
1

Computational Thinking with Algorithms

Higher Diploma in Science – Software Development

Higher Diploma in Science – Data Analytics

2

Cryptography and Reliable
Interaction

-
An Algorithmic View

Sean Duignan, M.Sc, Ph.D
(sean.duignan@gmit.ie)

1

2

2

3

Overview of this session….

• Cryptography (terms and definitions)

• Types of cryptosystems (symmetric and asymmetric)

• Examples of systems in practice

– Through a “thinking” and “algorithmic” lens……

4

Introduction to Cryptography

• Cryptography is the science of secrecy and is concerned with the need to
communicate in secure, private and reliable ways.

• From a computational thinking / algorithmics perspective, a novel feature is the
fact (as we will see) that modern methods used to solve cryptographic
problems exploit the difficulty of solving other problems.

This is somewhat surprising…..

problems for which no good algorithms are known are crucial here.

(More on this anon)

3

4

3

5

Cryptography (Problem Statements)

• The basic problem to be solved is that of encrypting and decrypting data.

– How should we encode an important message in such a way that the receiver
should be able to decipher it, but not an eavesdropper?

– Moreover, can then message be signed by the sender so that:

(1) The receiver can be sure that only the sender could have sent it.

(2) The sender cannot later deny having sent it

(3) The receiver, having received the signed message, cannot sign an
message in the senders name, not even additional versions of the very
message that has just been received.

6

Cryptography (Some Definitions)

• Data that can be read and understood without any special measures is called
plaintext (or clear-text). Plaintext, P, is the input to an encryption process
(algorithm).

• Encryption is the process of disguising plaintext in such a way as to hide its
substance.

• The result (output….) of the encryption process is ciphertext, C

A general encryption procedure (left) and decryption procedure (right) is as
follows:

C = Encr (P) and P = Decr (C)

5

6

4

7

Symmetric Cryptography
• In conventional cryptography, also called secret-key or symmetric-key

encryption, one key is used both for encryption and decryption.
EG : The Data Encryption Standard (DES) cryptosystem.

8

Symmetric Cryptography – Simple Example
Substitution Cipher

• The Caesar cipher shifted the alphabet by 3 characters.

A B C D…………………… W X Y Z

D E F G…………………… Z A B C

EG: Hello Khoor
• Caesar cipher is a one to one mapping. A monoalphabetic substitution!

• Cryptanalysis exploits statistical properties of the English language.

• "E" is the most frequently occurring letter.

7

8

5

9

Symmetric Cryptography – Simple Example

Irishmen and Irishwomen: In
the name of God and of the
dead generations from which
she receives her old tradition of
nationhood, Ireland, through
us, summons her children to
her flag and strikes for her
freedom.

Pypzotlu huk Pypzodvtlu: Pu
aol uhtl vm Nvk huk vm aol
klhk nlulyhapvuz myvt dopjo
zol yljlpclz oly vsk ayhkpapvu
vm uhapvuovvk, Pylshuk,
aoyvbno bz, zbttvuz oly
jopskylu av oly mshn huk
zayprlz mvy oly myllkvt.

Pypzotlu huk Pypzodvtlu: Pu
aol uhtl vm Nvk huk vm aol
klhk nlulyhapvuz myvt dopjo
zol yljlpclz oly vsk ayhkpapvu
vm uhapvuovvk, Pylshuk,
aoyvbno bz, zbttvuz oly
jopskylu av oly mshn huk
zayprlz mvy oly myllkvt.

- 7

Q. Is L or l really E or e…..?

10

Symmetric Cryptography – Examples cntd…

Polyalphabetic Substitution:

• The key is a simple phrase of fixed length (which can repeat).

• Add the value of the letter in the key to the value of the letter in the plaintext to
get ciphertext, and “wrap around” if necessary (modulo 36)

• This is essentially multiple Caesar-type ciphers

• Main advantage is that same plaintext gets mapped onto different ciphertext.

9

10

6

11

Symmetric Cryptography – Examples cntd…
Polyalphabetic Substitution cntd…..

Example

• This is essentially multiple Caesar-type ciphers
• Main advantage is that same plaintext gets mapped onto different ciphertext.

23

20

43

36
+ 7

12

Polyalphabetic Substitution cntd….

Encryption Algorithm:

CV = (Pv + KV) mod 36

mod (modulo) refers to the remainder resulting from
a division operation.

e.g. 10 mod 7 = 3
(7 divides 10 and leaves a remainder of 3)

e.g. 50 mod 9 = 5
(9 divides 50 and leaves a remainder of 5)

Example: W + T =

(23 + 20) mod 36 = 7 = G

11

12

7

mod (modulo) of negative numbers….:
Remember, 10 mod 7 = 3
(1 multiple of 7 “fits in to / is smaller than” 10 and leaves a remainder of 3)

And…. 50 mod 9 = 5
(5 multiples of 9 “fit in to / is smaller than” 50 and leaves a remainder of 5)

And…. – 13 mod 36 = 23
(‐1 multiples of 36 (=‐36) “fits in to / is smaller than” ‐ 13 and leaves a
remainder of 23)

Decryption Algorithm:

PV = (Cv ‐ KV) mod 36

Example: G ‐ T = (7 ‐ 20) mod 36

= ‐ 13 mod 36 = 23 = W

14

Cryptography: Algorithms and Keys

• The strength of a cryptosystem is a function of:
– The strength of the algorithm
– The length (or size) of the key

• The assumption is that the general method of encryption (i.e. the algorithm is
known), and that the security of the system lies in the secrecy of the key.
– EG: General idea of a combination pad lock is known, strength is in secret

combination.

• The larger the key, the higher the work factor for the cryptanalyst.

• A brute-force attack means trying all possible key values.

13

14

8

15

Cryptographic Keys
• In our earlier example, we had a phrase as our key to unlocking the secret

message:

…. and each letter of the phrase could take on 1 of 26 possible numeric values.

Ours are (T= 20, H= 8 etc….)

• As we had 10 characters in our phrase, and each character could be any 1 of 26
possible values, our potential key space is 2610 i.e. there are
141,167,095,653,376 possible keys or “phrases”.

• Possible key value range: 00000000000000000000 – 26262626262626262626

(ours is 20080919200805040125)

16

Cryptographic Keys
• Lets think of keys as multiples of bits or bytes in a computer system

• If a key is 8 bits long, then there are 28 = 256 possible keys.

• A key that is 56-bits long has 256 possible key values. A very large number!

72,057,594,037,927,936 possible values in fact!

• If a computer could try one million keys per second, it would take over
2000 years to try all key values.

72,057,594,037,927,936 possible values @ 1,000,000 tests per second....
• 72,057,594,037,927,936 / 1,000,000 = 72057594037 seconds required to test all values
• 72057594037 / 60 = 1,200,959,900 minutes required to test all values
• 1,200,959,900 / 60 = 20,015,998.33 hours required to test all values
• 20,015,998.33 / 24 = 833,999.93 days required to test all values. / 365 = 2,284 YEARS

15

16

9

17

Cryptographic Keys
• If a 64-bit key were used, it would take 600,000 years to try all possible key

values (at a test rate 1 million keys per second)

• For a 128-bit key, it would take 1025 years.
The universe is only 1010 years old.

• When trying a brute-force attack need to consider:

– Number of keys to be tested
– The speed of each test.

18

Some Limitations of Symmetric Cryptography
• Consider our problem statement from earlier (which outlined what our desired

solution should solve…)

17

18

10

19

Some Limitations of Symmetric Cryptography

• Does not address the signature issue…..

– Receiver could make up fake messages?

– Sender could deny having sent authentic messages?

• Another major drawback (particularly in a distributed environment like the Internet)
is the issue of key distribution and management

• Symmetric systems require parties to cooperate in the generation and distribution
of key pairs. Not scalable (even where it might be “culturally” feasible).

20

Cryptography – Key Distribution

• Ciphers have improved significantly in terms of complexity since the days of
Caesar. However.......

• As noted, a big issue with symmetric cryptographic systems is that of key
management; specifically with respect to transferring keys.

• How do the sender and receiver agree on the same key?

• Split the key into several parts?

• Other....?

19

20

11

21

Asymmetric Cryptography:
Public Key Cryptography

• The problems of key distribution are solved by public key cryptography.

• Public key cryptography is an asymmetric scheme that uses a pair of keys for
encryption: a public key, which encrypts data, and a corresponding private, or
secret key for decryption.

• You publish your public key to the world while keeping your private key secret.
Anyone with a copy of your public key can then encrypt information that only
you can read.

• Crucially, it is computationally infeasible to deduce the private key from the
public key.

22

Public Key Cryptography
• The primary benefit of public key cryptography is that it allows people who

have no pre-existing security arrangement to exchange messages securely.

• The need for sender and receiver to share secret keys via some secure channel
is eliminated; all communications involve only public keys, and no private key is
ever transmitted or shared.

21

22

12

23

A little bit of number theory

Prime number: A number is prime if it is greater than 1 and if its only factors
are itself and 1.

1 is not prime (1 is not great er than 1….)
2 is prime (the ONLY even prime)
3 is prime
4 is not prime (no other even number – except 2 – is prime) …. 4 x 1 , 2 x 2
5 is prime (but being odd does not necessarily make you prime)
6 is not prime 6 x 1 , 3 x 2
7 is prime (….. But, again, being odd does not necessarily make you prime)
8 is not prime …. 8 x 1, 2 x 4
9 is NOT prime (but it is odd…..)….. 9 x 1, 3 x 3

24

RSA Algorithm

• First published in 1978 (and still secure).
(Researchers: Ron Rivest, Adi Shamir, Len Adleman)

• A block ciphering scheme, where the plaintext and ciphertext are integers
between 0 and n-1, for some value n.

(Foundation is in number theory in Mathematics, based on Euler’s
generalisation of Fermat's Theorem).

Format
A block of plaintext (message), M, gets transformed into a cipher block C

C = Me mod n (Enciphering Transformation)

M = Cd mod n = (Me)d mod n = Med mod n (Deciphering)

23

24

13

25

RSA Algorithm

• Both sender and receiver know the value of n

• Sender / everyone knows the value of e

• Receiver (only) knows the value of d

Thus the public key is {e, n}
….. and the private key is {d, n}

Requirements:

Values exist for e, d and n such that Med = M mod n for all M < n

Me and Cd can be calculated relatively easily for all values of M < n

It is infeasible to determine d given e and n

Public

Private

RSA: A (simple) example

• Suppose I wish to send my access number securely across an “open”
network.
e.g. PIN = 2345

• I don't want my account to be hacked; neither does my employer!

• My employer implements a security system (based on the RSA
algorithm, for instance) and tells me (and everyone else)…..:

“When sending us private data such as your PIN,
encrypt it using RSA. This is the relevant public
key information: e = 7, n = 33”

26

25

26

14

Encrypting my “plaintext” PIN: 2 3 4 5

Encrypting “2”:
C = Pe mod n
C = 27 mod 33
C = 128 mod 33 = 29

So (plaintext) 2 encrypts to
(ciphertext) 29

27

C = Pe mod n e = 7, n = 33

Encrypting “3”:
C = Pe mod n
C = 37 mod 33
C = 2187 mod 33 = 9

So (plaintext) 3 encrypts
to (ciphertext) 9

Encrypting “4”:
C = 47 mod 33
C = 16384 mod 33 = 16

So (plaintext) 4 encrypts
to (ciphertext) 16

Encrypting “5”:
C = 57 mod 33
C = 78125 mod 33 = 14

So (plaintext) 5 encrypts
to (ciphertext) 14

Encrypting my “plaintext” PIN: 2345
Plaintext: 2 3 4 5

Ciphertext: 29 9 16 14

• An “attacker” listening in on the connection might capture your
encrypted PIN (i.e. they could discover 29, 9, 16 , 14)

• Furthermore they would know that this is the output of the known RSA
algorithm (C = Pe mod n)

• …. They would know that e = 7 and that n = 33 as these are publicly
available)

• BUT….. They won’t be able to figure out P (the plaintext) in a
reasonable amount of time.

28

27

28

15

Decrypting 29, 9, 16 , 14

• Can only be done (in a reasonable amount of time) if you know the
private / secret key, d.

• d is not publicly available and is jealously guarded by the owner.

• Decryption is straightforward if you know the value of d.

Cd mod n  P

• Raising the ciphertext to the power of d, modulo n, will give you back
the plaintext.

29

Decrypting Ciphertext: 29 9 16 14

Decrypting “29”:
P = Cd mod n
P = 293 mod 33
P = 24389 mod 33 = 2

So (ciphertext) 29 decrypts
to (plaintext) 2

30

P = Cd mod n d = 3 , n = 33

Decrypting “9”:
P = Cd mod n
P = 93 mod 33
P = 729 mod 33 = 3

So (ciphertext) 9
decrypts to (plaintext) 3

Decrypting “16”:
P = 163 mod 33
P = 4096 mod 33 = 4

So (ciphertext) 16
decrypts to (plaintext) 4

Decrypting “14”:
P = 143 mod 33
P = 2744 mod 33 = 5

So (ciphertext) 14
decrypts to (plaintext) 5

29

30

16

Decryption of my PIN
Ciphertext: 29 9 16 14

Plaintext: 2 3 4 5

• Note that a knowledge of the encryption algorithm, a knowledge of the
encryption key and a copy of the ciphertext is not sufficient to get
back to the plaintext (in a reasonable amount of time).

• You must also know the value of d, the private key.

• The beauty of RSA is that the encryption key and process can be made
public without compromising the security of the system. This solves the
“key distribution” problem outlined earlier.

31

Next Steps
• Future session to look at RSA in more detail including some of the

underpinnings of the algorithm.

• Authentication and signatures using RSA

• Secure Sockets Layer (SSL) Algorithm

• RSA performance

• Attacking RSA

To do (by you):

• Contribute to the discussion forum on Moodle / LearnOnline
• Further reading in this area

32

31

32

