
Analysing Algorithms
Part 2

COMP08033 Computational Thinking with Algorithms, Dr Patrick Mannion GMIT



Roadmap

• Review of key concepts 
• Complexity
• Orders of growth
• Best, average & worst cases

• Asymptotic notation
• O (Big O)
• Ω (omega)
• Θ (theta)

• Evaluating complexity

• Examples

COMP08033 Computational Thinking with Algorithms, Dr Patrick Mannion GMIT



Review of complexity

• Complexity measures the efficiency of an algorithm’s design, eliminating the effects of 
platform-specific implementation details (e.g. CPU or complier design)

• We can compare the relative efficiency of algorithms by evaluating their running time 
complexity on input data of size n (memory or storage requirements of an algorithm 
could also be evaluated in this manner)

• E.g. how much longer will an algorithm take to execute if we input a list of 1000 
elements instead of 10 elements?

• Standard methodology developed over the past half-century for comparing algorithms

• Can determine which algorithms scale well to solve problems of a nontrivial size, by 
evaluating the complexity the algorithm in relation to the size n of the provided input

• Typically, algorithmic complexity falls into one of a number families (i.e. the growth in its 
execution time with respect to increasing input size n is of a certain order). The effect of 
higher order growth functions becomes more significant as the size n of the input set is 
increased

COMP08033 Computational Thinking with Algorithms, Dr Patrick Mannion GMIT



Orders of growth

COMP08033 Computational Thinking with Algorithms, Dr Patrick Mannion GMIT



Comparing growth functions

value of 𝒏 constant 𝒍𝒐𝒈 𝒏
(logarithmic)

𝒏
(linear)

𝒏 𝒍𝒐𝒈 𝒏
(linearithmic)

𝒏𝟐

(quadratic)
𝒏𝟑

(cubic)
𝟐𝒏

(exponential)

8 1 3 8 24 64 512 256

16 1 4 16 64 256 4096 65536

32 1 5 32 160 1024 32768 4294967296

64 1 6 64 384 4096 262144 1.84467E+19

128 1 7 128 896 16384 2097152 3.40282E+38

256 1 8 256 2048 65536 16777216 1.15792E+77

512 1 9 512 4608 262144 1.34E+08 1.3408E+154

COMP08033 Computational Thinking with Algorithms, Dr Patrick Mannion GMIT



Best, worst and average cases

• As well as the size n of the input, the actual data that is input may also have an 
effect on the time which an algorithm takes to run

• There could be many, many instances of size n which would be valid as input; it 
may be possible to group these instances into classes with broadly similar features 

• For many problems, no single algorithm exists which is optimal for every possible 
input instance 

• Therefore, choosing an algorithm depends on understanding the problem being 
solved and the underlying probability distribution of the instances likely to be 
encountered, as well as the behaviour of the algorithms being considered

• By knowing the performance of an algorithm under each of these cases, you can 
judge whether an algorithm is appropriate to use in your specific situation

COMP08033 Computational Thinking with Algorithms, Dr Patrick Mannion GMIT



Best, average and worst cases

• Worst case: Defines a class of input instances for which an algorithm 
exhibits its worst runtime behaviour. Instead of trying to identify the 
specific input, algorithm designers typically describe properties of the input 
that prevent an algorithm from running efficiently.

• Average case: Defines the expected behaviour when executing the 
algorithm on random input instances. While some input problems will 
require greater time to complete because of some special cases, the vast 
majority of input problems will not. This measure describes the 
expectation an average user of the algorithm should have.

• Best case: Defines a class of input instances for which an algorithm exhibits 
its best runtime behaviour. For these input instances, the algorithm does 
the least work. In reality, the best case rarely occurs.

COMP08033 Computational Thinking with Algorithms, Dr Patrick Mannion GMIT



Worst case

• For any particular value of n, the number of operations or work done by an 
algorithm may vary dramatically over all the instances of size n

• For a given algorithm and a given value n, the worst-case execution time is 
the maximum execution time, where the maximum is taken over all 
instances of size n

• We are interested in the worst-case behaviour of an algorithm because it 
often is the easiest case to analyse

• It also explains how slow the program could be in any situation, and 
provides a lower bound on possible performance

• Good idea to consider worst case if guarantees are required for the 
maximum possible running time for a given n

• Not possible to find every worst-case input instance, but sample (near) 
worst-case instances can be crafted given the algorithm’s description

COMP08033 Computational Thinking with Algorithms, Dr Patrick Mannion GMIT



Big O notation

• Big O notation (with a capital latin letter O, not a zero) is a symbolism used 
in complexity theory, mathematics and computer science to describe the 
asymptotic behaviours of functions

• In short, Big O notation measures how quickly a function grows or declines

• Also called Landau’s symbol, after the German number theoretician 
Edmund Landau who invented the notation

• The growth rate of a function is also called its order

• The capitalised greek letter “omicron” was originally used; this has fallen 
out of favour and the capitalised latin letter “O” is now commonly used

• Example use: Algoroithm X runs in 𝑂(𝑛2) time

COMP08033 Computational Thinking with Algorithms, Dr Patrick Mannion GMIT



Big O notation

• Big O notation is used in computer science to describe the complexity of an 
algorithm in the worst-case scenario

• Can be used to describe the execution time required or the space used 
(e.g. in memory or on disk) by an algorithm

• Big O notation can be thought of as a measure of the expected “efficiency” 
of an algorithm (note that for small sizes of n, all algorithms are efficient, 
i.e. fast enough to be used for real time applications)

• When evaluating the complexity of algorithms, we can say that if their Big 
O notations are similar, their complexity in terms of time/space 
requirements is similar (in the worst case)

• And if algorithm A has a less complex Big O notation than algorithm B, we 
can infer that it is much more efficient in terms of space/time requirements 
(at least in the worst case)

COMP08033 Computational Thinking with Algorithms, Dr Patrick Mannion GMIT



Formally

Suppose 𝑓(𝑥) and 𝑔(𝑥) are two functions defined on some subset of the set 
of real numbers

𝑓 𝑥 = O g 𝑥 for 𝑥 → infinity

if and only if there exist constants 𝑁 and 𝐶 such that

𝑓 𝑥 ≤ C g 𝑥 for all 𝑥 > N

Intuitively, this means that 𝑓 does not grow more quickly than 𝑔

(Note that N is size of the input set which is large enough for the higher 
order term to begin to dominate)

COMP08033 Computational Thinking with Algorithms, Dr Patrick Mannion GMIT



Tightest upper bound

• Note that when using Big O notation, we aim to identify the tightest 
upper bound possible

• An algorithm that is 𝑂(𝑛2) is also 𝑂(𝑛3) , but the former information 
is more useful

• Specifying an upper bound which is higher than necessary is like 
saying: “This task will take at most one week to complete”, when the 
true maximum time to complete the task is in fact five minutes!

COMP08033 Computational Thinking with Algorithms, Dr Patrick Mannion GMIT



Ω (omega) notation

• We can use Ω (omega) notation to describe the complexity of an 
algorithm in the best case

• Best case may not occur often, but still useful to analyse

• Represents the lower bound on the number of possible operations

• E.g. an algorithm which is Ω 𝑛 exhibits a linear growth in execution 
time in the best case, as n is increased

COMP08033 Computational Thinking with Algorithms, Dr Patrick Mannion GMIT



Θ (theta) notation

• Finally, Θ (theta) notation is used to specify that the running time of 
an algorithm is no greater or less than a certain order

• E.g. we say that an algorithm is Θ(𝑛) if it is both O(𝑛) and Ω 𝑛 , i.e. 
the growth of its execution time is no better or worse than the order 
specified (linear in this case)

• The actual functions which describe the upper and lower limits do not 
need to be the exact same in this case, just of the same order

COMP08033 Computational Thinking with Algorithms, Dr Patrick Mannion GMIT



Separating an algorithm and its implementation

• Two concepts:
• The input data size 𝑛, or the number of individual data items in a single data 

instance to be processed
• The number of elementary operations 𝑓(𝑛) taken by an algorithm, or its 

running time

• For simplicity, we assume that all elementary operations take the 
same amount of “time” to execute (not true in practice due to 
architecture, cache vs. RAM vs. swap/disk access times etc.)

• E.g. an addition, multiplication, division, accessing an array element 
are all assumed to take the same amount of time

• Basis of the RAM (Random Access Machine) model of computation

COMP08033 Computational Thinking with Algorithms, Dr Patrick Mannion GMIT



Separating an algorithm and its implementation

• The running time T n of an implementation is: T n = 𝑐 ∗ 𝑓(𝑛) 
• 𝑓(𝑛) refers to the fact that the running time is a function of the size n of the 

input dataset

• 𝑐 is some constant

• The constant factor 𝑐 can rarely be determined and depends on the specific 
computer, operating system, language, compiler, etc. that is used for the 
program implementation

COMP08033 Computational Thinking with Algorithms, Dr Patrick Mannion GMIT



Evaluating complexity

• When evaluating the complexity of an algorithm, keep in mind that 
you must identify the most expensive computation within an 
algorithm to determine its classification

• For example, consider an algorithm that is subdivided into two tasks, 
a task classified as linear followed by a task classified as quadratic.
• Say the number of operations/execution time is:

• T 𝑛 = 50 + 125𝑛 + 5𝑛2

• The overall complexity of the algorithm must therefore be classified as 
quadratic, we can disregard all lower order terms as the 𝑛2 term will become 
dominant for input sizes of 𝑛=6 or above

COMP08033 Computational Thinking with Algorithms, Dr Patrick Mannion GMIT



Evaluating complexity

• An algorithm with better asymptotic growth will eventually execute 
faster than one with worse asymptotic growth, regardless of the 
actual constants

• The actual breakpoint will differ based on the constants and size of 
the input, but it exists and can be empirically evaluated

• During asymptotic analysis we only need to be concerned with the 
fastest-growing term of the T(n) function. For this reason, if the 
number of operations for an algorithm can be computed as 
𝑇 𝑛 = 𝑐 ∗ 𝑛3 + 𝑑 ∗ 𝑛 log(𝑛), we would classify this algorithm as 
𝑂(𝑛3) because that is the dominant term which grows far more 
rapidly than 𝑛 log(𝑛)

COMP08033 Computational Thinking with Algorithms, Dr Patrick Mannion GMIT



Passing an array to a method in Java

• If we want to pass multiple values to a method, the easiest way to do 
this is to pass in an array
• E.g. an array of numbers to be sorted

COMP08033 Computational Thinking with Algorithms, Dr Patrick Mannion GMIT

// passing an array of integers into a method in Java
void myMethod(int[] elements) { 

// do something with the data here
}

Array with 5 elements



Passing an array to a function in Python

• If we want to pass multiple values to a function, the easiest way to do 
this is to pass in an array
• E.g. an array of numbers to be sorted

COMP08033 Computational Thinking with Algorithms, Dr Patrick Mannion GMIT

Array with 5 elements



O(1) example

• O 1 describes an algorithm 
that will always execute in the 
same time (or space) 
regardless of the size of the 
input data set

• Consider the Java code sample 
to the right

• No matter how many 
elements are in the array, this 
method will execute in 
constant time

• This method executes in 
constant time in the best, 
worst and average cases

boolean isFirstElementTwo(int[] elements) 

{

if(elements[0] == 2) {

return true;

}

else {

return false;

}

}

COMP08033 Computational Thinking with Algorithms, Dr Patrick Mannion GMIT



O(1) example

• O 1 describes an algorithm 
that will always execute in the 
same time (or space) 
regardless of the size of the 
input data set

• Consider the Python code 
sample to the right

• No matter how many 
elements are in the array, this 
method will execute in 
constant time

• This method executes in 
constant time in the best, 
worst and average cases

boolean isFirstElementTwo(int[] elements) 

{

if(elements[0] == 2) {

return true;

}

else {

return false;

}

}

COMP08033 Computational Thinking with Algorithms, Dr Patrick Mannion GMIT



O(n) example

• O(n) describes an algorithm whose worst case performance will grow 
linearly and in direct proportion to the size of the input data set

• An algorithm which loops once through an array using a for loop 
would typically be O(n). A matching number could be found during 
any iteration of the for loop and therefore the function could return 
before all elements in the array have been iterated through

• Big O notation will always assume the upper limit where the 
algorithm will perform the maximum number of operations

COMP08033 Computational Thinking with Algorithms, Dr Patrick Mannion GMIT



O(n) example

• Consider the Java code 
sample to the right

• The worst possible time 
complexity depends 
linearly on the number of 
elements in the array

• Execution time for this 
method is constant in the 
best case

boolean containsOne(int[] elements) {

for (int i=0; i<elements.size(); i++){

if(elements[i] == 1) {

return true;

}

}

return false;

}

COMP08033 Computational Thinking with Algorithms, Dr Patrick Mannion GMIT



O(n) example

• Consider the Python code 
sample to the right

• The worst possible time 
complexity depends 
linearly on the number of 
elements in the array

• Execution time for this 
method is constant in the 
best case

boolean containsOne(int[] elements) {

for (int i=0; i<elements.size(); i++){

if(elements[i] == 1) {

return true;

}

}

return false;

}

COMP08033 Computational Thinking with Algorithms, Dr Patrick Mannion GMIT



O(n2) example

• O(n2) represents an algorithm whose worst case performance is 
directly proportional to the square of the size of the input data set

• This class of complexity is common with algorithms that involve 
nested iterations over the input data set (e.g. nested for loops)

• Deeper nested iterations will result in higher orders e.g. O(n3), O(n4), 
etc.

COMP08033 Computational Thinking with Algorithms, Dr Patrick Mannion GMIT



O(n2) example

• Consider the Java code 
sample to the right

• The worst execution time 
depends on the square of 
the number of elements 
in the array

• Execution time for this 
method is constant in the 
best case

boolean containsDuplicates(int[] elements) 
{

for (int i=0; i<elements.length; i++){

for (int j=0; j<elements.length; j++){

if(i == j){ // avoid self comparison

continue;

}

if(elements[i] == elements[j]) {

return true; // duplicate found

}

}

}

return false;

}

COMP08033 Computational Thinking with Algorithms, Dr Patrick Mannion GMIT



O(n2) example

• Consider the Python code 
sample to the right

• The worst execution time 
depends on the square of 
the number of elements 
in the array

• Execution time for this 
method is constant in the 
best case

COMP08033 Computational Thinking with Algorithms, Dr Patrick Mannion GMIT


