

INSTITIUIDTEICNEOLAIOCHTA NA GAILLIMHE-MAIGH EO
GALWAY- MAYO INSTITUTE OF TECHNOLOGY

LOGIC CIRCUITS

CIRCUITS

• Combinational circuit

• The input values explicitly determine the output

• Sequential circuit
• The output is a function of the input values and the existing state of the circuit

• Circuit operation described using
• Boolean expressions

• Logic diagrams

• Truth tables

COMBINATIONAL CIRCUITS

• Gates are combined into circuits by using the output of one gate as the input

for another

COMBINATIONAL CIRCUITS

• Three inputs require eight rows to describe all possible input combinations

• This same circuit using a Boolean expression is (AB + AC)

COMBINATIONAL CIRCUITS

• Consider the following Boolean expression A(B + C)

• Does this truth table look familiar?

• Compare it with previous table

COMBINATIONAL CIRCUITS

• Circuit equivalence

• Two circuits that produce the same output for identical input

• Boolean algebra allows us to apply provable mathematical principles to help design
circuits

• A(B + C) = AB + AC (distributive law) so circuits must be equivalent

121988
Highlight

121988
Highlight

PROPERTIES OF BOOLEAN ALGEBRA

ADDERS

• At the digital logic level, addition is performed in binary

• Addition operations are carried out by special circuits called “adders”

121988
Highlight

HALF ADDER

• The result of adding two binary digits

could produce a carry value

• Recall that 1 + 1 = 10 in base two
• Half adderA circuit that computes the

sum of two bits and produces the correct
carry bit

• Circuit diagram and boolean
expressions:

121988
Highlight

121988
Highlight

FULL ADDER

• A circuit that takes the carry-in value into account

121988
Highlight

121988
Highlight

121988
Highlight

CIRCUITS AS MEMORY

• Digital circuits can be used to store information

• These circuits form a sequential circuit, because the output of the circuit is also
used as input to the circuit

S-R LATCH – MEMORY CIRCUIT

• An S-R latch stores a single binary digit

(1 or 0)

• There are several ways an S-R latch
circuit can be designed using various
kinds of gates (generally NAND and
NOR gates are used)

121988
Highlight

S-R LATCH – MEMORY CIRCUIT

• The design of this circuit guarantees that the

two outputs X and Y are always
complements of each other

• The value of X at any point in time is
considered to be the current state of the
circuit

• Therefore, if X is 1, the circuit is storing a 1;
if X is 0, the circuit is storing a 0

S-R LATCH – MEMORY CIRCUIT

• Good video:

• https://www.youtube.com/watch?v=KM0D
dEaY5sY

http://www.youtube.com/watch?v=KM0D
http://www.youtube.com/watch?v=KM0D
http://www.youtube.com/watch?v=KM0D

INTEGRATED CIRCUITS

• Integrated circuit (also called a chip)

• A piece of silicon on which multiple gates (transistors) have been embedded

• Silicon pieces are mounted on a plastic or ceramic package with pins along
the edges that can be soldered onto circuit boards or inserted into
appropriate sockets

121988
Highlight

121988
Highlight

INTEGRATED CIRCUITS

• Integrated circuits (IC) are classified by the number of gates contained in them

121988
Highlight

121988
Highlight

INTEGRATED CIRCUITS

• E.g. An SSI chip contains independent NAND gates

INSTITIUIDTEICNEOLAIOCHTA NA GAILLIMHE-MAIGH EO
GALWAY- MAYO INSTITUTE OF TECHNOLOGY

COMPUTER LANGUAGE EVOLUTION

• Lecture will cover

• Computer language evolution

• Distinguish between machine, assembly, and high-level languages

• Understand the process of program creation and execution

EVOLUTION OF COMPUTER LANGUAGES

SOFTWARE DEVELOPMENT
WHAT IS A (PROGRAMMING) LANGUAGE?

A sequence of instructions

An algorthm
(in human language)

A program
(in computer language)

• A computer program needs to be written in a language

• There are many programming languages
• Low-level, understandable by a computer (binary)
• High-level, need a translator! (C++/Java)

1ST GENERATION LANGUAGE

• Machine Language

• Binary Representation of the task

• Only programming language that the computer can understand directly without
translation

• Each processor requires its own machine language - machine-dependent

• Tedious, difficult and time consuming method of programming

• Fast execution speeds and efficient use of primary memory

121988
Highlight

121988
Highlight

121988
Highlight

121988
Highlight

121988
Highlight

121988
Highlight

121988
Highlight

121988
Highlight

121988
Highlight

121988
Highlight

MACHINE LANGUAGE PROGRAM

2ND GENERATION LANGUAGE

• Assembly Language

• Symbolic Representation of the task - used mnemonic codes

• Codes translated into machine language by a program called the "assembler“

• Detailed knowledge of hardware still required.

• More efficient, use less storage, and execute much faster than programs designed using
high-level languages

121988
Highlight

121988
Highlight

121988
Highlight

121988
Highlight

121988
Highlight

121988
Highlight

121988
Highlight

121988
Highlight

121988
Highlight

ASSEMBLY PROGRAM

PROGRAM EXECUTION

• Von Neumann’s Fetch, Decode, Execute cycle

• ‘Program counter’ iterates through instructions one line at a time

• Fetch the next instruction from memory

• Decode the instruction and figure out what data is needed from memory

• Execute the instruction and store the result if necessary

• Fetch Execute Decode viewing
• How a CPU works: https://www.youtube.com/watch?v=jFDMZpkUWCw

http://www.youtube.com/watch?v=jFDMZpkUWCw
http://www.youtube.com/watch?v=jFDMZpkUWCw
http://www.youtube.com/watch?v=jFDMZpkUWCw
121988
Highlight

121988
Highlight

121988
Highlight

121988
Highlight

121988
Highlight

121988
Highlight

121988
Highlight

PROGRAMMER ROLES - CHANGES

• When the Assembly – Machine language translation process developed,
programmers became divided into 2 categories

• Application programmers and systems programmers

COMPUTING AS A TOOL

COMPUTING AS A DISCIPLINE

• How to solve problems?

• What can be (efficiently) automated?

• Four Necessary Skills
• Algorithmic Thinking/Logic
• Representation
• Programming
• Design

• What do you think?
• Is Computer Science a mathematical, scientific, or engineering discipline?

121988
Highlight

EXAMPLES OF SYSTEMS AREAS

• Algorithms and Data Structures

• Programming Languages

• Architecture

• Operating Systems

• Software Engineering

• Human-Computer Interaction

121988
Highlight

EXAMPLES OF APPLICATION AREAS

• Numerical Computation

• Databases and Information Retrieval

• Graphics and Visual Computing

• Net-Centric Computing

• Computational Science

• Artificial Intelligence and Machine Learning

121988
Highlight

121988
Highlight

121988
Highlight

121988
Highlight

121988
Highlight

121988
Highlight

121988
Highlight

121988
Highlight

121988
Highlight

121988
Highlight

121988
Highlight

121988
Highlight

3RD GENERATION LANGUAGE

• Third generation languages - also known as high-level languages

• Much like everyday text and mathematical formulas in appearance.

• Relieve the programmer of the detailed and tedious task of writing programs in machine
language and assembly languages.

• More time to focus on designing software to meet the user’s needs.

• Designed to run on a number of different computers with few or no changes.

• A language translator is required to convert a high-level language program into machine
language.

• Two types of language translators are used with high level languages: compilers and interpreters.

• Examples: C, C++, C#, Java, JavaScript

121988
Highlight

121988
Highlight

121988
Highlight

121988
Highlight

121988
Highlight

121988
Highlight

121988
Highlight

121988
Highlight

C++ PROGRAM

4TH GENERATION LANGUAGE

• Fourth generation languages - also known as very high level languages

• Allow programmers specify what the computer is supposed to do without having to
specify how it’s supposed to do it.

• Need approximately one tenth the number of statements that a high level languages
needs to achieve the same results.

• Increases the speed of developing programs.

• System programmers write translators for high-level languages

• Application programmers use high-level languages to solve problems

• Examples: Python, Ruby, SQL

121988
Highlight

121988
Highlight

121988
Highlight

121988
Highlight

121988
Highlight

121988
Highlight

121988
Highlight

121988
Highlight

121988
Highlight

INSTITIUIDTEICNEOLAIOCHTA NA GAILLIMHE-MAIGH EO
GALWAY- MAYO INSTITUTE OF TECHNOLOGY

COMPUTER PROGRAM TRANSLATION

BUILDING AND EXECUTING A PROGRAM

TRANSLATION SYSTEMS
• Set of programs used to develop software

• Types of translators:
• Interpreter
• Compiler
• Linker

• Examples
• Microsoft Visual C++, javac, python

interpreter

121988
Highlight

121988
Highlight

121988
Highlight

121988
Highlight

121988
Highlight

INTERPRETED VS COMPILED LANGUAGES

INTERPRETED LANGUAGES

INTERPRETED VS COMPILED LANGUAGES

121988
Highlight

121988
Highlight

121988
Highlight

IF SLOWER, WHY USE INTERPRETED LANGUAGES?

• Biggest advantage: cross platform

• Mobile devices

• Internet

• Java

• Python

• Matlab

• Javascript (View source in browser)

121988
Highlight

121988
Highlight

121988
Highlight

THE ERA BEFORE AUTOMATIC
TRANSLATORS

• Margaret Hamilton

• Lead software engineer of the Apollo Project standing next
to the code she wrote by hand that was used to take
humanity to the moon - 1969

• Invented the term software-engineering
•

45,000,000

121988
Highlight

121988
Highlight

121988
Highlight

INSTITIUIDTEICNEOLAIOCHTA NA GAILLIMHE-MAIGH EO
GALWAY- MAYO INSTITUTE OF TECHNOLOGY

WHICH

WHAT IS
PROGRAMMING?
Writing very specific
instructions to a very dumb,

LANGUAGES

PYTHON JAVA C

PHP

C++

PROGRAMMING
LANGUAGE

yet obedient machine. JAVASCRIPT C# RUBY OBJECTIVE-C

SHOULD I LEARN FIRST? Start with Scratch,
then move on to...

For my kids START I don’t know, just
pick one for me

Nope.
Just want to
get started

I prefer to
learn things...

Just for fun

I want to work for
big tech companies

Doesn’t matter,
I just want $$$

Which platform/field?

Front-end
(web interface)

3D/Gaming

Web

Get a job

Make money

WHY DO YOU

WANT TO LEARN
PROGRAMMING?

I have a
startup idea!

I’m interested

Improve myself

Which platform/field?

Have a brilliant
idea/platform

in mind?

YES

NOT SURE

The easy way The best way

The slightly
harder way

Auto or
Manual car?

Auto Manual

I’m a fan!

Not Bad

Suck

Corporate

What do you think
about Microsoft?

Back-end
(”brain” behind a website)

I want to work for...

Startup

Mobile Which OS?

iOS Android

Enterprise

Web

Does your web app

provides info in
real-time, like twitter?

Do you want to
try something new
with huge potential,

but less mature?

YES

NO

NO

Which one is your
favourite toy?

Lego Play-Doh

The really hard way
(but easier to pick

up other languages
in the future)

I've an old & ugly toy,
but i love it so much!

THE LORD OF THE RINGS ANALOGY TO PROGRAMMING LANGUAGES

Python

DIFFICULTY Java DIFFICULTY C

DIFFICULTY C++

DIFFICULTY JavaScript DIFFICULTY C#

DIFFICULTY Ruby

DIFFICULTY PHP

DIFFICULTY Objective-C

DIFFICULTY

The Ent Gandalf One Ring Saruman Hobbit Elf Man (Middle Earth) Orc Smaug

Help little Hobbits (beginners) to
understand programming concepts

Help Wizards (computer scientists) to
conduct researches

Widely regarded as the best
programming language for beginners

Easiest to learn

Widely used in scientific, technical &
academic field, i.e. Artificial
Intelligence

You can build website using Django, a
popular Python web framework

Wants peace & works with everyone
(portable)

Very popular on all platforms, OS, and
devices due to its portability

One of the most in demand & highest
paying programming languages

Slogan: write once, work everywhere

The power of C is known to them all

Everyone wants to get its Power

Lingua franca of programming
language

One of the oldest and most widely
used language in the world

Popular language for system and
hardware programming

A subset of C++ except the little
details

Everyone thinks that he is the good guy

But once you get to know him, you will
realize he wants the power, not good
deeds

Complex version of C with a lot more
features

Widely used for developing games,
industrial and performance-critical
applications

Learning C++ is like learning how to
manufacture, assemble, and drive a
car

Recommended only if you have a
mentor to guide you

Frequently underestimated (powerful)

Well-known for the slow, gentle life of
the Shire (web browsers)

“Java and Javascript are similar like
Car and Carpet are similar” - Greg
Hewgill

Most popular clients-side web
scripting language

A must learn for front-end web
developer (HTML and CSS as well)

One of the hottest programming
language now, due to its increasing
popularity as server-side language
(node.js)

Beautiful creature (language), used to
stay in their land, Rivendell (Microsoft
Platform), but recently started to open
up to their neighbours (open source)

A popular choice for enterprise to
create websites and Windows
application using .NET framework

Can be used to build website with
ASP.NET, a web framework from
Microsoft

Similar to Java in basic syntax and
some features

Very emotional creature

They (some Ruby developers) feel they
are superior & need to rule the Middle
Earth

Mostly known for its popular web
framework, Ruby on Rails

Focuses on getting things done

Designed for fun and productive
coding

Best for fun and personal projects,
startups, and rapid development

Ugly guy (language) and doesn’t respect
the rules (inconsistent and
unpredictable)

Big headache to those (developers) to
manage them (codes)

Yet still dominates the Middle-earth
(most popular web scripting language)

Suitable for building small and simple
sites within a short time frame

Supported by almost every web
hosting services with lower price

Lonely and loves gold

Primary language used by Apple for
Mac OS X & iOS

Choose this if you want to focus on
developing iOS or OS X apps only

Consider to learn Swift (newly
introduced by Apple in 2014) as your
next language

POPULARITY

AVG. SALARY

$107,000

USED TO BUILD

YouTube, Instagram,
Spotify

POPULARITY

AVG. SALARY

$102,000

USED TO BUILD

Gmail, Minecraft,
Most Android Apps,
Enterprise applica-
tions

POPULARITY

AVG. SALARY

$102,000

USED TO BUILD

Operating systems
and hardware

POPULARITY

AVG. SALARY

$104,000

USED TO BUILD

Operating systems,
hardware, and
browsers

POPULARITY

AVG. SALARY

$99,000

USED TO BUILD

Paypal, front-end of
majority websites

POPULARITY

AVG. SALARY

$94,000

USED TO BUILD

Enterprise and
Windows applica-
tions

POPULARITY

AVG. SALARY

$107,000

USED TO BUILD

Hulu, Groupon,
Slideshare

POPULARITY

AVG. SALARY

$89,000

USED TO BUILD

Wordpress, Wikipe-
dia, Flickr

POPULARITY

AVG. SALARY

$107,000

USED TO BUILD

Most iOS Apps and
part of Mac OS X

ACTUALLY…
IT DOESN’T REALLY MATTER HOW
YOU START.
You need to know at least few languages to understand
the underlying concepts. Just get your feet wet!

TO GET STARTED, CHECK OUT THE FULL LIST OF BEST TUTORIALS AND TOOLS
FOR EACH PROGRAMMING LANGUAGE AT:

CARLCHEO.COM/STARTCODING

SPECIAL THANKS TO
Prithviraj Udaya for his awesome The Lord of the Rings analogy on Quora http://www.quora.com/If-there-was-a-war-of-programming-languages-which-would-you-support-and-why

SOURCES
Salary data from Indeed.com | http://stackoverflow.com/questions/245062/whats-the-difference-between-javascript-and-java | http://spectrum.ieee.org/static/interactive-the-top-programming-languages
http://cacm.acm.org/blogs/blog-cacm/176450-python-is-now-the-most-popular-introductory-teaching-language-at-top-us-universities/fulltext | http://www.itworld.com/article/2693638/big-data/the-most-in-demand--and-valuable--programming-languages.html

IMAGES
http://nightfurylive.com/media/2013/12/Smaug-fan-art-under-the-lonely-mountain.jpg | http://blog.elope.com/five-things-you-should-know-about-the-one-ring/

PRESENTED BY

CarlCheo.com

http://www.quora.com/If-there-was-a-war-of-programming-languages-which-would-you-support-and-why
http://stackoverflow.com/questions/245062/whats-the-di%EF%AC%80erence-between-javascript-and-java
http://spectrum.ieee.org/static/interactive-the-top-programming-languages
http://cacm.acm.org/blogs/blog-cacm/176450-python-is-now-the-most-popular-introductory-teaching-language-at-top-us-universities/fulltext
http://www.itworld.com/article/2693638/big-data/the-most-in-demand--and-valuable--programming-languages.html
http://nightfurylive.com/media/2013/12/Smaug-fan-art-under-the-lonely-mountain.jpg
http://blog.elope.com/%EF%AC%81ve-things-you-should-know-about-the-one-ring/

INSTITIUIDTEICNEOLAIOCHTA NA GAILLIMHE-MAIGH EO
GALWAY- MAYO INSTITUTE OF TECHNOLOGY

RECAP & ABSTRACTION

121988
Highlight

ABSTRACTION

• A technique for separation of complexity within computer systems.

• Establish a level of complexity on which a user/programmer interacts with the
system, suppressing the more complex details below the current level.

• Programmer works with well defined interfaces – allows addition of levels of
functionality that would otherwise be too complex to handle.

• E.g. When writing code that involves numerical operations - not interested in the way
numbers are represented in the underlying hardware

121988
Highlight

121988
Highlight

121988
Highlight

121988
Highlight

ABSTRACTION

• Control abstraction – abstraction of actions

• use of subroutines/functions/methods and control flow abstractions

• Data abstraction
• Use of data structures and data types - allows handling pieces of data in meaningful

ways

• OO programming employs both types – incorporates into objects
• 3 tenets of encapsulation, inheritance and polymorphism

121988
Highlight

121988
Highlight

121988
Highlight

121988
Highlight

121988
Highlight

121988
Highlight

121988
Highlight

LAYERS (AND INTERFACES) WITHIN A COMPUTER
SYSTEM

INSTITIUIDTEICNEOLAIOCHTA NA GAILLIMHE-MAIGH EO
GALWAY- MAYO INSTITUTE OF TECHNOLOGY

FIRMWARE

FIRMWARE

• Permanent software programmed/configured into a read-only (non-volatile) memory.

• ROM/Flash memory (can now be updated e.g. update phone antenna to 4G)

• Does not run on a CPU (hence not software)

• Software runs on a reprogrammable device (Turing machine)

• Firmware is a type of software that provides control, monitoring and data
manipulation of engineered products and systems.

• E.g. traffic lights, consumer appliances, computers, mobile phones, and digital camras, ABS on
vehicles

• Lots of hacking involves reprogramming firmware

121988
Highlight

121988
Highlight

121988
Highlight

121988
Highlight

121988
Highlight

121988
Highlight

121988
Highlight

121988
Highlight

121988
Highlight

121988
Highlight

121988
Highlight

BIOS (BASIC INPUT/OUTPUT SYSTEM)

FUNCTIONS:

• BIOS Drivers
• Access and set-up computer system at most basic level

• Power-on Self Test (POST)
• checks RAM, keyboard, other basic devices

• Determines boot device
• Locates and loads OS into RAM from non-volatile memory

• By reading the Master Boot Record

• BIOS resides in Flash memory
• Sits on the motherboard – often motherboard specific

• Can configure time, date and password

121988
Highlight

121988
Highlight

121988
Highlight

121988
Highlight

121988
Highlight

121988
Highlight

121988
Highlight

121988
Highlight

UEFI (UNIFIED EXTENSIBLE FIRMWARE INTERFACE)

• Successor to BIOS since 2014

• No Master Boot Record
• Instead -> GUID Partition Table (GUID – Globally Unique Identifiers)

• Spec that defines interface between Operating System (OS) and platform firmware

• Support remote diagnostic and computer repair (even with no OS)
• Pre-OS network capability

• Can boot from large (>2TB) disks

• CPU independent drivers

121988
Highlight

INSTITIUIDTEICNEOLAIOCHTA NA GAILLIMHE-MAIGH EO
GALWAY- MAYO INSTITUTE OF TECHNOLOGY

THE OPERATING SYSTEM

OPERATING SYSTEM (OS)

• What is an OS and what 6 functions does it provide?

• An interface between users and hardware - an environment "architecture”
1. Performs basic computer tasks – E.g. managing the various peripheral devices (mouse, keyboard)

2. Security - provides information protection

3. Time Multiplexing - parallel activity, avoids wasted CPU cycles, gives each application/user a slice of
the resources

4. Booting the computer

5. User Interface – e.g. command line, graphical user interface (GUI)

6. File and Memory Management – how data is saved and retrieved

121988
Highlight

121988
Highlight

121988
Highlight

121988
Highlight

121988
Highlight

121988
Highlight

121988
Highlight

121988
Highlight

121988
Highlight

121988
Highlight

121988
Highlight

121988
Highlight

LAYERS (AND INTERFACES) WITHIN A COMPUTER
SYSTEM

OPERATING SYSTEM SERVICES

• Program execution/Process management - load program into memory and run it

• Time Multiplexing -
• Achieved using OS Interrupts

• Enables resource scheduling

• Offers deadlock protection

• Memory Management
• Achieved through caching

• Memory protection

• File System Manipulation - read, write, create, delete files

121988
Highlight

121988
Highlight

121988
Highlight

121988
Highlight

121988
Highlight

121988
Highlight

121988
Highlight

121988
Highlight

121988
Highlight

121988
Highlight

121988
Highlight

121988
Highlight

OPERATING SYSTEM SERVICES

• Protection and Security

• I/O Operations – manages mouse, keyboard, etc.

• Communications/Networking - interprocess and intersystem

• Error Detection - in hardware, I/O devices, user programs

• System Generation

• Services for providing efficient system operation
• Accounting - usage statistics
• Protection - ensure access to system resources is controlled

121988
Highlight

121988
Highlight

121988
Highlight

121988
Highlight

121988
Highlight

121988
Highlight

INSTITIUIDTEICNEOLAIOCHTA NA GAILLIMHE-MAIGH EO
GALWAY- MAYO INSTITUTE OF TECHNOLOGY

TIME MULTIPLEXING/SCHEDULING

TIME MULTIPLEXING

• Schedules jobs or processes.

• Scheduling can be as simple as running the next process, or it can use relatively complex
rules to pick a running process.

• Simultaneous CPU execution and IO handling.
• Processing is going on even as IO is occurring in preparation for future CPU work.

• CPU is wasted if a job waits for I/O. This leads to:
• Multiprogramming (dynamic switching). While one job waits for a resource, the CPU can

find another job to run. It means that several jobs are ready to run on the CPU

121988
Highlight

121988
Highlight

121988
Highlight

121988
Highlight

121988
Highlight

121988
Highlight

121988
Highlight

TIME MULTIPLEXING - OS INTERRUPTS

• Interrupts

• OS transfers control from one process to another

• Interrupt architecture must save the address of the interrupted instruction so that it can
resume at the same location.

• Incoming interrupts are disabled while another interrupt is being processed to prevent a
lost interrupt. (e.g. keypresses/mouse clicks can be disabled)

• An operating system is interrupt driven.

121988
Highlight

121988
Highlight

121988
Highlight

121988
Highlight

121988
Highlight

121988
Highlight

121988
Highlight

TIME MULTIPLEXING - OS INTERRUPTS

TIME MULTIPLEXING - OS INTERRUPTS

Any of these
devices can cause

an electrical
interrupt that grabs
the attention of the

CPU.

These are the
devices that make

up a typical system.

TIME MULTIPLEXING - TIMER INTERRUPTS
- DESCRIPTION AND USES

• Timer - interrupts computer after specified period to ensure that OS

maintains control.
• Timer is decremented every clock tick.

• When timer reaches a value of 0, an interrupt occurs.

• Timer is commonly used to implement time sharing.

• Timer is also used to compute the current time.

• Load timer is a privileged instruction.

121988
Highlight

121988
Highlight

121988
Highlight

121988
Highlight

121988
Highlight

121988
Highlight

121988
Highlight

121988
Highlight

SCHEDULING - LINK

• https://www.cs.rutgers.edu/~pxk/416/notes/07-scheduling.html

http://www.cs.rutgers.edu/%7Epxk/416/notes/07-scheduling.html
http://www.cs.rutgers.edu/%7Epxk/416/notes/07-scheduling.html
http://www.cs.rutgers.edu/%7Epxk/416/notes/07-scheduling.html

INSTITIUIDTEICNEOLAIOCHTA NA GAILLIMHE-MAIGH EO
GALWAY- MAYO INSTITUTE OF TECHNOLOGY

Process Schedul ing
Who gets to run next?

By Paul Krzyzanowski
February 18 , 2015

The finest eloquence is that which gets things done; the worst is that which delays them.
— David Lloyd George (speech, Jan. 1919)

Introduct ion

Introduct ion

If you look at any process, you’ll notice that it spends some time executing instructions
(computing) and then makes some I/O request, for example, to read or write data to a file or to
get input from a user. After that, it executes more instructions and then, again, waits on I/O.
The period of computation between I/O requests is called the CPU burst.
Interactive
processes spend
more time
waiting for I/O
and generally

CPU bursts

experience short CPU bursts. A text editor is an example of an interactive process with short
CPU bursts.
Compute-
intensive
processes,
conversely,

Interactive bursts

spend more time running instructions and less time on I/O. They exhibit long CPU bursts. A
video transcoder is an example of a process with long CPU bursts. Even though it reads and
writes data, it spends most of its time processing that data.
Most interactive
processes, in fact,
spend the vast
bulk of their

Compute bursts

existence doing nothing but waiting on data. As I write this on my Mac, I have 44 processes
running just under my user account. This includes a few browser windows, a word processor,
spreadsheet, several shell windows, Photoshop, iTunes, and various monitors and utilities.
Most of the time, all these processes collectively are using less than 3% of the CPU. This is not
surprising since most of these programs are waiting for user input, a network message, or
sleeping and waking up periodically to check some state.

Consider a 2.4 GHz processor. It executes approximately 2,400 million instructions per
second (and this does not even count multi-core or hyperthreaded processors). It can run 24
billion instructions in the ten seconds it might take you to skim a web page before you click on
a link — or 1.2 billion instructions in the half second it might take you to hit the next key as
you’re typing. The big idea in increasing overall system throughput was the realization that we
could keep several programs in memory and switch the processor to run another process when
a process has to wait on an I/O operation. This is multiprogramming. The next big idea was

realizing that you could preempt a process and let another process run and do this quickly
enough to give the illusion that many processes are running at the same time. This is
multitasking.

Scheduler

Most systems have a large number of processes with short CPU bursts interspersed between
I/O requests and a small number of processes with long CPU bursts. To provide good time-
sharing performance, we may preempt a running process to let another one run. The ready list,
also known as a run queue, in the operating system keeps a list of all processes that are ready
to run and not blocked on input/output or another blocking system request, such as a
semaphore. The entries in this list are pointers to a process control block, which stores all
information and state about a process.

When an I/O request for a process is complete, the process moves from the waiting state to
the ready state and gets placed on the run queue.

The process scheduler is the component of the operating system that is responsible for
deciding whether the currently running process should continue running and, if not, which
process should run next. There are four events that may occur where the scheduler needs to
step in and make this decision:

1. The current process goes from the running to the waiting state because it issues an I/O
request or some operating system request that cannot be satisfied immediately.

2. The current process terminates.

3. A timer interrupt causes the scheduler to run and decide that a process has run for its
allotted interval of time and it is time to move it from the running to the ready state.

4. An I/O operation is complete for a process that requested it and the process now moves
from the waiting to the ready state. The scheduler may then decide to preempt the
currently-running process and move this newly-ready process into the running state.

A scheduler is a preemptive scheduler if it has the ability to get invoked by an interrupt and
move a process out of a running state to let another process run. The last two events in the
above list may cause this to happen. If a scheduler cannot take the CPU away from a process
then it is a cooperative, or non-preemptive scheduler. Old operating systems such as Microsoft
Windows 3.1 or Apple MacOS prior to OS X are examples of cooperative schedulers. Older
batch processing systems had run-to-completion schedulers where a process ran to
termination before any other process would be allowed to run.

The decisions that the scheduler makes concerning the sequence and length of time that
processes may run is called the scheduling algorithm (or scheduling policy). These decisions
are not easy ones, as the scheduler has only a limited amount of information about the
processes that are ready to run. A good scheduling algorithm should:

◾ Be fair – give each process a fair share of the CPU, allow each process to run in a
reasonable amount of time.

◾ Be efficient – keep the CPU busy all the time.
◾ Maximize throughput – service the largest possible number of jobs in a given amount of

time; minimize the amount of time users must wait for their results.

◾ Minimize response time – interactive users should see good performance.
◾ Be predictable – a given job should take about the same amount of time to run when run

multiple times. This keeps users sane.

◾ Minimize overhead – don’t waste too many resources. Keep scheduling time and context
switch time at a minimum.

◾ Maximize resource use – favor processes that will use underutilized resources. There are
two motives for this. Most devices are slow compared to CPU operations. We’ll achieve
better system throughput by keeping devices busy as often as possible. The second
reason is that a process may be holding a key resource and other, possibly more

important, processes cannot use it until it is released. Giving the process more CPU time
may free up the resource quicker.

◾ Avoid indefinite postponement – every process should get a chance to run eventually.
◾ Enforce priorities – if the scheduler allows a process to be assigned a priority, it should be

meaningful and enforced.

◾ Degrade gracefully – as the system becomes more heavily loaded, performance should
deteriorate gradually, not abruptly.

It is clear that some of these goals are contradictory. For example, minimizing overhead means
that jobs should run longer, thus hurting interactive performance. Enforcing priorities means
that high-priority processes will always be favored over low-priority ones, causing indefinite
postponement. These factors make scheduling a task for which there can be no perfect
algorithm.

To make matters even more complex, the scheduler does not know much about the
behavior of each process and certainly has no idea of what the process will do in the future. As
we saw earlier, some processes perform a lot of input/output operations but use little CPU time
(examples are web browsers, shells and editors). They spend much of their time in the blocked
state in between little bursts of computation. The overall performance of these I/O bound
processes is constrained by the speed of the I/O devices. CPU-bound processes and spend
most of their time computing (examples are ray-tracing programs and circuit simulators). Their
execution time is largely determined by the speed of the CPU and the amount of CPU time
they can get.

To help the scheduler monitor processes and the amount of CPU time that they use, a
programmable interval timer interrupts the processor periodically (typically 100 times per
second). This timer is programmed when the operating system initializes itself. At each
interrupt, the operating system’s scheduler gets to run and decide whether the currently
running process should be allowed to continue running or whether it should be suspended and
another ready process allowed to run. This is the mechanism that enables preemptive.

Preemptive scheduling allows the scheduler to control response times by taking the CPU
away from a process that it decided has been running too long in order to let another process
run. It incurs more overhead than nonpreemptive scheduling since it has to deal with the
overhead of context switching processes instead of allowing a process to run to completion or
run until the next I/O operation or other system call. However, it allows for higher degrees of
concurrency and better interactive performance.

The scheduling algorithm has the task of figuring out whether a process should be
switched out for another process and which process should get to run next. The dispatcher is
the component of the scheduler that handles the mechanism of actually getting that process to
run on the processor. This requires loading the saved context of the selected process, which is
stored in the process control block and comprises the set of registers, stack pointer, flags (status
word), and a pointer to the memory mapping (typically a pointer to the page table). Once this
context is loaded, the dispatcher switches to user mode via a return from interrupt operation that
causes the process to execute from the location that was saved on the stack at the time that the
program stopped running — either via an interrupt or a system call.

In the following sections, we will explore a few scheduling algorithms.
Let’s first introduce some terms.

Turnaround time

Turnaround time is the elapsed time between the time the job arrives (e.g., you type a
command) and the time that it terminates. This includes the delay of waiting for the
scheduler to start the job because some other process is still running and others may be
queued ahead.

Start time

Also known as release time, the start time is the time when the task is scheduled to run and
actually gets to start running on the CPU.

If we look a process as a series of CPU bursts the start time applies to each CPU burst. It
is the time when each CPU burst starts to run.

Response time

This is the delay between submitting a process and it being scheduled to run (its start time).
Again, if we look a process as a series of CPU bursts the response time applies to each CPU
burst. It is the delay between a task being ready to run and actually running.

Completion time

This is the time when the process terminates.

Throughput

Throughput refers to the number of processes that complete over some unit of time. By
comparing throughput on several schedulers, we can get a feel of whether one scheduler is
able to get more processes to complete than another over some period of time. This can be
due to several factors: keeping the CPU busy, scheduling I/O as early as possible to keep
disks an other slow devices busy, and the amount of overhead spent doing all of this.

First- Come, First- Served Schedul ing

Possibly the most straightforward approach to scheduling processes is to maintain a FIFO
(first-in, first-out) run queue. New processes go to the end of the queue. When the scheduler
needs to run a process, it picks the process that is at the head of the queue. This scheduler is
non-preemptive. If the process has to block on I/O, it enters the waiting state and the scheduler
picks the process from the head of the queue. When I/O is complete and that waiting (blocked)
process is ready to run again, it gets put at the end of the queue.
With first-come,
first-served
scheduling, a
process with a
long CPU burst
will hold up
other processes,
increasing their
turnaround time.
Moreover, it can
hurt overall
throughput since
I/O on processes First Come - First Served

in the waiting state may complete while the CPU bound process is still running. Now devices
are not being used effectively. To increase throughput, it would have been great if the
scheduler instead could have briefly run some I/O bound process so that could run briefly,
request some I/O and then wait for that I/O to complete. Because CPU bound processes don’t
get preempted, they hurt interactive performance because the interactive process won’t get
scheduled until the CPU bound one has completed.

Advantage: FIFO scheduling is simple to implement. It is also intuitively fair (the first one
in line gets to run first).

Disadvantage: The greatest drawback of first-come, first-served scheduling is that it is not
preemptive. Because of this, it is not suitable for interactive jobs. Another drawback is that a
long-running process will delay all jobs behind it.

Round robin schedul ing

Round robin scheduling is a preemptive version of first-come, first-served scheduling.
Processes are dispatched in a first-in-first-out sequence but each process is allowed to run for
only a limited amount of time. This time interval is known as a time-slice or quantum. If a
process does not complete or get blocked because of an I/O operation within the time slice, the
time slice expires and the process is preempted. This preempted process is placed at the back of

the run queue where it must wait for all the processes that were already in the queue to cycle
through the CPU.

If a process gets blocked due to an I/O operation before its time slice expires, it is, of
course, enters a blocked because of that I/O operation. Once that operation completes, it is
placed on the end of the run queue and waits its turn.
A big advantage
of round robin
scheduling over
non-preemptive
schedulers is that
it dramatically
improves
average response
times. By
limiting each
task to a certain
amount of time,
the operating Round Robin Scheduling

system can ensure that it can cycle through all ready tasks, giving each one a chance to run.
With round robin scheduling, interactive performance depends on the length of the

quantum and the number of processes in the run queue. A very long quantum makes the
algorithm behave very much like first come, first served scheduling since it’s very likely that a
process with block or complete before the time slice is up. A small quantum lets the system
cycle through processes quickly. This is wonderful for interactive processes. Unfortunately,
there is an overhead to context switching and having to do so frequently increases the
percentage of system time that is used on context switching rather than real work.

Advantage: Round robin scheduling is fair in that every process gets an equal share of the
CPU. It is easy to implement and, if we know the number of processes on the run queue, we
can know the worst-case response time for a process.

Disadvantage: Giving every process an equal share of the CPU is not always a good idea.
For instance, highly interactive processes will get scheduled no more frequently than CPU-
bound processes.

Setting the quantum size
What should the length of a quantum be to get “good” performance? A short quantum is good
because it allows many processes to circulate through the processor quickly, each getting a
brief chance to run. This way, highly interactive jobs that usually do not use up their quantum
will not have to wait as long before they get the CPU again, hence improving interactive
performance. On the other hand, a short quantum is bad because the operating system must
perform a context switch whenever a process gets preempted. This is overhead: anything that
the CPU does other than executing user code is essentially overhead. A short quantum implies
many such context switches per unit time, taking the CPU away from performing useful work
(i.e., work on behalf of a process).

The overhead associated with a context switch can be expressed as:
context switch overhead = C / (Q+C)

where Q is the length of the time-slice and C is the context switch time. An increase in Q
increases efficiency but reduces average response time. As an example, suppose that there are
ten processes ready to run, Q = 100 ms, and C = 5 ms. Process 0 (at the head of the run queue,
the list of processes that are in the ready state) gets to run immediately. Process 1 can run only
after Process 0’s quantum expires (100 ms) and the context switch takes place (5 ms), so it starts
to run at 105 ms. Likewise, process 2 can run only after another 105 ms. We can compute the
amount of time that each process will be delayed and compare the delays between a small
quantum (10 ms) and a long quantum (100 ms.):

Proc #

Q = 100ms

delay (ms)

Q = 10ms

delay (ms)

0 0 0

1 105 15

2 210 30

3 315 45

4 420 60

5 525 75

6 630 90

7 735 105

8 840 120

9 945 135

We can see that with a quantum of 100 ms and ten processes, a process at the end of the queue
will have to wait almost a second before it gets a chance to run. This is much too slow for
interactive tasks. When the quantum is reduced to 10 ms, the last process has to wait less than
1/7 second before it gets the CPU. The downside of this is that with a quantum that small, the

context switch overhead (5/(10+5)) is 331⁄3%. This means that we are wasting over a third of the
CPU just switching processes! With a quantum of 100 ms, the context switch overhead is just
4%.

Shortest remaining t ime f irst schedul ing

The shortest remaining time first (SRTF) scheduling algorithm is a preemptive version of an
older non-preemptive algorithm known as shortest job first (SJF) scheduling. Shortest job first
scheduling runs a process to completion before running the next one. The queue of jobs is
sorted by estimated job length so that short programs get to run first and not be held up by
long ones. This minimizes average response time.

Here’s an extreme example. It’s the 1950s and three users submit jobs (a deck of punched
cards) to an operator. Two of the jobs are estimated to run for 3 minutes each while the third
job while the third user estimates that it will take about 48 hours to run the program. With a
shortest job first approach, the operator will run the three-minute jobs first and then let the
computer spend time on the 48-hour job.

With the shortest remaining time first algorithm, we take into account the fact that a
process runs as a series of CPU bursts: processes may leave the running state because they need
to wait on I/O or because their quantum expired. The algorithm sorts the run queue by the the
process’ anticipated CPU burst time, picking the shortest burst time. Doing so will optimize the
average response time of processes.

Let’s consider an example of five processes in the run queue. If we process them in a FIFO
manner, we see that all the CPU bursts add up to 25 (pick your favorite time unit; this is just an
example). The mean run time for a process, however, is the mean of all the run times, where
the run time is the time spent waiting to run + the CPU burst time of the process. In this example,
our mean run time is (8 + 11 + 21 + 23 + 25)/5, or 17.6.
If we reorder the
processes in the queue by
the estimated CPU burst
time, we still have the
same overall total (the Shortest Remaining Time First

processes take the same amount of time to run) but the mean run time changes. It is now (2 + 4
+ 7 + 15 + 25), or 10.6. We reduced the average run time for our processes by 40%!

Estimating future
CPU burst time
The biggest problem with
sorting processes this
way is that we’re trying

Shortest Remaining Time First (sorted)

to optimize our schedule using data that we don’t even have! We don’t know what the CPU
burst time will be for a process when it’s next run. It might immediately request I/O or it might
continue running for minutes (or until the expiration of its time slice).

The best that we can do is guess and try to predict the next CPU burst time by assuming
that it will be related to past CPU bursts for that process. All interactive processes follow the
following sequence of operations:

compute — I/O — compute — I/O — compute — I/O
Suppose that a CPU burst (compute) period is measured as T0. The next compute period is

measured as T1, and so on. The common approach to estimate the length of the next CPU burst
is by using a time-decayed exponential average of previous CPU bursts for the process. We
will examine one such function, although there are variations on the theme. Let Tn be the

measured time of the nth burst; sn be the predicted size of the nth CPU burst; and a be a
weighing factor, 0 ≤ a ≤ 1. Define s0 as some default system average burst time. The estimate of
the next CPU burst period is:

sn+1 = aTn + (1 - a)sn

The weighing factor, a, can be adjusted how much to weigh past history versus
considering the last observation. If a = 1, then only the last observation of the CPU burst period
counts. If a = ½, then the last observation has as much weight as the historical weight. As a gets
smaller than ½, the historical weight counts more than the recent weight.

Here is an example with a = 0.5. The blue bars represent the actual CPU burst over time.
The red bars represent the estimated value. With a weighting value of ½, we can see how the
red bars are strongly influenced by the previous actual value but factor in the older values.
Now let’s see
what happens
when we set a =
1. This ignores
history and only
looks at the
previous CPU
burst. We can see
that each red bar
(current
estimate) has
exactly the same

value as the
Exponential Average (a=0.5)

previous blue bar (latest actual CPU burst).
For a final
example, let’s set
a= 0.25. Here, the
last measured
value only
counts for 25% of
the estimated
CPU burst, with
75% being
dictated by
history. We can
see how

immediate
Exponential Average (a=1)

changes in CPU burst have less impact on the estimate when compared with the above graph

of a = 0.5. Note how the estimates at 2, 3, 13, and 14 still remain relatively high despite the rapid
plunge of actual CPU burst values.
Advantage of
shortest
remaining time
first scheduling:
This scheduling
is optimal in that
it always
produces the
lowest mean
response time.
Processes with
short CPU bursts

are given
Exponential Average (a=0.25)

priority and hence run quickly (are scheduled frequently).
Disadvantages: Long-burst (CPU-intensive) processes are hurt with a long mean waiting

time. In fact, if short-burst processes are always available to run, the long-burst ones may never
get scheduled. The situation where a process never gets scheduled to run is called starvation.
Another problem with the algorithm is that the effectiveness of meeting the scheduling criteria
relies on our ability to estimate the length of the next CPU burst.

Priori ty schedul ing

Round robin scheduling assumes that all processes are equally important. This generally is not
the case. We would sometimes like to see long CPU-intensive (non-interactive) processes get a
lower priority than interactive processes. These processes, in turn, should get a lower priority
than jobs that are critical to the operating system.

In addition, different users may have different status. A system administrator’s processes
may rank above those of a student’s.

These goals led to the introduction of priority scheduling. The idea here is that each
process is assigned a priority (just a number). Of all processes ready to run, the one with the
highest priority gets to run next (there is no general agreement across operating systems
whether a high number represents a high or low priority; UNIX-derived systems tend to use
smaller numbers for high priorities while Microsoft systems tend to use higher numbers for
high priorities).

With a priority scheduler, the scheduler simply picks the highest priority process to run. If
the system uses preemptive scheduling, a process is preempted whenever a higher priority
process is available in the run queue.

Priorities may be internal or external. Internal priorities are determined by the system
using factors such as time limits, a process’ memory requirements, its anticipated I/O to CPU
ratio, and any other system-related factors. External priorities are assigned by administrators.

Priorities may also be static or dynamic. A process with a static priority keeps that priority
for the entire life of the process.

A process with a dynamic priority will have that priority changed by the scheduler during
its course of execution. The scheduler would do this to achieve its scheduling goals. For
example, the scheduler may decide to decrease a process’ priority to give a chance for lower-
priority job to run. If a process is I/O bound (spending most if its time waiting on I/O), the
scheduler may give it a higher priority so that it can get off the run queue quickly and schedule
another I/O operation.

Static and dynamic priorities can coexist. A scheduler would know that a process with a
static priority cannot have its priority adjusted throughout the course of its execution.

Ignoring dynamic priorities, the priority scheduling algorithm is straightforward: each
process has a priority number assigned to it and the scheduler simply picks the process with
the highest priority.

Advantage: priority scheduling provides a good mechanism where the relative importance
of each process may be precisely defined.

Disadvantage: If high priority processes use up a lot of CPU time, lower priority processes
may starve and be postponed indefinitely, leading to starvation. Another problem with
priority scheduling is deciding which process gets which priority level assigned to it.

Dealing with starvation
One approach to the problem of indefinite postponement is to use dynamic priorities. At the
expiration of each quantum, the scheduler can decrease the priority of the current running
process (thereby penalizing it for taking that much CPU time). Eventually its priority will fall
below that of the next highest process and that process will be allowed to run.

Another approach is to have the scheduler keep track of low priority processes that do not
get a chance to run and increase their priority so that eventually the priority will be high
enough so that the processes will get scheduled to run. Once it runs for its quantum, the
priority can be brought back to the previous low level.

This periodic boosting of a process’ priority to ensure it gets a chance to run is called
process aging. A simple way to implement aging is to simply increase every process’ priority
and then have them get readjusted as they execute.

Multilevel queues

What happens if several processes get assigned the same priority? This is a realistic possibility
since picking a unique priority level for each of possibly hundreds or thousands of processes
on a system may not be feasible.

We can group processes into priority classes and assign a separate run queue for each
class. This allows us to categorize and separate system processes, interactive processes, low-
priority interactive processes, and background non-interactive processes. The scheduler picks
the highest-priority queue (class) that has at least one process in it. In this sense, it behaves like
a priority scheduler.

Each queue may use a different scheduling algorithm, if desired. Round-robin scheduling
per priority level is the most common. As long as processes are ready in a high priority queue,
the scheduler will let each of run for their time slice. Only when no processes are available to
run at that priority level will the scheduler look at lower levels. Alternatively, some very high
priority levels might implement the non-preemptive first-come, first-served scheduling
approach to ensure that a critical real-time task gets all the processing it needs.

The scheduler may also choose a different quantum for each priority level. For example, it
is common to give low-priority non-interactive processes a longer quantum. They won’t get to
run as often since they are in a low priority queue but, when they do, the scheduler will let
them run longer. Linux, on the other hand, does the opposite. It gives a longer quantum to
high-priority processes on the assumption that they are important and that they are likely to be
interactive so they will usually block long before using up their time slice.
One problem
with multilevel
queues is that the
process needs to
be assigned to
the most suitable
priority queue a
priori. If a CPU-
bound process is
assigned to a
short-quantum,
high-priority
queue, that’s not
optimal for
either the
process nor for
overall
throughput.

Multilevel Queue

Multi-level queues are generally used as a top-level scheduling discipline to separate
broad classes of processes, such as real-time, kernel threads, interactive, and background
processes. Specific schedulers within each class determine which process gets to run within
that class. Most operating systems, including Windows, Linux, and OS X support a form of
multilevel queues and scheduling classes.

Mul t i level feedback queues

A variation on multilevel queues is to allow the scheduler to adjust the priority (that is, use
dynamic priorities) of a process during execution in order to move it from one queue to another
based on the recent behavior of the process.

The goal of multilevel feedback queues is to automatically place processes into priority
levels based on their CPU burst behavior. I/O-intensive processes will end up on higher
priority queues and CPU-intensive processes will end up on low priority queues.

A multilevel feedback queue uses two basic rules:

1. A new process gets placed in the highest priority queue.

2. If a process does not finish its quantum (that is, it blocks on I/O) then it will stay at the
same priority level (round robin) otherwise it moves to the next lower priority level

With this approach, a process with long CPU bursts will use its entire time slice, get preempted
and get placed in a lower-priority queue. A highly interactive process will not use up its
quantum and will remain at a high priority level.

Although not strictly necessary for the algorithm, each successive lower-priority queue
may be given a longer quantum. This allows a process to remain in the queue that corresponds
to its longest CPU burst.

Process aging
One problem with multilevel feedback queues is starvation. If there are a lot of interactive
processes or if new processes are frequently created, there is always a task available in a high-
priority queue and the CPU-bound processes in a low-priority queue will never get scheduled.

A related problem is that an interactive process may end up at a low priority level. If a
process ever has a period where it becomes CPU-intensive, it trickles down to a low priority
level and is forever doomed to remain there. An example is a game that needs to spend
considerable CPU time initializing itself but then becomes interactive, spending most of its
time waiting for user input.

Both these problems can be solved with process aging. As we saw earlier, we periodically
increase the priority of a process to ensure that it will be scheduled to run. A simple approach
is to periodically bring all processes to the highest priority queue.

An advantage of a multilevel feedback queue is that the algorithm is designed to adjust the
priority of a process whenever it runs, so a CPU-bound process will quickly trickle back down
to a low priority level while an interactive process will remain at a high level.

Gaming the system
If a programmer knows how the scheduler works and wants to write software that will ensure
that the process remains at a high priority level, she can write code that will force the system to
block on some low-latency I/O operation (e.g., sleep for a few milliseconds) just before the
quantum expires. That way, the process will be rewarded for not using up its quantum even if
it repeatedly uses up a large chunk of it.

A solution to this approach is to modify the way the scheduler decides to demote the
priority of a process. Instead of simply checking whether a process uses up its time slice, it
keeps track of the total time that the process spent running over a larger time interval (several
time slices). Each priority queue will have a maximum CPU time allotment associated with it. If
a process uses up that allotment over that multi-time-slice interval the process will be punished
by being moved to a lower priority level.
Advantages: Multi-level feedback queues are good for separating processes into categories
based on their need for a CPU. They favor I/O bound processes by letting them run often.
Versions of this scheduling policy that increase the quantum at lower priority levels also favor

CPU bound
processes by
giving them a
larger chunk of
CPU time when
they are allowed
to run.

Multilevel Feedback Queue

Disadvantages: The priority scheme here is one that is controlled by the system rather
than by the administrator or users. A process is deemed important not because it necessarily is
important, but because it happens to do a lot of I/O.

This scheduler also has the drawback that I/O-bound processes that become CPU bound or
CPU-bound processes that become I/O-bound will not get scheduled well. Moreover, CPU-
bound processes have the danger of starving on a system with many interactive processes.
Both these problems can be dealt with by applying process aging.

Another drawback is the ability of a programmer to keep the priority of a process high by
performing bogus I/O operations periodically. Again, we have a solution for this by measuring
CPU use over a larger, multi-quantum time interval and punishing processes that use more of
the CPU.

Lottery schedul ing (fair share)

With lottery scheduling (also known as fair share scheduling), the goal is to allow a process to
be granted a proportional share of the CPU - a specific percentage. Conceptually, lottery
scheduling works by allocating a specific number of “tickets” to each process. The more tickets
a process has, the higher its chance of being scheduled.

For example, suppose that we have 100 tickets in total and three processes to run: A, B, and
C. We would like to schedule process A twice as frequently as processes B and C. To do this, we
assign A twice as many tickets. With tickets numbered in the range 0…99, we might assign

Process A: 50 tickets (0...49)
Process B: 25 tickets (50...74)
Process C: 25 tickets (75...99)

The scheduler then picks a random number in the range 0…100. That number becomes the
“winning ticket” and the process holding that ticket gets to run. When its time slice is up, or if
it blocks, the sheduler picks another ticket and that process gets to run. Over time, processes
will run with a random distribution but one that is weighted by the per-process ticket
allocation.

The benefit of the algorithm is that each process is given a proportional share of the CPU.
The difficulty is determining ticket distribution, particularly in an environment where
processes come and go and get blocked. This isn’t a useful algorithm for general-purpose
scheduling but is more useful for environments with long-running processes that may need to
be allocated shares of CPUs, such as running multiple virtual machines on a server.

Mul t iprocessors

Our discussions thus far assumed an environment where a single process gets to run at a time.
Other ready processes wait until the scheduler switches their context in and gives them a
chance to run. With multiple CPUs, multiple cores on one CPU, hyperthreaded processors,

more than once thread of execution can be scheduled at a time. The same scheduling
algorithms apply; the scheduler simply allows more than one process to be in the running state
at one time.

The environment we will consider here is the common symmetric multiprocessing (SMP)
one, where each processor has access to the same memory and devices. Each processor is
running its own process and may, at any time, invoke a system call, terminate, or be interrupted
with a timer interrupt. The scheduler executes on that processor and decides which process
should be context switched to run. It is common for the operating system to maintain one run
queue per processor. This allows one processor to manipulate the queue (e.g., when context
switching) without having to worry about the delay of having the queue locked by another
processor.

Processors are designed with cache memory that holds frequently-used regions of memory
that processes accessed. This avoids the time delay of going out to the external memory bus to
access memory and provides a huge boost to performance. As we will see in our forthcoming
discussion on memory management, processors also contain a translation lookaside buffer, or
TLB, that stores recent virtual to physical address translations. This also speeds up memory
access dramatically.

When a scheduler reschedules a process onto the same processor, there is a chance that
some of the cached memory and TLB lines are still present. This allows the process to run faster
since it will make less references to main memory. If a scheduler reschedules a process onto a
different processor then no part of the process will be present in that processor’s cache and the
program will start slowly as it populates its cache.

Processor affinity is the aspect of scheduling on a multiprocessor system where the
scheduler keeps track of what processor the process ran on previously and attempts to
reschedule the process onto that same processor. There are two forms of processor affinity.
Hard affinity ensures that a process always gets scheduled onto the same processor. Soft
affinity is a best-effort approach. A scheduler will attempt to schedule a process onto the same
CPU but in some cases may move the process onto a different processor. The reason for doing
this is that, even though there may be an initial performance penalty to start a process on
another CPU, it’s probably better than having the CPU sit idle with no process to run. The
scheduler tries to load balance the CPUs to make sure that they have a sufficient number of
tasks in their run queue. There are two approaches to load balancing among processors:

1. Push migration is where the operating system checks the load (number of processes in
the run queue) on each processor periodically. If there’s an imbalance, some processes
will be moved from one processor onto another.

2. Pull migration is where a scheduler finds that there are no more processes in the run
queue for the processor. In this case, it raids another processor’s run queue and transfers
a process onto its own queue so it will have something to run.

It is common to combine both push and pull migration (Linux does it, for example).

Scheduling domains
The real world is not as simple as deciding whether to run a task on the same processor or not.
Many systems have multiple processors and some are preferable to others when rescheduling a
ready task. The categories of process include:

Virtual CPUs in a hyperthreaded core

Many intel CPUs support hyperthreading (HT technology). A single processor core presents
itself as two virtual CPUs to the operating system. The processor core has a separate set of
registers for each virtual CPU and multitple instructions can execute in parallel as long as
they don’t compete for the same section of the processor. Although one execution thread
may hold up the performance of another one, the threads share acces to all processor caches.

Multiple cores in a processor

Many processors, particularly those on laptops, desktops, and servers, contain several
processor cores (often 2, 4, 6, or 8) within a single chip. In this case, the TLB and fastest
instruction and data caches are not shared across cores. However, all the cores share access

to a common memory cache. This cache is slower than the high-speed per-core cache but still
much faster than accessing main memory.

Multiple processors in an SMP architecture

Multiple processors in one computer system share common access to memory in the system.
However, they do not share any caches: one processor does not have access to cached data
on another processor.

Multiple processors in an NUMA architecture

NUMA, Non-Uniform Memory Architecture is a multiprocessor computer architecture,
designed for large numbers of processors where each processor or group of processors has
access to a portion of memory via a high-speed memory interface (e.g., on the same circuit
board) while other regions of memory are slower to access since they reside on other
processors and are accessed via a secondary, slower, interface.

What we have now is the realization that if a task is to be migrated to another processor,
migrating it to some processors is preferable to others. For example, scheduling a task on a
different core on the same chip is preferable to scheduling it onto a core on a different chip.

Linux introduces the concept of scheduling domains to handle this. Scheduling domains
allow the system to organize processors into a hierarchy, where processors are grouped from
the most desirable migration groups at the lowest layer (e.g., hyperthreaded CPUs on the same
core) through to the least desirable migration groups at the highest layers of the hierarchy (e.g.,
migrating across processors on different circuit boards in a NUMA system).

A scheduling domain constains one or more CPU groups. Each CPU group is treated as
one entity by the domain. A higher-level domain treats lower-level domains as a group. For
example, two hyperthreaded CPUs sharing the same core will be placed in one group that has
two subgroups, one for each CPU. All the per-core groups will make up a higher-level domain
that represents the entire processor.

Each CPU has a runqueue structure associated with it. In addition to the structures needed
to keep track of ready processes (e.g., a balanced tree or a set of queues), this per-cpu structure
keeps track of scheduling data, including statistics about CPU load. Each scheduling domain
has a balancing policy associated with it that defines the balancing rules for that specific level
of the hierarchy. This policy answers questions such as:

– How often should attempts be made to balance load across groups in the domain?
– How far can the loads in the domain get unbalanced before balancing across groups is

needed?
– How long can a group in the domain sit idle?
Linux performs active load balancing periodically. The scheduler moves up the scheduling

domain hierarchy and checks each groups along the way. If any group is deemed to be out of
balance based on the policy rules, tasks will be moved from one CPU’s run queue to another’s
to rebalance the domain.

Schedul ing classes

Linux supports a modular scheduling system that can accommodate different schedulers. A
scheduling class defines a common set of functions that define the behavior of that scheduler
(e.g., add a task, remove a task, choose the next task tor run). Multiple schedulers can run
concurrently. Each task in the system belongs to one scheduling class. A task will belong to one
of two scheduling classes:

1. sched_fair: implements the CFS (completely fair share) scheduler, a general purpose
multilevel queue scheduler that dynamically adjusts priority levels based on how much
“virtual runtime” each task used over a period of time. Tasks that spend more time
running (using the CPU) are given a lower priority over those that spend spend less time
running.

2. sched_rt: implements a simple multilevel priority-based round-robin scheduler for real-
time tasks.

To pick a task to run, the scheduler iterates through the list of scheduling classes to find the
class with the highest priority that has a runnable task.

References

◾ Volker Seeker, Process Scheduling in Linux, University of Edinburgh, May 12, 2013.
◾ Inside the Linux scheduler, M. Tim Jones, IBM developerWorks Technical Library, June

30, 2006

◾ Understanding the Linux Kernel, Daniel P. Bovet & Marco Cesati, October 2000, Chapter
10: Process Scheduling

◾ Inside the Linux 2.6 Completely Fair Scheduler: Providing fair access to CPUs since
2.6.23, M. Tim Jones, IBM developerWorks, December 15, 2009

◾ Completely Fair Scheduler, Wikipedia article
This document is updated from its original version of September 27, 2010.

© 2003-2015 Paul Krzyzanowski. All rights reserved.

For questions or comments about this site, contact Paul Krzyzanowski, webinfo@pk.org

The entire contents of this site are protected by copyright under national and international law. No part of this site may be copied, reproduced, stored in a retrieval system, or
transmitted, in any form, or by any means whether electronic, mechanical or otherwise without the prior written consent of the copyright holder. If there is something on this page
that you want to use, please let me know.

Any opinions expressed on this page do not necessarily reflect the opinions of my employers and may not even reflect mine own.

Last updated: February 20, 2015

mailto:webinfo@pk.org

INSTITIUIDTEICNEOLAIOCHTA NA GAILLIMHE-MAIGH EO
GALWAY- MAYO INSTITUTE OF TECHNOLOGY

MEMORY MANAGEMENT

MEMORY MANAGEMENT - CACHING

• Caching refers to temporarily storing data in high-speed memory for

fast access

• Very fast storage is very expensive.
• OS manages a hierarchy of storage devices in order to make the best use of

resources.

• Caching performed at many levels in a computer (in hardware,
operating system, software)

• Information in use copied from slower to faster storage temporarily
• Cache checked first to determine if information is there

• If it is, information used directly from the cache (fast)
• If not, data copied to cache and used there

121988
Highlight

121988
Highlight

121988
Highlight

121988
Highlight

121988
Highlight

121988
Highlight

121988
Highlight

121988
Highlight

121988
Highlight

121988
Highlight

121988
Highlight

121988
Highlight

121988
Highlight

121988
Highlight

121988
Highlight

121988
Highlight

121988
Highlight

OS MEMORY MANAGEMENT HIERARCHY

121988
Highlight

OS MEMORY PROTECTION

• To provide memory protection
• Two registers determine the range of legal addresses a

program may access.
• Base Register - holds smallest legal physical memory

address.
• Limit register - contains the size of the range.

• Memory outside the defined range is protected.

• Protection against viruses and other malicious
programs

• Limits specified by OS for each program

0

256000

3000040

420940

880000

1024000

Base register
300040

Limit register
120900

monitor

Job1

Job 2

Job 3

Job 4

121988
Highlight

121988
Highlight

121988
Highlight

OS ADDRESS SPACE (32 VS. 64 BIT)

• Managing a program’s address space :

• Address space ⇒ the set of accessible addresses + state
associated with them:

• For a 32-bit processor there are 232 = 4 billion addresses

• Each bit in the 32-bit address space represents 1 byte in a
byte-addressable system.

• Only supports 4GB of storage

• 64-bit avoids this problem – allows for 224 Terabytes of
addressable memory

• A program’s address space provides the illusion of separate
address spaces

121988
Highlight

121988
Highlight

121988
Highlight

121988
Highlight

121988
Highlight

DIFFERENCE BETWEEN HEAP AND STACK
• Stack is used for static memory allocation

• When function called, fixed space reserved for local variables – cleared after

• Space allocated using stack – pop on, pop off – model

• Allocation is dealt with when the program is compiled.

• Heap for dynamic memory allocation

• Memory allocated and freed on ad-hoc basis, as needed

• More complex to keep track of which parts are allocated or free at any given tme;

• Both under control of OS and stored in the computer's RAM.

• Access/Write speeds

• Stack is faster because storage pattern makes it trivial to allocate and deallocate memory from it (a
pointer/integer is simply incremented or decremented). Also, each byte in the stack tends to be reused
frequently which means it gets mapped to the processor's cache, making it very fast.

121988
Highlight

121988
Highlight

121988
Highlight

• Heap requires more complex bookkeeping for allocation or deallocation (slower).

DIFFERENCE BETWEEN HEAP AND STACK

Prog 1
Virtual

Address
Space 1

Prog 2
Virtual

Address
Space 2

Translation Map 1 Translation Map 2
Load new Translation Map on Switch

Physical Address Space

Code
Data
Heap
Stack

Code
Data
Heap
Stack

Data 2

Stack 1

Heap 1

Code 1

Stack 2

Data 1

Heap 2

Code 2

OS code

OS data

OS heap &

Stacks

INSTITIUIDTEICNEOLAIOCHTA NA GAILLIMHE-MAIGH EO
GALWAY- MAYO INSTITUTE OF TECHNOLOGY

OS: OTHER SERVICES

OS SERVICES: PROCESS MANAGEMENT

• Process - fundamental concept in OS

• Process is a program in execution.

• Process needs resources - CPU time, memory, files/data and I/O devices.

• OS is responsible for the following process management activities.
• Process creation and deletion

• Process suspension and resumption

• Process synchronization and interprocess communication

• Process interactions - deadlock detection, avoidance and correction

121988
Highlight

121988
Highlight

121988
Highlight

121988
Highlight

121988
Highlight

121988
Highlight

121988
Highlight

121988
Highlight

121988
Highlight

121988
Highlight

121988
Highlight

121988
Highlight

121988
Highlight

121988
Highlight

OS SERVICES: PROTECTION AND SECURITY

• Protection mechanisms control access of programs and processes to user and system resources.

• Protect user from themselves, user from other users, system from users.

• Protection mechanisms must:

• Distinguish between authorized and unauthorized use.

• Specify access controls to be imposed on use.

• Provide mechanisms for enforcement of access control.

• Security mechanisms provide trust in system and privacy

• Authentication, certification, encryption etc.

121988
Highlight

121988
Highlight

121988
Highlight

121988
Highlight

121988
Highlight

121988
Highlight

121988
Highlight

121988
Highlight

121988
Highlight

121988
Highlight

121988
Highlight

121988
Highlight

121988
Highlight

OS SERVICES: NETWORKING

• Connecting processors in a distributed system

• Distributed System is a collection of processors that do not share memory or a
clock.

• Processors are connected via a communication network.

• Advantages:
• Allows users and system to exchange information
• Provide computational speedup
• Increased reliability and availability of information

121988
Highlight

121988
Highlight

121988
Highlight

121988
Highlight

121988
Highlight

121988
Highlight

121988
Highlight

121988
Highlight

121988
Highlight

121988
Highlight

OS SERVICES: SYSTEM GENERATION

• OS written for a class of machines, must be configured for each specific site.

• SYSGEN (Windows) program obtains info about specific hardware configuration and
creates version of OS for hardware

• Booting

• Bootstrap program - loader program loads kernel, kernel loads rest of OS.
• Bootstrap program stored in ROM/FLASH

121988
Highlight

121988
Highlight

121988
Highlight

121988
Highlight

121988
Highlight

SYSTEM PROGRAMS

• OS- convenient environment for program development and execution.

• User view of OS is defined by system programs, not system calls.
• Command Interpreter (Unix shell) - parses/executes other system programs

• File manipulation - copy (cp), print (lpr), compare(cmp, diff)

• File modification - editing (vim, emacs, notepad++)

• Application programs - send mail (mail), read news (rn)

• Programming language support (gcc - compiler)

121988
Highlight

121988
Highlight

121988
Highlight

121988
Highlight

121988
Highlight

121988
Highlight

121988
Highlight

121988
Highlight

OS COMMAND INTERPRETER SYSTEM (CIS)
- DESCRIPTION AND ROLE

• Part of an OS that understands and executes commands that are
entered interactively by a human user or from another program.

• Commands given to OS via command statements that execute
• Process creation and deletion, I/O handling, Secondary Storage Management,

Main Memory Management, File System Access, Protection, Networking, etc.

• Obtains the next command and executes it.

• Also know as -
• Command-line interpreter (cmd), shell (in UNIX/Linux – e.g. bash)

121988
Highlight

121988
Highlight

121988
Highlight

121988
Highlight

INSTITIUIDTEICNEOLAIOCHTA NA GAILLIMHE-MAIGH EO
GALWAY- MAYO INSTITUTE OF TECHNOLOGY

OPERATING SYSTEMS: HOW ARE THEY
ORGANIZED?

• Simple

• Only one or two levels of code

• Layered
• Lower levels independent of upper levels

• Microkernel
• OS built from many user-level processes

• Modular
• Core kernel with Dynamically loadable modules

121988
Highlight

121988
Highlight

121988
Highlight

121988
Highlight

OS STRUCTURE - SIMPLE APPROACH

• MS-DOS - provides a lot of functionality in little space.

• Not divided into modules, Interfaces and levels of functionality are
not well separated

121988
Highlight

UNIX SYSTEM STRUCTURE

• UNIX - limited structuring, has 2

separable parts
• Systems programs

• Kernel
• everything below system call interface

and above physical hardware.

• Filesystem, CPU scheduling, memory
management

121988
Highlight

121988
Highlight

121988
Highlight

121988
Highlight

121988
Highlight

121988
Highlight

LAYERED OPERATING SYSTEM

121988
Highlight

MICROKERNEL STRUCTURE

• Moves as much from the kernel into “user” space
• Small core OS running at kernel level
• OS Services built from many independent user-level processes

• Communication between modules with message passing
• Benefits:

• Easier to extend a microkernel
• Easier to port OS to new architectures
• More reliable (less code is running in kernel mode) - Servers
• Fault Isolation (parts of kernel protected from other parts)
• More secure
• No Graphics necessary

• < 10,000 lines of code e.g. Symbian, Mac OSX

121988
Highlight

121988
Highlight

121988
Highlight

121988
Highlight

121988
Highlight

121988
Highlight

121988
Highlight

121988
Highlight

121988
Highlight

121988
Highlight

VIRTUAL MACHINE (VM)

• A virtual machine (VM) is an operating system OS or application environment that is installed

on software which imitates dedicated hardware.

• Provides a complete system platform which supports the execution of a complete operating
system (OS).

• E.g. Ubuntu can be installed as virtual machine (using VMWare software)

• Big players:
• https://cloud.google.com/compute/

• https://azure.microsoft.com/

• https://aws.amazon.com/ec2/

https://cloud.google.com/compute/
https://azure.microsoft.com/
https://aws.amazon.com/ec2/
121988
Highlight

121988
Highlight

121988
Highlight

121988
Highlight

121988
Highlight

VIRTUAL MACHINE (VM)

INSTITIUIDTEICNEOLAIOCHTA NA GAILLIMHE-MAIGH EO
GALWAY- MAYO INSTITUTE OF TECHNOLOGY

INTRODUCTION TO THE LINUX SYSTEM

121988
Highlight

REFERENCES

• Online

• The Linux Documentation Project (LDP): http://www.tldp.org/

• Linux books (library)

http://www.tldp.org/

UNIX/LINUX OPERATING SYSTEM

• Introduction to Unix

• History of UNIX

• What is LINUX

• LINUX Distributions

• Unix OS Structure

• Unix File System

• Unix Directories, Files and Inodes

• Users, Groups and Permissions

UNIX

• Unix is a multi-user, multi-tasking operating

system.

• You can have many users logged into a
system simultaneously, each running many
programs.

• Kernel's job to:
• Keep each process and user separate

• Regulate access to system hardware, including
CPU, memory, disk and other I/O devices.

121988
Highlight

121988
Highlight

121988
Highlight

121988
Highlight

HISTORY OF UNIX (BELL LABS)

• First Version was created in Bell Labs in 1969.

• Founded by Alexander Graham Bell

• Bell labs inventions:
• Radio astronomy

• Digital Signal Processor – Mobile Phone Tech.

• Solar Cells

• Data Networking

• Communication Satellites

• The transistor

• The laser

• The charge-coupled device (CCD)

• Information theory

• The UNIX operating system

• The programming languages C, C++

• Transatlantic Telephone Cable

• 8 Nobel prizes

121988
Highlight

121988
Highlight

121988
Highlight

121988
Highlight

121988
Highlight

121988
Highlight

HISTORY OF UNIX

• Some of the Bell Labs programmers who had worked on this project, Ken

Thompson, Dennis Ritchie, Rudd Canaday, and Doug McIlroy designed and
implemented the first version of the Unix File System on a PDP-7 along with a
few utilities.

• Given the name UNIX by Brian Kernighan.

• 00:00:00 Hours, Jan 1, 1970 is time zero for UNIX. It is also called as epoch.

121988
Highlight

121988
Highlight

121988
Highlight

121988
Highlight

HISTORY OF UNIX

• 1973 Unix is re-written mostly in C, a new language developed by Dennis

Ritchie.

• Being written in this high-level language greatly decreased the effort needed
to port it to new machines.

121988
Highlight

121988
Highlight

121988
Highlight

121988
Highlight

121988
Highlight

121988
Highlight

HISTORY OF UNIX

• 1977 There were about 500 Unix sites world-wide.

• 1980 BSD 4.1 (Berkeley Software Distribution)

• 1983 SunOS, BSD 4.2, System V

• 1991 Linux was originated.

121988
Highlight

121988
Highlight

121988
Highlight

121988
Highlight

121988
Highlight

121988
Highlight

121988
Highlight

121988
Highlight

121988
Highlight

WHAT IS LINUX

• Linux is a free Unix-type OS originally created by

Linus Torvalds with the assistance of developers around
the world.

• It originated in 1991 as a personal project of Linus
Torvalds, a Finnish graduate student.

• The Kernel version 1.0 was released in 1994 and
today the most recent stable version is 4.4.1

• Developed under the GNU General Public License , the
source code for Linux is freely available to everyone.

121988
Highlight

121988
Highlight

121988
Highlight

121988
Highlight

121988
Highlight

LINUX DISTRIBUTIONS

• Mandrake: http://www.mandrakesoft.com/

• RedHat: http://www.redhat.com/

• Fedora: http://fedora.redhat.com/

• SuSE/Novell: http://www.suse.com/

• Debian: http://www.debian.org/

• Ubuntu: http://www.ubuntu.com

• Red Hat Enterprise Linux is a Enterprise targeted Operating System. It based on mature Open Source technology and
available at a cost with one year Red Hat Network subscription for upgrade and support contract

http://www.mandrakesoft.com/
http://www.redhat.com/
http://fedora.redhat.com/
http://www.suse.com/
http://www.debian.org/
http://www.ubuntu.com/

LINUX SHELL

LINUX DESKTOP

• Text Mode and Graphical Mode

• Multiple Non-GUI (Text Mode) logins are possible through Virtual Consoles.

• There are by default 6 Virtual Text Mode Consoles available through CTRL-ALT-F[1-
6]. CTRL-ALT-F7 will bring back the GUI mode.

• In GUI Mode, there are two Desktop Environments
• GNOME
• KDE

• GNOME is the default Desktop

121988
Highlight

121988
Highlight

121988
Highlight

121988
Highlight

121988
Highlight

121988
Highlight

121988
Highlight

121988
Highlight

121988
Highlight

UNIX/LINUX COMMANDS

• A command is a program which interacts with the kernel to

perform the functions called for by the user.

• A command can be: a built-in shell command; an
executable shell file (shell script); or source compiled code.

• The shell is a command line interpreter. The user interacts
with the kernel through the shell.

• Can write ASCII (text) scripts to be acted upon by a shell.

121988
Highlight

121988
Highlight

121988
Highlight

121988
Highlight

121988
Highlight

UNIX/LINUX SHELL –
ROLE AND DESCRIPTION

• Command Interpreter
• The shell sits between you and the operating system, acting as a command interpreter –

shell scripting: Turing complete

• It reads terminal input and translates the commands into OS actions.
• Analogous to cmd in DOS.

• When the shell starts up it reads its startup files and may set environment
variables, command search paths, and command aliases, and executes any
commands specified in these files.

• etc.init.d

121988
Highlight

121988
Highlight

121988
Highlight

121988
Highlight

121988
Highlight

121988
Highlight

121988
Highlight

121988
Highlight

SELECTION OF UNIX/LINUX SHELLS

• When you log into the system you are given a default shell.

• The original shell was the Bourne shell – ‘sh’

• Every Unix platform will either have the Bourne shell,
or a Bourne compatible shell available.

• The default prompt for the Bourne shell is $ (or #, for
the root user).

• Another popular shell is C Shell. The default prompt
for the C shell is %.

• “echo $0” will list what shell you are using

121988
Highlight

121988
Highlight

121988
Highlight

121988
Highlight

121988
Highlight

121988
Highlight

SELECTION OF UNIX/LINUX SHELLS

• Numerous other shells are available from the network.

• Almost all of them are based on either sh or csh with extensions to:
• Allow in-line editing of commands

• Page through previously executed commands (history),

• Provide command name completion and custom prompt, etc.

• Some of the more well known of these may be on your Linux system:

• Korn shell, ksh, by David Korn

• Bourne Again Shell - bash, from the Free Software Foundations GNU project,
• both Korn and bash based on sh,

• T-C shell: tcsh and the extended C shell: cshe, both based on csh.

121988
Highlight

121988
Highlight

121988
Highlight

121988
Highlight

121988
Highlight

121988
Highlight

File Commands
ls - directory listing
ls -al - formatted llsting with hidden files
cd dir .change directory todir
cd - change to home
pwd - show current directory
llkdir di r - create a directory dir
nt file - delete file
nt -r dir - delete directory dlr
nt -f file - force remove file
nt -rf dir - force remove directory dlr •
cp filel fi le2 - copy filel to file2

S stemInfo
date - show the current date and time
cat - shOIV this month's calendar
uptiae - show current uptime
w - display who is online
whoaai - who you are logged in as
f inger user - display information about user
unaae -a - show kernel information
cat /proc/cpuinto - cpu mtormabon
cat /proc/aeainfo - memory information
un c nd - show the manual for command
df - show disk usage

cp - r dirl dir2 - copy dirl todir2; create dlr2 if it du - show directory space usage
doesn't exist
av fi lel fi le2 - reoame or movefilel tofile2
if file2 is an existing directory, moves filel into
directory file2
ln _,.. fi le link - ,.IP. mhnlit: link llttJt tn filP
touch file - create or update file
cat > file - places standard input Into fi •e
110 re file - output the contents of file
head file - output the first 10 lines of file
tail file - output the last 10 lines of file
tail -f file - output the contents of fileas il
grows, starting with the last 1O lines

Process Mana ement
pc; - cii"fll.Ay ynn r f":n n-P.ntJy .Ar:tivA J'UYU":ASAA
top - display all runcing processes
kill pid - kill process id pld
killall proc - kill IIprocesses named proc •
bg - llsts stopped or 3ackground jobs; resume a
stopped job in the backgrou nd
f g - brings the most recent job to foregrocnd
f g n - bringsjob n to the foreground

File Permissions
ehiand net-al file -t:hA n!JA thA j"IArmi sslnn.s nf j11P
to octnl, which can ha found separately for user,
group, and world by adding:

• 4 - read (r)

f ree - show memory and swap usage
whereis •PP - show possible locations of app
which app - show which app w>ll be run by default

Com ression
ta r cf file.tar files - create a tar named
file.tor CO>taining files
tar xf file. tar - extract the files from ji1e.tor
tar czf file.tar.gz files - create a tar with
Gzip com pression
tar xzf fi le.tar.gz - extract a tar using Gzip
tar cjf fi le.tar.bz2 - create a tar with Bzip2
compression
tar xj f fi le.tar .bz2 - extract a tar using Bzip2
gzip file compro33CS file and renames it to
file.gz
gzip d fi le.gz - decompresses file.gz back to
file

Network
ping host - ping host and output results
whois d0111ain - get whois information for domain
dig domaln - get DNS i nformation for domain
dig -x host - reverse lookup ast
wget tile - download file
wget C file - continue a stopped download

Installation
• 2 - write (w) Install from source:
• 1- execute (x) ./configu re
m H

ch11<>d 777 - read, write, execute for all uke install
ch11<>d 755 - cwx for owner, rx for group and world dpkg •i pkg. deb _ install a package (Debian)
f:or mlolre olpti·oos·see aan cChJaod. •••••••1 rpa ·Uvh pkg. r,,. - install a package (RPM)

ssh user@llost - connect to host as user
ssh -p port user@host - connect tohosl on port
port as user
ssh-copy-id user@host - add your key tohost for
user to enable a keyed or passwonlless login

Searchin
grep pattern files - search for pattern mfiles
grep -r pattern di r - search recursively for
pattern in dir
c.,....nd I grep pattern - search for pattern lo the

Shortcuts
Ct rt+C - baits the current command
Ct rt+Z - stops the current command, resume with
fg lo the foreground or bg in the background
Ct rl+D - bg out or current seion, similar to exit
Ct rt+ll - erases one word in the current line
Ct rl+U - erases the whole line
Ct rl+R - type to bring up a recent command
11 - repeats the last command
exit - log out of current sessio'

output of command
locate fi le - find all instances of f11e • use \\lith extreme caution. l@ © @j

121988
Highlight

121988
Highlight

121988
Highlight

121988
Highlight

121988
Highlight

121988
Highlight

121988
Highlight

121988
Highlight

121988
Highlight

121988
Highlight

121988
Highlight

121988
Highlight

121988
Highlight

121988
Highlight

121988
Highlight

121988
Highlight

121988
Highlight

121988
Highlight

121988
Highlight

121988
Highlight

121988
Highlight

121988
Highlight

121988
Highlight

LINUX COMMAND HIGH-LEVEL FUNCTIONS

• File Management and Viewing

• Filesystem Mangement

• Help, Job and Process Management

• Network Management

• System Management

• User Management

• Printing and Programming

• Document Preparation

• Miscellaneous

121988
Highlight

121988
Highlight

121988
Highlight

121988
Highlight

121988
Highlight

121988
Highlight

121988
Highlight

121988
Highlight

121988
Highlight

121988
Highlight

121988
Highlight

121988
Highlight

121988
Highlight

121988
Highlight

COMMAND STRUCTURE

• Command <Options> <Arguments>

• Multiple commands separated by ; can be executed one after the other

121988
Highlight

HELP FACILITIES FOR COMMANDS

• To understand the working of the command and possible options use (man

command)

• Using the GNU Info System (info, info command)

• Listing a Description of a Program (whatis command)

• Many tools have a long−style option, `−−help', that outputs usage information
about the tool, including the options and arguments the tool takes.

• Ex: whoami --help

121988
Highlight

121988
Highlight

121988
Highlight

121988
Highlight

121988
Highlight

INSTITIUIDTEICNEOLAIOCHTA NA GAILLIMHE-MAIGH EO
GALWAY- MAYO INSTITUTE OF TECHNOLOGY

	Logic Circuits
	Adders
	SR Latch
	Integrated circuit
	Language Evolution
	 Genereations
	Translation Systems
	compiled / interpreted
	What Lang Chart
	Abstraction
	Firmware
	OS
	Multiplexing
	Process Scheduling
	Memory Management
	 Memory hierarchy
	 Heap/Stack
	OS Services
	OS Systems
	VM's
	Linux
	PS - Introduction
	PS - Scheduler
	PS - First-Come, First- Served
	PS - Round robin
	PS - Shortest remaining
	PS - Priority
	PS - Multilevel queues
	Mul t i level PS - feedback
	PS - Lottery
	PS - sch classes

