Recursive Algorithms

Part 1

Roadmap

* lteration and recursion

* Recursion traces

 Stacks and recursion

* Types of recursion

* Rules for designing recursive algorithms

Iteration and recursion

* For tasks that must be repeated, up until now we have considered
iterative approaches only

* Recap: iteration allows some sequence of steps (or block of code) to
be executed repeatedly, e.g. using a for loop or a while loop

* Recursion is another techniqgue which may be applied to complete
tasks which are repetitive in nature

Recursion

* "Normally", procedures (or methods) call other
procedures

* E.g. the main() procedure calls the alpha() procedure

* A recursive procedure is one which calls itself
* E.g. the beta() procedure contains a call to beta() il

COMP08033 Computational Thinking with Algorithms, Dr Patrick Mannion GMIT

Simple recursion program

* You can see Java Python

that the count . . ;
method calls void main() { count (index) :

itself count(9); (index)

* This program }
would output
the values01 2 count (index + 1)

to the console if void count(int index) {
run : :
print(index);
if(index<2) {
count(index+1);

index <

¥
¥

COMPO08033 Computational Thinking with Algorithms, Dr Patrick Mannion GMIT

Recursion trace for the call count(0)

call return

Java Python

void main() { count (index) :
count(0); (index)

} 1ndex <

count (index + 1)

void count(int index) {
print(index);
if(index<2) {
count(index+1);

¥
¥

COMPO08033 Computational Thinking with Algorithms, Dr Patrick Mannion GMIT

Stacks

* A program stack basically operates like a container of trays in a
cafeteria. It has only two operations:

* Push: push something onto the stack.
* Pop: pop something off the top of the stack.

* When the method returns or exits, the method’s activation frame is
popped off the stack.

 Each time a method is invoked, the method’s activation frame
(record) is placed on top of the program stack.

Stacks and recursion

Time: 0

Empty Stack

Time 1: Time 2: Time 3: Time 4:
Push: main() Push: count(0) Push: count(1) Push: count(2)
Inside count(0): Inside count(1)

Inside count(2)

!ori.nt (index) > 0 f’”.“t (index) - 1 print (index) - 2
if (index < 2) if (index < 2) if (index < 2)
count(index+1) count(index+1)

count(index+1)

COMP08033 Computational Thinking with Algorithms, Dr Patrick Mannion GMIT

This condition now fails!

Hence, recursion stops, and
method activation frames are
popped off the stack.

Why use recursion?

* With the technique of recursion, a problem may be solved by solving
smaller instances of the same problem

* Some problems are more easily solved by using a recursive approach
* E.g.

* Traversing through directories of a file system
* Traversing through a tree of search results
* Some sorting algorithms are recursive in nature

* Recursion often leads to cleaner and more concise code which is
easier to understand

Recursion vs. iteration

* Note: any set of tasks which may be accomplished using a recursive procedure
may also be accomplished by using an iterative procedure

* Recursion is "expensive”. The expense of recursion lies in the fact that we have
multiple activation frames and the fact that there is overhead involved with
calling a method.

* If both of the above statements are true, why would we ever use recursion?

* In many cases, the extra "expense" of recursion is far outweighed by a simpler,
clearer algorithm which leads to an implementation that is easier to code.

* Ultimately, the recursion is eliminated when the compiler creates assembly
language (it does this by implementing the stack).

* |f the recursion tree has a simple form, the iterative version may be better.

* |f the recursion tree appears quite “bushy”, with very few duplicate tasks, then
recursion is likely the natural solution.

Types of recursion

* Linear recursion: the method makes a single call to itself

* Tail recursion: the method makes a single call to itself, as the last
operation

* Binary recursion: the method makes two calls to itself

* Exponential recursion: the method makes more than two calls to
itself

Tail recursion

* Tail recursion is when the last operation in a method is a single
recursive call.

 Each time a method is invoked, the method’s activation frame
(record) is placed on top of the program stack.

* In this case, there are multiple active stack frames which are
unnecessary because they have finished their work.

* Can be expensive and inefficient, so use carefully!

Infinite recursion

* |Infinite recursion occurs when a recursive Java
method does not have a base case void infinite(int x) {

* Consider the method to the right: infinite(x-1);

* If we call infinite(1 , the next call will be }
mﬂmte%O) then i |n |n|te(1), then
infinite(-2) etc...

* In Java, this method will keep making Python

recursive calls to itself until a _
StackOverflowError occurs (recursive calls T
have taken up all available memory) infinite (x-

* In Python, this function will continue
callmg itself until it exceeds the limit for
recursion depth (1000 by default)

infinite (x):

infinite (1)

COMPO08033 Computational Thinking with Algorithms, Dr Patrick Mannion GMIT

Java

Circular recursion void circular(int x) {

: : circular(x+1l);
e Circular recursion occurs when

recursive calls stop making ¥
progress towards the base case circular(x-1);

* Consider the method to the right: }

* |f we call circular(1), the next call
will be circular(2), then circular(1), Python

then circular(2 etc... circular (x) :
* As with the infinite recursion S ==
example, this method will keep circular(x + 1)

making recursive calls to itself until cLreularix = L
a StackOverflowError occurs

(recursive calls have taken up all
available memory) circular (1)

COMPO08033 Computational Thinking with Algorithms, Dr Patrick Mannion GMIT

Rules for recursive algorithms

1. Base case: a recursive algorithm must always have a base case
which can be solved without recursion. Methods without a base
case Will result in infinite recursion when run.

2. Making progress: for cases that are to be solved recursively, the
next recursive call must be a case that makes progress towards the
base case. Methods that do not make progress towards the base
case will result in circular recursion when run.

3. Design rule: Assume that all the recursive calls work.

4. Compound interest rule: Never duplicate work by solving the same
instance of a problem in separate recursive calls.

Designing recursive algorithms

* Think about the task which you wish to accomplish, and try to identify any
recurring patterns, e.g. similar operations that must be conducted, like
traversing through nested directories on a file system

* Divide the problem up using these recurring operations
* Then:

* |dentify cases you know can be solved without recursion (base cases). Avoid ending
with a multitude of special cases; rather, try to identify a simple base case

* Invoke a new copy of the method within each recursive step
e Each recursive step resembles the original, larger problem
* Make progress towards the base case(s) with each successive recursive step/call

Recap

* A recursive method is one which calls itself within its method body

* Recursion allows us to solve a problem, by breaking it up into smaller
instances of the same problem

* Recursive methods must always have a base case which may be
solved without recursion

* In the next lecture we will consider some example problems which
may be solved using recursion

