
Sorting Algorithms
Part 1

COMP08033 Computational Thinking with Algorithms, Patrick Mannion GMIT



Overview

• Introduction to sorting

• Conditions for sorting

• Comparator functions and comparison-based sorts

• Sort keys and satellite data

• Desirable properties for sorting algorithms
• Stability
• Efficiency
• In-place sorting

• Overview of some well-known sorting algorithms

• Criteria for choosing a sorting algorithm

COMP08033 Computational Thinking with Algorithms, Patrick Mannion GMIT



Sorting

• Sorting – arrange a collection of items according to some pre-defined ordering 
rules

• There are many interesting applications of sorting, and many different sorting 
algorithms, each with their own strengths and weaknesses.

• It has been claimed that as many as 25% of all CPU cycles are spent sorting, which 
provides a great incentive for further study and optimization

• The search for efficient sorting algorithms dominated the early days of 
computing.

• Numerous computations and tasks are simplified by properly sorting information 
in advance, e.g. searching for a particular item in a list, finding whether any 
duplicate items exist, finding the frequency of each distinct item, finding order 
statistics of a collection of data such as the maximum, minimum, median and 
quartiles.

COMP08033 Computational Thinking with Algorithms, Patrick Mannion GMIT



Timeline of sorting algorithms

• 1945 – Merge Sort developed by John von Neumann

• 1954 – Radix Sort developed by Harold H. Seward

• 1954 – Counting Sort developed by Harold H. Seward

• 1959 – Shell Sort developed by Donald L. Shell

• 1962 – Quicksort developed by C. A. R. Hoare

• 1964 – Heapsort developed by J. W. J. Williams

• 1981 – Smoothsort published by Edsger Dijkstra

• 1997 – Introsort developed by David Musser

• 2002 – Timsort implemented by Tim Peters

COMP08033 Computational Thinking with Algorithms, Patrick Mannion GMIT



Sorting

• Sorting is often an important step as part of other computer algorithms, 
e.g. in computer graphics (CG) objects are often layered on top of each 
other; a CG program may have to sort objects according to an “above” 
relation so that objects may be drawn from bottom to top

• Sorting is an important problem in its own right, not just as a pre-
processing step for searching or some other task

• Real-world examples: 
• Entries in a phone book, sorted by area, then name

• Transactions in a bank account statement, sorted by transaction number or date

• Results from a web search engine, sorted by relevance to a query string

COMP08033 Computational Thinking with Algorithms, Patrick Mannion GMIT



Conditions for sorting

• A collection of items is deemed to be “sorted” if each item in the 
collection is less than or equal to its successor

• To sort a collection A, the elements of A must be reorganised such 
that if A[i] < A[j], then i < j

• If there are duplicate elements, these elements must be contiguous in 
the resulting ordered collection – i.e. if A[i] = A[j] in a sorted 
collection, then there can be no k such that i < k < j and A[i] ≠ A[k].

• The sorted collection A must be a permutation of the elements that 
originally formed A (i.e. the contents of the collection must be the 
same before and after sorting)

COMP08033 Computational Thinking with Algorithms, Patrick Mannion GMIT



Comparing items in a collection

• What is the definition of “less than”? Depends on the items in the 
collection and the application in question

• When the items are numbers, the definition of “less than” is obvious 
(numerical ordering)

• If the items are characters or strings, we could use lexicographical 
ordering (i.e. apple < arrow < banana)

• Some other custom ordering scheme – e.g. Dutch National Flag 
Problem (Dijkstra), red < white < blue

COMP08033 Computational Thinking with Algorithms, Patrick Mannion GMIT



Comparator functions

• Sorting collections of custom objects may require a custom ordering 
scheme

• In general: we could have some function compare(a,b) which returns:
• -1 if a < b

• 0 if a = b

• 1 if a > b

• Sorting algorithms are independent of the definition of “less than” 
which is to be used

• Therefore we need not concern ourselves with the specific details of 
the comparator function used when designing sorting algorithms

COMP08033 Computational Thinking with Algorithms, Patrick Mannion GMIT



Inversions

• The running time of some sorting algorithms (e.g. Insertion Sort) is 
strongly related to the number of inversions in the input instance.

• The number of inversions in a collection is one measure of how far it 
is from being sorted.

• An inversion in a list A is an ordered pair of positions (i, j) such that: 
• i < j but A[i] > A[j].

• i.e. the elements at positions i and j are out of order

• E.g. the list [3,2,5] has only one inversion corresponding to the pair 
(3,2), the list [5,2,3] has two inversions, namely, (5,2) and (5,3), the 
list [3,2,5,1] has four inversions (3,2), (3,1), (2,1), and (5,1), etc.

COMP08033 Computational Thinking with Algorithms, Patrick Mannion GMIT



Comparison sorts

• A comparison sort is a type of sorting algorithm which uses comparison operations only 
to determine which of two elements should appear first in a sorted list.

• A sorting algorithm is called comparison-based if the only way to gain information about 
the total order is by comparing a pair of elements at a time via the order ≤.

• Many well-known sorting algorithms (e.g. Bubble Sort, Insertion Sort, Selection Sort, 
Merge Sort, Quicksort, Heapsort) fall into this category.

• Comparison-based sorts are the most widely applicable to diverse types of input data, 
therefore we will focus mainly on this class of sorting algorithms

• A fundamental result in algorithm analysis is that no algorithm that sorts by comparing 
elements can do better than 𝑛 log 𝑛 performance in the average or worst cases.

• Under some special conditions relating to the values to be sorted, it is possible to design 
other kinds of non-comparison sorting algorithms that have better worst-case times (e.g. 
Bucket Sort, Counting Sort, Radix Sort)

COMP08033 Computational Thinking with Algorithms, Patrick Mannion GMIT



Sort keys and satellite data

• In addition to the sort key (the information which we use to make comparisons 
when sorting), the elements which we sort also normally have some satellite 
data

• Satellite data is all the information which is associated with the sort key, and 
should travel with it when the element is moved to a new position in the 
collection

• E.g. when organising books on a bookshelf by author, the author’s name is the 
sort key, and the book itself is the satellite data

• E.g. in a search engine, the sort key would be the relevance (score) of the web 
page to the query, and the satellite data would be the URL of the web page along 
with whatever other data is stored by the search engine

• For simplicity we will sort arrays of integers (sort keys only) in the examples, but 
note that the same principles apply when sorting any other type of data

COMP08033 Computational Thinking with Algorithms, Patrick Mannion GMIT



Desirable properties for sorting algorithms

• Stability – preserve order of already sorted input

• Good run time efficiency (in the best, average or worst case)

• In-place sorting – if memory is a concern

• Suitability – the properties of the sorting algorithm are well-matched 
to the class of input instances which are expected i.e. consider 
specific strengths and weaknesses when choosing a sorting algorithm 

COMP08033 Computational Thinking with Algorithms, Patrick Mannion GMIT



Stability

• If a comparator function determines that two elements 𝑎𝑖 and 𝑎𝑗 in 
the original unordered collection are equal, it may be important to 
maintain their relative ordering in the sorted set

• i.e. if i < j, then the final location for A[i] must be to the left of the 
final location for A[j]

• Sorting algorithms that guarantee this property are stable

• Unstable sorting algorithms do not preserve this property

• Using an unstable sorting algorithm means that if you sort an already 
sorted array, the ordering of elements which are considered equal 
may be altered!

COMP08033 Computational Thinking with Algorithms, Patrick Mannion GMIT



Stable sort of flight information

• All flights which have the same 
destination city are also sorted 
by their scheduled departure 
time; thus, the sort algorithm 
exhibited stability on this 
collection. 

• An unstable algorithm pays no 
attention to the relationships 
between element locations in 
the original collection (it might 
maintain relative ordering, but it 
also might not).

COMP08033 Computational Thinking with Algorithms, Patrick Mannion GMIT

Reference: Pollice G., Selkow S. and Heineman G. (2016). Algorithms in a Nutshell, 2nd Edition. O' Reilly.



Analysing sorting algorithms

• When analysing a sorting algorithm, we must explain its best-case, worst-
case, and average-case time complexity.

• The average case is typically hardest to accurately quantify and relies on 
advanced mathematical techniques and estimation. It also assumes a 
reasonable understanding of the likelihood that the input may be partially 
sorted. 

• Even when an algorithm has been shown to have a desirable best-case, 
average-case or worst-case time complexity, its implementation may simply 
be impractical (e.g. Insertion Sort with large input instances).

• No one algorithm is the best for all possible situations, and so it is 
important to understand the strengths and weaknesses of several 
algorithms.

COMP08033 Computational Thinking with Algorithms, Patrick Mannion GMIT



Recap: orders of growth

COMP08033 Computational Thinking with Algorithms, Patrick Mannion GMIT



Factors which influence running time

• As well as the complexity of the particular sorting algorithm which is 
used, there are many other factors to consider which may have an 
effect on running time, e.g.
• How many items need to be sorted

• Are the items only related by the order relation, or do they have other 
restrictions (for example, are they all integers in the range 1 to 1000)

• To what extent are the items pre-sorted

• Can the items be placed into an internal (fast) computer memory or must 
they be sorted in external (slow) memory, such as on disk (so-called external 
sorting).

COMP08033 Computational Thinking with Algorithms, Patrick Mannion GMIT



In-place sorting

• Sorting algorithms have different memory requirements, which 
depend on how the specific algorithm works.

• A sorting algorithm is called in-place if it uses only a fixed additional 
amount of working space, independent of the input size.

• Other sorting algorithms may require additional working memory, the 
amount of which is often related to the size of the input n

• In-place sorting is a desirable property if the availability of memory is 
a concern

COMP08033 Computational Thinking with Algorithms, Patrick Mannion GMIT



Overview of sorting algorithms

Algorithm Best case Worst case Average case Space Complexity Stable?

Bubble Sort 𝑛 𝑛2 𝑛2 1 Yes

Selection Sort 𝑛2 𝑛2 𝑛2 1 No

Insertion Sort 𝑛 𝑛2 𝑛2 1 Yes

Merge Sort 𝑛 𝑙𝑜𝑔 𝑛 𝑛 𝑙𝑜𝑔 𝑛 𝑛 𝑙𝑜𝑔 𝑛 𝑂(𝑛) Yes

Quicksort 𝑛 𝑙𝑜𝑔 𝑛 𝑛2 𝑛 𝑙𝑜𝑔 𝑛 𝑛 (worst case) No*

Heapsort 𝑛 𝑙𝑜𝑔 𝑛 𝑛 𝑙𝑜𝑔 𝑛 𝑛 𝑙𝑜𝑔 𝑛 1 No

Counting Sort 𝑛 + 𝑘 𝑛 + 𝑘 𝑛 + 𝑘 𝑛 + 𝑘 Yes

Bucket Sort 𝑛 + 𝑘 𝑛2 𝑛 + 𝑘 𝑛 × 𝑘 Yes

Timsort 𝑛 𝑛 𝑙𝑜𝑔 𝑛 𝑛 𝑙𝑜𝑔 𝑛 𝑛 Yes

Introsort 𝑛 𝑙𝑜𝑔 𝑛 𝑛 𝑙𝑜𝑔 𝑛 𝑛 𝑙𝑜𝑔 𝑛 𝑙𝑜𝑔 𝑛 No

COMP08033 Computational Thinking with Algorithms, Patrick Mannion GMIT

*the standard Quicksort algorithm is unstable, although stable variations do exist



Criteria for choosing a sorting algorithm

Criteria Sorting algorithm

Small number of items to be sorted Insertion Sort

Items are mostly sorted already Insertion Sort

Concerned about worst-case scenarios Heap Sort

Interested in a good average-case behaviour Quicksort

Items are drawn from a uniform dense universe Bucket Sort

Desire to write as little code as possible Insertion Sort

Stable sorting required Merge Sort

COMP08033 Computational Thinking with Algorithms, Patrick Mannion GMIT

Reference: Pollice G., Selkow S. and Heineman G. (2016). Algorithms in a Nutshell, 2nd Edition. O' Reilly.


