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• Stacks and recursion

• Types of recursion

• Rules for designing recursive algorithms
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Iteration and recursion

• For tasks that must be repeated, up until now we have considered 
iterative approaches only

• Recap: iteration allows some sequence of steps (or block of code) to 
be executed repeatedly,  e.g. using a for loop or a while loop

• Recursion is another technique which may be applied to complete 
tasks which are repetitive in nature
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Recursion

• "Normally", procedures (or methods) call other 
procedures
• E.g. the main() procedure calls the alpha() procedure

• A recursive procedure is one which calls itself
• E.g. the beta() procedure contains a call to beta()
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Simple recursion program

• You can see 
that the count 
method calls 
itself

• This program 
would output 
the values 0 1 2 
to the console if 
run
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Java

void main() {

count(0);

}

void count(int index) {

print(index);

if(index<2) {

count(index+1);  

}

}

Python



Recursion trace for the call count(0)
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call

call
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Java

void main() {

count(0);

}

void count(int index) {

print(index);

if(index<2) {

count(index+1);  

}

}

Python



Stacks

• A program stack basically operates like a container of trays in a 
cafeteria. It has only two operations:

• Push: push something onto the stack.

• Pop: pop something off the top of the stack.

• When the method returns or exits, the method’s activation frame is 
popped off the stack.

• Each time a method is invoked, the method’s activation frame 
(record) is placed on top of the program stack.
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Stacks and recursion
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Time: 0

Empty Stack

Time 1:

Push:  main()

main()

Time 2:

Push:  count(0)

main()

count(0)

Time 3:

Push:  count(1)

Inside count(0):

print (index)      → 0

if (index < 2) 

count(index+1)

Inside count(1)

print (index)    → 1

if (index < 2) 

count(index+1)

main()

count(0)

count(1)

Time 4:

Push:  count(2)

main()

count(0)

count(1)

Inside count(2)

print (index) → 2

if (index < 2) 

count(index+1)

count(2)

…

This condition now fails!

Hence, recursion stops, and 
method activation frames are 
popped off the stack.



Why use recursion?

• With the technique of recursion, a problem may be solved by solving 
smaller instances of the same problem

• Some problems are more easily solved by using a recursive approach

• E.g.
• Traversing through directories of a file system

• Traversing through a tree of search results

• Some sorting algorithms are recursive in nature

• Recursion often leads to cleaner and more concise code which is 
easier to understand
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Recursion vs. iteration

• Note: any set of tasks which may be accomplished using a recursive procedure 
may also be accomplished by using an iterative procedure

• Recursion is "expensive".  The expense of recursion lies in the fact that we have 
multiple activation frames and the fact that there is overhead involved with 
calling a method.

• If both of the above statements are true, why would we ever use recursion?

• In many cases, the extra "expense" of recursion is far outweighed by a simpler, 
clearer algorithm which leads to an implementation that is easier to code.

• Ultimately, the recursion is eliminated when the compiler creates assembly 
language (it does this by implementing the stack).

• If the recursion tree has a simple form, the iterative version may be better. 

• If the recursion tree appears quite “bushy”, with very few duplicate tasks, then 
recursion is likely the natural solution.
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Types of recursion

• Linear recursion: the method makes a single call to itself

• Tail recursion: the method makes a single call to itself, as the last 
operation

• Binary recursion: the method makes two calls to itself

• Exponential recursion: the method makes more than two calls to 
itself
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Tail recursion

• Tail recursion is when the last operation in a method is a single 
recursive call.

• Each time a method is invoked, the method’s activation frame 
(record) is placed on top of the program stack.

• In this case, there are multiple active stack frames which are 
unnecessary because they have finished their work.

• Can be expensive and inefficient, so use carefully!

COMP08033 Computational Thinking with Algorithms, Dr Patrick Mannion GMIT



Infinite recursion

• Infinite recursion occurs when a recursive 
method does not have a base case

• Consider the method to the right: 

• If we call infinite(1), the next call will be 
infinite(0), then infinite(-1), then  
infinite(-2) etc…

• In Java, this method will keep making 
recursive calls to itself until a 
StackOverflowError occurs (recursive calls 
have taken up all available memory)

• In Python, this function will continue 
calling itself until it exceeds the limit for 
recursion depth (1000 by default)

Java

void infinite(int x) {

infinite(x-1);

}

Python
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Circular recursion

• Circular recursion occurs when 
recursive calls stop making 
progress towards the base case

• Consider the method to the right: 
• If we call circular(1), the next call 

will be circular(2), then circular(1), 
then circular(2) etc…

• As with the infinite recursion 
example, this method will keep 
making recursive calls to itself until 
a StackOverflowError occurs 
(recursive calls have taken up all 
available memory)

Java

void circular(int x) {

if(x==1) {

circular(x+1);

}

circular(x-1);

}

Python
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Rules for recursive algorithms

1. Base case: a recursive algorithm must always have a base case 
which can be solved without recursion. Methods without a base 
case will result in infinite recursion when run.

2. Making progress: for cases that are to be solved recursively, the 
next recursive call must be a case that makes progress towards the 
base case. Methods that do not make progress towards the base 
case will result in circular recursion when run.

3. Design rule: Assume that all the recursive calls work.

4. Compound interest rule: Never duplicate work by solving the same 
instance of a problem in separate recursive calls.
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Designing recursive algorithms

• Think about the task which you wish to accomplish, and try to identify any 
recurring patterns, e.g. similar operations that must be conducted, like 
traversing through nested directories on a file system

• Divide the problem up using these recurring operations

• Then:
• Identify cases you know can be solved without recursion (base cases). Avoid ending 

with a multitude of special cases; rather, try to identify a simple base case

• Invoke a new copy of the method within each recursive step

• Each recursive step resembles the original, larger problem

• Make progress towards the base case(s) with each successive recursive step/call
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Recap

• A recursive method is one which calls itself within its method body

• Recursion allows us to solve a problem, by breaking it up into smaller 
instances of the same problem

• Recursive methods must always have a base case which may be 
solved without recursion

• In the next lecture we will consider some example problems which 
may be solved using recursion
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