
Recursive Algorithms
Part 1

COMP08033 Computational Thinking with Algorithms, Dr Patrick Mannion GMIT

Roadmap

• Iteration and recursion

• Recursion traces

• Stacks and recursion

• Types of recursion

• Rules for designing recursive algorithms

COMP08033 Computational Thinking with Algorithms, Dr Patrick Mannion GMIT

Iteration and recursion

• For tasks that must be repeated, up until now we have considered
iterative approaches only

• Recap: iteration allows some sequence of steps (or block of code) to
be executed repeatedly, e.g. using a for loop or a while loop

• Recursion is another technique which may be applied to complete
tasks which are repetitive in nature

COMP08033 Computational Thinking with Algorithms, Dr Patrick Mannion GMIT

Recursion

• "Normally", procedures (or methods) call other
procedures
• E.g. the main() procedure calls the alpha() procedure

• A recursive procedure is one which calls itself
• E.g. the beta() procedure contains a call to beta()

COMP08033 Computational Thinking with Algorithms, Dr Patrick Mannion GMIT

main()

alpha()

beta()

Simple recursion program

• You can see
that the count
method calls
itself

• This program
would output
the values 0 1 2
to the console if
run

COMP08033 Computational Thinking with Algorithms, Dr Patrick Mannion GMIT

Java

void main() {

count(0);

}

void count(int index) {

print(index);

if(index<2) {

count(index+1);

}

}

Python

Recursion trace for the call count(0)

COMP08033 Computational Thinking with Algorithms, Dr Patrick Mannion GMIT

count(0)

count(1)

count(2)

call

call

call return

return

return

Java

void main() {

count(0);

}

void count(int index) {

print(index);

if(index<2) {

count(index+1);

}

}

Python

Stacks

• A program stack basically operates like a container of trays in a
cafeteria. It has only two operations:

• Push: push something onto the stack.

• Pop: pop something off the top of the stack.

• When the method returns or exits, the method’s activation frame is
popped off the stack.

• Each time a method is invoked, the method’s activation frame
(record) is placed on top of the program stack.

COMP08033 Computational Thinking with Algorithms, Dr Patrick Mannion GMIT

Stacks and recursion

COMP08033 Computational Thinking with Algorithms, Dr Patrick Mannion GMIT

Time: 0

Empty Stack

Time 1:

Push: main()

main()

Time 2:

Push: count(0)

main()

count(0)

Time 3:

Push: count(1)

Inside count(0):

print (index) → 0

if (index < 2)

count(index+1)

Inside count(1)

print (index) → 1

if (index < 2)

count(index+1)

main()

count(0)

count(1)

Time 4:

Push: count(2)

main()

count(0)

count(1)

Inside count(2)

print (index) → 2

if (index < 2)

count(index+1)

count(2)

…

This condition now fails!

Hence, recursion stops, and
method activation frames are
popped off the stack.

Why use recursion?

• With the technique of recursion, a problem may be solved by solving
smaller instances of the same problem

• Some problems are more easily solved by using a recursive approach

• E.g.
• Traversing through directories of a file system

• Traversing through a tree of search results

• Some sorting algorithms are recursive in nature

• Recursion often leads to cleaner and more concise code which is
easier to understand

COMP08033 Computational Thinking with Algorithms, Dr Patrick Mannion GMIT

Recursion vs. iteration

• Note: any set of tasks which may be accomplished using a recursive procedure
may also be accomplished by using an iterative procedure

• Recursion is "expensive". The expense of recursion lies in the fact that we have
multiple activation frames and the fact that there is overhead involved with
calling a method.

• If both of the above statements are true, why would we ever use recursion?

• In many cases, the extra "expense" of recursion is far outweighed by a simpler,
clearer algorithm which leads to an implementation that is easier to code.

• Ultimately, the recursion is eliminated when the compiler creates assembly
language (it does this by implementing the stack).

• If the recursion tree has a simple form, the iterative version may be better.

• If the recursion tree appears quite “bushy”, with very few duplicate tasks, then
recursion is likely the natural solution.

COMP08033 Computational Thinking with Algorithms, Dr Patrick Mannion GMIT

Types of recursion

• Linear recursion: the method makes a single call to itself

• Tail recursion: the method makes a single call to itself, as the last
operation

• Binary recursion: the method makes two calls to itself

• Exponential recursion: the method makes more than two calls to
itself

COMP08033 Computational Thinking with Algorithms, Dr Patrick Mannion GMIT

Tail recursion

• Tail recursion is when the last operation in a method is a single
recursive call.

• Each time a method is invoked, the method’s activation frame
(record) is placed on top of the program stack.

• In this case, there are multiple active stack frames which are
unnecessary because they have finished their work.

• Can be expensive and inefficient, so use carefully!

COMP08033 Computational Thinking with Algorithms, Dr Patrick Mannion GMIT

Infinite recursion

• Infinite recursion occurs when a recursive
method does not have a base case

• Consider the method to the right:

• If we call infinite(1), the next call will be
infinite(0), then infinite(-1), then
infinite(-2) etc…

• In Java, this method will keep making
recursive calls to itself until a
StackOverflowError occurs (recursive calls
have taken up all available memory)

• In Python, this function will continue
calling itself until it exceeds the limit for
recursion depth (1000 by default)

Java

void infinite(int x) {

infinite(x-1);

}

Python

COMP08033 Computational Thinking with Algorithms, Dr Patrick Mannion GMIT

Circular recursion

• Circular recursion occurs when
recursive calls stop making
progress towards the base case

• Consider the method to the right:
• If we call circular(1), the next call

will be circular(2), then circular(1),
then circular(2) etc…

• As with the infinite recursion
example, this method will keep
making recursive calls to itself until
a StackOverflowError occurs
(recursive calls have taken up all
available memory)

Java

void circular(int x) {

if(x==1) {

circular(x+1);

}

circular(x-1);

}

Python

COMP08033 Computational Thinking with Algorithms, Dr Patrick Mannion GMIT

Rules for recursive algorithms

1. Base case: a recursive algorithm must always have a base case
which can be solved without recursion. Methods without a base
case will result in infinite recursion when run.

2. Making progress: for cases that are to be solved recursively, the
next recursive call must be a case that makes progress towards the
base case. Methods that do not make progress towards the base
case will result in circular recursion when run.

3. Design rule: Assume that all the recursive calls work.

4. Compound interest rule: Never duplicate work by solving the same
instance of a problem in separate recursive calls.

COMP08033 Computational Thinking with Algorithms, Dr Patrick Mannion GMIT

Designing recursive algorithms

• Think about the task which you wish to accomplish, and try to identify any
recurring patterns, e.g. similar operations that must be conducted, like
traversing through nested directories on a file system

• Divide the problem up using these recurring operations

• Then:
• Identify cases you know can be solved without recursion (base cases). Avoid ending

with a multitude of special cases; rather, try to identify a simple base case

• Invoke a new copy of the method within each recursive step

• Each recursive step resembles the original, larger problem

• Make progress towards the base case(s) with each successive recursive step/call

COMP08033 Computational Thinking with Algorithms, Dr Patrick Mannion GMIT

Recap

• A recursive method is one which calls itself within its method body

• Recursion allows us to solve a problem, by breaking it up into smaller
instances of the same problem

• Recursive methods must always have a base case which may be
solved without recursion

• In the next lecture we will consider some example problems which
may be solved using recursion

COMP08033 Computational Thinking with Algorithms, Dr Patrick Mannion GMIT

