
Review of Programming &
Mathematical Concepts

Computational Thinking with Algorithms

COMP08033 Computational Thinking with Algorithms, Patrick Mannion GMIT

Roadmap

• Mathematical operators

• Order of operations

• Variables & data types

• Common operators in programming

• Functions/methods/procedures

• Control structures

• Data structures

COMP08033 Computational Thinking with Algorithms, Patrick Mannion GMIT

Mathematical operators

Operator Description Examples

+ Additive operator
(also string concatenation)

2 + 1 = 3
“abc” + “_” + 123 = “abc_123”

- Subtraction operator 25 – 12 = 13

* Multiplication operator 2 * 25 = 50

/ Division operator 35 / 5 = 7

% Remainder operator 35 % 5 = 0, 36 % 5 = 1

COMP08033 Computational Thinking with Algorithms, Patrick Mannion GMIT

Order of operations - BEMDAS

• Brackets

• Exponents

• Multiplication

• Division

• Addition

• Subtraction

Multiplication/division and addition/subtraction may always be worked
out in the same step

COMP08033 Computational Thinking with Algorithms, Patrick Mannion GMIT

Exponents

• Exponents indicate that a quantity is to be multiplied by itself some
number of times

• In general: 𝑥𝑛 specifies that a number x is to be multiplied by itself n
times

• 43 (pronounced “4 to the power of 3”), therefore evaluates to:
• 43 = 4 * 4 * 4 = 64

COMP08033 Computational Thinking with Algorithms, Patrick Mannion GMIT

Order of operations example

Evaluate: 43 * (-2 / 4 + 3 * 4), following BEMDAS

• Step 1: 43 * (-0.5 + 12)

• Step 2: 43 * 11.5

• Step 3: 64 * 11.5

• Step 4: 736

COMP08033 Computational Thinking with Algorithms, Patrick Mannion GMIT

Variables

• A variable is simply a storage location and associated name which we
can use to store some information for later use

• Some different types of variables:
• Integer (whole numbers e.g. 1)

• Floating point (real numbers e.g. 1.123543)

• String (a collection of characters e.g. “test”)

COMP08033 Computational Thinking with Algorithms, Patrick Mannion GMIT

Data types

• Numeric data
• Integers, i.e. whole numbers, e.g. 1, 0, -127

• Floating point, i.e. real numbers, e.g. 2.12, 3.1415, -127.01

• Character data
• Can contain any valid character symbols, e.g. @, !, 4, K, abcd1234

• String data type in Java

• Enclosed in quotes, e.g. “the quick brown fox jumped over the lazy dog”

• Boolean data
• true or false

COMP08033 Computational Thinking with Algorithms, Patrick Mannion GMIT

Strongly and weakly typed

• Programming languages are often classified as being either strongly
typed or weakly typed

• Strongly typed languages will generate an error or refuse to compile
if the argument passed to a function does not closely match the
expected type

• Weakly typed languages may produce unpredictable results or may
perform implicit type conversion if the argument passed to a function
does not match the expected type

COMP08033 Computational Thinking with Algorithms, Patrick Mannion GMIT

Strongly and weakly typed

Java

int myInt = 2;

float myFloat = 2.3456f;

String myString = “test”;

JavaScript

var myInt = 2;

var myFloat = 2.3456f;

var myString = “test”;

COMP08033 Computational Thinking with Algorithms, Patrick Mannion GMIT

Common operators in programming

COMP08033 Computational Thinking with Algorithms, Patrick Mannion GMIT

Operator Description Examples

= Assignment operator int number = 23; string myWord = “apple”;

++ Increment operator; increments a value by 1 int number = 23;
number++;
System.out.println(number); // prints 24

-- Decrement operator; decrements a value by 1 int number = 23;
number--;
System.out.println(number); // prints 22

+= Assignment
(shorthand for number = number + value)

int number = 23;
number += 2;
System.out.println(number); // prints 25

-= Assignment
(shorthand for number = number - value)

int number = 23;
number -= 2;
System.out.println(number); // prints 21

Common operators in programming

COMP08033 Computational Thinking with Algorithms, Patrick Mannion GMIT

Operator Description Examples

== Equality, tests if two values are equal System.out.println(2==1); // prints false

!= Equality, tests if two values are not equal System.out.println(2!=1); // prints true

&& Logical AND System.out.println(2==1 && 1==1); // prints false

|| Logical OR System.out.println(2==1 || 1==1); // prints true

! Logical complement operator, inverts the value
of a boolean

boolean success = false;
System.out.println(!success); // prints true

> Relational, greater than System.out.println(1>1); // prints false

>= Relational, greater than or equal to System.out.println(1>=1); // prints true

< Relational, less than System.out.println(1<1); // prints false

<= Relational, less than or equal to System.out.println(1<=1); // prints true

Operator precedence
in Java
Source:
https://docs.oracle.com/javase/tutorial/java/
nutsandbolts/operators.html

COMP08033 Computational Thinking with Algorithms, Patrick Mannion GMIT

https://docs.oracle.com/javase/tutorial/java/nutsandbolts/operators.html

Functions

• A function is a block of code designed to perform a particular task

• A function is executed when "something" invokes it (calls it)

• C/C++/JavaScript – function

• Java/C# – method

• Psuedocode – procedure

COMP08033 Computational Thinking with Algorithms, Patrick Mannion GMIT

Functions

Java

int myMethod (int p1, int p2) {

return p1*p2;

// This method returns the
product of p1 and p2

}

JavaScript

function myFunction(p1, p2) {

return p1 * p2;

// This function returns the
product of p1 and p2

}

COMP08033 Computational Thinking with Algorithms, Patrick Mannion GMIT

Control Structures

• Sequential

• Selection

• Iteration

COMP08033 Computational Thinking with Algorithms, Patrick Mannion GMIT

Sequential

• This is the default control structure

• Statements are executed line by line in the order that they appear

COMP08033 Computational Thinking with Algorithms, Patrick Mannion GMIT

Selection

• Selection statements allow different blocks of code to be executed
based on some condition

• Examples:
• if

• if/else if/else

• switch

COMP08033 Computational Thinking with Algorithms, Patrick Mannion GMIT

if/else if/else

Java
int i=0;

if (i==1) {

// do something

}

else if (i==2) {

// do something else

}

else {

// do something different

}

JavaScript
var i=0;

if (i===1) {

// do something

}

else if (i===2) {

// do something else

}

else {

// do something different

}

COMP08033 Computational Thinking with Algorithms, Patrick Mannion GMIT

Switch

Java
int i=0;

switch (i) {

case 0:

// do something

break;

case 1:

// do something else

break;

default:

// default code block

}

JavaScript
var i=0;

switch (i) {

case 0:

// do something

break;

case 1:

// do something else

break;

default:

// default code block

}

COMP08033 Computational Thinking with Algorithms, Patrick Mannion GMIT

Iteration

• Iteration structures repeatedly execute a series of statements as long
as the condition stated in parenthesis is true

• Important to ensure that the loop condition will eventually become
false to prevent infinite looping

• Examples of iteration structures:
• for loops

• while loops

• do/while loops

COMP08033 Computational Thinking with Algorithms, Patrick Mannion GMIT

For loop

Java

int i=0;

for (i=0; i<10; i++) {

// do something

}

JavaScript

var i=0;

for (i=0; i<10; i++) {

// do something

}

COMP08033 Computational Thinking with Algorithms, Patrick Mannion GMIT

For loop (infinite looping)

Java

int i=0;

for (i=0; i<10; i--) {

// do something

}

JavaScript

var i=0;

for (i=0; i<10; i--) {

// do something

}

COMP08033 Computational Thinking with Algorithms, Patrick Mannion GMIT

While loop

Java

int i=0;

while (i<10) {

// do something

i++;

}

JavaScript

var i=0;

while (i<10) {

// do something

i++;

}

COMP08033 Computational Thinking with Algorithms, Patrick Mannion GMIT

Data structures

• A data structure is a way of storing and organising data in a program

• Example – an array

• Arrays have an index which allows us to access the information stored
at a particular position in the array

• In most programming languages, arrays are zero-indexed (i.e. the first
element is indexed with the number 0)

• We will assume that arrays are zero-indexed throughout this course

• Loops are extremely useful when working with arrays

COMP08033 Computational Thinking with Algorithms, Patrick Mannion GMIT

Array example

• If we wanted to store 10 names, we could make 10 different variables
to store them, e.g. (in Java):
• string contact1 = “John Smith”;

• string contact2 = “Jane Doe”;

• string contact3 = “Jim Doe”;

• etc.

• This is a terrible way of storing this kind of information
• We must write a large amount of text, what if we had 1000 names?

• This code isn’t flexible - we would have to rewrite it if we want to add another
name in the future

COMP08033 Computational Thinking with Algorithms, Patrick Mannion GMIT

Array example

• It makes much more sense to use a data structure such as an array to
store large quantities of related values

• Depending on the programming language, array like constructs
typically have useful built in functions, e.g.
• Sorting array elements (more on this later!)

• Counting the number of elements in the array

COMP08033 Computational Thinking with Algorithms, Patrick Mannion GMIT

Array example

Java

• int [] numbers = new int []
{5,1,12,-5,16};

JavaScript

• var numbers = [5,1,12,-5,16];

COMP08033 Computational Thinking with Algorithms, Patrick Mannion GMIT

Array with 5 elements

index 0 index 1 index 2 index 3 index 4

