wvalue) ;
virtual int write (unsigned char value[], int length);
virtual int setSpeed(uint32_t speed);
virtual int setMode (SPIDevice: :SPIMODE mode) ;
virtual int setBitsPerWord(uint8 t bits);
virtual void close();
virtual ~SPIDevice();
virtual int transfer (unsigned char read[], unsigned char writel[],
int length) ;
private:
std::string filename; //!< The precise filename for the SPI device
int file; //!< The file handle to the device

Chapter 8 = Interfacing to the Raspberry Pi Buses 343

SPIMODE mode; //'< The SPI mode as per the SPIMODE enumeration
uint8_t bits; //'< The number of bits per word
uint32 t speed; //'< The speed of transfer in Hz
uintlé_t delay; //'< The transfer delay in usecs

}i

The SPI class in Listing 8-5 can be used in a standalone form for any SPI device
type. For example, Listing 8-6 demonstrates how to probe the ADXL345 device.

Listing 8-6: /chp08/spi/spiADXL345_cpp/SPITest.cpp

#include <iostream>

#include <sstream>

#include "SPIDevice.h"
#include "ADXL345.h"

using namespace std;

using namespace exploringRPi;

int main () {
SPIDevice spi(0,0);
spi.setSpeed(5000000) ;
cout << "The device ID is: " << (int)spi.readRegister (0x00) << endl;
spi.setMode (SPIDevice: :MODE3) ;
spi.writeRegister (0x2D, 0x08) ;
spi.debugDumpRegisters (0x40) ;

}
This will give the following output when built and executed (0xE5 = 229,):

.../chp08/spi/spiADXL345 cpp $ g++ SPITest.cpp SPIDevice.cpp -o SPITest
.../chp08/spi/spiADXL345 cpp $./SPITest

The device ID is: 229

SPI Mode: 3

Bits per word: 8

Max speed: 5000000

Dumping Registers for Debug Purposes:

e5 00 00 00 0O 00 OO 00 OO 00 OO 00 00 0O 00 4a
82 00 30 00 00 00 £f 07 00 00 00 b7 00 00 00 00
00 00 00 00O 00 0O 00 OO 00 OO 00 00 Oa 08 00 00
02 0b 0a 00 ff ff e9 00 00 00 00 00 00 00 00 00

The same spIDevice class can be used as the basis for modifying the ADXL345
class in Listing 8-3 to support the SPI bus rather than the I°C bus. Listing 8-7
provides a segment of the class that is complete in the /chp08/spi/spiADXL345_
cpp/ directory.

Listing 8-7: /chp08/spi/spiADXL345_cpp/ADXL345.h (Segment)

class ADXL345(
public:

enum RANGE { e }i

enum RESOLUTION { L. Vi
private:

Part Il = Interfacing, Controlling, and Communicating

SPIDevice *device;

unsigned char *registers;

public:
ADXL345 (SPIDevice *busDevice) ;
virtual int readSensorState() ;

virtual void displayPitchAndRoll (int iterations = 600) ;
virtual ~ADXL345() ;

}i

The full class from Listing 8-7 can be used to build an example as in Listing
8-8. This example helps demonstrate how an embedded device that is attached
to one of the buses can be wrapped with a high-level OOP class.

Listing 8-8: /chp08/spi/spiADXL345_cpp/testADXL345.cpp

#include <iostreams>

#include <sstream>

#include "SPIDevice.h"
#include "ADXL345.h"

using namespace std;

using namespace exploringRPi;

int main()
cout << "Starting RPi ADXL345 SPI Test" << endl;
SPIDevice *spiDevice = new SPIDevice(0,0);
spiDevice->setSpeed (500000) ;
spiDevice->setMode (SPIDevice: :MODE3) ;
ADXL345 acc (spibevice) ;
acc.displayPitchAndRoll (100) ;
cout << "End of RPi ADXL345 SPI Test" << endl;

}

When this program is executed, it displays the current accelerometer pitch
and roll values on a single line of the terminal window:
pi@erpi ~/exploringrpi/chp08/spi/spiADXL345 cpp $./testADXL345

Starting RPi ADXL345 SPI Test
Pitch:2.75709 Roll:79.8124

Three-Wire SPI Communication

The ADXL345 supports a three-wire SPI (half duplex) mode. In this mode the
data is read and transmitted on the same SDIO line. To enable this mode on
the ADXL345, the value 0x40 must be written to the 0x31 (DATA_FORMAT) register
and a 10k resistor should be placed between SDO and V- on the ADXL345.
There is a draft project in place in the chp08/spi/spiADXL345/3-wire directory,
but at the time of writing, there is a lack of support for this mode in current
RPi Linux distributions.

Chapter 8 = Interfacing to the Raspberry Pi Buses 345

SP1 AND WIRINGPi

The wiringPi library that is installed in Chapter 6 also has a basic set of C functions for
interacting with SPI bus devices. This short code example reads and displays the full
set of registers from the ADXL345 sensor:

pieerpi ~/exploringrpi/chp08/spi/wiringPi $ more ADXL345.c
#include<wiringPiSPI.h>
#include<stdio.h>

#include<string.h> // for memset and memmove calls

int main ()

unsigned char datal[0x41]; // a buffer to store the write/read data
int i; // need 0x41 to read the last value back
memset (data, 0x00, 0x41); // clear the full memory buffer

data[0] =0xCO; // continuous read of the data
wiringPiSPISetupMode (0, 1000000, 3); // SPI channel, speed, mode
wiringPiSPIDataRW (0, data, 0x40); // write & read all 0x40 registers

// Shift the data back by one for the ADXL345 (e.g., 0x01->0x00)
memmove (data, data+l, 0x40) ;
printf ("The DEVID is %d\n", data[0x00]); // display register 0x00
printf ("The full set of 0x40 registers are:\n");

for (i=0; i<0x40; i++) { // display all 0x40 registers
printf ("$02X ", datalil); // display value in hexadecmial
if (1%16==15) printf ("\n"); // place \n after each 15th value

}

return 0;

./chp08/spi/wiringPi $ gcc ADXL345.c -o ADXL345 -lwiringPi
./chp08/spi/wiringPi $./ADXL345

The DEVID is 229

The full set of 0x40 registers are:

E5 00 00 00 00O 00O 00O 00O OO OO 0O 00 OO OO 0O 4A

82 00 30 00 00 02 01 3B 00 00 00 B7 00 00 00 OO

00 00 00 00 OO0 0O 00 0O OO OO OO OO OA 08 00 OO

02 00 OB 00 04 00 ED 00 00 00 00 OO OO 0O 00 0O

A memory shift operation is required in this example because the wiringPiSPI-
DataRW () function performs an SPI write and read in a single call. The response from
the ADXL345 in the example code is currently stored in the array index that follows the
request. For example, if the request to read the device ID (0x80) is stored in data [0],
then the ADXL345's response to that request (i.e., OXE5) is stored in data [1].The
memmove () function shifts all returned values back by one address (e.g., data [1] is
moved to data [0]). There is more information on this library at t iny . cc/erpig806.

346

Part Il = Interfacing, Controlling, and Communicating

Multiple SPI Slave Devices on the RPi

To this point in the chapter, only one SPI device is attached to the bus, which
is quite a limited bus! The SPI bus can be shared with multiple slave devices,
provided that only one slave device is active when communication takes place.
The RPi Raspbian image has kernel support for two slave selection pins on the
SPI bus: SPI_CEO_N (Pin 24) and SPI_CE1_N (Pin 26). This is the reason for
the two SPI device entries in the /dev directory.

pieerpi /dev $ 1ls -1 spi*

crw-rw---T 1 root spi 153, 0 Jan 1 1970 spidev0.0
crw-rw---T 1 root spi 153, 1 Jan 1 1970 spidev0.1

The first device spidevo.0 is associated with the SPI_CEO_N (Pin 24) enable
output, and the second device spidevo.1 is associated with the SPI_CE1_N
(Pin 26) enable output. For example, if you want to attach two sensors to the
same bus, you could use the wiring configuration illustrated in Figure 8-13(a).
Your program code would then open either the spidevo.0 or spidevo.1 device,
depending on which ADXL345 is to be accessed.

spio_mos! [IOMES i | Raspberry FI
SPI0_MISO | > 1 = (SPI Master)
SPI0_CLK Lok 7 Lo A q

SPI_CEO_N

3.3V
GND
_N

:
L]

Figure 8-13: (a) Using two ADXL345 accelerometers on a single SPI bus; and (b) control of more
than one slave device using GPIO pins and additional logic

If you need to connect more than two devices to the same bus, then you will
not have the same level of kernel support, but you can introduce GPIOs and
logic gates (or decoders) to build a custom solution. For example, if you want
to allow the Linux SPI interface library code to retain control of the slave selec-
tion functionality, then a wiring configuration like that in Figure 8-13(b) could
be used. This configuration uses OR gates and an inverter to ensure that only
one slave device CS input is pulled low at a single time. In Figure 8-13(b), the first
slave device is active when CS = 0 and GPIO = 0, and the second slave device is
active when CS = 0 and GPIO = 1.

Chapter 8 = Interfacing to the Raspberry Pi Buses

347

It is good practice to place a pull-up resistor on each of the CS lines, as it can
prevent two devices that share the SPI bus from being simultaneously active, should
an unused CS line “float” low. For illustration, you can see two 10kQ resistors on the
CS lines in Figure 8-13(a). However, Pin 24 and Pin 26 on the RPi already have internal
pull-up resistors enabled by default, so it is not necessary to add resistors for this
application in the RPi’s default state.

Depending on the particular slave devices being used, the GPIO output
combined with a single inverter may be sufficient, as you could “permanently”
pull the CS line low on the slave device, ignoring the CS output of the master.
However, this would not work for the 74HC595 example, as the RPi’s CS line is
used to latch the data to the output LEDs.

For more than two slave devices, a 3-to-8 line decoder, such as the 74HC138,
would be a good solution. It has inverted outputs, which means that only one of
its eight outputs is low at a single point in time. This device could be controlled
using three of the RPi’s GPIOs and it could enable one of eight slave devices
(2%=8). There are also 4-to-16 line decoders with inverting outputs, such as the
74HC4515, which would enable you to control 16 slave devices with only four
GPIOs (2* = 16). For both of these devices, one of the RPi’s CS outputs could be
connected to their active-low E enable input(s).

UART

A Universal Asynchronous Receiver/Transmitter (UART) is a microprocessor periph-
eral device used for the serial transfer of data, one bit at a time, between two
electronic devices. UARTs were originally standalone ICs, but now are often
integrated with the host microprocessor/microcontroller. A UART is not, strictly
speaking, a bus, but its capacity to implement serial data communications over-
laps with similar capacities of the I’C and SPI buses described earlier. A UART
is described as asynchronous because the sender does not have to send a clock
signal to the recipient in order to synchronize the transmission; rather, a com-
munication structure is agreed upon that uses start and stop bits to synchronize
the transmission of data. Because no clock is required, the data is typically sent
using only two signal lines. Just like a regular telephone line, the transmit data
connection (TXD) from one end is connected to the receive data connection (RXD)
on the other end of the connection, and vice versa.

Traditionally, UARTSs have been used with level converters/line drivers to imple-
ment interfaces such as RS-232 or RS-485, but for short-distance communications,

348

Part Il = Interfacing, Controlling, and Communicating

it is possible to use the original logic level for the UART outputs and inputs to
enable two UARTSs to communicate with each other. Note that this is a perfectly
possible but nonstandardized use of UARTs.

The number of symbols per second is known as the baud rate or modulation
rate. With certain encoding schemes, a symbol could be used to represent two
bits (i.e., four states, for example, by using quadrature phase-shift keying [QPSK]).
Then the bit rate would be twice the baud rate. However, for a simple bi-level
UART connection, the baud rate is the same as the bit rate.

The transmitter and receiver agree upon a bit rate before communication
begins. The byte rate is somewhat lower than 1/8th of the bit rate, as there are
overhead bits associated with the serial transmission of data. Transmission begins
when the transmitter sends a start bit (logic low), as shown in Figure 8-14. On the
receiver’s end, the falling edge of the start bit is detected and then after 1.5 bit
periods, the first bit value is sampled. Every subsequent bit is sampled after 1.0
bit periods, until the agreed-upon number of bits is transferred (typically seven
or eight). The parity bit is optional (though both devices must be configured to
either use it or not); if used, it can identify whether a transmission error has
occurred. It would be high or low, depending on whether odd or even parity
checking is employed. Finally, one stop bit is sent (or optionally two stop bits),
which is always a logic high value. The examples that follow in this section all
use a standard 8N1 form, which means that eight bits are sent in each frame,
with no parity bits and one stop bit.

Frame length (10 to 12 bit periods) ;| Idle - No transfer on the line. The
LSB MSB | level must be kept high.

I ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥V Start - Start bit is always low.
[s 4 y £ y £ y £ y £ y £ y £ 40 H i
(Idle) \Start/ DO ¥ D1 ¥ D2} D3 } D4 £ D5 ¥ D6 i D7 i Par/ Stop (idie) | DO-D7 - Data bits (high or low).

Par - Parity bit. The value depends
on whether odd/even parity is used.
Stop - Stop bit is always high.
There can be two stop bits.

Period| 1-5bits | 1bit | 1bit [1bit | 1bit | 1bit | 1bit | 1bit | 1bit |1 bit

Figure 8-14: UART transmission format for a typical one-byte transfer

m Again, it is important that you do not connect a 5V UART device to
the UART RXD input of the RPi or you will damage the RPi. A solution to this problem is
provided at the end of this chapter.

The RPi UART
The RPi has one full UART that is accessible via the GPIO header:

m TXDO (Pin 8): Output that transmits data to a receiver

m RXDO (Pin 10): Input that receives data from a transmitter

Chapter 8 = Interfacing to the Raspberry Pi Buses

349

Chapter 9 describes how you can add additional UARTSs to the RPi using USB
devices, but this chapter focuses on the built-in full UART. The first test is to
connect these two pins together as in Figure 8-15 (a), so that the RPi UART is
literally “talking to itself.”

(a) (b)

Edt Vew Searh Tarmesl Halp

Figure 8-15: (a) Loopback testing the UART; and (b) configuring the minicom program settings

The /dev directory includes an entry for ttyamao. This is the “teletype” (ter-
minal) device, which is a software interface that enables you to send and receive
data via the on-board UART. First, check that the terminal device is listed:

pieerpi /dev $ 1ls -1 ttyAMAO
crw-rw---- 1 root tty 204, 64 Aug 16 00:31 ttyAMAO

UART DEVICES ON THE RPi 3

The RPi boards typically support two UART devices, a mini UART (UART1, with TXD1/
RXD1 on mode ALT5 of Pin 8/10), and a full UART (UARTO, with TXDO/RXDO on mode
ALTO of Pin 8/10). See Figure 6-11 in Chapter 6 and page 175 in the BCM2835 ARM
Peripherals guide. The mini UART is typically not used on earlier RPi models, but the
RPi 3 utilizes both UARTSs: The full UART is required for onboard Bluetooth (a feature
that is not present on earlier RPi models), and the mini UART is used for the serial con-
sole function. The use of the mini UART results in the serial console being mapped to
the device /dev/ttySo0 instead of the usual /dev/ttyAMAO. The mini UART does
not have parity support and its baud rate is derived from the system clock, rather than
being programmable.

At the time of writing, to communicate between the RPi 3 and a desktop machine
using the mini UART (/dev/ttyS0) device, you have to ensure that the CPU fre-
quency does not change during communication—for example, as a result of a CPU
governor state. You may also have to set the core frequency to 250 MHz to improve
communication stability. This latter setting can reduce communication glitches, but it
also impacts upon the performance of the RPi GPU. You can set explicit CPU and core
frequency values by editing the /boot /config. txt file as follows:

pie@erpi:/boot $ tail -n 3 config.txt
force turbo=1
Continues

350

Part Il = Interfacing, Controlling, and Communicating

UART DEVICES ON THE RPi 3 (continued)

arm_freg=1200

core_freg=250
After reboot, you can check the CPU frequency:

pi@erpi:~ $ sudo apt install cpufrequtils
pi@erpi:~ $ cpufreq-info

cpufreq stats: 1.20 GHz:100.00%

The serial console should work correctly and you should have bidirectional
communication.

Several of the examples in this chapter require that you terminate the serial console
service. As the serial console on the RPi 3 is mapped to /dev/ttyS0 by default, you
can shut down the console service as follows (remember to also set the device to the
value /dev/ttySo0 in the code examples):

pieerpi ~ $ sudo systemctl stop serial-getty@ttySO

If you have difficulties in your applications with the simple UART on the RPi 3, you
should examine the low-cost (~$1) USB UART devices that are described towards the
end of Chapter 9.

Finally, it is also possible to disable the UART1 and enable UARTO on Pins 8/10 (i.e.,
GPI014/15) on the RPi 3 by using a device tree overlay:

pi@erpi: /boot/overlays $ 1ls -1 pi3-mini*

-rYwWXr-xr-x 1 root root 1250 Mar 13 17:04 pi3-miniuart-bt-overlay.dtb
Edit the /boot/config.txt file and add the following line:
dtoverlay=pi3-miniuart-bt

The serial console reverts to /dev/t tyAMAO after reboot, but Bluetooth function-
ality is now disabled on the RPi 3:

Raspbian GNU/Linux 8 erpi ttyAMAO

erpi login:

The source code for this overlay is available at t iny . cc/erpig14.

By default, this terminal device is set up as a Linux console for the RPi. As
described in Chapter 2, you can connect to the Linux console using a USB-to-
TTL 3.3V cable and open a terminal connection using the getty (“get teletype”)
service. However, to perform the loopback test in Figure 8-15(a), you need to
detach the serial-getty service from the UART device. You can do this under
SysVinit or systemd as follows:

m Under SysVinit you can disable the console by rebooting after editing /
etc/inittab to comment out the line that begins with To:23 using a #
character:
pi@erpi /etc $ tail -2 inittab

#Spawn a getty on Raspberry Pi serial line
#T0:23:respawn:/sbin/getty -L ttyAMAO 115200 vt100

Chapter 8 = Interfacing to the Raspberry Pi Buses

351

m Under systemd the device is currently attached to the serial-getty ser-
vice. It can be stopped using the following;:
pieerpi ~ $ systemctl|grep ttyAMAO

serial-getty@ttyAMAO.service loaded active running Serial Getty on ttyAMAO
pi@erpi ~ $ sudo systemctl stop serial-getty@ttyAMAO

N[Ol N3 The first human-computer interface was the teletypewriter, also known as
the teletype or TTY, an electromechanical typewriter that can be used to send and
receive messages. This terminology is still in use today!

Once you have disabled the terminal service, you can test the device using
the agetty (alternative getty) command or the minicom terminal emulator, both
of which enable you to send and receive data on the ttyamao device. The mini-
com program enables you to dynamically change the serial settings while it is
executing (e.g., number of bits in a frame, number of stop bits, parity settings)
by pressing Ctrl+A followed by Z, as illustrated in Figure 8-15(b). Install and
execute minicom using the following commands:

pi@erpi ~ $ sudo apt install minicom

pi@erpi ~ $ sudo minicom -b 115200 -o -D /dev/ttyAMAO

Welcome to minicom 2.7

OPTIONS: Il8n

Compiled on Jan 12 2014, 05:42:53.

Port /dev/ttyAMAO, 18:28:58
Press CTRL-A Z for help on special keys

At this point, you should press Ctrl+A followed by Z and then E to turn on
local Echo. Now when the RPi is wired as in Figure 8-15(a), and you press a key,
you should see the following output when you type letters:

hheelllloo RRaassppbbeerrrryy PPii

Whichever key you press is transmitted in binary form (as in Figure 8-14)
from the TXD output, and is also echoed on the console. When the character
is received on the RXD input, it is then displayed on the terminal. Therefore, if
you can see the characters appearing twice for the keys that you are pressing,
then the simple UART test is working correctly. You can verify this by briefly
disconnecting one end of the TXD-RXD loopback wire in Figure 8-15(a), where-
upon the key presses will only appear once.

The Analog Discovery has an interpreter that can be used for analyzing
serial data communication. The Logic Analyzer can be connected in parallel to
the TXD and RXD lines in order to analyze the transfer of data from the RPi
to another device. An example of the resulting signals is displayed in Figure 8-16
for the loopback test in Figure 8-15(a) when only the letter “h” is being transmit-
ted. The start and stop bits can be observed, along with the eight-bit data as it
is sent, LSB first, from the TXD pin to the RXD pin, with a sample bit-period of
8.7 us. At a baud rate of 115,200, the effective byte rate will be somewhat lower,
due to the overhead of transmitting start, stop, and parity bits.

mailto:getty@ttyAMA0.service

352

Part Il = Interfacing, Controlling, and Communicating

115,200 baud = 8.7 s per bit (including overhead ASCII'h' = 0%68 = 104, = 01101000:

Position: 138us Name:

Figure 8-16: Logic Analyzer display of the loopback serial transmission of the letter “h”

Chapter 6 describes the use of GPIO one-wire communication (bit-banging),
and this chapter describes SPI and I°C communication. However, using a UART
connection is probably the most straightforward approach, and it has the addi-
tional advantage that there can be some degree of physical distance between
the two controllers. Table 8-4 lists some advantages and disadvantages of using
a UART in comparison to using I°C or SPL

Table 8-4: Advantages and Disadvantages of UART Communication

ADVANTAGES DISADVANTAGES

Simple, single-wire transmission and single-
wire reception of data with error checking.

The typical maximum data rate is low
compared to SPI (typically 460.8 kb/sec).

Easy interface for interconnecting embedded
devices and desktop computers, etc., espe-
cially when that communication is external to
the device and/or over a significant distance—
some tens of feet. I>C and SPI are not suited for
external/distance communication.

Because it is asynchronous, the clock on
both devices must be accurate, particu-
larly at higher baud rates. You should
investigate Controller Area Network
(CAN) buses for high-speed external
asynchronous data transfer.

Can be directly interfaced to popular RS-232
physical interfaces, enabling long-distance
communication (15 meters or greater).

The longer the cable, the lower the speed.
RS-422/485 allows for 100-meter runs at
greater than 1 Mb/s.

UART settings need to be known in
advance of the transfer, such as the baud
rate, data size, and parity checking type.

UART Examples in C

The next step is to write C code on the RPi that can communicate with the
desktop computer using the USB-to-TTL 3.3V cable (see Chapter 2).

RPi Serial Client

The C program in Listing 8-9 sends a string to a desktop machine (or any other
device) that is listening to the other end of the connection. It uses the Linux

Chapter 8 = Interfacing to the Raspberry Pi Buses

353

termios library, which provides a general terminal interface that can control
asynchronous communication ports.

Listing 8-9: exploringrpi/chp08/uart/uartC/uart.c

#include<stdio.h>
#include<fentl.hs>
#include<unistd.h>
#include<termios.h>

#include<string.h>

int main(int argc, char *argv[]) {

}

int file, count;
if (argc!=2){
printf ("Please pass a string to the program, exiting!\n");
return -2;
}
if ((file = open("/dev/ttyAMAO", O RDWR | O NOCTTY | O NDELAY))<0) {
perror ("UART: Failed to open the device.\n");
return -1;
}
struct termios options;
tcgetattr (file, &options) ;
options.c_cflag = B115200 | CS8 | CREAD | CLOCAL;
options.c_iflag = IGNPAR | ICRNL;
tcflush(file, TCIFLUSH) ;
tcsetattr (file, TCSANOW, &options) ;
if ((count = write(file, argv[1l], strlen(argv([1])))<0){
perror ("UART: Failed to write to the output\n");
return -1;
}
write (file, "\n\zr", 2); // new line and carriage return
close(file) ;

return 0;

This code uses the termios structure, setting flags to define the type of com-
munication that should take place. The termios structure has the following
members:

tcflag t c_iflag: Sets the input modes
tcflag t c_oflag: Sets the output modes
tcflag t c_cflag: Sets the control modes
tcflag t c_1flag: Sets the local modes

cc_t c_cc[nces]: Used for special characters

A full description of the termios functionality and flag settings is available
by typing man termios at the RPi shell prompt.

pieerpi ~/exploringrpi/chp08/uart/uartC $ gecec uart.c -o uart

354

Part Il = Interfacing, Controlling, and Communicating

../chp08/uart/uartC $ sudo ./uart "Hello desktop!"

../chp08/uart/uartC $ sudo ./uart "Greetings from the Raspberry Pi..."
../chp08/uart/uartC $ sudo sh -c "echo hello >> /dev/ttyAMAO"
../chp08/uart/uartC $ sudo sh -c "echo hello >> /dev/ttyAMAO"

The output appears on the desktop PC as in Figure 8-17 when PuTTY is set
to listen to the correct serial port (e.g,, COM11). The C program functionality
is very similar to a simple echo to the terminal device; however, it does have
access to set low-level modes such as the baud rate, parity types, etc.

Figure 8-17: A PuTTY desktop COM terminal that is listening for messages from the Raspberry Pi

RPi LED Serial Server

For some applications it can be useful to allow a desktop computer master to
take control of an RPi slave. In this section a serial server runs on the RPi, and
awaits commands from a desktop serial terminal. Once again, the USB-to-TTL
3.3V cable is used; however, it is important to note that a similar setup could be
developed with wireless technologies, such as Bluetooth, infrared transmitter/
receivers, and serial ZigBee (see Chapter 13).

In this example, the RPi is connected to a simple LED circuit and the USB-to-
TTL cable, as illustrated in Figure 8-18(a). When the PuTTY client on the desktop
computer issues simple string commands such as LED on and LED off, as illus-
trated in Figure 8-18(b), the hardware LED that is attached to the RPi performs
a corresponding action. Importantly, this program permits safe remote control
of the RPj, as it does not allow the serial client access to any other functionality
on the RPi—in effect, the serial server behaves like a shell that only has three
commands!

(b)

Figure 8-18: (a) The LED serial server circuit, and (b) PuTTY on the PC communicating to the RPi
LED serial server

Chapter 8 = Interfacing to the Raspberry Pi Buses 355

The source code for the serial server is provided in Listing 8-10. The example
uses wiringPi to control the LED circuit (see Chapter 6). Ensure that you remember
to shut down the serial-getty service on the RPibefore running this program.
If you have rebooted the RPi, then the service will have restarted. On execution,
the server displays the following output:

pi@erpi .../chp08/uart/server $ gcc server.c -o server -lwiringPi
pi@erpi .../chp08/uart/server $ sudo ./server

RPi Serial Server running

LED on

Server>>>[Turning the LED on]

LED off

Server>>>[Turning the LED off]

quit

Server>>> [goodbye]

It is possible to disable the serial-getty service permanently on the RPi using
systemctrl disable. You can then add a new service entry for the server code
in this section so that it starts on boot. If your intention is to run this program
as a service, then you should, of course, remove the client-controlled “quit”
functionality!

Listing 8-10: /exploringrpi/chp08/uart/server/server.c

#include<stdio.h>
#include<fentl.hs>
#include<unistd.h>
#include<termios.h>
#include<string.h>
#include<stdlib.h>
#include<wiringPi.h>
#define LED_GPIO 17

// Sends a message to the client and displays the message on the console
int message (int client, char *message) {
int size = strlen(message) ;
printf ("Server>>>%s\n", (message+l)); // print message with new line
if (write(client, message, size)<0) {
perror ("Error: Failed to write to the client\n");
return -1;
}
write(client, "\n\rERPi>", 7); // display a simple prompt
return 0; // \r for a carriage return

// Checks to see if the command is one that is understood by the server
int processCommand (int client, char *command) {

int val = -1;
if (strcmp(command, "LED on")==0) {
val = message(client, "\r[Turning the LED on]");
digitalWrite (LED_GPIO, HIGH) ; // turn the physical LED on

}

else if (strcmp(command, "LED off")==0) {

356 Partll = Interfacing, Controlling, and Communicating

val = message(client, "\r[Turning the LED off]");
digitalWrite (LED_GPIO, LOW) ; // turn the physical LED off
}
else if (strcmp(command, "quit")==0) ({ // shutting down server!
val = message(client, "\r[goodbyel");
1
else { val = message(client, "\r[Unknown command]"); }
return val;

int main(int argc, char *argv[]) {

int client, count=0;

unsigned char c;

char *command = malloc(255) ;

wiringPiSetupGpio() ; // initialize wiringPi

pinMode (LED_GPIO, OUTPUT) ; // the LED is an output

if ((client = open("/dev/ttyAMAO", O RDWR | O NOCTTY | O NDELAY))<0) {
perror ("UART: Failed to open the file.\n");
return -1;

1

struct termios options;

tcgetattr (client, &options) ;

options.c cflag = B115200 | CS8 | CREAD | CLOCAL;

options.c _iflag = IGNPAR | ICRNL;

tcflush(client, TCIFLUSH) ;

fentl (STDIN_FILENO, F SETFL, O_NONBLOCK); // make reads non-blocking
tcsetattr (client, TCSANOW, &optioms) ;
if (message(client, "\n\rRPi Serial Server running")<0) {

perror ("UART: Failed to start server.\n");
return -1;
}
// Loop forever until the quit command is sent from the client or
// Ctrl-C is pressed in the server's terminal window
do {
if (read(client, &c,1)>0) {
write (STDOUT_FILENO, &c,1) ;
command [count++] =c;
if(c=="\n") {
command [count-1]='\0'; // replace \n with \0
processCommand (client, command) ;
count=0; // reset the command string

}
if (read (STDIN FILENO, &c,1)>0) { // can send from stdin to client
write(client, &c,1) ;
}
} while (strcmp (command, "quit") !=0) ;
close(client) ;
return 0;

Chapter 8 = Interfacing to the Raspberry Pi Buses

357

UART Applications - GPS

A low-cost Global Positioning System (GPS) module has been chosen as an example
device to demonstrate interconnection to RPi UART devices. The GY-GPS6MV2
breakout board (~$10) uses the u-blox NEO-6M series GPS module (tiny.cc/
erpigo7). It can be powered at 3.3V and therefore can be connected directly to
the RPi’s UART pins.

Figure 8-19 illustrates the RPi UART connection to the GPS module. As with
all UART connections, ensure that you connect the transmit pin of the RPi to
the receive pin of the device, and the receive pin of the RPi to the transmit pin
of the device.

RPiITXDO — GPSRX
RPiRXD0 <«—— GPSTX

Supplied GPS antenna

o

Figure 8-19: RPi UART connection to the GPS module

The GPS module is set for 9600 baud by default, so to connect to the module
you can use the following (remember to ensure that the serial-getty service
is not running):

pieerpi ~ $ sudo minicom -b 9600 -o -D /dev/ttyAMAO

Welcome to minicom 2.7

OPTIONS: Il1l8n

Compiled on Jan 12 2014, 05:42:53.

Port /dev/ttyAMAO, 23:31:46

Press CTRL-A Z for help on special keys
$GPRMC,133809.00,A,5323.12995,N,00615.36410,W,1.015,,190815,, ,A*60
$GPVTG, ,T,,M,1.015,N,1.879,K,A*21
SGPGGA,133809.00,5323.12995,N,00615.36410,W,1,08,1.21,80.2,M,52.9,M,,*73
SGPGSA,A,3,21,16,18,19,26,22,07,27,,,,,2.72,1.21,2.44%06
$GPGSV,4,1,14,04,07,227,17,07,24,306,16,08,33,278,09,13,05,018, *7A
$GPGSV,4,2,14,15,04,048,08,16,61,174,25,18,39,096,31,19,35,275,21*78
SGPGSV,4,3,14,20,12,034,08,21,36,061,23,22,29,142,21,26,32,159,12*71
SGPGSV,4,4,14,27,75,286,26,30,10,334,*75
$GPGLL,5323.12995,N,00615.36410,W,133809.00,A,A*78

The GPS module outputs NEMA 0183 sentences, which can be decoded to
provide information about the sensor’s position, direction, velocity, etc. There

358

Part Il = Interfacing, Controlling, and Communicating

is a lot of work involved in decoding the sentences, so it is best to use a client
application to test the performance of your sensor. For example:

pieerpi ~ $ sudo apt install gpsd-clients
pi@erpi ~ $ sudo gpsmon /dev/ttyAMAO

This results in the output shown in Figure 8-20 that provides an intuitive display
of the NEMA 0183 sentences. An LED on the module flashes at a rate of 1 PPS
(pulse per second) when it is capturing valid data. This pulse is extremely accurate
and can therefore be used as a calibration method for other applications. The
gpsmon application was executed in my office, which overlooks a courtyard, so
I was surprised that the low-cost sensor achieved line of sight with 11 satellites.

Walter Dal Mut (@walterdalmut) has made a C library available for interfac-
ing to GPS sensors. The library can be easily integrated within your project to
utilize GPS, as follows:

pieerpi ~ $ git clone git://github.com/wdalmut/libgps

pieerpi ~ $ cd libgps/

pieerpi ~/libgps $ make

pieerpi ~/libgps $ sudo make install

pieerpi ~/libgps $ 1ls /usr/lib/libgps*

/usr/lib/libgps.a

{_Device description 5

“PRN: unique satellite i : T Cockad T
& number ;

(Using NMEA 0183 slandard) |

Calculated ("cooked"] time and location)

- Altitude above mean sea level in meaersj
e : | — Sats: Number of visible satellites J
Elevation in degrees |t

(90° maximum)

: Quality: (1 = GPS fix, 0= invalid)
/Azimuth degrees from | EREERERE ' . Horizontal dilution of precision (HDOP):

l true north (0° to 3597 /| : : Relative accuracy of horizontal position ./
: ink

S/N signal to naise Speed: speed in knots o

___ ratio (0-99¢B) GPGGA: GPS Fix Data 0

GPGSA: GPS DOP and active satellites
GPGSV: GPS satellites in view
GPGLL: Geographic position with
latitude and longitude

Course: direction that
sensor is moving in
(Status A = data valid)

Figure 8-20: The gpsmon output display

Once the library has been installed, you can use a straightforward C program
to identify the RPi’s GPS information, as in Listing 8-11.

Listing 8-11: /chp08/uart/gps/gps_test.c

#include<stdio.h>
#include<stdlib.h>
#include<gps.h>

int main() {

gps_init () ; // initialize the device

git://github.com/wdalmut/libgps

Chapter 8 = Interfacing to the Raspberry Pi Buses

359

loc_t gps; // a location structure

gps_location (&gps) ; // determine the location data

printf ("The RPi location is (%1f,%1f)\n", gps.latitude, gps.longitude) ;
printf ("Altitude: %1f m. Speed: %1f knots\n", gps.altitude, gps.speed) ;
return 0;

}
You can build and execute the code as follows:

.../chp08/uart/gps $ gcc gps test.c -o gps test -1lgps -1lm
.../chp08/uart/gps $ sudo ./gps test

The RPi location is (53.385511,-6.256224)

Altitude: 85.900000 m. Speed: 0.060000 knots

You can enter the co-ordinate pair in maps.google.com to find my office at
Dublin City University (tiny.cc/erpig13)!

Logic-Level Translation

As noted throughout this chapter, it is important that you are cognizant of the
voltage levels used in communicating with the RPi. If you connect a device that
uses 5V logic levels, then when the device is sending a high state to the RPj, it
will apply a voltage of 5V to the RPi’s input pins. This would likely permanently
damage the RPi. Many embedded systems have overvoltage-tolerant inputs,
but the RPi does not. Therefore, logic-level translation circuitry is required if you
want to connect the buses to 5V or 1.8V logic-level circuits.

For unidirectional data buses, like four-wire SPI, logic-level translation can be
achieved using a combination of diodes (using their ~0.6 V forward-voltage drop
characteristic) combined with resistors, or transistors. However, bidirectional data
buses like the I’C bus are more complex because the level must be translated in
both directions on a single line. This requires circuits that use devices such as
N-channel MOSFETs (e.g., the BSS138). They are available in surface-mounted
packages and, unfortunately, there are very few through-hole alternatives.
Fortunately, this is a common problem and there are straightforward unidi-
rectional and bidirectional breakout board solutions available from several
suppliers, including the following:

m SparkFun Bi-directional Logic Level Converter (BOB-12009), which uses
the BSS138 MOSFET (~$3)

m Adafruit Four-Channel Bi-directional Level Shifter (ID:757), which uses
the BSS138 MOSFET (1.8 V to 10V shifting) (~$4)

m Adafruit Eight-Channel Bi-directional Logic Level Converter (ID:395; ~$8),
which uses the TI TXB0108 Voltage-Level Translator that automatically
senses direction (1.2-3.6 V or 1.65-5.5V translation). Note that it does not

360

Part Il = Interfacing, Controlling, and Communicating

work well with I*C due to the pull-up resistors required. However, it can
switch at frequencies greater than 10 MHz.

m Watterott Four-Channel Level Shifter (20110451), which uses the BSS138
MOSFET (~$2)

Some of these products are displayed in Figure 8-21. With the exception of
the Adafruit eight-channel converter, they all use BSS138 MOSFETs. A small
test was performed to check the switching frequency of these devices, as dis-
played in Figure 8-22, and it is clear from the oscilloscope traces that there are
data-switching performance limitations when using these devices that you must
factor into your circuit design. In this test, the 3.3V input is switching a 5V level
output using a square wave, and it is clear that the output signal is distorted at
higher frequencies. For example, when switching at 1MHz, the distortion means
that the output signal does not actually reach a 5V level.

® & o

AT L Z

l;rl:?il[r n . watterott.com

Hv 1 2 : 2 1 Hv
e 0 o

4 Bi-Directional

=> | K:
-4

e L
L

A4 A3 A2
oeee

GNO

F :
Level Shifters

Figure 8-21: Adafruit four-channel, Adafruit eight-channel, and Watterott four-channel logic-
level translators

(@s0kHz)i _ -n-| (@200kHz) _mems (@IMHz Jri ——

S R | B W e W
. B (AT 7| [Jon wre [ERi . W =Xl el

£ b sm 10 B i Bu T

Figure 8-22: Switching BSS138-based translators from 3.3V to 5V logic levels at 50 kHz,
200kHz, and 1MHz

Chapter 8 = Interfacing to the Raspberry Pi Buses

361

For further information on logic-level shifting techniques in I?C-bus design,
see the application notes from NXP (AN97055), which are linked on the chapter
web page and also available at tiny.cc/erpigos.

Summary

After completing this chapter, you should be able to do the following;:

m Describe the most commonly used buses or interfaces that are available
on the RPi, and choose the correct bus to use for your application.

m Configure the RPi to enable I’C, SPI, and UART capabilities.

m Attach circuits to the RPi that interface to its I’C bus, and use the Linux
12C-tools to communicate with those circuits.

m Build circuits that interface to the SPI bus using shift registers, and write
C code that controls low-level SPI communication.

m Write C/C++ code that interfaces to and “wraps” the functionality of
devices attached to the I°C and SPI buses.

m Communicate between UART devices using both Linux tools and custom
C code.

m Build a basic distributed system that uses UART connections to the RPi
to allow it to be controlled from a desktop PC.

m Interface to a low-cost GPS sensor using a UART connection.

m Add logic-level translation circuitry to your circuits in order to commu-
nicate between devices with different logic-level voltages.

Further Reading

Documents and links for further reading have been listed throughout this
chapter, but here are some further reference documents:

m The I*°C Manual, Jean-Marc Irazabal and Steve Blozis, Philips Semiconductors,
TecForum at DesignCon 2003 in San Jose, CA, on January 27, 2003, at
tiny.cc/erpi8009.

m The Linux I)C Subsystem, at i2c.wiki.kernel.org.

m Serial Programming Guide for POSIX Operating Systems, 5th ed., Michael R.
Sweet, 1994-1999, at tiny.cc/erpis1o.

m Serial Programming HOWTO, Gary Frerking, Revision 1.01, at tiny.cc/
erpig8ll.

Enhancing the Input/Output
Interfaces on the RPi

This chapter describes how the input/output interface capabilities of the Raspberry
Pi (RPi) can be enhanced and extended using low-cost modules, integrated circuits
(ICs), and USB devices. The RPi is a competent interfacing and physical comput-
ing device, but analog interfacing functionality is absent, and other input/output
capabilities may need to be expanded for your applications. This chapter begins
by describing how you can utilize the RPi’s buses to add analog-to-digital and
digital-to-analog conversion capabilities to the RPi. The chapter then describes
how you can expand the number of available pulse-width modulation (PWM)
outputs and general-purpose inputs/outputs (GPIOs) on the RPi. The chapter
finishes with a discussion on the use of USB-to-ITL devices, which can be
used to expand the number of available serial UART devices. This chapter also
provides you with further experience of interfacing to SPI and I°C bus devices.

Equipment Required for This Chapter:
m Raspberry Pi (ideally an RPi 2/3)
m Analog-to-digital converter ICs (e.g., the MCP3208)
m Digital-to-analog converter ICs (e.g., the MCP4725, MCP4921/2)
m PWM expander module (e.g., the Adafruit PCA9685)
m GPIO expander ICs (MCP23017, MCP23517)
m USB UART device (e.g., CP2102 or CH340G compatible)

363

364

Part Il = Interfacing, Controlling, and Communicating

Further details on this equipment and chapter are available at www.exploringrpi
.com/chapter9/.

Introduction

The onboard input/output capabilities of the RPi are described in detail
in Chapters 6 and 8, where it is made clear that certain functionality is
multiplexed—for example, enabling the SPI bus or I’C bus reduces the number
of available GPIOs. In addition, the RPi does not have onboard analog-to-digital
conversion (ADC) or digital-to-analog conversion (DAC) capabilities. This is a
weakness of the RPi in comparison to other SBCs such as the BeagleBone Black,
which has multiplexed onboard support for 7 x ADC channels, 4 x UART devices,
65 x GPIOs, and 8 x PWM outputs. This chapter aims to address this weakness
using low-cost, widely available modules, ICs, and USB devices.

An alternative way to address this weakness is to use input/output expansion
HATs (Hardware Attached on Top). The Gertboard ($60-$65), which is illustrated
in Figure 9-1, is a popular choice. It has 12 x buffered input/outputs, 6 x open-
collector drivers, an 18V 2 A motor controller, an Arduino microcontroller, a
two-channel DAC, and a two-channel ADC. See tiny.cc/erpi9oo1 for the full
manual. Alternatives to the Gertboard include the PiFace Digital (www.piface
.org.uk) and the GrovePi (www.dexterindustries.com/GrovePi/).

Expansion HATs are useful for prototyping work, and their functionality is
described in detail by their manuals. Therefore, expansion HATSs are not inves-
tigated in this book; rather, this chapter focuses on using discrete components
and modules to provide the required expanded input/output functionality. This
approach is typically more complex, but it has advantages in terms of cost, avail-
ability, and implementation footprint. It is also an important learning exercise
that reinforces the bus interfacing techniques, which are described in Chapter 8.

Analog-to-Digital Conversion

The concept of analog-to-digital conversion (ADC) is introduced in Chapter 4, even
though the RPi does not have onboard ADC capabilities. This section describes
how you can add an external ADC to your RPi using multichannel SPI ADCs
that retail from $1 to $3. Adding ADC capabilities to the RPi means that it can
then interface directly to thousands of types of analog sensors, some examples
of which are described in this chapter and in Chapter 10.

Several other SBCs, including the BeagleBone, have internal ADC circuitry
that can be easily damaged by incorrect usage (e.g., sourcing/sinking excessive

http://www.exploringrpi
http://www.piface.org.uk
http://www.piface.org.uk
http://www.dexterindustries.com/GrovePi
http://www.exploringrpi.com/chapter9/

Chapter 9 = Enhancing the Input/Output Interfaces on the RPi 365

current). Therefore, replaceable external ADCs are a good choice for prototyping
work, even when an internal ADC is available.

Figure 9-1: The Gertboard attached to the RPi GPIO header

SPI Analog-to-Digital Converters (ADCs)

There are ADCs available that can be used with the I°C bus (e.g., the ADS1015),
but the SPI bus is preferable for this application, especially for sampling a sensor
output at moderately high data rates. This section focuses on two families of SPI
ADCs that are produced by Microchip, the MCP300x 10-bit and the MCP320x 12-bit
families. Each of these families has discrete ICs with different numbers of input
channels—for example, the MCP320x has one-channel (MCP3201), two-channel
(MCP3202), four-channel (MCP3204), and eight-channel (MCP3208) variants.

366

Part Il = Interfacing, Controlling, and Communicating

The MCP3208 SPI ADC

The MCP3208 is the most capable device in the two families of ADCs, as it sup-
ports eight 12-bit successive approximation ADC channels. It is chosen for this
discussion for that reason and the fact that it is a low-cost (~$3) device that is
widely available in PDIP form. It is suitable for interfacing to the RPi because
it can be powered at 3.3V and has an SPI interface. It is capable of sampling at
~75 thousand samples per second (kSPS) and has a differential nonlinearity
of +1 LSB. By default, the MCP3208 supports eight single-ended inputs, but it
can be programmed to provide four pseudo-differential input pairs.! Table 9-1
describes the input/output pins of the 16-pin IC. The full datasheet is available
at tiny.cc/erpigo2.

A successive approximation ADC uses an analog voltage comparator to
compare the analog input voltage to an estimated digital value that is passed through
a DAC. The result of the analog comparison is used to update the estimated digital
value, which is stored in a successive approximation register (SAR). The process contin-
ues iteratively until all the bits (12 in the case of a 12-bit ADC) are weighted and com-
pared to the input. Successive approximation ADCs are popular because they provide
a good balance of speed, accuracy, and cost; however, the higher the resolution, the
slower the ADC performance.

Table 9-1: Input/Output Pins for the MCP3208

IC PINS PIN TITLE DESCRIPTION
Pins 1-8 CHO-CH7 The eight ADC input channels.
Pin9 DGND Digital ground—connected to the internal digital ground.

Can be connected to the RPi GND.

Pin 10 CS/SHDN Chip Select/Shutdown—used to initiate communica-
tion with the device when pulled low. When pulled high
it ends the conversation. Must be pulled high between
conversions.

Pin 11 D,y (MOSI) Used to configure the ADC by selecting the input to use,
and whether to use single-ended or differential inputs.

Pin 12 Doyr(MISO) The data output sends the results of the ADC back to the
RPi. The data bit changes on the falling edge of the clock
cycle.

! Single-ended ADC inputs share a common reference ground. Differential inputs are applied
to the ADC in pairs (IN+, IN-), which are compared against each other to determine the ADC
value. This is particularly beneficial for the common-mode rejection of coupled noise, which
could cause single-ended inputs to exceed their range. Note that there is also a MCP330x family
of 13-bit differential input SPI ADCs that can also be used in the way that is described in this
section.

Chapter 9 = Enhancing the Input/Output Interfaces on the RPi

367

IC PINS PIN TITLE DESCRIPTION

Pin 13 CLK The SPI clock is used to synchronize communication. A clock
rate of greater than 10KHz should be maintained to avoid
introducing linearity errors.

Pin 14 AGND Analog ground—connected to the internal analog circuit
GND.

Pin 15 Vier Reference voltage input.

Pin 16 Voo Voltage Supply (2.7V-5.5V). Can be connected directly to

the RPi 3.3V supply rail, but not to the 5V supply without
adding logic-level translation circuitry to the D ;; pin.

Wiring the MCP3208 to the RPi

Figure 9-2 illustrates how the MCP3208 can be connected directly to the RPi
using its SPI bus. The figure also includes an ADC input example that is used
to test the circuit.

i 4-Channel 5P Analog-1o-Digital Converte:
e] ¢ MCP3004 10-bit !
 Elf ; MCP3204 12-bit '
L8 Vrat= e, 33V : U !
=1l ; = . cHo[l1 7 14[1Voo :

// ! ANALOG ' CH1[]2 s 13 [V ger :

~0mA S, eur i« CHz[|a x 12 AGND I

|:;|FZ:;=IFI\,“ | Channsl 0 Input i CH3[4 & 1] CLK i

= ! x[]s = 10]lDeur !

— .- ! x[ls aflom '

'I ! DGND[|7 8 [|CE/SHDN |

| 8-Channel 5P Anslog-to-Diial Converte

e = o MCP3008 10-bit 1

' MCP3208 12-bit '

-8 © ® ' i

A O ' cHof] Y 16[] Voo]

i | CHif|2 15[V ree]

L cHz[ls B 1sflasND |

i - '

|z : CHa[l4 s 13[] CLK :

|] Ol \ CH4[]s E 12| Dour :
i o 1| @ i cHs[le 1flow '
| Example LDR Circuit 214 i\ cHe]7 10{] TSISHON |

(current at 3976/4095) el 5"_»: ' CH?[B sl BEti '

Channel 0 of the MCP3208 IC

Communicating with the MCP3208

The ADC functionality is controlled by the RPi using the MOSI line to the D,
pin and the resulting sample data is returned on the MISO line from the D;;
pin. Figure 9-2 illustrates the bits that must be written to and read from the
MCP320x and MCP300x ADCs to complete a transaction. Essentially, the RPi

368 Partll = Interfacing, Controlling, and Communicating

must identify which channel (0-7) it wants to read, and whether the circuit is
configured for single-ended or differential inputs:

m The channel is selected using a three-bit identifier (2° = 8), as illustrated
on the right side of Figure 9-3.

m The example circuits in this section utilize single-ended inputs, so the
Single/Diff bit is 1. However, by setting the bit to 0 you can use the inputs
as four differential pairs (CH0/CH1, CH2/CH3, CH4/CHS5, and CH6/CH?).
For example, 000 sets CHO as IN+ and CHI1 is IN—, oo1 sets CH1 as IN+
and CHO as IN—, and o010 sets CH2 as IN+ and CH3 as IN—, etc.

The data transaction takes 24 serial clock (SCLK) cycles. The RPi writes low
bits followed by a start bit (high), the SGL/Diff bit (high for a single-ended
configuration), and the three channel-select bits. The write takes place on the
rising edge of the clock signal. The MCP320x then sends 12 bits of data back to
the RPi on the falling edge of the clock signal (delayed by 3.5 clock cycles). The
signal patterns required for the MCP300x are also identified at the bottom of
Figure 9-3. They are almost the same, but because 10 bits are returned rather
than 12 bits, there are two fewer leading lows on the MOSI (D;,) line.

MCra20y (Start bit followed by SGL/DIff and then Dz D 0)

= tart bit en Dz D1, Do

<3 . x=Dontcare [Channel Select

| Dz|D1 |Do

o I) B o e O e O 0 CHojo |0 (0O

SCLK v’:‘ o Idadjng edgelol SCLE. redd an fallingedpe

—'L“””“”“‘—juuuuuUUI—HJUUUUUUI— cHijojoln
I T T R S S S TR S S SHIE SHI S ST TP S S ST S S S ST re 71 I I I

MOSI 0 0 0 0 0|1 1|D: DlDOXXKKK)(X X X X X X X X| 0x060000 [eRal o [1
A5 O Sl 9 5 el o O 9 < O <5l 4 fend sk |CHA[1 [0] 0

MSO |X X X X X X X X xxxx|sna|.sga» Br Be Bs Bs B: Bz B Ba| oxOOOFFF |CHS| 1|0 |1
| 24-bits wide (write and read) *————{(Response from the MCP3308 (12 bits) J———* CH6|1]1]0
i ? cHz| 1|1 |1
— @ =T

MCPZWX: E R e B et sdiet | [| ! CHO Bxatiole] Single-Ended:

MOosl o:oooooo 1 1DzD1Dn)(XK)(xxxxxxxx 0x018000 Single/Diff =1

r'
R R Re: fmmthEMCPMOB mhm: 1-\ S Differeltial:
X X X X X)(I s Ba Br Bs Bs Bs Bs B: Bi Bo| gxpoO3FF| Single/Diff=0

3¢ - -

II
!Ifb’i"\"i'
MISO | X X X X X X X

Figure 9-3: Reading data from the 12-bit MCP320x and the 10-bit MCP300x families of SPI ADCs

ADC Application: An Analog Light Meter

Figure 9-2 includes an example light-dependent resistor (LDR) circuit, which
demonstrates how you can connect an analog sensor to the MCP3208. LDRs
have a resistance that is dependent on the ambient light level; the brighter the
room, the lower the resistance and vice versa. This circuit is designed in a volt-
age divider configuration, where a low resistance value on the LDR will cause
a greater proportion of the supply voltage (3.3 V) to drop across the paired
resistor (the 4.7k() resistor in Figure 9-2), resulting in a higher voltage level at

Chapter 9 = Enhancing the Input/Output Interfaces on the RPi 369

CHO of the MCP3208. Therefore, if the room is bright then a high ADC digital
value is expected.

To achieve a full range (i.e., from ~0V to ~3.3V) on CHO, it is essential that
a suitable pairing resistor value R is chosen. For a typical LDR voltage divider
circuit, a good rule of thumb is to use the equation R = \/Ryn x Ryax , where
Ryax (maximum resistance) is the measured resistance of the LDR when it is
covered (e.g., with your finger) and R, (minimum resistance) is the measured
resistance of the LDR when a light source (e.g., cellphone torch app) is close to
its surface. In this example, the resistance of the LDR was 98 k() when covered
and 220 when the light source was close. The preceding formula thus gives a
value for R of 4,643 (), so a 4.7 k() resistor provides a suitable pairing.

Listing 9-1 provides a code example that uses the MCP3208 circuit as illus-
trated in Figure 9-2. The LDR circuit is connected to CHO and is sampled using
a single-ended configuration.

Listing 9-1: /exploringrpi/chp09/Idr/IdrExample.cpp

#include <iostream>
#include "bus/SPIDevice.h"
using namespace exploringRPi;

int main()
std::cout << "Starting the RPi LDR ADC Example" << std::endl;
SPIDevice *busDevice = new SPIDevice(0,0);
busDevice->setSpeed (5000000) ;
busDevice->setMode (SPIDevice: :MODEO) ;

unsigned char send[3], receivel[3];
send[0] = 0b00000110; // Start bit=1, SGL/Diff=1 and D2=0
send[1] = 0b00000000; // MSB 00 is D1=0, D0=0 for channel 0

busDevice->transfer (send, receive, 3);
// MCP320X: use full second byte and the four LSBs of the first byte

int value = ((receive[l]&0b00001111)<<8) |receive[2];
std::cout << "LDR value is " << value << " out of 4095." << std::endl;
return 0;

}

The code in Listing 9-1 uses the spIDevice class that is described in Chapter 8
to send a request on the MOSI line and to read the response on the MISO line.
The program can be built and executed as follows:

pieerpi ~/exploringrpi/chp09/1ldr $ g++ -o ldrExample ldrExample.cpp -
bus/SPIDevice.cpp bus/BusDevice.cpp

pieerpi ~/exploringrpi/chp09/1dr $./ldrExample

Starting the RPi LDR ADC Example

LDR value is 3952 out of 4095.

pie@erpi ~/exploringrpi/chp09/1ldr $./ldrExample

Starting the RPi LDR ADC Example

LDR value is 207 out of 4095.

The light source was close to the LDR when the program was first executed,
and the LDR was covered on the second occasion.

370

Part Il = Interfacing, Controlling, and Communicating

The circuit configuration in Figure 9-2 can be used for resistance-based sen-
sors, where a voltage/current is required for sensor excitation, and the resistance
of the sensor varies in proportion to the quantity under measurement. Some
such sensors include: resistance thermometers, strain gages, moisture sensors,
pressure sensors, light sensors, displacement sensors, etc.

This code in Listing 9-1 can be easily adapted to read from all eight of the
channels by altering the three channel select bits, as described in Figure 9-3.
For example, if the LDR circuit was connected to CH7 (111), then the send bytes
would be send[0]=0000000111 and send [1]=0b11000000 for the MCP3208.

Testing the SPI ADC Performance

The previous ADC example clearly works well for applications where occasional
sampling is required; however, it is important to be aware of the limitations of
this circuit under embedded Linux.

According to its datasheet (tiny.cc/erpi9o2), the MCP3208 is capable of
sampling at a rate of 100 kSPS at V,, = 5V and 50 kSPS at V, = 2.7V, which
is interpolated to ~63 kSPS at V,, = 3.3 V. However, to achieve this rate would
require the RPi to write/read 63,000 requests to the MCP3208 every second (and
a SCLK rate of at least 24 bits x 63,000 = 1.5MHz). Essentially, a request would
have to be sent every 16 ps, and the requests would have to be perfectly spaced
in time, because otherwise the captured data would suffer from sample-clock
jitter. This is a particular problem for embedded Linux applications, because
the kernel has to balance the requests for analog sampling along with other
processes that are running on the board; this can cause the sample-clock to
deviate from a truly periodic signal (i.e., jitter). This topic is described in some
detail in Chapter 6 and Chapter 7 when testing is performed on the preemption
performance of the RPi. The histogram plot in Figure 6-10(a) is indicative of the
sample-clock jitter problems that you can expect.

To test the performance of this configuration, a known input signal can be
applied to one of the input channels, whereupon the captured sample data can
be compared against the known input signal. You can use the Analog Discovery
Waveform Generator for this simple test. It can generate a sinusoidal input signal
and the sampled output can be inspected visually.

Listing 9-2 provides a short program that captures 200 ADC samples as
quickly as possible, and then outputs the results to the terminal window. The
output of the program can be piped into the Gnuplot tool so that the sampled
data can be plotted.

Chapter 9 = Enhancing the Input/Output Interfaces on the RPi 371

GNUPLOT

Gnuplot is a powerful command-line graphing tool that can be used to graph func-
tions and plot data directly on the RPi. It can be configured to display on-screen cus-
tom plots, or to save the output plot to a file. You can display the plot using virtual
network connections (VNCs) or headful displays, which are described in Chapter 14.
However, this short feature describes how you can save the plot to a file, which can be
transferred to a desktop machine.

Using the following steps you can ensure that Gnuplot is installed on the RPi, and
then use it to output a plot of sin(x) in both vector-mapped postscript (PS) file and bit-
mapped PNG image form:

pi@erpi ~ $ sudo apt install gnuplot
pieerpi ~/tmp $ gnuplot

GNUPLOT Version 4.6 patchlevel 6 ...
gnuplot> set term postscript
Terminal type set to 'postscript'
gnuplot> set output "sinx.ps"
gnuplot> plot [-pi: pi] sin(x)
gnuplot> set term png
Terminal type set to 'png'
gnuplot> set output "sinx.png"
gnuplot> plot [-2*pi:2*pi] sin(x)
gnuplot> exit
pi@erpi ~/tmp $ 1ls
sinx.png sinx.ps
pieerpi ~/tmp $ ps2pdf sinx.ps sinx.pdf
pieerpi ~/tmp $ 1s

sinx.pdf sinx.png sinx.ps

These plots are available in the /chp09/gnuplot/ directory. You can view the
results of these calls directly on the book’s Github repository at t iny.cc/erpi903.

Gnuplot is used in Chapter 5 to display histogram plots and in this section it is
used to visually inspect the data that is captured by the ADC circuit. Gnuplot can be
called using scripts, which is demonstrated in the example that follows in this section
(Listing 9-3). For detailed information on the use of Gnuplot, see: www . gnuplot
.infoand www.gnuplot.info/docs_4.0/gpcard.pdf.

Listing 9-2: /chp09/spiADC/ADCmulti.cpp

#include <iostream>

#include "bus/SPIDevice.h"
#define SAMPLES 200

using namespace exploringRPi;

http://www.gnuplot.info
http://www.gnuplot.info/docs_4.0/gpcard.pdf
http://www.gnuplot.info

372

Part Il = Interfacing, Controlling, and Communicating

int main()
short data [SAMPLES] ; // output preceeded by # ignored by gnuplot
std::cout << "# Starting RPi SPI ADC Example" << std::endl;
SPIDevice *busDevice = new SPIDevice(0,0);
busDevice->setSpeed (5000000) ;
busDevice->setMode (SPIDevice: :MODEO) ;
unsigned char send[3], receivel[3];
send[0] = 0b00000110; // Reading single-ended input from channel 0
send[1] = 0b00000000;
for (int i=0; i<SAMPLES; i++) {
busDevice->transfer (send, receive, 3);

data[i]l = ((receive[l]&0b00001111)<<8) |receive[2];

1

for (int i=0; i<SAMPLES; i++) { // print after data captured
std::cout << 1 << " " << data[i] << std::endl;

}

busDevice->close() ;
std::cout << "# End of RPi SPI ADC Example" << std::endl;
return 0;

}

The program in Listing 9-2 is not called directly; instead, it is called by the
short script in Listing 9-3, which plots the resulting sample data to a PDF format
file, so that it can be easily viewed.

Listing 9-3: /exploringrpi/chp09/spiADC_MCP3208/plot

#!/bin/bash

echo "Capturing 200 samples from the memory and dumping to capture.dat"
./ADCmulti > capture.dat

echo "Plotting the data to a PS file"

gnuplot <<_EOF

set term postscript enhanced color

set output 'plot.ps'

set title 'Exploring RPi Plot'

plot 'capture.dat' with linespoints lc rgb 'blue’
_EOF _

echo "Converting the PS file to a PDF file"
ps2pdf plot.ps plot.pdf

If the current CPU frequency profile is set to be adaptive (e.g., the
ondemand governor), problems would arise with this test. The test has a significant
CPU load that would cause the governor to increase the CPU frequency, which
would alter the ADC sample-clock rate as the test is taking place. Therefore, it is
important to first set the governor to use a profile that fixes the CPU frequency,
regardless of the CPU load:

pi@erpi ~ $ sudo cpufreg-set -g performance

pieerpi ~ $ cpufreq-info | grep "current CPU frequency"
current CPU frequency is 1000MHz

pieerpi ~ $ cd ~/exploringrpi/chp09/spiADC

Chapter 9 = Enhancing the Input/Output Interfaces on the RPi

373

pieerpi ~/exploringrpi/chp09/spiADC $./plot

Capturing 200 samples from the memory and dumping to capture.dat
Plotting the data to a PS file

Converting the PS file to a PDF file

pieerpi ~/exploringrpi/chp09/spiADC $ 1ls -1 *.dat *.pdf
-rw-r--r-- 1 pi pi 1294 Aug 23 21:29 capture.dat

-rw-r--r-- 1 pi pi 6514 Aug 23 21:29 plot.pdf

The results are available in the plot . pdf file. The test can then be repeated for
different input frequencies, providing results such as those in Figure 9-4. You
can also view these plots from the chp09/spiabc/results folder.

At 1GHz the overclocked RPi 2 displays impressive results, as illustrated in
Figure 9-4(a). The plot displays 200 samples of a 500 Hz sinusoidal input sig-
nal, which took 0.00525 seconds to capture. This means that each sample took
26.25us—a sample rate of 39.1kSPS. Unfortunately, this approach suffers from
occasional jitter (as illustrated in Figure 9-4(b)), which is difficult to overcome
at high sample rates. At lower rates (e.g., 5kSPS) the signal could be oversampled
and the results averaged. Finally, Figure 9-4(c) illustrates the problems that
arise if the sample clock rate is insufficient to properly sample an input signal.

(@) Capture of 200 Samples of a 500Hz Input Signal (b)

4500 T T T
_ o 200 samples in 0.00525 seconds 4
= < >
= a0 | g \
o :/\‘. /\ "h % Jitter/\\—{/_&?h‘i
8 o0 e 4% § 4 ' b b gl %
E + +
+ + +
a 3no00 + +
& + +
2 2500 L e
3 ()
=
§ o ™|
g

1500 ol)i
8
5 1000
s 1y g " i
g "f 2 3 5 X\ 7 =

o 0 40 o0 L] oo 120 tan 160 180 200 Tl SEEY. . . . !
Sample number (with respect to time (s)) Y B R R

Figure 9-4: (a) Plot of a data capture of a 500 Hz sinusoidal input signal; (b) example of sample-
clock jitter; (c) data capture of a 5kHz sinusoidal input signal

The C Library for BCM2835 (Advanced)

There is an alternative library to wiringPi that provides strong memory-mapped
support for RPi SPI devices. As discussed in Chapter 6, memory-mapped code is
specific to the RPi platform only, whereas the earlier code in this chapter can be
generally applied to all embedded Linux devices. The advantage of bypassing
the Linux OS and accessing the registers on the RPi directly is that greater I/O
performance can be achieved, which improves the quality of the sampled data.

374

Part Il = Interfacing, Controlling, and Communicating

The C Library for BCM2835° is written by Mike McCauley and is available at
(tiny.cc/erpi9o4). You should identify the most recent version of the library
by visiting the website, and then you can download, build, and install it using
the following steps:

pieerpi ~ $ wget http://www.airspayce.com/mikem/bcm2835/bcm2835-1.45.tar.gz
pi@erpi ~ $ 1ls -1 *.gz

-rw-r--r-- 1 pi pi 251081 Aug 5 04:40 bcm2835-1.45.tar.gz

pi@erpi ~ $ tar zxvf bcm2835-1.45.tar.gz

pieerpi ~ $ cd bcm2835-1.45/

pieerpi ~/bcm2835-1.45 $./configure

pieerpi ~/bcm2835-1.45 $ make

pi@erpi ~/bcm2835-1.45 $ sudo make check

pieerpi ~/bcm2835-1.45 $ sudo make install

pieerpi ~/bcm2835-1.45 $ 1ls -1 /usr/local/lib/*bcm*

-rw-r--r-- 1 root staff 47982 Aug 24 01:47 /usr/local/lib/libbcm2835.a

The code in Listing 9-4 demonstrates how Listing 9-2 can be adapted to utilize
the BCM2835 C Library. In addition, the code is adapted to use the maximum
system priority, and memory paging is disabled for the memory associated with
the resulting binary executable. Memory paging is a common cause of latency,
which is expressed in the output as lost samples or noise.

Listing 9-4: /chp09/bcm2835/adc_bcm2835.cpp

/** Based on the spi.c example at www.airspayce.com/mikem/bcm2835/ **/
#include <bcm2835.h>

#include <iostreams>

#include <string.hs>

#include <sys/mman.h>

#define SAMPLES 2000

using namespace std;

int main() {

short data [SAMPLES] ;

if (!bcm2835 init()) {
cout << "Failed to intialize the bcm2835 module" << endl;;
return 1;

}

// Set the maximum possible priority and switch from regular Linux

// round-robin scheduling to FIFO fixed-priority scheduling

struct sched param sp;

sp.sched_priority = sched _get_ priority max (SCHED_FIFO) ;

if (sched setscheduler (0, SCHED FIFO, &sp)<0) { // change scheduling
cout << "Failed to switch from SCHED RR to SCHED FIFO" << endl;
return 1;

}

// lock the process' memory into RAM, preventing page swapping

if (mlockall (MCL_CURRENT|MCL_FUTURE)<0) { // lock cur & future pages

2 Despite the name, this library also works with the BCM2836 and BCM2837 SoCs on the RPi 2
and RPi 3.

Chapter 9 = Enhancing the Input/Output Interfaces on the RPi 375

std::cout << "Failed to lock the memory." << std::endl;
return 1;
}
bcm2835_spi_begin() ;
bcm2835 spi setBitOrder (BCM2835 SPI BIT ORDER MSBFIRST) ;
bcm2835_spi_setDataMode (BCM2835_SPI_MODE3) ;
bcm2835 spi setClockDivider (BCM2835 SPI CLOCK DIVIDER 64); // limit!
bcm2835_spi_chipSelect (BCM2835_ SPI_CSO) ;
bcm2835_spi_setChipSelectPolarity (BCM2835_SPI_CSO, LOW) ;
for(int i=0; i<SAMPLES; i++)
char msg[3] = { 0b00000110, 0x00, 0x00 };
for (int x=0; x<700; x++) { }; // hacked delay - do not optimize
bcm2835_spi_transfern(msg, 3);
datalil=((msg[1]&0b00001111)<<8) |msg[2];
}

for (int i=0; i<SAMPLES; i++) {

cout << 1 << " " << datal[i] << endl;

}

bcm2835 spi_end() ; // clean up SPI

bcm2835_close() ; // close the driver

munlockall () ; // unlock the process memory

return 0;
}
The code in Listing 9-4 can be built and executed as follows:
pieerpi .../chp09/bcm2835 $ g++ adc_bcm2835.cpp -o adc -1lbcm2835
pi@erpi .../chp09/bcm2835 $ sudo ./adc

The output is displayed in Figure 9-5, where the results are impressive for an
embedded Linux device. Figure 9-5(a) shows minimal jitter and Figure 9-5(b)
demonstrates that sampling can take place over an extended period of at least
one million samples, without suffering from noticeable latency problems. Note
that the plot in Figure 9-5(b) consists of 1 million discrete points; the fineness of
the resulting plot lines indicates a good quality sampling result.

(a)

(
2,000 Samples of a 250Hz Input (value vs. sample) 1,000,000 Samples of a 1Hz Input (value vs. sample)
T T A500 T T T T T T T
Graph is made up of points only (no + marker) in ~16.5 seconds
- 2000 |- 4

Graph samples with + marker in (~0.037seconds)

3500 |-

{ i t b i
S y. V., V. V. U , AU PO (O .
Q 00 400 600 80 1000 1200 1400 1600 1800 2000] 100000 00000 300000 400000 500000 600000 TODOOO BOOOCO D000 Te+d6

Figure 9-5: (a) Plot of 2,000 samples captured using the SPI ADC with the BCM2835 C library;
(b) plot of 1 million samples using the same library

376

Part Il = Interfacing, Controlling, and Communicating

Clearly, the BCM2835 C library improves the overall sampling performance,
albeit using RPi-specific code.

One significant limitation of using an SPI ADC as described in this section
is that the sample rate is difficult to determine, and it is dependent on the CPU
frequency of the RPi. In this example, the sample rate is set by altering the
number of iterations in the empty for loop, which creates a blocking delay. An
external sample clock is required to resolve this limitation. One such option is
to use the RTC module that is described in Chapter 8, which has a configurable
clock output. Alternatively, a clock generator fr