Sorting Algorithms

Part 1



Overview

* Introduction to sorting

* Conditions for sorting

* Comparator functions and comparison-based sorts
 Sort keys and satellite data

* Desirable properties for sorting algorithms
 Stability
* Efficiency
* In-place sorting

* Overview of some well-known sorting algorithms

* Criteria for choosing a sorting algorithm



Sorting

. Solrting — arrange a collection of items according to some pre-defined ordering
rules

* There are many interesting applications of sorting, and many different sorting
algorithms, each with their own strengths and weaknesses.

* It has been claimed that as many as 25% of all CPU cycles are spent sorting, which
provides a great incentive for further study and optimization

* The search for efficient sorting algorithms dominated the early days of
computing.

 Numerous computations and tasks are simplified by properly sorting information
in advance, e.g. searching for a particular item in a list, finding whether any
duplicate items exist, finding the frequency of each distinct item, finding order
statis’gics of a collection of data such as the maximum, minimum, median and
quartiles.



Timeline of sorting algorithms

e 1945 — Merge Sort developed by John von Neumann
e 1954 — Radix Sort developed by Harold H. Seward

e 1954 — Counting Sort developed by Harold H. Seward
e 1959 - Shell Sort developed by Donald L. Shell

* 1962 — Quicksort developed by C. A. R. Hoare

* 1964 — Heapsort developed by J. W. J. Williams

e 1981 — Smoothsort published by Edsger Dijkstra

e 1997 — Introsort developed by David Musser

e 2002 — Timsort implemented by Tim Peters




Sorting

* Sorting is often an important step as part of other computer algorithmes,
e.g. in computer graphics (CG) objects are often layered on top of each
other; a CG program may have to sort objects according to an “above”
relation so that objects may be drawn from bottom to top

 Sorting is an important problem in its own right, not just as a pre-
processing step for searching or some other task

e Real-world examples:
* Entries in a phone book, sorted by area, then name
* Transactions in a bank account statement, sorted by transaction number or date
* Results from a web search engine, sorted by relevance to a query string



Conditions for sorting

e A collection of items is deemed to be “sorted” if each item in the
collection is less than or equal to its successor

e To sort a collection A, the elements of A must be reorganised such
that if A[i] < A[j], theni<j

* If there are duplicate elements, these elements must be contiguous in
the resulting ordered collection —i.e. if A[i] = A[j] in a sorted
collection, then there can be no k such thati< k <jand A[i] # A[k].

* The sorted collection A must be a permutation of the elements that
originally formed A (i.e. the contents of the collection must be the
same before and after sorting)



Comparing items in a collection

* What is the definition of “less than”? Depends on the items in the
collection and the application in question

* When the items are numbers, the definition of “less than” is obvious
(numerical ordering)

* If the items are characters or strings, we could use lexicographical
ordering (i.e. apple < arrow < banana)

* Some other custom ordering scheme — e.g. Dutch National Flag
Problem (Dijkstra), red < white < blue



Comparator functions

 Sorting collections of custom objects may require a custom ordering
scheme

* In general: we could have some function compare(a,b) which returns:
e -lifa<b
*Oifa=b
e lifa>b

e Sorting algorithms are independent of the definition of “less than”
which is to be used

* Therefore we need not concern ourselves with the specific details of
the comparator function used when designing sorting algorithms



Inversions

* The running time of some sorting algorithms (e.g. Insertion Sort) is
strongly related to the number of inversions in the input instance.

* The number of inversions in a collection is one measure of how far it
is from being sorted.

* An inversion in a list A is an ordered pair of positions (i, j) such that:
* i<jbutA[i] > A[j].
* i.e. the elements at positions i and j are out of order

e E.g. the list [3,2,5] has only one inversion corresponding to the pair
(3,2), the list [5,2,3] has two inversions, namely, (5,2) and (5,3), the
list [3,2,5,1] has four inversions (3,2), (3,1), (2,1), and (5,1), etc.



Comparison sorts

A comparison sort is a type of sorting algorithm which uses comparison operations only
to determine which of two elements should appear first in a sorted list.

A sortin% algorithm is called comparison-based if the only way to gain information about
the total order is by comparing a pair of elements at a time via the order <.

Many well-known sorting algorithms (e.g. Bubble Sort, Insertion Sort, Selection Sort,
Merge Sort, Quicksort, Heapsort) fall into this category.

Comparison-based sorts are the most widely applicable to diverse types of input data,
therefore we will focus mainly on this class of sorting algorithms

A fundamental result in algorithm analysis is that no algorithm that sorts by comparing
elements can do better than nlogn performance in the average or worst cases.

Under some special conditions relating to the values to be sorted, it is possible to design
other kinds of non-comparison sorting algorithms that have better worst-case times (e.g.
Bucket Sort, Counting Sort, Radix Sort



Sort keys and satellite data

* |In addition to the sort key (the information which we use to make comparisons
\(/jvhen sorting), the elements which we sort also normally have some satellite
ata

 Satellite data is all the information which is associated with the sort key, and
shﬁuld travel with it when the element is moved to a new position in the
collection

* E.g. when organising books on a bookshelf by author, the author’s name is the
sort key, and the book itself is the satellite data

e E.g.in a search engine, the sort key would be the relevance (score) of the web
page to the query, and the satellite data would be the URL of the web page along
with whatever other data is stored by the search engine

* For simplicity we will sort arrays of integers (sort keys only) in the examples, but
note that the same principles apply when sorting any other type of data



Desirable properties for sorting algorithms

e Stability — preserve order of already sorted input
* Good run time efficiency (in the best, average or worst case)
* In-place sorting — if memory is a concern

* Suitability — the properties of the sorting algorithm are well-matched
to the class of input instances which are expected i.e. consider
specific strengths and weaknesses when choosing a sorting algorithm



Stability

* If a comparator function determines that two elements a; and a; in
the original unordered collection are equal, it may be important to
maintain their relative ordering in the sorted set

e j.e.if i <j, then the final location for A[i] must be to the left of the
final location for A[j]

 Sorting algorithms that guarantee this property are stable
* Unstable sorting algorithms do not preserve this property

e Using an unstable sorting algorithm means that if you sort an already
sorted array, the ordering of elements which are considered equal
may be altered!



Stable sort of flight information

Destination Airline Flight Departure — Destination Airline Flight Departure

* All flights which have the same g ennd fime
destination city are also sorted

) Buffalo AirTrans 549 10:42 AM Albany Southwest 482  1:20 PM
by thel r SChEd U Ied depa rtu re Atlanta Delta 1097  11:00 AM Atlanta Delta 1097 11:00 AM
tlme; thUS, the Sort algorlthm Baltimore ~ Southwest 836  11:05AM Atlanta AirTrans 872 11:15AM
eXthIted Sta blllty on thlS Atlanta AirTrans 872 11:15AM Atlanta Delta 28 12:00 PM
collection. Atanta  Delta 28 12:00PM Manta  Allalia 3429 1:50 PM

° An UnStable algo rlthm pays no Boston Delta 1056 12:05PM Austin Southwest 1045  1:05 PM
attentiOn tO the relationShipS Baltimore ~ Southwest 216  12:20 PM Baltimore ~ Southwest 836  11:05 AM
betwee n e I eme nt |Ocati0 NS in Austin Southwest 1045  1:05 PM Baltimore ~ Southwest 216  12:20 PM
the Original CO||eCti0n (|t m|ght Albany Sf)uthwest 482  1:20PM Baltimore Southwest 272 1:40 PM
maintain relative Ordering, bUt |t Bost.on AirTrans 515 1:221PM Boston Dl-elta 1056 12:05 PM

ISO ml ht nOt). Baltimore ~ Southwest 272 1:40PM Boston AirTrans 515 1:221PM
a g Atlanta Al Italia 3429 1:50 PM Buffalo AirTrans 549 10:42 AM

Reference: Pollice G., Selkow S. and Heineman G. (2016). Algorithms in a Nutshell, 2" Edition. O' Reilly.

COMPO08033 Computational Thinking with Algorithms, Patrick Mannion GMIT



Analysing sorting algorithms

 When analysing a sorting algorithm, we must explain its best-case, worst-
case, and average-case time complexity.

* The average case is typically hardest to accurately quantify and relies on
advanced mathematical techniques and estimation. It also assumes a
reasonable understanding of the likelihood that the input may be partially
sorted.

* Even when an algorithm has been shown to have a desirable best-case,
average-case or worst-case time complexity, its implementation may simply
be impractical (e.g. Insertion Sort with large input instances).

* No one algorithm is the best for all possible situations, and so it is
important to understand the strengths and weaknesses of several
algorithms.



Recap: orders of growth

T(n)

(R
N

Running time T'(n)

Is proportional to: | Complexity:
T(n) < logn logarithmic
T(n) xn linear

T(n) x nlogn linearithmic
T'(n) x n quadratic
T(n) o n? cubic

T(n) < n” polynomial
T(n) o 2" exponential
T(n) o< k™; k> 1 | exponential

COMPO08033 Computational Thinking with Algorithms, Patrick Mannion GMIT

log n

200 300 400 500 600

700 800 900 n



Factors which influence running time

* As well as the complexity of the particular sorting algorithm which is
used, there are many other factors to consider which may have an

effect on running time, e.g.
* How many items need to be sorted
* Are the items only related by the order relation, or do they have other
restrictions (for example, are they all integers in the range 1 to 1000)
* To what extent are the items pre-sorted

e Can the items be placed into an internal (fast) computer memory or must
they be sorted in external (slow) memory, such as on disk (so-called external

sorting).



In-place sorting

* Sorting algorithms have different memory requirements, which
depend on how the specific algorithm works.

* A sorting algorithm is called in-place if it uses only a fixed additional
amount of working space, independent of the input size.

* Other sorting algorithms may require additional working memory, the
amount of which is often related to the size of the input n

* In-place sorting is a desirable property if the availability of memory is
a concern



Overview of sorting algorithms

Bubble Sort
Selection Sort
Insertion Sort
Merge Sort
Quicksort
Heapsort
Counting Sort
Bucket Sort
Timsort

Introsort

*the standard Quicksort algorithm is unstable, although stable variations do exist

nZ

n
nlogn
nlogn
nlogn
n+k
n+k
n

nlogn

le

n2

nlogn
n2
nlogn
n+k
n2
nlogn

nlogn

le

e
nlogn
nlogn
nlogn
n+k
n+k
nlogn

nlogn

1
1
o(n)

n (worst case)
1
n+k
nXxXk
n

logn

No
Yes

Yes

No
Yes
Yes
Yes

No



Criteria for choosing a sorting algorithm

Sorting algorithm

Small number of items to be sorted Insertion Sort
ltems are mostly sorted already Insertion Sort
Concerned about worst-case scenarios Heap Sort
Interested in a good average-case behaviour Quicksort
ltems are drawn from a uniform dense universe Bucket Sort
Desire to write as little code as possible Insertion Sort
Stable sorting required Merge Sort

Reference: Pollice G., Selkow S. and Heineman G. (2016). Algorithms in a Nutshell, 2" Edition. O' Reilly.



